blob: 156c0dc3c8ae71d7f9273ec3ff5c2986bfbf27ce [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <vector>
#include <algorithm>
#include <map>
#include <google/protobuf/compiler/parser.h>
#include <google/protobuf/io/tokenizer.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/wire_format.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/unittest.pb.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/substitute.h>
#include <google/protobuf/stubs/map-util.h>
#include <google/protobuf/testing/googletest.h>
#include <gtest/gtest.h>
namespace google {
namespace protobuf {
namespace compiler {
namespace {
class MockErrorCollector : public io::ErrorCollector {
public:
MockErrorCollector() {}
~MockErrorCollector() {}
string text_;
// implements ErrorCollector ---------------------------------------
void AddError(int line, int column, const string& message) {
strings::SubstituteAndAppend(&text_, "$0:$1: $2\n",
line, column, message);
}
};
class MockValidationErrorCollector : public DescriptorPool::ErrorCollector {
public:
MockValidationErrorCollector(const SourceLocationTable& source_locations,
io::ErrorCollector* wrapped_collector)
: source_locations_(source_locations),
wrapped_collector_(wrapped_collector) {}
~MockValidationErrorCollector() {}
// implements ErrorCollector ---------------------------------------
void AddError(const string& filename,
const string& element_name,
const Message* descriptor,
ErrorLocation location,
const string& message) {
int line, column;
source_locations_.Find(descriptor, location, &line, &column);
wrapped_collector_->AddError(line, column, message);
}
private:
const SourceLocationTable& source_locations_;
io::ErrorCollector* wrapped_collector_;
};
class ParserTest : public testing::Test {
protected:
ParserTest()
: require_syntax_identifier_(false) {}
// Set up the parser to parse the given text.
void SetupParser(const char* text) {
raw_input_.reset(new io::ArrayInputStream(text, strlen(text)));
input_.reset(new io::Tokenizer(raw_input_.get(), &error_collector_));
parser_.reset(new Parser());
parser_->RecordErrorsTo(&error_collector_);
parser_->SetRequireSyntaxIdentifier(require_syntax_identifier_);
}
// Parse the input and expect that the resulting FileDescriptorProto matches
// the given output. The output is a FileDescriptorProto in protocol buffer
// text format.
void ExpectParsesTo(const char* input, const char* output) {
SetupParser(input);
FileDescriptorProto actual, expected;
parser_->Parse(input_.get(), &actual);
EXPECT_EQ(io::Tokenizer::TYPE_END, input_->current().type);
ASSERT_EQ("", error_collector_.text_);
// We don't cover SourceCodeInfo in these tests.
actual.clear_source_code_info();
// Parse the ASCII representation in order to canonicalize it. We could
// just compare directly to actual.DebugString(), but that would require
// that the caller precisely match the formatting that DebugString()
// produces.
ASSERT_TRUE(TextFormat::ParseFromString(output, &expected));
// Compare by comparing debug strings.
// TODO(kenton): Use differencer, once it is available.
EXPECT_EQ(expected.DebugString(), actual.DebugString());
}
// Parse the text and expect that the given errors are reported.
void ExpectHasErrors(const char* text, const char* expected_errors) {
ExpectHasEarlyExitErrors(text, expected_errors);
EXPECT_EQ(io::Tokenizer::TYPE_END, input_->current().type);
}
// Same as above but does not expect that the parser parses the complete
// input.
void ExpectHasEarlyExitErrors(const char* text, const char* expected_errors) {
SetupParser(text);
FileDescriptorProto file;
parser_->Parse(input_.get(), &file);
EXPECT_EQ(expected_errors, error_collector_.text_);
}
// Parse the text as a file and validate it (with a DescriptorPool), and
// expect that the validation step reports the given errors.
void ExpectHasValidationErrors(const char* text,
const char* expected_errors) {
SetupParser(text);
SourceLocationTable source_locations;
parser_->RecordSourceLocationsTo(&source_locations);
FileDescriptorProto file;
file.set_name("foo.proto");
parser_->Parse(input_.get(), &file);
EXPECT_EQ(io::Tokenizer::TYPE_END, input_->current().type);
ASSERT_EQ("", error_collector_.text_);
MockValidationErrorCollector validation_error_collector(
source_locations, &error_collector_);
EXPECT_TRUE(pool_.BuildFileCollectingErrors(
file, &validation_error_collector) == NULL);
EXPECT_EQ(expected_errors, error_collector_.text_);
}
MockErrorCollector error_collector_;
DescriptorPool pool_;
scoped_ptr<io::ZeroCopyInputStream> raw_input_;
scoped_ptr<io::Tokenizer> input_;
scoped_ptr<Parser> parser_;
bool require_syntax_identifier_;
};
// ===================================================================
TEST_F(ParserTest, StopAfterSyntaxIdentifier) {
SetupParser(
"// blah\n"
"syntax = \"foobar\";\n"
"this line will not be parsed\n");
parser_->SetStopAfterSyntaxIdentifier(true);
EXPECT_TRUE(parser_->Parse(input_.get(), NULL));
EXPECT_EQ("", error_collector_.text_);
EXPECT_EQ("foobar", parser_->GetSyntaxIdentifier());
}
TEST_F(ParserTest, StopAfterOmittedSyntaxIdentifier) {
SetupParser(
"// blah\n"
"this line will not be parsed\n");
parser_->SetStopAfterSyntaxIdentifier(true);
EXPECT_TRUE(parser_->Parse(input_.get(), NULL));
EXPECT_EQ("", error_collector_.text_);
EXPECT_EQ("", parser_->GetSyntaxIdentifier());
}
TEST_F(ParserTest, StopAfterSyntaxIdentifierWithErrors) {
SetupParser(
"// blah\n"
"syntax = error;\n");
parser_->SetStopAfterSyntaxIdentifier(true);
EXPECT_FALSE(parser_->Parse(input_.get(), NULL));
EXPECT_EQ("1:9: Expected syntax identifier.\n", error_collector_.text_);
}
// ===================================================================
typedef ParserTest ParseMessageTest;
TEST_F(ParseMessageTest, SimpleMessage) {
ExpectParsesTo(
"message TestMessage {\n"
" required int32 foo = 1;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_INT32 number:1 }"
"}");
}
TEST_F(ParseMessageTest, ImplicitSyntaxIdentifier) {
require_syntax_identifier_ = false;
ExpectParsesTo(
"message TestMessage {\n"
" required int32 foo = 1;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_INT32 number:1 }"
"}");
EXPECT_EQ("proto2", parser_->GetSyntaxIdentifier());
}
TEST_F(ParseMessageTest, ExplicitSyntaxIdentifier) {
ExpectParsesTo(
"syntax = \"proto2\";\n"
"message TestMessage {\n"
" required int32 foo = 1;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_INT32 number:1 }"
"}");
EXPECT_EQ("proto2", parser_->GetSyntaxIdentifier());
}
TEST_F(ParseMessageTest, ExplicitRequiredSyntaxIdentifier) {
require_syntax_identifier_ = true;
ExpectParsesTo(
"syntax = \"proto2\";\n"
"message TestMessage {\n"
" required int32 foo = 1;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_INT32 number:1 }"
"}");
EXPECT_EQ("proto2", parser_->GetSyntaxIdentifier());
}
TEST_F(ParseMessageTest, SimpleFields) {
ExpectParsesTo(
"message TestMessage {\n"
" required int32 foo = 15;\n"
" optional int32 bar = 34;\n"
" repeated int32 baz = 3;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_INT32 number:15 }"
" field { name:\"bar\" label:LABEL_OPTIONAL type:TYPE_INT32 number:34 }"
" field { name:\"baz\" label:LABEL_REPEATED type:TYPE_INT32 number:3 }"
"}");
}
TEST_F(ParseMessageTest, PrimitiveFieldTypes) {
ExpectParsesTo(
"message TestMessage {\n"
" required int32 foo = 1;\n"
" required int64 foo = 1;\n"
" required uint32 foo = 1;\n"
" required uint64 foo = 1;\n"
" required sint32 foo = 1;\n"
" required sint64 foo = 1;\n"
" required fixed32 foo = 1;\n"
" required fixed64 foo = 1;\n"
" required sfixed32 foo = 1;\n"
" required sfixed64 foo = 1;\n"
" required float foo = 1;\n"
" required double foo = 1;\n"
" required string foo = 1;\n"
" required bytes foo = 1;\n"
" required bool foo = 1;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_INT32 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_INT64 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_UINT32 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_UINT64 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_SINT32 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_SINT64 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_FIXED32 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_FIXED64 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_SFIXED32 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_SFIXED64 number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_FLOAT number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_DOUBLE number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_STRING number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_BYTES number:1 }"
" field { name:\"foo\" label:LABEL_REQUIRED type:TYPE_BOOL number:1 }"
"}");
}
TEST_F(ParseMessageTest, FieldDefaults) {
ExpectParsesTo(
"message TestMessage {\n"
" required int32 foo = 1 [default= 1 ];\n"
" required int32 foo = 1 [default= -2 ];\n"
" required int64 foo = 1 [default= 3 ];\n"
" required int64 foo = 1 [default= -4 ];\n"
" required uint32 foo = 1 [default= 5 ];\n"
" required uint64 foo = 1 [default= 6 ];\n"
" required float foo = 1 [default= 7.5];\n"
" required float foo = 1 [default= -8.5];\n"
" required float foo = 1 [default= 9 ];\n"
" required double foo = 1 [default= 10.5];\n"
" required double foo = 1 [default=-11.5];\n"
" required double foo = 1 [default= 12 ];\n"
" required double foo = 1 [default= inf ];\n"
" required double foo = 1 [default=-inf ];\n"
" required double foo = 1 [default= nan ];\n"
" required string foo = 1 [default='13\\001'];\n"
" required string foo = 1 [default='a' \"b\" \n \"c\"];\n"
" required bytes foo = 1 [default='14\\002'];\n"
" required bytes foo = 1 [default='a' \"b\" \n 'c'];\n"
" required bool foo = 1 [default=true ];\n"
" required Foo foo = 1 [default=FOO ];\n"
" required int32 foo = 1 [default= 0x7FFFFFFF];\n"
" required int32 foo = 1 [default=-0x80000000];\n"
" required uint32 foo = 1 [default= 0xFFFFFFFF];\n"
" required int64 foo = 1 [default= 0x7FFFFFFFFFFFFFFF];\n"
" required int64 foo = 1 [default=-0x8000000000000000];\n"
" required uint64 foo = 1 [default= 0xFFFFFFFFFFFFFFFF];\n"
" required double foo = 1 [default= 0xabcd];\n"
"}\n",
#define ETC "name:\"foo\" label:LABEL_REQUIRED number:1"
"message_type {"
" name: \"TestMessage\""
" field { type:TYPE_INT32 default_value:\"1\" "ETC" }"
" field { type:TYPE_INT32 default_value:\"-2\" "ETC" }"
" field { type:TYPE_INT64 default_value:\"3\" "ETC" }"
" field { type:TYPE_INT64 default_value:\"-4\" "ETC" }"
" field { type:TYPE_UINT32 default_value:\"5\" "ETC" }"
" field { type:TYPE_UINT64 default_value:\"6\" "ETC" }"
" field { type:TYPE_FLOAT default_value:\"7.5\" "ETC" }"
" field { type:TYPE_FLOAT default_value:\"-8.5\" "ETC" }"
" field { type:TYPE_FLOAT default_value:\"9\" "ETC" }"
" field { type:TYPE_DOUBLE default_value:\"10.5\" "ETC" }"
" field { type:TYPE_DOUBLE default_value:\"-11.5\" "ETC" }"
" field { type:TYPE_DOUBLE default_value:\"12\" "ETC" }"
" field { type:TYPE_DOUBLE default_value:\"inf\" "ETC" }"
" field { type:TYPE_DOUBLE default_value:\"-inf\" "ETC" }"
" field { type:TYPE_DOUBLE default_value:\"nan\" "ETC" }"
" field { type:TYPE_STRING default_value:\"13\\001\" "ETC" }"
" field { type:TYPE_STRING default_value:\"abc\" "ETC" }"
" field { type:TYPE_BYTES default_value:\"14\\\\002\" "ETC" }"
" field { type:TYPE_BYTES default_value:\"abc\" "ETC" }"
" field { type:TYPE_BOOL default_value:\"true\" "ETC" }"
" field { type_name:\"Foo\" default_value:\"FOO\" "ETC" }"
" field { type:TYPE_INT32 default_value:\"2147483647\" "ETC" }"
" field { type:TYPE_INT32 default_value:\"-2147483648\" "ETC" }"
" field { type:TYPE_UINT32 default_value:\"4294967295\" "ETC" }"
" field { type:TYPE_INT64 default_value:\"9223372036854775807\" "ETC" }"
" field { type:TYPE_INT64 default_value:\"-9223372036854775808\" "ETC" }"
" field { type:TYPE_UINT64 default_value:\"18446744073709551615\" "ETC" }"
" field { type:TYPE_DOUBLE default_value:\"43981\" "ETC" }"
"}");
#undef ETC
}
TEST_F(ParseMessageTest, FieldOptions) {
ExpectParsesTo(
"message TestMessage {\n"
" optional string foo = 1\n"
" [ctype=CORD, (foo)=7, foo.(.bar.baz).qux.quux.(corge)=-33, \n"
" (quux)=\"x\040y\", (baz.qux)=hey];\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" field { name: \"foo\" label: LABEL_OPTIONAL type: TYPE_STRING number: 1"
" options { uninterpreted_option: { name { name_part: \"ctype\" "
" is_extension: false } "
" identifier_value: \"CORD\" }"
" uninterpreted_option: { name { name_part: \"foo\" "
" is_extension: true } "
" positive_int_value: 7 }"
" uninterpreted_option: { name { name_part: \"foo\" "
" is_extension: false } "
" name { name_part: \".bar.baz\""
" is_extension: true } "
" name { name_part: \"qux\" "
" is_extension: false } "
" name { name_part: \"quux\" "
" is_extension: false } "
" name { name_part: \"corge\" "
" is_extension: true } "
" negative_int_value: -33 }"
" uninterpreted_option: { name { name_part: \"quux\" "
" is_extension: true } "
" string_value: \"x y\" }"
" uninterpreted_option: { name { name_part: \"baz.qux\" "
" is_extension: true } "
" identifier_value: \"hey\" }"
" }"
" }"
"}");
}
TEST_F(ParseMessageTest, Group) {
ExpectParsesTo(
"message TestMessage {\n"
" optional group TestGroup = 1 {};\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" nested_type { name: \"TestGroup\" }"
" field { name:\"testgroup\" label:LABEL_OPTIONAL number:1"
" type:TYPE_GROUP type_name: \"TestGroup\" }"
"}");
}
TEST_F(ParseMessageTest, NestedMessage) {
ExpectParsesTo(
"message TestMessage {\n"
" message Nested {}\n"
" optional Nested test_nested = 1;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" nested_type { name: \"Nested\" }"
" field { name:\"test_nested\" label:LABEL_OPTIONAL number:1"
" type_name: \"Nested\" }"
"}");
}
TEST_F(ParseMessageTest, NestedEnum) {
ExpectParsesTo(
"message TestMessage {\n"
" enum NestedEnum {}\n"
" optional NestedEnum test_enum = 1;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" enum_type { name: \"NestedEnum\" }"
" field { name:\"test_enum\" label:LABEL_OPTIONAL number:1"
" type_name: \"NestedEnum\" }"
"}");
}
TEST_F(ParseMessageTest, ExtensionRange) {
ExpectParsesTo(
"message TestMessage {\n"
" extensions 10 to 19;\n"
" extensions 30 to max;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" extension_range { start:10 end:20 }"
" extension_range { start:30 end:536870912 }"
"}");
}
TEST_F(ParseMessageTest, CompoundExtensionRange) {
ExpectParsesTo(
"message TestMessage {\n"
" extensions 2, 15, 9 to 11, 100 to max, 3;\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" extension_range { start:2 end:3 }"
" extension_range { start:15 end:16 }"
" extension_range { start:9 end:12 }"
" extension_range { start:100 end:536870912 }"
" extension_range { start:3 end:4 }"
"}");
}
TEST_F(ParseMessageTest, Extensions) {
ExpectParsesTo(
"extend Extendee1 { optional int32 foo = 12; }\n"
"extend Extendee2 { repeated TestMessage bar = 22; }\n",
"extension { name:\"foo\" label:LABEL_OPTIONAL type:TYPE_INT32 number:12"
" extendee: \"Extendee1\" } "
"extension { name:\"bar\" label:LABEL_REPEATED number:22"
" type_name:\"TestMessage\" extendee: \"Extendee2\" }");
}
TEST_F(ParseMessageTest, ExtensionsInMessageScope) {
ExpectParsesTo(
"message TestMessage {\n"
" extend Extendee1 { optional int32 foo = 12; }\n"
" extend Extendee2 { repeated TestMessage bar = 22; }\n"
"}\n",
"message_type {"
" name: \"TestMessage\""
" extension { name:\"foo\" label:LABEL_OPTIONAL type:TYPE_INT32 number:12"
" extendee: \"Extendee1\" }"
" extension { name:\"bar\" label:LABEL_REPEATED number:22"
" type_name:\"TestMessage\" extendee: \"Extendee2\" }"
"}");
}
TEST_F(ParseMessageTest, MultipleExtensionsOneExtendee) {
ExpectParsesTo(
"extend Extendee1 {\n"
" optional int32 foo = 12;\n"
" repeated TestMessage bar = 22;\n"
"}\n",
"extension { name:\"foo\" label:LABEL_OPTIONAL type:TYPE_INT32 number:12"
" extendee: \"Extendee1\" } "
"extension { name:\"bar\" label:LABEL_REPEATED number:22"
" type_name:\"TestMessage\" extendee: \"Extendee1\" }");
}
// ===================================================================
typedef ParserTest ParseEnumTest;
TEST_F(ParseEnumTest, SimpleEnum) {
ExpectParsesTo(
"enum TestEnum {\n"
" FOO = 0;\n"
"}\n",
"enum_type {"
" name: \"TestEnum\""
" value { name:\"FOO\" number:0 }"
"}");
}
TEST_F(ParseEnumTest, Values) {
ExpectParsesTo(
"enum TestEnum {\n"
" FOO = 13;\n"
" BAR = -10;\n"
" BAZ = 500;\n"
"}\n",
"enum_type {"
" name: \"TestEnum\""
" value { name:\"FOO\" number:13 }"
" value { name:\"BAR\" number:-10 }"
" value { name:\"BAZ\" number:500 }"
"}");
}
TEST_F(ParseEnumTest, ValueOptions) {
ExpectParsesTo(
"enum TestEnum {\n"
" FOO = 13;\n"
" BAR = -10 [ (something.text) = 'abc' ];\n"
" BAZ = 500 [ (something.text) = 'def', other = 1 ];\n"
"}\n",
"enum_type {"
" name: \"TestEnum\""
" value { name: \"FOO\" number: 13 }"
" value { name: \"BAR\" number: -10 "
" options { "
" uninterpreted_option { "
" name { name_part: \"something.text\" is_extension: true } "
" string_value: \"abc\" "
" } "
" } "
" } "
" value { name: \"BAZ\" number: 500 "
" options { "
" uninterpreted_option { "
" name { name_part: \"something.text\" is_extension: true } "
" string_value: \"def\" "
" } "
" uninterpreted_option { "
" name { name_part: \"other\" is_extension: false } "
" positive_int_value: 1 "
" } "
" } "
" } "
"}");
}
// ===================================================================
typedef ParserTest ParseServiceTest;
TEST_F(ParseServiceTest, SimpleService) {
ExpectParsesTo(
"service TestService {\n"
" rpc Foo(In) returns (Out);\n"
"}\n",
"service {"
" name: \"TestService\""
" method { name:\"Foo\" input_type:\"In\" output_type:\"Out\" }"
"}");
}
TEST_F(ParseServiceTest, Methods) {
ExpectParsesTo(
"service TestService {\n"
" rpc Foo(In1) returns (Out1);\n"
" rpc Bar(In2) returns (Out2);\n"
" rpc Baz(In3) returns (Out3);\n"
"}\n",
"service {"
" name: \"TestService\""
" method { name:\"Foo\" input_type:\"In1\" output_type:\"Out1\" }"
" method { name:\"Bar\" input_type:\"In2\" output_type:\"Out2\" }"
" method { name:\"Baz\" input_type:\"In3\" output_type:\"Out3\" }"
"}");
}
// ===================================================================
// imports and packages
typedef ParserTest ParseMiscTest;
TEST_F(ParseMiscTest, ParseImport) {
ExpectParsesTo(
"import \"foo/bar/baz.proto\";\n",
"dependency: \"foo/bar/baz.proto\"");
}
TEST_F(ParseMiscTest, ParseMultipleImports) {
ExpectParsesTo(
"import \"foo.proto\";\n"
"import \"bar.proto\";\n"
"import \"baz.proto\";\n",
"dependency: \"foo.proto\""
"dependency: \"bar.proto\""
"dependency: \"baz.proto\"");
}
TEST_F(ParseMiscTest, ParsePackage) {
ExpectParsesTo(
"package foo.bar.baz;\n",
"package: \"foo.bar.baz\"");
}
TEST_F(ParseMiscTest, ParsePackageWithSpaces) {
ExpectParsesTo(
"package foo . bar. \n"
" baz;\n",
"package: \"foo.bar.baz\"");
}
// ===================================================================
// options
TEST_F(ParseMiscTest, ParseFileOptions) {
ExpectParsesTo(
"option java_package = \"com.google.foo\";\n"
"option optimize_for = CODE_SIZE;",
"options {"
"uninterpreted_option { name { name_part: \"java_package\" "
" is_extension: false }"
" string_value: \"com.google.foo\"} "
"uninterpreted_option { name { name_part: \"optimize_for\" "
" is_extension: false }"
" identifier_value: \"CODE_SIZE\" } "
"}");
}
// ===================================================================
// Error tests
//
// There are a very large number of possible errors that the parser could
// report, so it's infeasible to test every single one of them. Instead,
// we test each unique call to AddError() in parser.h. This does not mean
// we are testing every possible error that Parser can generate because
// each variant of the Consume() helper only counts as one unique call to
// AddError().
typedef ParserTest ParseErrorTest;
TEST_F(ParseErrorTest, MissingSyntaxIdentifier) {
require_syntax_identifier_ = true;
ExpectHasEarlyExitErrors(
"message TestMessage {}",
"0:0: File must begin with 'syntax = \"proto2\";'.\n");
EXPECT_EQ("", parser_->GetSyntaxIdentifier());
}
TEST_F(ParseErrorTest, UnknownSyntaxIdentifier) {
ExpectHasEarlyExitErrors(
"syntax = \"no_such_syntax\";",
"0:9: Unrecognized syntax identifier \"no_such_syntax\". This parser "
"only recognizes \"proto2\".\n");
EXPECT_EQ("no_such_syntax", parser_->GetSyntaxIdentifier());
}
TEST_F(ParseErrorTest, SimpleSyntaxError) {
ExpectHasErrors(
"message TestMessage @#$ { blah }",
"0:20: Expected \"{\".\n");
EXPECT_EQ("proto2", parser_->GetSyntaxIdentifier());
}
TEST_F(ParseErrorTest, ExpectedTopLevel) {
ExpectHasErrors(
"blah;",
"0:0: Expected top-level statement (e.g. \"message\").\n");
}
TEST_F(ParseErrorTest, UnmatchedCloseBrace) {
// This used to cause an infinite loop. Doh.
ExpectHasErrors(
"}",
"0:0: Expected top-level statement (e.g. \"message\").\n"
"0:0: Unmatched \"}\".\n");
}
// -------------------------------------------------------------------
// Message errors
TEST_F(ParseErrorTest, MessageMissingName) {
ExpectHasErrors(
"message {}",
"0:8: Expected message name.\n");
}
TEST_F(ParseErrorTest, MessageMissingBody) {
ExpectHasErrors(
"message TestMessage;",
"0:19: Expected \"{\".\n");
}
TEST_F(ParseErrorTest, EofInMessage) {
ExpectHasErrors(
"message TestMessage {",
"0:21: Reached end of input in message definition (missing '}').\n");
}
TEST_F(ParseErrorTest, MissingFieldNumber) {
ExpectHasErrors(
"message TestMessage {\n"
" optional int32 foo;\n"
"}\n",
"1:20: Missing field number.\n");
}
TEST_F(ParseErrorTest, ExpectedFieldNumber) {
ExpectHasErrors(
"message TestMessage {\n"
" optional int32 foo = ;\n"
"}\n",
"1:23: Expected field number.\n");
}
TEST_F(ParseErrorTest, FieldNumberOutOfRange) {
ExpectHasErrors(
"message TestMessage {\n"
" optional int32 foo = 0x100000000;\n"
"}\n",
"1:23: Integer out of range.\n");
}
TEST_F(ParseErrorTest, MissingLabel) {
ExpectHasErrors(
"message TestMessage {\n"
" int32 foo = 1;\n"
"}\n",
"1:2: Expected \"required\", \"optional\", or \"repeated\".\n");
}
TEST_F(ParseErrorTest, ExpectedOptionName) {
ExpectHasErrors(
"message TestMessage {\n"
" optional uint32 foo = 1 [];\n"
"}\n",
"1:27: Expected identifier.\n");
}
TEST_F(ParseErrorTest, NonExtensionOptionNameBeginningWithDot) {
ExpectHasErrors(
"message TestMessage {\n"
" optional uint32 foo = 1 [.foo=1];\n"
"}\n",
"1:27: Expected identifier.\n");
}
TEST_F(ParseErrorTest, DefaultValueTypeMismatch) {
ExpectHasErrors(
"message TestMessage {\n"
" optional uint32 foo = 1 [default=true];\n"
"}\n",
"1:35: Expected integer.\n");
}
TEST_F(ParseErrorTest, DefaultValueNotBoolean) {
ExpectHasErrors(
"message TestMessage {\n"
" optional bool foo = 1 [default=blah];\n"
"}\n",
"1:33: Expected \"true\" or \"false\".\n");
}
TEST_F(ParseErrorTest, DefaultValueNotString) {
ExpectHasErrors(
"message TestMessage {\n"
" optional string foo = 1 [default=1];\n"
"}\n",
"1:35: Expected string.\n");
}
TEST_F(ParseErrorTest, DefaultValueUnsignedNegative) {
ExpectHasErrors(
"message TestMessage {\n"
" optional uint32 foo = 1 [default=-1];\n"
"}\n",
"1:36: Unsigned field can't have negative default value.\n");
}
TEST_F(ParseErrorTest, DefaultValueTooLarge) {
ExpectHasErrors(
"message TestMessage {\n"
" optional int32 foo = 1 [default= 0x80000000];\n"
" optional int32 foo = 1 [default=-0x80000001];\n"
" optional uint32 foo = 1 [default= 0x100000000];\n"
" optional int64 foo = 1 [default= 0x80000000000000000];\n"
" optional int64 foo = 1 [default=-0x80000000000000001];\n"
" optional uint64 foo = 1 [default= 0x100000000000000000];\n"
"}\n",
"1:36: Integer out of range.\n"
"2:36: Integer out of range.\n"
"3:36: Integer out of range.\n"
"4:36: Integer out of range.\n"
"5:36: Integer out of range.\n"
"6:36: Integer out of range.\n");
}
TEST_F(ParseErrorTest, DefaultValueMissing) {
ExpectHasErrors(
"message TestMessage {\n"
" optional uint32 foo = 1 [default=];\n"
"}\n",
"1:35: Expected integer.\n");
}
TEST_F(ParseErrorTest, DefaultValueForGroup) {
ExpectHasErrors(
"message TestMessage {\n"
" optional group Foo = 1 [default=blah] {}\n"
"}\n",
"1:34: Messages can't have default values.\n");
}
TEST_F(ParseErrorTest, DuplicateDefaultValue) {
ExpectHasErrors(
"message TestMessage {\n"
" optional uint32 foo = 1 [default=1,default=2];\n"
"}\n",
"1:37: Already set option \"default\".\n");
}
TEST_F(ParseErrorTest, GroupNotCapitalized) {
ExpectHasErrors(
"message TestMessage {\n"
" optional group foo = 1 {}\n"
"}\n",
"1:17: Group names must start with a capital letter.\n");
}
TEST_F(ParseErrorTest, GroupMissingBody) {
ExpectHasErrors(
"message TestMessage {\n"
" optional group Foo = 1;\n"
"}\n",
"1:24: Missing group body.\n");
}
TEST_F(ParseErrorTest, ExtendingPrimitive) {
ExpectHasErrors(
"extend int32 { optional string foo = 4; }\n",
"0:7: Expected message type.\n");
}
TEST_F(ParseErrorTest, ErrorInExtension) {
ExpectHasErrors(
"message Foo { extensions 100 to 199; }\n"
"extend Foo { optional string foo; }\n",
"1:32: Missing field number.\n");
}
TEST_F(ParseErrorTest, MultipleParseErrors) {
// When a statement has a parse error, the parser should be able to continue
// parsing at the next statement.
ExpectHasErrors(
"message TestMessage {\n"
" optional int32 foo;\n"
" !invalid statement ending in a block { blah blah { blah } blah }\n"
" optional int32 bar = 3 {}\n"
"}\n",
"1:20: Missing field number.\n"
"2:2: Expected \"required\", \"optional\", or \"repeated\".\n"
"2:2: Expected type name.\n"
"3:25: Expected \";\".\n");
}
TEST_F(ParseErrorTest, EofInAggregateValue) {
ExpectHasErrors(
"option (fileopt) = { i:100\n",
"1:0: Unexpected end of stream while parsing aggregate value.\n");
}
// -------------------------------------------------------------------
// Enum errors
TEST_F(ParseErrorTest, EofInEnum) {
ExpectHasErrors(
"enum TestEnum {",
"0:15: Reached end of input in enum definition (missing '}').\n");
}
TEST_F(ParseErrorTest, EnumValueMissingNumber) {
ExpectHasErrors(
"enum TestEnum {\n"
" FOO;\n"
"}\n",
"1:5: Missing numeric value for enum constant.\n");
}
// -------------------------------------------------------------------
// Service errors
TEST_F(ParseErrorTest, EofInService) {
ExpectHasErrors(
"service TestService {",
"0:21: Reached end of input in service definition (missing '}').\n");
}
TEST_F(ParseErrorTest, ServiceMethodPrimitiveParams) {
ExpectHasErrors(
"service TestService {\n"
" rpc Foo(int32) returns (string);\n"
"}\n",
"1:10: Expected message type.\n"
"1:26: Expected message type.\n");
}
TEST_F(ParseErrorTest, EofInMethodOptions) {
ExpectHasErrors(
"service TestService {\n"
" rpc Foo(Bar) returns(Bar) {",
"1:29: Reached end of input in method options (missing '}').\n"
"1:29: Reached end of input in service definition (missing '}').\n");
}
TEST_F(ParseErrorTest, PrimitiveMethodInput) {
ExpectHasErrors(
"service TestService {\n"
" rpc Foo(int32) returns(Bar);\n"
"}\n",
"1:10: Expected message type.\n");
}
TEST_F(ParseErrorTest, MethodOptionTypeError) {
// This used to cause an infinite loop.
ExpectHasErrors(
"message Baz {}\n"
"service Foo {\n"
" rpc Bar(Baz) returns(Baz) { option invalid syntax; }\n"
"}\n",
"2:45: Expected \"=\".\n");
}
// -------------------------------------------------------------------
// Import and package errors
TEST_F(ParseErrorTest, ImportNotQuoted) {
ExpectHasErrors(
"import foo;\n",
"0:7: Expected a string naming the file to import.\n");
}
TEST_F(ParseErrorTest, MultiplePackagesInFile) {
ExpectHasErrors(
"package foo;\n"
"package bar;\n",
"1:0: Multiple package definitions.\n");
}
// ===================================================================
// Test that errors detected by DescriptorPool correctly report line and
// column numbers. We have one test for every call to RecordLocation() in
// parser.cc.
typedef ParserTest ParserValidationErrorTest;
TEST_F(ParserValidationErrorTest, PackageNameError) {
// Create another file which defines symbol "foo".
FileDescriptorProto other_file;
other_file.set_name("bar.proto");
other_file.add_message_type()->set_name("foo");
EXPECT_TRUE(pool_.BuildFile(other_file) != NULL);
// Now try to define it as a package.
ExpectHasValidationErrors(
"package foo.bar;",
"0:8: \"foo\" is already defined (as something other than a package) "
"in file \"bar.proto\".\n");
}
TEST_F(ParserValidationErrorTest, MessageNameError) {
ExpectHasValidationErrors(
"message Foo {}\n"
"message Foo {}\n",
"1:8: \"Foo\" is already defined.\n");
}
TEST_F(ParserValidationErrorTest, FieldNameError) {
ExpectHasValidationErrors(
"message Foo {\n"
" optional int32 bar = 1;\n"
" optional int32 bar = 2;\n"
"}\n",
"2:17: \"bar\" is already defined in \"Foo\".\n");
}
TEST_F(ParserValidationErrorTest, FieldTypeError) {
ExpectHasValidationErrors(
"message Foo {\n"
" optional Baz bar = 1;\n"
"}\n",
"1:11: \"Baz\" is not defined.\n");
}
TEST_F(ParserValidationErrorTest, FieldNumberError) {
ExpectHasValidationErrors(
"message Foo {\n"
" optional int32 bar = 0;\n"
"}\n",
"1:23: Field numbers must be positive integers.\n");
}
TEST_F(ParserValidationErrorTest, FieldExtendeeError) {
ExpectHasValidationErrors(
"extend Baz { optional int32 bar = 1; }\n",
"0:7: \"Baz\" is not defined.\n");
}
TEST_F(ParserValidationErrorTest, FieldDefaultValueError) {
ExpectHasValidationErrors(
"enum Baz { QUX = 1; }\n"
"message Foo {\n"
" optional Baz bar = 1 [default=NO_SUCH_VALUE];\n"
"}\n",
"2:32: Enum type \"Baz\" has no value named \"NO_SUCH_VALUE\".\n");
}
TEST_F(ParserValidationErrorTest, FileOptionNameError) {
ExpectHasValidationErrors(
"option foo = 5;",
"0:7: Option \"foo\" unknown.\n");
}
TEST_F(ParserValidationErrorTest, FileOptionValueError) {
ExpectHasValidationErrors(
"option java_outer_classname = 5;",
"0:30: Value must be quoted string for string option "
"\"google.protobuf.FileOptions.java_outer_classname\".\n");
}
TEST_F(ParserValidationErrorTest, FieldOptionNameError) {
ExpectHasValidationErrors(
"message Foo {\n"
" optional bool bar = 1 [foo=1];\n"
"}\n",
"1:25: Option \"foo\" unknown.\n");
}
TEST_F(ParserValidationErrorTest, FieldOptionValueError) {
ExpectHasValidationErrors(
"message Foo {\n"
" optional int32 bar = 1 [ctype=1];\n"
"}\n",
"1:32: Value must be identifier for enum-valued option "
"\"google.protobuf.FieldOptions.ctype\".\n");
}
TEST_F(ParserValidationErrorTest, ExtensionRangeNumberError) {
ExpectHasValidationErrors(
"message Foo {\n"
" extensions 0;\n"
"}\n",
"1:13: Extension numbers must be positive integers.\n");
}
TEST_F(ParserValidationErrorTest, EnumNameError) {
ExpectHasValidationErrors(
"enum Foo {A = 1;}\n"
"enum Foo {B = 1;}\n",
"1:5: \"Foo\" is already defined.\n");
}
TEST_F(ParserValidationErrorTest, EnumValueNameError) {
ExpectHasValidationErrors(
"enum Foo {\n"
" BAR = 1;\n"
" BAR = 1;\n"
"}\n",
"2:2: \"BAR\" is already defined.\n");
}
TEST_F(ParserValidationErrorTest, ServiceNameError) {
ExpectHasValidationErrors(
"service Foo {}\n"
"service Foo {}\n",
"1:8: \"Foo\" is already defined.\n");
}
TEST_F(ParserValidationErrorTest, MethodNameError) {
ExpectHasValidationErrors(
"message Baz {}\n"
"service Foo {\n"
" rpc Bar(Baz) returns(Baz);\n"
" rpc Bar(Baz) returns(Baz);\n"
"}\n",
"3:6: \"Bar\" is already defined in \"Foo\".\n");
}
TEST_F(ParserValidationErrorTest, MethodInputTypeError) {
ExpectHasValidationErrors(
"message Baz {}\n"
"service Foo {\n"
" rpc Bar(Qux) returns(Baz);\n"
"}\n",
"2:10: \"Qux\" is not defined.\n");
}
TEST_F(ParserValidationErrorTest, MethodOutputTypeError) {
ExpectHasValidationErrors(
"message Baz {}\n"
"service Foo {\n"
" rpc Bar(Baz) returns(Qux);\n"
"}\n",
"2:23: \"Qux\" is not defined.\n");
}
// ===================================================================
// Test that the output from FileDescriptor::DebugString() (and all other
// descriptor types) is parseable, and results in the same Descriptor
// definitions again afoter parsing (not, however, that the order of messages
// cannot be guaranteed to be the same)
typedef ParserTest ParseDecriptorDebugTest;
class CompareDescriptorNames {
public:
bool operator()(const DescriptorProto* left, const DescriptorProto* right) {
return left->name() < right->name();
}
};
// Sorts nested DescriptorProtos of a DescriptoProto, by name.
void SortMessages(DescriptorProto *descriptor_proto) {
int size = descriptor_proto->nested_type_size();
// recursively sort; we can't guarantee the order of nested messages either
for (int i = 0; i < size; ++i) {
SortMessages(descriptor_proto->mutable_nested_type(i));
}
DescriptorProto **data =
descriptor_proto->mutable_nested_type()->mutable_data();
sort(data, data + size, CompareDescriptorNames());
}
// Sorts DescriptorProtos belonging to a FileDescriptorProto, by name.
void SortMessages(FileDescriptorProto *file_descriptor_proto) {
int size = file_descriptor_proto->message_type_size();
// recursively sort; we can't guarantee the order of nested messages either
for (int i = 0; i < size; ++i) {
SortMessages(file_descriptor_proto->mutable_message_type(i));
}
DescriptorProto **data =
file_descriptor_proto->mutable_message_type()->mutable_data();
sort(data, data + size, CompareDescriptorNames());
}
TEST_F(ParseDecriptorDebugTest, TestAllDescriptorTypes) {
const FileDescriptor* original_file =
protobuf_unittest::TestAllTypes::descriptor()->file();
FileDescriptorProto expected;
original_file->CopyTo(&expected);
// Get the DebugString of the unittest.proto FileDecriptor, which includes
// all other descriptor types
string debug_string = original_file->DebugString();
// Parse the debug string
SetupParser(debug_string.c_str());
FileDescriptorProto parsed;
parser_->Parse(input_.get(), &parsed);
EXPECT_EQ(io::Tokenizer::TYPE_END, input_->current().type);
ASSERT_EQ("", error_collector_.text_);
// We now have a FileDescriptorProto, but to compare with the expected we
// need to link to a FileDecriptor, then output back to a proto. We'll
// also need to give it the same name as the original.
parsed.set_name("google/protobuf/unittest.proto");
// We need the imported dependency before we can build our parsed proto
const FileDescriptor* import =
protobuf_unittest_import::ImportMessage::descriptor()->file();
FileDescriptorProto import_proto;
import->CopyTo(&import_proto);
ASSERT_TRUE(pool_.BuildFile(import_proto) != NULL);
const FileDescriptor* actual = pool_.BuildFile(parsed);
parsed.Clear();
actual->CopyTo(&parsed);
ASSERT_TRUE(actual != NULL);
// The messages might be in different orders, making them hard to compare.
// So, sort the messages in the descriptor protos (including nested messages,
// recursively).
SortMessages(&expected);
SortMessages(&parsed);
// I really wanted to use StringDiff here for the debug output on fail,
// but the strings are too long for it, and if I increase its max size,
// we get a memory allocation failure :(
EXPECT_EQ(expected.DebugString(), parsed.DebugString());
}
// ===================================================================
// SourceCodeInfo tests.
// Follows a path -- as defined by SourceCodeInfo.Location.path -- from a
// message to a particular sub-field.
// * If the target is itself a message, sets *output_message to point at it,
// *output_field to NULL, and *output_index to -1.
// * Otherwise, if the target is an element of a repeated field, sets
// *output_message to the containing message, *output_field to the descriptor
// of the field, and *output_index to the index of the element.
// * Otherwise, the target is a field (possibly a repeated field, but not any
// one element). Sets *output_message to the containing message,
// *output_field to the descriptor of the field, and *output_index to -1.
// Returns true if the path was valid, false otherwise. A gTest failure is
// recorded before returning false.
bool FollowPath(const Message& root,
const int* path_begin, const int* path_end,
const Message** output_message,
const FieldDescriptor** output_field,
int* output_index) {
if (path_begin == path_end) {
// Path refers to this whole message.
*output_message = &root;
*output_field = NULL;
*output_index = -1;
return true;
}
const Descriptor* descriptor = root.GetDescriptor();
const Reflection* reflection = root.GetReflection();
const FieldDescriptor* field = descriptor->FindFieldByNumber(*path_begin);
if (field == NULL) {
ADD_FAILURE() << descriptor->name() << " has no field number: "
<< *path_begin;
return false;
}
++path_begin;
if (field->is_repeated()) {
if (path_begin == path_end) {
// Path refers to the whole repeated field.
*output_message = &root;
*output_field = field;
*output_index = -1;
return true;
}
int index = *path_begin++;
int size = reflection->FieldSize(root, field);
if (index >= size) {
ADD_FAILURE() << descriptor->name() << "." << field->name()
<< " has size " << size << ", but path contained index: "
<< index;
return false;
}
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
// Descend into child message.
const Message& child = reflection->GetRepeatedMessage(root, field, index);
return FollowPath(child, path_begin, path_end,
output_message, output_field, output_index);
} else if (path_begin == path_end) {
// Path refers to this element.
*output_message = &root;
*output_field = field;
*output_index = index;
return true;
} else {
ADD_FAILURE() << descriptor->name() << "." << field->name()
<< " is not a message; cannot descend into it.";
return false;
}
} else {
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
const Message& child = reflection->GetMessage(root, field);
return FollowPath(child, path_begin, path_end,
output_message, output_field, output_index);
} else if (path_begin == path_end) {
// Path refers to this field.
*output_message = &root;
*output_field = field;
*output_index = -1;
return true;
} else {
ADD_FAILURE() << descriptor->name() << "." << field->name()
<< " is not a message; cannot descend into it.";
return false;
}
}
}
// Split some text on line breaks. The line breaks are retained in the output,
// so each line (except the last) ends with a '\n', and the lines can be
// concatenated to produce the original text.
//
// I couldn't find the proper string utility function for this. Our
// split-on-delimiter functions don't include the delimiter in the output.
void SplitLines(const string& text, vector<string>* lines) {
string::size_type pos = 0;
while (pos != string::npos) {
string::size_type last_pos = pos;
pos = text.find_first_of('\n', pos);
if (pos != string::npos) ++pos;
lines->push_back(text.substr(last_pos, pos - last_pos));
}
}
// Look for the given tags in the given text and construct a span (as defined
// by SourceCodeInfo.Location.span) from them. E.g. for text like:
// /*a*/message /*b*/Foo/*c*/ {}/*d*/
// There are four tags: "a", "b", "c", and "d". The constructed span starts
// immediately after the start tag's trailing '/' and ends immediately before
// the end tags leading '/'.
void MakeExpectedSpan(const vector<string>& lines,
const string& start_tag, const string& end_tag,
RepeatedField<int>* output) {
string start_comment = "/*" + start_tag + "*/";
string end_comment = "/*" + end_tag + "*/";
int start_line = -1;
int start_column = -1;
for (int i = 0; i < lines.size(); i++) {
string::size_type pos = lines[i].find(start_comment);
if (pos != string::npos) {
start_line = i;
start_column = pos + start_comment.size();
break;
}
}
ASSERT_NE(start_line, -1)
<< "Tag \"" << start_comment << "\" not found in text.";
int end_line = -1;
int end_column = -1;
for (int i = start_line; i < lines.size(); i++) {
string::size_type pos = lines[i].find(end_comment);
if (pos != string::npos) {
end_line = i;
end_column = pos;
break;
}
}
ASSERT_NE(end_line, -1)
<< "Tag \"" << end_comment << "\" not found in text.";
output->Add(start_line);
output->Add(start_column);
if (end_line != start_line) output->Add(end_line);
output->Add(end_column);
}
// Check if two spans are equal.
bool CompareSpans(const RepeatedField<int>& span1,
const RepeatedField<int>& span2) {
if (span1.size() != span2.size()) return false;
for (int i = 0; i < span1.size(); i++) {
if (span1.Get(i) != span2.Get(i)) return false;
}
return true;
}
// Test fixture for source info tests, which check that source locations are
// recorded correctly in FileDescriptorProto.source_code_info.location.
class SourceInfoTest : public ParserTest {
protected:
// The parsed file (initialized by Parse()).
FileDescriptorProto file_;
// Parse the given text as a .proto file and populate the spans_ map with
// all the source location spans in its SourceCodeInfo table.
bool Parse(const char* text) {
SetupParser(text);
SplitLines(text, &lines_);
if (!parser_->Parse(input_.get(), &file_)) {
return false;
}
const SourceCodeInfo& source_info = file_.source_code_info();
for (int i = 0; i < source_info.location_size(); i++) {
const SourceCodeInfo::Location& location = source_info.location(i);
const Message* descriptor_proto = NULL;
const FieldDescriptor* field = NULL;
int index = 0;
if (!FollowPath(file_, location.path().begin(), location.path().end(),
&descriptor_proto, &field, &index)) {
return false;
}
spans_.insert(make_pair(SpanKey(*descriptor_proto, field, index),
&location));
}
return true;
}
virtual void TearDown() {
EXPECT_TRUE(spans_.empty())
<< "Forgot to call HasSpan() for:\n"
<< spans_.begin()->second->DebugString();
}
// -----------------------------------------------------------------
// HasSpan() checks that the span of source code delimited by the given
// tags (comments) correspond via the SourceCodeInfo table to the given
// part of the FileDescriptorProto. (If unclear, look at the actual tests;
// it should quickly become obvious.)
bool HasSpan(const char* start_tag, const char* end_tag,
const Message& descriptor_proto) {
return HasSpan(start_tag, end_tag, descriptor_proto, NULL, -1);
}
bool HasSpan(const char* start_tag, const char* end_tag,
const Message& descriptor_proto, const string& field_name) {
return HasSpan(start_tag, end_tag, descriptor_proto, field_name, -1);
}
bool HasSpan(const char* start_tag, const char* end_tag,
const Message& descriptor_proto, const string& field_name,
int index) {
const FieldDescriptor* field =
descriptor_proto.GetDescriptor()->FindFieldByName(field_name);
if (field == NULL) {
ADD_FAILURE() << descriptor_proto.GetDescriptor()->name()
<< " has no such field: " << field_name;
return false;
}
return HasSpan(start_tag, end_tag, descriptor_proto, field, index);
}
bool HasSpan(const Message& descriptor_proto) {
return HasSpan(NULL, NULL, descriptor_proto, NULL, -1);
}
bool HasSpan(const Message& descriptor_proto, const string& field_name) {
return HasSpan(NULL, NULL, descriptor_proto, field_name, -1);
}
bool HasSpan(const Message& descriptor_proto, const string& field_name,
int index) {
return HasSpan(NULL, NULL, descriptor_proto, field_name, index);
}
bool HasSpan(const char* start_tag, const char* end_tag,
const Message& descriptor_proto, const FieldDescriptor* field,
int index) {
pair<SpanMap::iterator, SpanMap::iterator> range =
spans_.equal_range(SpanKey(descriptor_proto, field, index));
if (start_tag == NULL) {
if (range.first == range.second) {
return false;
} else {
spans_.erase(range.first);
return true;
}
} else {
RepeatedField<int> expected_span;
MakeExpectedSpan(lines_, start_tag, end_tag, &expected_span);
for (SpanMap::iterator iter = range.first; iter != range.second; ++iter) {
if (CompareSpans(expected_span, iter->second->span())) {
spans_.erase(iter);
return true;
}
}
return false;
}
}
private:
struct SpanKey {
const Message* descriptor_proto;
const FieldDescriptor* field;
int index;
inline SpanKey() {}
inline SpanKey(const Message& descriptor_proto,
const FieldDescriptor* field,
int index)
: descriptor_proto(&descriptor_proto), field(field), index(index) {}
inline bool operator<(const SpanKey& other) const {
if (descriptor_proto < other.descriptor_proto) return true;
if (descriptor_proto > other.descriptor_proto) return false;
if (field < other.field) return true;
if (field > other.field) return false;
return index < other.index;
}
};
typedef multimap<SpanKey, const SourceCodeInfo::Location*> SpanMap;
SpanMap spans_;
vector<string> lines_;
};
TEST_F(SourceInfoTest, BasicFileDecls) {
EXPECT_TRUE(Parse(
"/*a*/syntax = \"proto2\";\n"
"package /*b*/foo.bar/*c*/;\n"
"import /*d*/\"baz.proto\"/*e*/;\n"
"import /*f*/\"qux.proto\"/*g*/;/*h*/\n"
"// comment ignored\n"));
EXPECT_TRUE(HasSpan("a", "h", file_));
EXPECT_TRUE(HasSpan("b", "c", file_, "package"));
EXPECT_TRUE(HasSpan("d", "e", file_, "dependency", 0));
EXPECT_TRUE(HasSpan("f", "g", file_, "dependency", 1));
}
TEST_F(SourceInfoTest, Messages) {
EXPECT_TRUE(Parse(
"/*a*/message /*b*/Foo/*c*/ {}/*d*/\n"
"/*e*/message /*f*/Bar/*g*/ {}/*h*/\n"));
EXPECT_TRUE(HasSpan("a", "d", file_.message_type(0)));
EXPECT_TRUE(HasSpan("b", "c", file_.message_type(0), "name"));
EXPECT_TRUE(HasSpan("e", "h", file_.message_type(1)));
EXPECT_TRUE(HasSpan("f", "g", file_.message_type(1), "name"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
}
TEST_F(SourceInfoTest, Fields) {
EXPECT_TRUE(Parse(
"message Foo {\n"
" /*a*/optional/*b*/ /*c*/int32/*d*/ /*e*/bar/*f*/ = /*g*/1/*h*/;/*i*/\n"
" /*j*/repeated/*k*/ /*l*/X.Y/*m*/ /*n*/baz/*o*/ = /*p*/2/*q*/;/*r*/\n"
"}\n"));
const FieldDescriptorProto& field1 = file_.message_type(0).field(0);
const FieldDescriptorProto& field2 = file_.message_type(0).field(1);
EXPECT_TRUE(HasSpan("a", "i", field1));
EXPECT_TRUE(HasSpan("a", "b", field1, "label"));
EXPECT_TRUE(HasSpan("c", "d", field1, "type"));
EXPECT_TRUE(HasSpan("e", "f", field1, "name"));
EXPECT_TRUE(HasSpan("g", "h", field1, "number"));
EXPECT_TRUE(HasSpan("j", "r", field2));
EXPECT_TRUE(HasSpan("j", "k", field2, "label"));
EXPECT_TRUE(HasSpan("l", "m", field2, "type_name"));
EXPECT_TRUE(HasSpan("n", "o", field2, "name"));
EXPECT_TRUE(HasSpan("p", "q", field2, "number"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.message_type(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0), "name"));
}
TEST_F(SourceInfoTest, Extensions) {
EXPECT_TRUE(Parse(
"/*a*/extend /*b*/Foo/*c*/ {\n"
" /*d*/optional/*e*/ int32 bar = 1;/*f*/\n"
" /*g*/repeated/*h*/ X.Y baz = 2;/*i*/\n"
"}/*j*/\n"
"/*k*/extend /*l*/Bar/*m*/ {\n"
" /*n*/optional int32 qux = 1;/*o*/\n"
"}/*p*/\n"));
const FieldDescriptorProto& field1 = file_.extension(0);
const FieldDescriptorProto& field2 = file_.extension(1);
const FieldDescriptorProto& field3 = file_.extension(2);
EXPECT_TRUE(HasSpan("a", "j", file_, "extension"));
EXPECT_TRUE(HasSpan("k", "p", file_, "extension"));
EXPECT_TRUE(HasSpan("d", "f", field1));
EXPECT_TRUE(HasSpan("d", "e", field1, "label"));
EXPECT_TRUE(HasSpan("b", "c", field1, "extendee"));
EXPECT_TRUE(HasSpan("g", "i", field2));
EXPECT_TRUE(HasSpan("g", "h", field2, "label"));
EXPECT_TRUE(HasSpan("b", "c", field2, "extendee"));
EXPECT_TRUE(HasSpan("n", "o", field3));
EXPECT_TRUE(HasSpan("l", "m", field3, "extendee"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(field1, "type"));
EXPECT_TRUE(HasSpan(field1, "name"));
EXPECT_TRUE(HasSpan(field1, "number"));
EXPECT_TRUE(HasSpan(field2, "type_name"));
EXPECT_TRUE(HasSpan(field2, "name"));
EXPECT_TRUE(HasSpan(field2, "number"));
EXPECT_TRUE(HasSpan(field3, "label"));
EXPECT_TRUE(HasSpan(field3, "type"));
EXPECT_TRUE(HasSpan(field3, "name"));
EXPECT_TRUE(HasSpan(field3, "number"));
}
TEST_F(SourceInfoTest, NestedExtensions) {
EXPECT_TRUE(Parse(
"message Message {\n"
" /*a*/extend /*b*/Foo/*c*/ {\n"
" /*d*/optional/*e*/ int32 bar = 1;/*f*/\n"
" /*g*/repeated/*h*/ X.Y baz = 2;/*i*/\n"
" }/*j*/\n"
" /*k*/extend /*l*/Bar/*m*/ {\n"
" /*n*/optional int32 qux = 1;/*o*/\n"
" }/*p*/\n"
"}\n"));
const FieldDescriptorProto& field1 = file_.message_type(0).extension(0);
const FieldDescriptorProto& field2 = file_.message_type(0).extension(1);
const FieldDescriptorProto& field3 = file_.message_type(0).extension(2);
EXPECT_TRUE(HasSpan("a", "j", file_.message_type(0), "extension"));
EXPECT_TRUE(HasSpan("k", "p", file_.message_type(0), "extension"));
EXPECT_TRUE(HasSpan("d", "f", field1));
EXPECT_TRUE(HasSpan("d", "e", field1, "label"));
EXPECT_TRUE(HasSpan("b", "c", field1, "extendee"));
EXPECT_TRUE(HasSpan("g", "i", field2));
EXPECT_TRUE(HasSpan("g", "h", field2, "label"));
EXPECT_TRUE(HasSpan("b", "c", field2, "extendee"));
EXPECT_TRUE(HasSpan("n", "o", field3));
EXPECT_TRUE(HasSpan("l", "m", field3, "extendee"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.message_type(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0), "name"));
EXPECT_TRUE(HasSpan(field1, "type"));
EXPECT_TRUE(HasSpan(field1, "name"));
EXPECT_TRUE(HasSpan(field1, "number"));
EXPECT_TRUE(HasSpan(field2, "type_name"));
EXPECT_TRUE(HasSpan(field2, "name"));
EXPECT_TRUE(HasSpan(field2, "number"));
EXPECT_TRUE(HasSpan(field3, "label"));
EXPECT_TRUE(HasSpan(field3, "type"));
EXPECT_TRUE(HasSpan(field3, "name"));
EXPECT_TRUE(HasSpan(field3, "number"));
}
TEST_F(SourceInfoTest, ExtensionRanges) {
EXPECT_TRUE(Parse(
"message Message {\n"
" /*a*/extensions /*b*/1/*c*/ to /*d*/4/*e*/, /*f*/6/*g*/;/*h*/\n"
" /*i*/extensions /*j*/8/*k*/ to /*l*/max/*m*/;/*n*/\n"
"}\n"));
const DescriptorProto::ExtensionRange& range1 =
file_.message_type(0).extension_range(0);
const DescriptorProto::ExtensionRange& range2 =
file_.message_type(0).extension_range(1);
const DescriptorProto::ExtensionRange& range3 =
file_.message_type(0).extension_range(2);
EXPECT_TRUE(HasSpan("a", "h", file_.message_type(0), "extension_range"));
EXPECT_TRUE(HasSpan("i", "n", file_.message_type(0), "extension_range"));
EXPECT_TRUE(HasSpan("b", "e", range1));
EXPECT_TRUE(HasSpan("b", "c", range1, "start"));
EXPECT_TRUE(HasSpan("d", "e", range1, "end"));
EXPECT_TRUE(HasSpan("f", "g", range2));
EXPECT_TRUE(HasSpan("f", "g", range2, "start"));
EXPECT_TRUE(HasSpan("f", "g", range2, "end"));
EXPECT_TRUE(HasSpan("j", "m", range3));
EXPECT_TRUE(HasSpan("j", "k", range3, "start"));
EXPECT_TRUE(HasSpan("l", "m", range3, "end"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.message_type(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0), "name"));
}
TEST_F(SourceInfoTest, NestedMessages) {
EXPECT_TRUE(Parse(
"message Foo {\n"
" /*a*/message /*b*/Bar/*c*/ {\n"
" /*d*/message /*e*/Baz/*f*/ {}/*g*/\n"
" }/*h*/\n"
" /*i*/message /*j*/Qux/*k*/ {}/*l*/\n"
"}\n"));
const DescriptorProto& bar = file_.message_type(0).nested_type(0);
const DescriptorProto& baz = bar.nested_type(0);
const DescriptorProto& qux = file_.message_type(0).nested_type(1);
EXPECT_TRUE(HasSpan("a", "h", bar));
EXPECT_TRUE(HasSpan("b", "c", bar, "name"));
EXPECT_TRUE(HasSpan("d", "g", baz));
EXPECT_TRUE(HasSpan("e", "f", baz, "name"));
EXPECT_TRUE(HasSpan("i", "l", qux));
EXPECT_TRUE(HasSpan("j", "k", qux, "name"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.message_type(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0), "name"));
}
TEST_F(SourceInfoTest, Groups) {
EXPECT_TRUE(Parse(
"message Foo {\n"
" message Bar {}\n"
" /*a*/optional/*b*/ /*c*/group/*d*/ /*e*/Baz/*f*/ = /*g*/1/*h*/ {\n"
" /*i*/message Qux {}/*j*/\n"
" }/*k*/\n"
"}\n"));
const DescriptorProto& bar = file_.message_type(0).nested_type(0);
const DescriptorProto& baz = file_.message_type(0).nested_type(1);
const DescriptorProto& qux = baz.nested_type(0);
const FieldDescriptorProto& field = file_.message_type(0).field(0);
EXPECT_TRUE(HasSpan("a", "k", field));
EXPECT_TRUE(HasSpan("a", "b", field, "label"));
EXPECT_TRUE(HasSpan("c", "d", field, "type"));
EXPECT_TRUE(HasSpan("e", "f", field, "name"));
EXPECT_TRUE(HasSpan("e", "f", field, "type_name"));
EXPECT_TRUE(HasSpan("g", "h", field, "number"));
EXPECT_TRUE(HasSpan("a", "k", baz));
EXPECT_TRUE(HasSpan("e", "f", baz, "name"));
EXPECT_TRUE(HasSpan("i", "j", qux));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.message_type(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0), "name"));
EXPECT_TRUE(HasSpan(bar));
EXPECT_TRUE(HasSpan(bar, "name"));
EXPECT_TRUE(HasSpan(qux, "name"));
}
TEST_F(SourceInfoTest, Enums) {
EXPECT_TRUE(Parse(
"/*a*/enum /*b*/Foo/*c*/ {}/*d*/\n"
"/*e*/enum /*f*/Bar/*g*/ {}/*h*/\n"));
EXPECT_TRUE(HasSpan("a", "d", file_.enum_type(0)));
EXPECT_TRUE(HasSpan("b", "c", file_.enum_type(0), "name"));
EXPECT_TRUE(HasSpan("e", "h", file_.enum_type(1)));
EXPECT_TRUE(HasSpan("f", "g", file_.enum_type(1), "name"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
}
TEST_F(SourceInfoTest, EnumValues) {
EXPECT_TRUE(Parse(
"enum Foo {\n"
" /*a*/BAR/*b*/ = /*c*/1/*d*/;/*e*/\n"
" /*f*/BAZ/*g*/ = /*h*/2/*i*/;/*j*/\n"
"}"));
const EnumValueDescriptorProto& bar = file_.enum_type(0).value(0);
const EnumValueDescriptorProto& baz = file_.enum_type(0).value(1);
EXPECT_TRUE(HasSpan("a", "e", bar));
EXPECT_TRUE(HasSpan("a", "b", bar, "name"));
EXPECT_TRUE(HasSpan("c", "d", bar, "number"));
EXPECT_TRUE(HasSpan("f", "j", baz));
EXPECT_TRUE(HasSpan("f", "g", baz, "name"));
EXPECT_TRUE(HasSpan("h", "i", baz, "number"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.enum_type(0)));
EXPECT_TRUE(HasSpan(file_.enum_type(0), "name"));
}
TEST_F(SourceInfoTest, NestedEnums) {
EXPECT_TRUE(Parse(
"message Foo {\n"
" /*a*/enum /*b*/Bar/*c*/ {}/*d*/\n"
" /*e*/enum /*f*/Baz/*g*/ {}/*h*/\n"
"}\n"));
const EnumDescriptorProto& bar = file_.message_type(0).enum_type(0);
const EnumDescriptorProto& baz = file_.message_type(0).enum_type(1);
EXPECT_TRUE(HasSpan("a", "d", bar));
EXPECT_TRUE(HasSpan("b", "c", bar, "name"));
EXPECT_TRUE(HasSpan("e", "h", baz));
EXPECT_TRUE(HasSpan("f", "g", baz, "name"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.message_type(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0), "name"));
}
TEST_F(SourceInfoTest, Services) {
EXPECT_TRUE(Parse(
"/*a*/service /*b*/Foo/*c*/ {}/*d*/\n"
"/*e*/service /*f*/Bar/*g*/ {}/*h*/\n"));
EXPECT_TRUE(HasSpan("a", "d", file_.service(0)));
EXPECT_TRUE(HasSpan("b", "c", file_.service(0), "name"));
EXPECT_TRUE(HasSpan("e", "h", file_.service(1)));
EXPECT_TRUE(HasSpan("f", "g", file_.service(1), "name"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
}
TEST_F(SourceInfoTest, Methods) {
EXPECT_TRUE(Parse(
"service Foo {\n"
" /*a*/rpc /*b*/Bar/*c*/(/*d*/X/*e*/) returns(/*f*/Y/*g*/);/*h*/"
" /*i*/rpc /*j*/Baz/*k*/(/*l*/Z/*m*/) returns(/*n*/W/*o*/);/*p*/"
"}"));
const MethodDescriptorProto& bar = file_.service(0).method(0);
const MethodDescriptorProto& baz = file_.service(0).method(1);
EXPECT_TRUE(HasSpan("a", "h", bar));
EXPECT_TRUE(HasSpan("b", "c", bar, "name"));
EXPECT_TRUE(HasSpan("d", "e", bar, "input_type"));
EXPECT_TRUE(HasSpan("f", "g", bar, "output_type"));
EXPECT_TRUE(HasSpan("i", "p", baz));
EXPECT_TRUE(HasSpan("j", "k", baz, "name"));
EXPECT_TRUE(HasSpan("l", "m", baz, "input_type"));
EXPECT_TRUE(HasSpan("n", "o", baz, "output_type"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.service(0)));
EXPECT_TRUE(HasSpan(file_.service(0), "name"));
}
TEST_F(SourceInfoTest, Options) {
EXPECT_TRUE(Parse(
"/*a*/option /*b*/foo/*c*/./*d*/(/*e*/bar.baz/*f*/)/*g*/ = "
"/*h*/123/*i*/;/*j*/\n"
"/*k*/option qux = /*l*/-123/*m*/;/*n*/\n"
"/*o*/option corge = /*p*/abc/*q*/;/*r*/\n"
"/*s*/option grault = /*t*/'blah'/*u*/;/*v*/\n"
"/*w*/option garply = /*x*/{ yadda yadda }/*y*/;/*z*/\n"
"/*0*/option waldo = /*1*/123.0/*2*/;/*3*/\n"
));
const UninterpretedOption& option1 = file_.options().uninterpreted_option(0);
const UninterpretedOption& option2 = file_.options().uninterpreted_option(1);
const UninterpretedOption& option3 = file_.options().uninterpreted_option(2);
const UninterpretedOption& option4 = file_.options().uninterpreted_option(3);
const UninterpretedOption& option5 = file_.options().uninterpreted_option(4);
const UninterpretedOption& option6 = file_.options().uninterpreted_option(5);
EXPECT_TRUE(HasSpan("a", "j", file_.options()));
EXPECT_TRUE(HasSpan("b", "i", option1));
EXPECT_TRUE(HasSpan("b", "g", option1, "name"));
EXPECT_TRUE(HasSpan("b", "c", option1.name(0)));
EXPECT_TRUE(HasSpan("b", "c", option1.name(0), "name_part"));
EXPECT_TRUE(HasSpan("d", "g", option1.name(1)));
EXPECT_TRUE(HasSpan("e", "f", option1.name(1), "name_part"));
EXPECT_TRUE(HasSpan("h", "i", option1, "positive_int_value"));
EXPECT_TRUE(HasSpan("k", "n", file_.options()));
EXPECT_TRUE(HasSpan("l", "m", option2, "negative_int_value"));
EXPECT_TRUE(HasSpan("o", "r", file_.options()));
EXPECT_TRUE(HasSpan("p", "q", option3, "identifier_value"));
EXPECT_TRUE(HasSpan("s", "v", file_.options()));
EXPECT_TRUE(HasSpan("t", "u", option4, "string_value"));
EXPECT_TRUE(HasSpan("w", "z", file_.options()));
EXPECT_TRUE(HasSpan("x", "y", option5, "aggregate_value"));
EXPECT_TRUE(HasSpan("0", "3", file_.options()));
EXPECT_TRUE(HasSpan("1", "2", option6, "double_value"));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(option2));
EXPECT_TRUE(HasSpan(option3));
EXPECT_TRUE(HasSpan(option4));
EXPECT_TRUE(HasSpan(option5));
EXPECT_TRUE(HasSpan(option6));
EXPECT_TRUE(HasSpan(option2, "name"));
EXPECT_TRUE(HasSpan(option3, "name"));
EXPECT_TRUE(HasSpan(option4, "name"));
EXPECT_TRUE(HasSpan(option5, "name"));
EXPECT_TRUE(HasSpan(option6, "name"));
EXPECT_TRUE(HasSpan(option2.name(0)));
EXPECT_TRUE(HasSpan(option3.name(0)));
EXPECT_TRUE(HasSpan(option4.name(0)));
EXPECT_TRUE(HasSpan(option5.name(0)));
EXPECT_TRUE(HasSpan(option6.name(0)));
EXPECT_TRUE(HasSpan(option2.name(0), "name_part"));
EXPECT_TRUE(HasSpan(option3.name(0), "name_part"));
EXPECT_TRUE(HasSpan(option4.name(0), "name_part"));
EXPECT_TRUE(HasSpan(option5.name(0), "name_part"));
EXPECT_TRUE(HasSpan(option6.name(0), "name_part"));
}
TEST_F(SourceInfoTest, ScopedOptions) {
EXPECT_TRUE(Parse(
"message Foo {\n"
" /*a*/option mopt = 1;/*b*/\n"
"}\n"
"enum Bar {\n"
" /*c*/option eopt = 1;/*d*/\n"
"}\n"
"service Baz {\n"
" /*e*/option sopt = 1;/*f*/\n"
" rpc M(X) returns(Y) {\n"
" /*g*/option mopt = 1;/*h*/\n"
" }\n"
"}\n"));
EXPECT_TRUE(HasSpan("a", "b", file_.message_type(0).options()));
EXPECT_TRUE(HasSpan("c", "d", file_.enum_type(0).options()));
EXPECT_TRUE(HasSpan("e", "f", file_.service(0).options()));
EXPECT_TRUE(HasSpan("g", "h", file_.service(0).method(0).options()));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.message_type(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0), "name"));
EXPECT_TRUE(HasSpan(file_.message_type(0).options()
.uninterpreted_option(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0).options()
.uninterpreted_option(0), "name"));
EXPECT_TRUE(HasSpan(file_.message_type(0).options()
.uninterpreted_option(0).name(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0).options()
.uninterpreted_option(0).name(0), "name_part"));
EXPECT_TRUE(HasSpan(file_.message_type(0).options()
.uninterpreted_option(0), "positive_int_value"));
EXPECT_TRUE(HasSpan(file_.enum_type(0)));
EXPECT_TRUE(HasSpan(file_.enum_type(0), "name"));
EXPECT_TRUE(HasSpan(file_.enum_type(0).options()
.uninterpreted_option(0)));
EXPECT_TRUE(HasSpan(file_.enum_type(0).options()
.uninterpreted_option(0), "name"));
EXPECT_TRUE(HasSpan(file_.enum_type(0).options()
.uninterpreted_option(0).name(0)));
EXPECT_TRUE(HasSpan(file_.enum_type(0).options()
.uninterpreted_option(0).name(0), "name_part"));
EXPECT_TRUE(HasSpan(file_.enum_type(0).options()
.uninterpreted_option(0), "positive_int_value"));
EXPECT_TRUE(HasSpan(file_.service(0)));
EXPECT_TRUE(HasSpan(file_.service(0), "name"));
EXPECT_TRUE(HasSpan(file_.service(0).method(0)));
EXPECT_TRUE(HasSpan(file_.service(0).options()
.uninterpreted_option(0)));
EXPECT_TRUE(HasSpan(file_.service(0).options()
.uninterpreted_option(0), "name"));
EXPECT_TRUE(HasSpan(file_.service(0).options()
.uninterpreted_option(0).name(0)));
EXPECT_TRUE(HasSpan(file_.service(0).options()
.uninterpreted_option(0).name(0), "name_part"));
EXPECT_TRUE(HasSpan(file_.service(0).options()
.uninterpreted_option(0), "positive_int_value"));
EXPECT_TRUE(HasSpan(file_.service(0).method(0), "name"));
EXPECT_TRUE(HasSpan(file_.service(0).method(0), "input_type"));
EXPECT_TRUE(HasSpan(file_.service(0).method(0), "output_type"));
EXPECT_TRUE(HasSpan(file_.service(0).method(0).options()
.uninterpreted_option(0)));
EXPECT_TRUE(HasSpan(file_.service(0).method(0).options()
.uninterpreted_option(0), "name"));
EXPECT_TRUE(HasSpan(file_.service(0).method(0).options()
.uninterpreted_option(0).name(0)));
EXPECT_TRUE(HasSpan(file_.service(0).method(0).options()
.uninterpreted_option(0).name(0), "name_part"));
EXPECT_TRUE(HasSpan(file_.service(0).method(0).options()
.uninterpreted_option(0), "positive_int_value"));
}
TEST_F(SourceInfoTest, FieldOptions) {
// The actual "name = value" pairs are parsed by the same code as for
// top-level options so we won't re-test that -- just make sure that the
// syntax used for field options is understood.
EXPECT_TRUE(Parse(
"message Foo {"
" optional int32 bar = 1 "
"/*a*/[default=/*b*/123/*c*/,/*d*/opt1=123/*e*/,"
"/*f*/opt2='hi'/*g*/]/*h*/;"
"}\n"
));
const FieldDescriptorProto& field = file_.message_type(0).field(0);
const UninterpretedOption& option1 = field.options().uninterpreted_option(0);
const UninterpretedOption& option2 = field.options().uninterpreted_option(1);
EXPECT_TRUE(HasSpan("a", "h", field.options()));
EXPECT_TRUE(HasSpan("b", "c", field, "default_value"));
EXPECT_TRUE(HasSpan("d", "e", option1));
EXPECT_TRUE(HasSpan("f", "g", option2));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.message_type(0)));
EXPECT_TRUE(HasSpan(file_.message_type(0), "name"));
EXPECT_TRUE(HasSpan(field));
EXPECT_TRUE(HasSpan(field, "label"));
EXPECT_TRUE(HasSpan(field, "type"));
EXPECT_TRUE(HasSpan(field, "name"));
EXPECT_TRUE(HasSpan(field, "number"));
EXPECT_TRUE(HasSpan(option1, "name"));
EXPECT_TRUE(HasSpan(option2, "name"));
EXPECT_TRUE(HasSpan(option1.name(0)));
EXPECT_TRUE(HasSpan(option2.name(0)));
EXPECT_TRUE(HasSpan(option1.name(0), "name_part"));
EXPECT_TRUE(HasSpan(option2.name(0), "name_part"));
EXPECT_TRUE(HasSpan(option1, "positive_int_value"));
EXPECT_TRUE(HasSpan(option2, "string_value"));
}
TEST_F(SourceInfoTest, EnumValueOptions) {
// The actual "name = value" pairs are parsed by the same code as for
// top-level options so we won't re-test that -- just make sure that the
// syntax used for enum options is understood.
EXPECT_TRUE(Parse(
"enum Foo {"
" BAR = 1 /*a*/[/*b*/opt1=123/*c*/,/*d*/opt2='hi'/*e*/]/*f*/;"
"}\n"
));
const EnumValueDescriptorProto& value = file_.enum_type(0).value(0);
const UninterpretedOption& option1 = value.options().uninterpreted_option(0);
const UninterpretedOption& option2 = value.options().uninterpreted_option(1);
EXPECT_TRUE(HasSpan("a", "f", value.options()));
EXPECT_TRUE(HasSpan("b", "c", option1));
EXPECT_TRUE(HasSpan("d", "e", option2));
// Ignore these.
EXPECT_TRUE(HasSpan(file_));
EXPECT_TRUE(HasSpan(file_.enum_type(0)));
EXPECT_TRUE(HasSpan(file_.enum_type(0), "name"));
EXPECT_TRUE(HasSpan(value));
EXPECT_TRUE(HasSpan(value, "name"));
EXPECT_TRUE(HasSpan(value, "number"));
EXPECT_TRUE(HasSpan(option1, "name"));
EXPECT_TRUE(HasSpan(option2, "name"));
EXPECT_TRUE(HasSpan(option1.name(0)));
EXPECT_TRUE(HasSpan(option2.name(0)));
EXPECT_TRUE(HasSpan(option1.name(0), "name_part"));
EXPECT_TRUE(HasSpan(option2.name(0), "name_part"));
EXPECT_TRUE(HasSpan(option1, "positive_int_value"));
EXPECT_TRUE(HasSpan(option2, "string_value"));
}
// ===================================================================
} // anonymous namespace
} // namespace compiler
} // namespace protobuf
} // namespace google