blob: 2764e00a8bf08fce49083dd9eb387a284d12f97a [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include "src/base/logging.h"
#include "src/common/globals.h"
#include "src/logging/counters.h"
#include "src/numbers/conversions-inl.h"
#include "src/numbers/conversions.h"
#include "src/parsing/parser-base.h"
#include "src/parsing/preparse-data.h"
#include "src/parsing/preparser.h"
#include "src/strings/unicode.h"
#include "src/utils/allocation.h"
#include "src/utils/utils.h"
#include "src/zone/zone-list-inl.h"
namespace v8 {
namespace internal {
namespace {
PreParserIdentifier GetIdentifierHelper(Scanner* scanner,
const AstRawString* string,
AstValueFactory* avf) {
// These symbols require slightly different treatement:
// - regular keywords (async, await, etc.; treated in 1st switch.)
// - 'contextual' keywords (and may contain escaped; treated in 2nd switch.)
// - 'contextual' keywords, but may not be escaped (3rd switch).
switch (scanner->current_token()) {
case Token::AWAIT:
return PreParserIdentifier::Await();
case Token::ASYNC:
return PreParserIdentifier::Async();
case Token::PRIVATE_NAME:
return PreParserIdentifier::PrivateName();
default:
break;
}
if (string == avf->constructor_string()) {
return PreParserIdentifier::Constructor();
}
if (string == avf->name_string()) {
return PreParserIdentifier::Name();
}
if (scanner->literal_contains_escapes()) {
return PreParserIdentifier::Default();
}
if (string == avf->eval_string()) {
return PreParserIdentifier::Eval();
}
if (string == avf->arguments_string()) {
return PreParserIdentifier::Arguments();
}
return PreParserIdentifier::Default();
}
} // namespace
PreParserIdentifier PreParser::GetIdentifier() const {
const AstRawString* result = scanner()->CurrentSymbol(ast_value_factory());
PreParserIdentifier symbol =
GetIdentifierHelper(scanner(), result, ast_value_factory());
DCHECK_NOT_NULL(result);
symbol.string_ = result;
return symbol;
}
PreParser::PreParseResult PreParser::PreParseProgram() {
DCHECK_NULL(scope_);
DeclarationScope* scope = NewScriptScope(REPLMode::kNo);
#ifdef DEBUG
scope->set_is_being_lazily_parsed(true);
#endif
// ModuleDeclarationInstantiation for Source Text Module Records creates a
// new Module Environment Record whose outer lexical environment record is
// the global scope.
if (flags().is_module()) scope = NewModuleScope(scope);
FunctionState top_scope(&function_state_, &scope_, scope);
original_scope_ = scope_;
int start_position = peek_position();
PreParserScopedStatementList body(pointer_buffer());
ParseStatementList(&body, Token::EOS);
CheckConflictingVarDeclarations(scope);
original_scope_ = nullptr;
if (stack_overflow()) return kPreParseStackOverflow;
if (is_strict(language_mode())) {
CheckStrictOctalLiteral(start_position, scanner()->location().end_pos);
}
return kPreParseSuccess;
}
void PreParserFormalParameters::ValidateDuplicate(PreParser* preparser) const {
if (has_duplicate_) preparser->ReportUnidentifiableError();
}
void PreParserFormalParameters::ValidateStrictMode(PreParser* preparser) const {
if (strict_parameter_error_) preparser->ReportUnidentifiableError();
}
PreParser::PreParseResult PreParser::PreParseFunction(
const AstRawString* function_name, FunctionKind kind,
FunctionSyntaxKind function_syntax_kind, DeclarationScope* function_scope,
int* use_counts, ProducedPreparseData** produced_preparse_data) {
DCHECK_EQ(FUNCTION_SCOPE, function_scope->scope_type());
use_counts_ = use_counts;
#ifdef DEBUG
function_scope->set_is_being_lazily_parsed(true);
#endif
PreParserFormalParameters formals(function_scope);
// In the preparser, we use the function literal ids to count how many
// FunctionLiterals were encountered. The PreParser doesn't actually persist
// FunctionLiterals, so there IDs don't matter.
ResetFunctionLiteralId();
// The caller passes the function_scope which is not yet inserted into the
// scope stack. All scopes above the function_scope are ignored by the
// PreParser.
DCHECK_NULL(function_state_);
DCHECK_NULL(scope_);
FunctionState function_state(&function_state_, &scope_, function_scope);
// Start collecting data for a new function which might contain skippable
// functions.
PreparseDataBuilder::DataGatheringScope preparse_data_builder_scope(this);
if (IsArrowFunction(kind)) {
formals.is_simple = function_scope->has_simple_parameters();
} else {
preparse_data_builder_scope.Start(function_scope);
// Parse non-arrow function parameters. For arrow functions, the parameters
// have already been parsed.
ParameterDeclarationParsingScope formals_scope(this);
// We return kPreParseSuccess in failure cases too - errors are retrieved
// separately by Parser::SkipLazyFunctionBody.
ParseFormalParameterList(&formals);
if (formals_scope.has_duplicate()) formals.set_has_duplicate();
if (!formals.is_simple) {
BuildParameterInitializationBlock(formals);
}
Expect(Token::RPAREN);
int formals_end_position = scanner()->location().end_pos;
CheckArityRestrictions(formals.arity, kind, formals.has_rest,
function_scope->start_position(),
formals_end_position);
}
Expect(Token::LBRACE);
DeclarationScope* inner_scope = function_scope;
if (!formals.is_simple) {
inner_scope = NewVarblockScope();
inner_scope->set_start_position(position());
}
{
BlockState block_state(&scope_, inner_scope);
ParseStatementListAndLogFunction(&formals);
}
bool allow_duplicate_parameters = false;
CheckConflictingVarDeclarations(inner_scope);
if (!has_error()) {
if (formals.is_simple) {
if (is_sloppy(function_scope->language_mode())) {
function_scope->HoistSloppyBlockFunctions(nullptr);
}
allow_duplicate_parameters =
is_sloppy(function_scope->language_mode()) && !IsConciseMethod(kind);
} else {
if (is_sloppy(inner_scope->language_mode())) {
inner_scope->HoistSloppyBlockFunctions(nullptr);
}
SetLanguageMode(function_scope, inner_scope->language_mode());
inner_scope->set_end_position(scanner()->peek_location().end_pos);
if (inner_scope->FinalizeBlockScope() != nullptr) {
const AstRawString* conflict = inner_scope->FindVariableDeclaredIn(
function_scope, VariableMode::kLastLexicalVariableMode);
if (conflict != nullptr)
ReportVarRedeclarationIn(conflict, inner_scope);
}
}
}
use_counts_ = nullptr;
if (stack_overflow()) {
return kPreParseStackOverflow;
} else if (pending_error_handler()->has_error_unidentifiable_by_preparser()) {
return kPreParseNotIdentifiableError;
} else if (has_error()) {
DCHECK(pending_error_handler()->has_pending_error());
} else {
DCHECK_EQ(Token::RBRACE, scanner()->peek());
if (!IsArrowFunction(kind)) {
// Validate parameter names. We can do this only after parsing the
// function, since the function can declare itself strict.
ValidateFormalParameters(language_mode(), formals,
allow_duplicate_parameters);
if (has_error()) {
if (pending_error_handler()->has_error_unidentifiable_by_preparser()) {
return kPreParseNotIdentifiableError;
} else {
return kPreParseSuccess;
}
}
// Declare arguments after parsing the function since lexical
// 'arguments' masks the arguments object. Declare arguments before
// declaring the function var since the arguments object masks 'function
// arguments'.
function_scope->DeclareArguments(ast_value_factory());
DeclareFunctionNameVar(function_name, function_syntax_kind,
function_scope);
if (preparse_data_builder_->HasData()) {
*produced_preparse_data =
ProducedPreparseData::For(preparse_data_builder_, main_zone());
}
}
if (pending_error_handler()->has_error_unidentifiable_by_preparser()) {
return kPreParseNotIdentifiableError;
}
if (is_strict(function_scope->language_mode())) {
int end_pos = scanner()->location().end_pos;
CheckStrictOctalLiteral(function_scope->start_position(), end_pos);
}
}
DCHECK(!pending_error_handler()->has_error_unidentifiable_by_preparser());
return kPreParseSuccess;
}
// Preparsing checks a JavaScript program and emits preparse-data that helps
// a later parsing to be faster.
// See preparser-data.h for the data.
// The PreParser checks that the syntax follows the grammar for JavaScript,
// and collects some information about the program along the way.
// The grammar check is only performed in order to understand the program
// sufficiently to deduce some information about it, that can be used
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
// rather it is to speed up properly written and correct programs.
// That means that contextual checks (like a label being declared where
// it is used) are generally omitted.
PreParser::Expression PreParser::ParseFunctionLiteral(
Identifier function_name, Scanner::Location function_name_location,
FunctionNameValidity function_name_validity, FunctionKind kind,
int function_token_pos, FunctionSyntaxKind function_syntax_kind,
LanguageMode language_mode,
ZonePtrList<const AstRawString>* arguments_for_wrapped_function) {
FunctionParsingScope function_parsing_scope(this);
// Wrapped functions are not parsed in the preparser.
DCHECK_NULL(arguments_for_wrapped_function);
DCHECK_NE(FunctionSyntaxKind::kWrapped, function_syntax_kind);
// Function ::
// '(' FormalParameterList? ')' '{' FunctionBody '}'
RuntimeCallTimerScope runtime_timer(
runtime_call_stats_,
RuntimeCallCounterId::kPreParseWithVariableResolution,
RuntimeCallStats::kThreadSpecific);
base::ElapsedTimer timer;
if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
DeclarationScope* function_scope = NewFunctionScope(kind);
function_scope->SetLanguageMode(language_mode);
int func_id = GetNextFunctionLiteralId();
bool skippable_function = false;
// Start collecting data for a new function which might contain skippable
// functions.
{
PreparseDataBuilder::DataGatheringScope preparse_data_builder_scope(this);
skippable_function = !function_state_->next_function_is_likely_called() &&
preparse_data_builder_ != nullptr;
if (skippable_function) {
preparse_data_builder_scope.Start(function_scope);
}
FunctionState function_state(&function_state_, &scope_, function_scope);
Expect(Token::LPAREN);
int start_position = position();
function_scope->set_start_position(start_position);
PreParserFormalParameters formals(function_scope);
{
ParameterDeclarationParsingScope formals_scope(this);
ParseFormalParameterList(&formals);
if (formals_scope.has_duplicate()) formals.set_has_duplicate();
}
Expect(Token::RPAREN);
int formals_end_position = scanner()->location().end_pos;
CheckArityRestrictions(formals.arity, kind, formals.has_rest,
start_position, formals_end_position);
Expect(Token::LBRACE);
// Parse function body.
PreParserScopedStatementList body(pointer_buffer());
int pos = function_token_pos == kNoSourcePosition ? peek_position()
: function_token_pos;
AcceptINScope scope(this, true);
ParseFunctionBody(&body, function_name, pos, formals, kind,
function_syntax_kind, FunctionBodyType::kBlock);
// Parsing the body may change the language mode in our scope.
language_mode = function_scope->language_mode();
// Validate name and parameter names. We can do this only after parsing the
// function, since the function can declare itself strict.
CheckFunctionName(language_mode, function_name, function_name_validity,
function_name_location);
if (is_strict(language_mode)) {
CheckStrictOctalLiteral(start_position, end_position());
}
if (skippable_function) {
preparse_data_builder_scope.SetSkippableFunction(
function_scope, formals.function_length,
GetLastFunctionLiteralId() - func_id);
}
}
if (V8_UNLIKELY(FLAG_log_function_events)) {
double ms = timer.Elapsed().InMillisecondsF();
const char* event_name = "preparse-resolution";
// We might not always get a function name here. However, it can be easily
// reconstructed from the script id and the byte range in the log processor.
const char* name = "";
size_t name_byte_length = 0;
bool is_one_byte = true;
const AstRawString* string = function_name.string_;
if (string != nullptr) {
name = reinterpret_cast<const char*>(string->raw_data());
name_byte_length = string->byte_length();
is_one_byte = string->is_one_byte();
}
logger_->FunctionEvent(
event_name, flags().script_id(), ms, function_scope->start_position(),
function_scope->end_position(), name, name_byte_length, is_one_byte);
}
return Expression::Default();
}
void PreParser::ParseStatementListAndLogFunction(
PreParserFormalParameters* formals) {
PreParserScopedStatementList body(pointer_buffer());
ParseStatementList(&body, Token::RBRACE);
// Position right after terminal '}'.
DCHECK_IMPLIES(!has_error(), scanner()->peek() == Token::RBRACE);
int body_end = scanner()->peek_location().end_pos;
DCHECK_EQ(this->scope()->is_function_scope(), formals->is_simple);
log_.LogFunction(body_end, formals->num_parameters(),
formals->function_length, GetLastFunctionLiteralId());
}
PreParserBlock PreParser::BuildParameterInitializationBlock(
const PreParserFormalParameters& parameters) {
DCHECK(!parameters.is_simple);
DCHECK(scope()->is_function_scope());
if (scope()->AsDeclarationScope()->sloppy_eval_can_extend_vars() &&
preparse_data_builder_ != nullptr) {
// We cannot replicate the Scope structure constructed by the Parser,
// because we've lost information whether each individual parameter was
// simple or not. Give up trying to produce data to skip inner functions.
if (preparse_data_builder_->parent() != nullptr) {
// Lazy parsing started before the current function; the function which
// cannot contain skippable functions is the parent function. (Its inner
// functions cannot either; they are implicitly bailed out.)
preparse_data_builder_->parent()->Bailout();
} else {
// Lazy parsing started at the current function; it cannot contain
// skippable functions.
preparse_data_builder_->Bailout();
}
}
return PreParserBlock::Default();
}
bool PreParser::IdentifierEquals(const PreParserIdentifier& identifier,
const AstRawString* other) {
return identifier.string_ == other;
}
} // namespace internal
} // namespace v8