| /* |
| ******************************************************************************* |
| * |
| * Copyright (C) 2003-2014, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ******************************************************************************* |
| * file name: gencnvex.c |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2003oct12 |
| * created by: Markus W. Scherer |
| */ |
| |
| #include <stdio.h> |
| #include "unicode/utypes.h" |
| #include "unicode/ustring.h" |
| #include "cstring.h" |
| #include "cmemory.h" |
| #include "ucnv_cnv.h" |
| #include "ucnvmbcs.h" |
| #include "toolutil.h" |
| #include "unewdata.h" |
| #include "ucm.h" |
| #include "makeconv.h" |
| #include "genmbcs.h" |
| |
| static void |
| CnvExtClose(NewConverter *cnvData); |
| |
| static UBool |
| CnvExtIsValid(NewConverter *cnvData, |
| const uint8_t *bytes, int32_t length); |
| |
| static UBool |
| CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); |
| |
| static uint32_t |
| CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
| UNewDataMemory *pData, int32_t tableType); |
| |
| typedef struct CnvExtData { |
| NewConverter newConverter; |
| |
| UCMFile *ucm; |
| |
| /* toUnicode (state table in ucm->states) */ |
| UToolMemory *toUTable, *toUUChars; |
| |
| /* fromUnicode */ |
| UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes; |
| |
| uint16_t stage1[MBCS_STAGE_1_SIZE]; |
| uint16_t stage2[MBCS_STAGE_2_SIZE]; |
| uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */ |
| uint32_t stage3b[0x10000]; |
| |
| int32_t stage1Top, stage2Top, stage3Top, stage3bTop; |
| |
| /* for stage3 compaction of <subchar1> |2 mappings */ |
| uint16_t stage3Sub1Block; |
| |
| /* statistics */ |
| int32_t |
| maxInBytes, maxOutBytes, maxBytesPerUChar, |
| maxInUChars, maxOutUChars, maxUCharsPerByte; |
| } CnvExtData; |
| |
| NewConverter * |
| CnvExtOpen(UCMFile *ucm) { |
| CnvExtData *extData; |
| |
| extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData)); |
| if(extData==NULL) { |
| printf("out of memory\n"); |
| exit(U_MEMORY_ALLOCATION_ERROR); |
| } |
| uprv_memset(extData, 0, sizeof(CnvExtData)); |
| |
| extData->ucm=ucm; /* aliased, not owned */ |
| |
| extData->newConverter.close=CnvExtClose; |
| extData->newConverter.isValid=CnvExtIsValid; |
| extData->newConverter.addTable=CnvExtAddTable; |
| extData->newConverter.write=CnvExtWrite; |
| return &extData->newConverter; |
| } |
| |
| static void |
| CnvExtClose(NewConverter *cnvData) { |
| CnvExtData *extData=(CnvExtData *)cnvData; |
| if(extData!=NULL) { |
| utm_close(extData->toUTable); |
| utm_close(extData->toUUChars); |
| utm_close(extData->fromUTableUChars); |
| utm_close(extData->fromUTableValues); |
| utm_close(extData->fromUBytes); |
| uprv_free(extData); |
| } |
| } |
| |
| /* we do not expect this to be called */ |
| static UBool |
| CnvExtIsValid(NewConverter *cnvData, |
| const uint8_t *bytes, int32_t length) { |
| return FALSE; |
| } |
| |
| static uint32_t |
| CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
| UNewDataMemory *pData, int32_t tableType) { |
| CnvExtData *extData=(CnvExtData *)cnvData; |
| int32_t length, top, headerSize; |
| |
| int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; |
| |
| if(tableType&TABLE_BASE) { |
| headerSize=0; |
| } else { |
| _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| /* write the header and base table name for an extension-only table */ |
| length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; |
| while(length&3) { |
| /* add padding */ |
| extData->ucm->baseName[length++]=0; |
| } |
| |
| headerSize=MBCS_HEADER_V4_LENGTH*4+length; |
| |
| /* fill the header */ |
| header.version[0]=4; |
| header.version[1]=2; |
| header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); |
| |
| /* write the header and the base table name */ |
| udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4); |
| udata_writeBlock(pData, extData->ucm->baseName, length); |
| } |
| |
| /* fill indexes[] - offsets/indexes are in units of the target array */ |
| top=0; |
| |
| indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; |
| top+=length*4; |
| |
| indexes[UCNV_EXT_TO_U_INDEX]=top; |
| indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); |
| top+=length*4; |
| |
| indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; |
| indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); |
| top+=length*2; |
| |
| indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; |
| length=utm_countItems(extData->fromUTableUChars); |
| top+=length*2; |
| |
| if(top&3) { |
| /* add padding */ |
| *((UChar *)utm_alloc(extData->fromUTableUChars))=0; |
| *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; |
| ++length; |
| top+=2; |
| } |
| indexes[UCNV_EXT_FROM_U_LENGTH]=length; |
| |
| indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; |
| top+=length*4; |
| |
| indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; |
| length=utm_countItems(extData->fromUBytes); |
| top+=length; |
| |
| if(top&1) { |
| /* add padding */ |
| *((uint8_t *)utm_alloc(extData->fromUBytes))=0; |
| ++length; |
| ++top; |
| } |
| indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; |
| |
| indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; |
| indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; |
| indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; |
| top+=length*2; |
| |
| indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; |
| length=extData->stage3Top; |
| top+=length*2; |
| |
| if(top&3) { |
| /* add padding */ |
| extData->stage3[extData->stage3Top++]=0; |
| ++length; |
| top+=2; |
| } |
| indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; |
| |
| indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; |
| indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; |
| top+=length*4; |
| |
| indexes[UCNV_EXT_SIZE]=top; |
| |
| /* statistics */ |
| indexes[UCNV_EXT_COUNT_BYTES]= |
| (extData->maxInBytes<<16)| |
| (extData->maxOutBytes<<8)| |
| extData->maxBytesPerUChar; |
| indexes[UCNV_EXT_COUNT_UCHARS]= |
| (extData->maxInUChars<<16)| |
| (extData->maxOutUChars<<8)| |
| extData->maxUCharsPerByte; |
| |
| indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; |
| |
| /* write the extension data */ |
| udata_writeBlock(pData, indexes, sizeof(indexes)); |
| udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); |
| udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); |
| |
| udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); |
| udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); |
| udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); |
| |
| udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); |
| udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); |
| udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); |
| udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); |
| |
| #if 0 |
| { |
| int32_t i, j; |
| |
| length=extData->stage1Top; |
| printf("\nstage1[%x]:\n", length); |
| |
| for(i=0; i<length; ++i) { |
| if(extData->stage1[i]!=length) { |
| printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); |
| } |
| } |
| |
| j=length; |
| length=extData->stage2Top; |
| printf("\nstage2[%x]:\n", length); |
| |
| for(i=0; i<length; ++j, ++i) { |
| if(extData->stage2[i]!=0) { |
| printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); |
| } |
| } |
| |
| length=extData->stage3Top; |
| printf("\nstage3[%x]:\n", length); |
| |
| for(i=0; i<length; ++i) { |
| if(extData->stage3[i]!=0) { |
| printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); |
| } |
| } |
| |
| length=extData->stage3bTop; |
| printf("\nstage3b[%x]:\n", length); |
| |
| for(i=0; i<length; ++i) { |
| if(extData->stage3b[i]!=0) { |
| printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); |
| } |
| } |
| } |
| #endif |
| |
| if(VERBOSE) { |
| printf("size of extension data: %ld\n", (long)top); |
| } |
| |
| /* return the number of bytes that should have been written */ |
| return (uint32_t)(headerSize+top); |
| } |
| |
| /* to Unicode --------------------------------------------------------------- */ |
| |
| /* |
| * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for |
| * the toUnicode table. |
| * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable |
| * for the base toUnicode table but not for the base fromUnicode table. |
| * The table must be sorted. |
| * Modifies previous data in the reverseMap. |
| */ |
| static int32_t |
| reduceToUMappings(UCMTable *table) { |
| UCMapping *mappings; |
| int32_t *map; |
| int32_t i, j, count; |
| int8_t flag; |
| |
| mappings=table->mappings; |
| map=table->reverseMap; |
| count=table->mappingsLength; |
| |
| /* leave the map alone for the initial mappings with desired flags */ |
| for(i=j=0; i<count; ++i) { |
| flag=mappings[map[i]].f; |
| if(flag!=0 && flag!=3) { |
| break; |
| } |
| } |
| |
| /* reduce from here to the rest */ |
| for(j=i; i<count; ++i) { |
| flag=mappings[map[i]].f; |
| if(flag==0 || flag==3) { |
| map[j++]=map[i]; |
| } |
| } |
| |
| return j; |
| } |
| |
| static uint32_t |
| getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { |
| UChar32 *u32; |
| UChar *u; |
| uint32_t value; |
| int32_t u16Length, ratio; |
| UErrorCode errorCode; |
| |
| /* write the Unicode result code point or string index */ |
| if(m->uLen==1) { |
| u16Length=U16_LENGTH(m->u); |
| value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); |
| } else { |
| /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ |
| |
| /* get the result code point string and its 16-bit string length */ |
| u32=UCM_GET_CODE_POINTS(table, m); |
| errorCode=U_ZERO_ERROR; |
| u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); |
| if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { |
| exit(errorCode); |
| } |
| |
| /* allocate it and put its length and index into the value */ |
| value= |
| (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| |
| ((uint32_t)utm_countItems(extData->toUUChars)); |
| u=utm_allocN(extData->toUUChars, u16Length); |
| |
| /* write the result 16-bit string */ |
| errorCode=U_ZERO_ERROR; |
| u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); |
| if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { |
| exit(errorCode); |
| } |
| } |
| if(m->f==0) { |
| value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; |
| } |
| |
| /* update statistics */ |
| if(m->bLen>extData->maxInBytes) { |
| extData->maxInBytes=m->bLen; |
| } |
| if(u16Length>extData->maxOutUChars) { |
| extData->maxOutUChars=u16Length; |
| } |
| |
| ratio=(u16Length+(m->bLen-1))/m->bLen; |
| if(ratio>extData->maxUCharsPerByte) { |
| extData->maxUCharsPerByte=ratio; |
| } |
| |
| return value; |
| } |
| |
| /* |
| * Recursive toUTable generator core function. |
| * Preconditions: |
| * - start<limit (There is at least one mapping.) |
| * - The mappings are sorted lexically. (Access is through the reverseMap.) |
| * - All mappings between start and limit have input sequences that share |
| * the same prefix of unitIndex length, and therefore all of these sequences |
| * are at least unitIndex+1 long. |
| * - There are only relevant mappings available through the reverseMap, |
| * see reduceToUMappings(). |
| * |
| * One function invocation generates one section table. |
| * |
| * Steps: |
| * 1. Count the number of unique unit values and get the low/high unit values |
| * that occur at unitIndex. |
| * 2. Allocate the section table with possible optimization for linear access. |
| * 3. Write temporary version of the section table with start indexes of |
| * subsections, each corresponding to one unit value at unitIndex. |
| * 4. Iterate through the table once more, and depending on the subsection length: |
| * 0: write 0 as a result value (unused byte in linear-access section table) |
| * >0: if there is one mapping with an input unit sequence of unitIndex+1 |
| * then defaultValue=compute the mapping result for this whole sequence |
| * else defaultValue=0 |
| * |
| * recurse into the subsection |
| */ |
| static UBool |
| generateToUTable(CnvExtData *extData, UCMTable *table, |
| int32_t start, int32_t limit, int32_t unitIndex, |
| uint32_t defaultValue) { |
| UCMapping *mappings, *m; |
| int32_t *map; |
| int32_t i, j, uniqueCount, count, subStart, subLimit; |
| |
| uint8_t *bytes; |
| int32_t low, high, prev; |
| |
| uint32_t *section; |
| |
| mappings=table->mappings; |
| map=table->reverseMap; |
| |
| /* step 1: examine the input units; set low, high, uniqueCount */ |
| m=mappings+map[start]; |
| bytes=UCM_GET_BYTES(table, m); |
| low=bytes[unitIndex]; |
| uniqueCount=1; |
| |
| prev=high=low; |
| for(i=start+1; i<limit; ++i) { |
| m=mappings+map[i]; |
| bytes=UCM_GET_BYTES(table, m); |
| high=bytes[unitIndex]; |
| |
| if(high!=prev) { |
| prev=high; |
| ++uniqueCount; |
| } |
| } |
| |
| /* step 2: allocate the section; set count, section */ |
| count=(high-low)+1; |
| if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) { |
| /* |
| * for the root table and for fairly full tables: |
| * allocate for direct, linear array access |
| * by keeping count, to write an entry for each unit value |
| * from low to high |
| * exception: use a compact table if count==0x100 because |
| * that cannot be encoded in the length byte |
| */ |
| } else { |
| count=uniqueCount; |
| } |
| |
| if(count>=0x100) { |
| fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count); |
| return FALSE; |
| } |
| |
| /* allocate the section: 1 entry for the header + count for the items */ |
| section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); |
| |
| /* write the section header */ |
| *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; |
| |
| /* step 3: write temporary section table with subsection starts */ |
| prev=low-1; /* just before low to prevent empty subsections before low */ |
| j=0; /* section table index */ |
| for(i=start; i<limit; ++i) { |
| m=mappings+map[i]; |
| bytes=UCM_GET_BYTES(table, m); |
| high=bytes[unitIndex]; |
| |
| if(high!=prev) { |
| /* start of a new subsection for unit high */ |
| if(count>uniqueCount) { |
| /* write empty subsections for unused units in a linear table */ |
| while(++prev<high) { |
| section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; |
| } |
| } else { |
| prev=high; |
| } |
| |
| /* write the entry with the subsection start */ |
| section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; |
| } |
| } |
| /* assert(j==count) */ |
| |
| /* step 4: recurse and write results */ |
| subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); |
| for(j=0; j<count; ++j) { |
| subStart=subLimit; |
| subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; |
| |
| /* remove the subStart temporary value */ |
| section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; |
| |
| if(subStart==subLimit) { |
| /* leave the value zero: empty subsection for unused unit in a linear table */ |
| continue; |
| } |
| |
| /* see if there is exactly one input unit sequence of length unitIndex+1 */ |
| defaultValue=0; |
| m=mappings+map[subStart]; |
| if(m->bLen==unitIndex+1) { |
| /* do not include this in generateToUTable() */ |
| ++subStart; |
| |
| if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { |
| /* print error for multiple same-input-sequence mappings */ |
| fprintf(stderr, "error: multiple mappings from same bytes\n"); |
| ucm_printMapping(table, m, stderr); |
| ucm_printMapping(table, mappings+map[subStart], stderr); |
| return FALSE; |
| } |
| |
| defaultValue=getToUnicodeValue(extData, table, m); |
| } |
| |
| if(subStart==subLimit) { |
| /* write the result for the input sequence ending here */ |
| section[j]|=defaultValue; |
| } else { |
| /* write the index to the subsection table */ |
| section[j]|=(uint32_t)utm_countItems(extData->toUTable); |
| |
| /* recurse */ |
| if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { |
| return FALSE; |
| } |
| } |
| } |
| return TRUE; |
| } |
| |
| /* |
| * Generate the toUTable and toUUChars from the input table. |
| * The input table must be sorted, and all precision flags must be 0..3. |
| * This function will modify the table's reverseMap. |
| */ |
| static UBool |
| makeToUTable(CnvExtData *extData, UCMTable *table) { |
| int32_t toUCount; |
| |
| toUCount=reduceToUMappings(table); |
| |
| extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4); |
| extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2); |
| |
| return generateToUTable(extData, table, 0, toUCount, 0, 0); |
| } |
| |
| /* from Unicode ------------------------------------------------------------- */ |
| |
| /* |
| * preprocessing: |
| * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode |
| * change each Unicode string to encode all but the first code point in 16-bit form |
| * |
| * generation: |
| * for each unique code point |
| * write an entry in the 3-stage trie |
| * check that there is only one single-code point sequence |
| * start recursion for following 16-bit input units |
| */ |
| |
| /* |
| * Remove toUnicode fallbacks and non-<subchar1> SUB mappings |
| * which are irrelevant for the fromUnicode extension table. |
| * Remove MBCS_FROM_U_EXT_FLAG bits. |
| * Overwrite the reverseMap with an index array to the relevant mappings. |
| * Modify the code point sequences to a generator-friendly format where |
| * the first code points remains unchanged but the following are recoded |
| * into 16-bit Unicode string form. |
| * The table must be sorted. |
| * Destroys previous data in the reverseMap. |
| */ |
| static int32_t |
| prepareFromUMappings(UCMTable *table) { |
| UCMapping *mappings, *m; |
| int32_t *map; |
| int32_t i, j, count; |
| int8_t flag; |
| |
| mappings=table->mappings; |
| map=table->reverseMap; |
| count=table->mappingsLength; |
| |
| /* |
| * we do not go through the map on input because the mappings are |
| * sorted lexically |
| */ |
| m=mappings; |
| |
| for(i=j=0; i<count; ++m, ++i) { |
| flag=m->f; |
| if(flag>=0) { |
| flag&=MBCS_FROM_U_EXT_MASK; |
| m->f=flag; |
| } |
| if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) { |
| map[j++]=i; |
| |
| if(m->uLen>1) { |
| /* recode all but the first code point to 16-bit Unicode */ |
| UChar32 *u32; |
| UChar *u; |
| UChar32 c; |
| int32_t q, r; |
| |
| u32=UCM_GET_CODE_POINTS(table, m); |
| u=(UChar *)u32; /* destructive in-place recoding */ |
| for(r=2, q=1; q<m->uLen; ++q) { |
| c=u32[q]; |
| U16_APPEND_UNSAFE(u, r, c); |
| } |
| |
| /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */ |
| m->uLen=(int8_t)r; |
| } |
| } |
| } |
| |
| return j; |
| } |
| |
| static uint32_t |
| getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { |
| uint8_t *bytes, *resultBytes; |
| uint32_t value; |
| int32_t u16Length, ratio; |
| |
| if(m->f==2) { |
| /* |
| * no mapping, <subchar1> preferred |
| * |
| * no need to count in statistics because the subchars are already |
| * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, |
| * and this non-mapping does not count for maxInUChars which are always |
| * trivially at least two if counting unmappable supplementary code points |
| */ |
| return UCNV_EXT_FROM_U_SUBCHAR1; |
| } |
| |
| bytes=UCM_GET_BYTES(table, m); |
| value=0; |
| switch(m->bLen) { |
| /* 1..3: store the bytes in the value word */ |
| case 3: |
| value=((uint32_t)*bytes++)<<16; |
| case 2: |
| value|=((uint32_t)*bytes++)<<8; |
| case 1: |
| value|=*bytes; |
| break; |
| default: |
| /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ |
| /* store the bytes in fromUBytes[] and the index in the value word */ |
| value=(uint32_t)utm_countItems(extData->fromUBytes); |
| resultBytes=utm_allocN(extData->fromUBytes, m->bLen); |
| uprv_memcpy(resultBytes, bytes, m->bLen); |
| break; |
| } |
| value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; |
| if(m->f==0) { |
| value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; |
| } else if(m->f==4) { |
| value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG; |
| } |
| |
| /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ |
| if(m->uLen==1) { |
| u16Length=U16_LENGTH(m->u); |
| } else { |
| u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); |
| } |
| |
| /* update statistics */ |
| if(u16Length>extData->maxInUChars) { |
| extData->maxInUChars=u16Length; |
| } |
| if(m->bLen>extData->maxOutBytes) { |
| extData->maxOutBytes=m->bLen; |
| } |
| |
| ratio=(m->bLen+(u16Length-1))/u16Length; |
| if(ratio>extData->maxBytesPerUChar) { |
| extData->maxBytesPerUChar=ratio; |
| } |
| |
| return value; |
| } |
| |
| /* |
| * works like generateToUTable(), except that the |
| * output section consists of two arrays, one for input UChars and one |
| * for result values |
| * |
| * also, fromUTable sections are always stored in a compact form for |
| * access via binary search |
| */ |
| static UBool |
| generateFromUTable(CnvExtData *extData, UCMTable *table, |
| int32_t start, int32_t limit, int32_t unitIndex, |
| uint32_t defaultValue) { |
| UCMapping *mappings, *m; |
| int32_t *map; |
| int32_t i, j, uniqueCount, count, subStart, subLimit; |
| |
| UChar *uchars; |
| UChar32 low, high, prev; |
| |
| UChar *sectionUChars; |
| uint32_t *sectionValues; |
| |
| mappings=table->mappings; |
| map=table->reverseMap; |
| |
| /* step 1: examine the input units; set low, high, uniqueCount */ |
| m=mappings+map[start]; |
| uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
| low=uchars[unitIndex]; |
| uniqueCount=1; |
| |
| prev=high=low; |
| for(i=start+1; i<limit; ++i) { |
| m=mappings+map[i]; |
| uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
| high=uchars[unitIndex]; |
| |
| if(high!=prev) { |
| prev=high; |
| ++uniqueCount; |
| } |
| } |
| |
| /* step 2: allocate the section; set count, section */ |
| /* the fromUTable always stores for access via binary search */ |
| count=uniqueCount; |
| |
| /* allocate the section: 1 entry for the header + count for the items */ |
| sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); |
| sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); |
| |
| /* write the section header */ |
| *sectionUChars++=(UChar)count; |
| *sectionValues++=defaultValue; |
| |
| /* step 3: write temporary section table with subsection starts */ |
| prev=low-1; /* just before low to prevent empty subsections before low */ |
| j=0; /* section table index */ |
| for(i=start; i<limit; ++i) { |
| m=mappings+map[i]; |
| uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
| high=uchars[unitIndex]; |
| |
| if(high!=prev) { |
| /* start of a new subsection for unit high */ |
| prev=high; |
| |
| /* write the entry with the subsection start */ |
| sectionUChars[j]=(UChar)high; |
| sectionValues[j]=(uint32_t)i; |
| ++j; |
| } |
| } |
| /* assert(j==count) */ |
| |
| /* step 4: recurse and write results */ |
| subLimit=(int32_t)(sectionValues[0]); |
| for(j=0; j<count; ++j) { |
| subStart=subLimit; |
| subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; |
| |
| /* see if there is exactly one input unit sequence of length unitIndex+1 */ |
| defaultValue=0; |
| m=mappings+map[subStart]; |
| if(m->uLen==unitIndex+1) { |
| /* do not include this in generateToUTable() */ |
| ++subStart; |
| |
| if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { |
| /* print error for multiple same-input-sequence mappings */ |
| fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); |
| ucm_printMapping(table, m, stderr); |
| ucm_printMapping(table, mappings+map[subStart], stderr); |
| return FALSE; |
| } |
| |
| defaultValue=getFromUBytesValue(extData, table, m); |
| } |
| |
| if(subStart==subLimit) { |
| /* write the result for the input sequence ending here */ |
| sectionValues[j]=defaultValue; |
| } else { |
| /* write the index to the subsection table */ |
| sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); |
| |
| /* recurse */ |
| if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { |
| return FALSE; |
| } |
| } |
| } |
| return TRUE; |
| } |
| |
| /* |
| * add entries to the fromUnicode trie, |
| * assume to be called with code points in ascending order |
| * and use that to build the trie in precompacted form |
| */ |
| static void |
| addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) { |
| int32_t i1, i2, i3, i3b, nextOffset, min, newBlock; |
| |
| if(value==0) { |
| return; |
| } |
| |
| /* |
| * compute the index for each stage, |
| * allocate a stage block if necessary, |
| * and write the stage value |
| */ |
| i1=c>>10; |
| if(i1>=extData->stage1Top) { |
| extData->stage1Top=i1+1; |
| } |
| |
| nextOffset=(c>>4)&0x3f; |
| |
| if(extData->stage1[i1]==0) { |
| /* allocate another block in stage 2; overlap with the previous block */ |
| newBlock=extData->stage2Top; |
| min=newBlock-nextOffset; /* minimum block start with overlap */ |
| while(min<newBlock && extData->stage2[newBlock-1]==0) { |
| --newBlock; |
| } |
| |
| extData->stage1[i1]=(uint16_t)newBlock; |
| extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
| if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) { |
| fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c); |
| exit(U_MEMORY_ALLOCATION_ERROR); |
| } |
| } |
| |
| i2=extData->stage1[i1]+nextOffset; |
| nextOffset=c&0xf; |
| |
| if(extData->stage2[i2]==0) { |
| /* allocate another block in stage 3; overlap with the previous block */ |
| newBlock=extData->stage3Top; |
| min=newBlock-nextOffset; /* minimum block start with overlap */ |
| while(min<newBlock && extData->stage3[newBlock-1]==0) { |
| --newBlock; |
| } |
| |
| /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */ |
| newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1); |
| extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT); |
| |
| extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE; |
| if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) { |
| fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c); |
| exit(U_MEMORY_ALLOCATION_ERROR); |
| } |
| } |
| |
| i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset; |
| /* |
| * assume extData->stage3[i3]==0 because we get |
| * code points in strictly ascending order |
| */ |
| |
| if(value==UCNV_EXT_FROM_U_SUBCHAR1) { |
| /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */ |
| extData->stage3[i3]=1; |
| |
| /* |
| * precompaction is not optimal for <subchar1> |2 mappings because |
| * stage3 values for them are all the same, unlike for other mappings |
| * which all have unique values; |
| * use a simple compaction of reusing a whole block filled with these |
| * mappings |
| */ |
| |
| /* is the entire block filled with <subchar1> |2 mappings? */ |
| if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) { |
| for(min=i3-nextOffset; |
| min<i3 && extData->stage3[min]==1; |
| ++min) {} |
| |
| if(min==i3) { |
| /* the entire block is filled with these mappings */ |
| if(extData->stage3Sub1Block!=0) { |
| /* point to the previous such block and remove this block from stage3 */ |
| extData->stage2[i2]=extData->stage3Sub1Block; |
| extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE; |
| uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2); |
| } else { |
| /* remember this block's stage2 entry */ |
| extData->stage3Sub1Block=extData->stage2[i2]; |
| } |
| } |
| } |
| } else { |
| if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) { |
| fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c); |
| exit(U_MEMORY_ALLOCATION_ERROR); |
| } |
| |
| /* roundtrip or fallback mapping */ |
| extData->stage3[i3]=(uint16_t)i3b; |
| extData->stage3b[i3b]=value; |
| } |
| } |
| |
| static UBool |
| generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) { |
| UCMapping *mappings, *m; |
| int32_t *map; |
| uint32_t value; |
| int32_t subStart, subLimit; |
| |
| UChar32 *codePoints; |
| UChar32 c, next; |
| |
| if(mapLength==0) { |
| return TRUE; |
| } |
| |
| mappings=table->mappings; |
| map=table->reverseMap; |
| |
| /* |
| * iterate over same-initial-code point mappings, |
| * enter the initial code point into the trie, |
| * and start a recursion on the corresponding mappings section |
| * with generateFromUTable() |
| */ |
| m=mappings+map[0]; |
| codePoints=UCM_GET_CODE_POINTS(table, m); |
| next=codePoints[0]; |
| subLimit=0; |
| while(subLimit<mapLength) { |
| /* get a new subsection of mappings starting with the same code point */ |
| subStart=subLimit; |
| c=next; |
| while(next==c && ++subLimit<mapLength) { |
| m=mappings+map[subLimit]; |
| codePoints=UCM_GET_CODE_POINTS(table, m); |
| next=codePoints[0]; |
| } |
| |
| /* |
| * compute the value for this code point; |
| * if there is a mapping for this code point alone, it is at subStart |
| * because the table is sorted lexically |
| */ |
| value=0; |
| m=mappings+map[subStart]; |
| codePoints=UCM_GET_CODE_POINTS(table, m); |
| if(m->uLen==1) { |
| /* do not include this in generateFromUTable() */ |
| ++subStart; |
| |
| if(subStart<subLimit && mappings[map[subStart]].uLen==1) { |
| /* print error for multiple same-input-sequence mappings */ |
| fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); |
| ucm_printMapping(table, m, stderr); |
| ucm_printMapping(table, mappings+map[subStart], stderr); |
| return FALSE; |
| } |
| |
| value=getFromUBytesValue(extData, table, m); |
| } |
| |
| if(subStart==subLimit) { |
| /* write the result for this one code point */ |
| addFromUTrieEntry(extData, c, value); |
| } else { |
| /* write the index to the subsection table */ |
| addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues)); |
| |
| /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */ |
| if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) { |
| return FALSE; |
| } |
| } |
| } |
| return TRUE; |
| } |
| |
| /* |
| * Generate the fromU data structures from the input table. |
| * The input table must be sorted, and all precision flags must be 0..3. |
| * This function will modify the table's reverseMap. |
| */ |
| static UBool |
| makeFromUTable(CnvExtData *extData, UCMTable *table) { |
| uint16_t *stage1; |
| int32_t i, stage1Top, fromUCount; |
| |
| fromUCount=prepareFromUMappings(table); |
| |
| extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2); |
| extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4); |
| extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1); |
| |
| /* allocate all-unassigned stage blocks */ |
| extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; |
| extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED; |
| |
| /* |
| * stage 3b stores only unique values, and in |
| * index 0: 0 for "no mapping" |
| * index 1: "no mapping" with preference for <subchar1> rather than <subchar> |
| */ |
| extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1; |
| extData->stage3bTop=2; |
| |
| /* allocate the first entry in the fromUTable because index 0 means "no result" */ |
| utm_alloc(extData->fromUTableUChars); |
| utm_alloc(extData->fromUTableValues); |
| |
| if(!generateFromUTrie(extData, table, fromUCount)) { |
| return FALSE; |
| } |
| |
| /* |
| * offset the stage 1 trie entries by stage1Top because they will |
| * be stored in a single array |
| */ |
| stage1=extData->stage1; |
| stage1Top=extData->stage1Top; |
| for(i=0; i<stage1Top; ++i) { |
| stage1[i]=(uint16_t)(stage1[i]+stage1Top); |
| } |
| |
| return TRUE; |
| } |
| |
| /* -------------------------------------------------------------------------- */ |
| |
| static UBool |
| CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { |
| CnvExtData *extData; |
| |
| if(table->unicodeMask&UCNV_HAS_SURROGATES) { |
| fprintf(stderr, "error: contains mappings for surrogate code points\n"); |
| return FALSE; |
| } |
| |
| staticData->conversionType=UCNV_MBCS; |
| |
| extData=(CnvExtData *)cnvData; |
| |
| /* |
| * assume that the table is sorted |
| * |
| * call the functions in this order because |
| * makeToUTable() modifies the original reverseMap, |
| * makeFromUTable() writes a whole new mapping into reverseMap |
| */ |
| return |
| makeToUTable(extData, table) && |
| makeFromUTable(extData, table); |
| } |