| // Copyright 2015 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "media/cast/sender/vp8_quantizer_parser.h" |
| |
| namespace cobalt { |
| namespace media { |
| namespace cast { |
| |
| namespace { |
| // Vp8BitReader is a re-implementation of a subset of the VP8 entropy decoder. |
| // It is used to decompress the VP8 bitstream for the purposes of quickly |
| // parsing the VP8 frame headers. It is mostly the exact same implementation |
| // found in third_party/libvpx/.../vp8/decoder/dboolhuff.h except that only |
| // the portion of the implementation needed to parse the frame headers is |
| // present. As of this writing, the implementation in libvpx could not be |
| // re-used because of the way that the code is structured, and lack of the |
| // necessary parts being exported. |
| class Vp8BitReader { |
| public: |
| Vp8BitReader(const uint8_t* data, size_t size) |
| : encoded_data_(data), encoded_data_end_(data + size) { |
| Vp8DecoderReadBytes(); |
| } |
| ~Vp8BitReader() {} |
| |
| // Decode one bit. The output is 0 or 1. |
| unsigned int DecodeBit(); |
| // Decode a value with |num_bits|. The decoding order is MSB first. |
| unsigned int DecodeValue(unsigned int num_bits); |
| |
| private: |
| // Read new bytes frome the encoded data buffer until |bit_count_| > 0. |
| void Vp8DecoderReadBytes(); |
| |
| const uint8_t* encoded_data_; // Current byte to decode. |
| const uint8_t* const encoded_data_end_; // The end of the byte to decode. |
| // The following two variables are maintained by the decoder. |
| // General decoding rule: |
| // If |value_| is in the range of 0 to half of |range_|, output 0. |
| // Otherwise output 1. |
| // |range_| and |value_| need to be shifted when necessary to avoid underflow. |
| unsigned int range_ = 255; |
| unsigned int value_ = 0; |
| // Number of valid bits left to decode. Initializing it to -8 to let the |
| // decoder load two bytes at the beginning. The lower byte is used as |
| // a buffer byte. During the decoding, decoder needs to call |
| // Vp8DecoderReadBytes() to load new bytes when it becomes negative. |
| int bit_count_ = -8; |
| |
| DISALLOW_COPY_AND_ASSIGN(Vp8BitReader); |
| }; |
| |
| // The number of bits to be left-shifted to make the variable range_ over 128. |
| const uint8_t vp8_shift[128] = { |
| 0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, |
| 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; |
| |
| // Mapping from the q_index(0-127) to the quantizer value(0-63). |
| const uint8_t vp8_quantizer_lookup[128] = { |
| 0, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12, 13, 13, 14, |
| 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 28, 29, 29, |
| 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, |
| 39, 40, 40, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, |
| 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52, |
| 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59, |
| 59, 59, 60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63}; |
| |
| void Vp8BitReader::Vp8DecoderReadBytes() { |
| int shift = -bit_count_; |
| while ((shift >= 0) && (encoded_data_ < encoded_data_end_)) { |
| bit_count_ += 8; |
| value_ |= static_cast<unsigned int>(*encoded_data_) << shift; |
| ++encoded_data_; |
| shift -= 8; |
| } |
| } |
| |
| unsigned int Vp8BitReader::DecodeBit() { |
| unsigned int decoded_bit = 0; |
| unsigned int split = 1 + (((range_ - 1) * 128) >> 8); |
| if (bit_count_ < 0) { |
| Vp8DecoderReadBytes(); |
| } |
| DCHECK_GE(bit_count_, 0); |
| unsigned int shifted_split = split << 8; |
| if (value_ >= shifted_split) { |
| range_ -= split; |
| value_ -= shifted_split; |
| decoded_bit = 1; |
| } else { |
| range_ = split; |
| } |
| if (range_ < 128) { |
| int shift = vp8_shift[range_]; |
| range_ <<= shift; |
| value_ <<= shift; |
| bit_count_ -= shift; |
| } |
| return decoded_bit; |
| } |
| |
| unsigned int Vp8BitReader::DecodeValue(unsigned int num_bits) { |
| unsigned int decoded_value = 0; |
| for (int i = static_cast<int>(num_bits) - 1; i >= 0; i--) { |
| decoded_value |= (DecodeBit() << i); |
| } |
| return decoded_value; |
| } |
| |
| // Parse the Segment Header part in the first partition. |
| void ParseSegmentHeader(Vp8BitReader* bit_reader) { |
| const bool segmentation_enabled = (bit_reader->DecodeBit() != 0); |
| DVLOG(2) << "segmentation_enabled:" << segmentation_enabled; |
| if (segmentation_enabled) { |
| const bool update_mb_segmentation_map = (bit_reader->DecodeBit() != 0); |
| const bool update_mb_segmentation_data = (bit_reader->DecodeBit() != 0); |
| DVLOG(2) << "update_mb_segmentation_data:" << update_mb_segmentation_data; |
| if (update_mb_segmentation_data) { |
| bit_reader->DecodeBit(); |
| for (int i = 0; i < 4; ++i) { |
| if (bit_reader->DecodeBit()) { |
| bit_reader->DecodeValue(7 + 1); // Parse 7 bits value + 1 sign bit. |
| } |
| } |
| for (int i = 0; i < 4; ++i) { |
| if (bit_reader->DecodeBit()) { |
| bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit. |
| } |
| } |
| } |
| |
| if (update_mb_segmentation_map) { |
| for (int i = 0; i < 3; ++i) { |
| if (bit_reader->DecodeBit()) { |
| bit_reader->DecodeValue(8); |
| } |
| } |
| } |
| } |
| } |
| |
| // Parse the Filter Header in the first partition. |
| void ParseFilterHeader(Vp8BitReader* bit_reader) { |
| // Parse 1 bit filter_type + 6 bits loop_filter_level + 3 bits |
| // sharpness_level. |
| bit_reader->DecodeValue(1 + 6 + 3); |
| if (bit_reader->DecodeBit()) { |
| if (bit_reader->DecodeBit()) { |
| for (int i = 0; i < 4; ++i) { |
| if (bit_reader->DecodeBit()) { |
| bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit. |
| } |
| } |
| for (int i = 0; i < 4; ++i) { |
| if (bit_reader->DecodeBit()) { |
| bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit. |
| } |
| } |
| } |
| } |
| } |
| } // unnamed namespace |
| |
| int ParseVp8HeaderQuantizer(const uint8_t* encoded_data, size_t size) { |
| DCHECK(encoded_data); |
| if (size <= 3) { |
| return -1; |
| } |
| const bool is_key = !(encoded_data[0] & 1); |
| const unsigned int header_3bytes = |
| encoded_data[0] | (encoded_data[1] << 8) | (encoded_data[2] << 16); |
| // Parse the size of the first partition. |
| unsigned int partition_size = (header_3bytes >> 5); |
| encoded_data += 3; // Skip 3 bytes. |
| size -= 3; |
| if (is_key) { |
| if (size <= 7) { |
| return -1; |
| } |
| encoded_data += 7; // Skip 7 bytes. |
| size -= 7; |
| } |
| if (size < partition_size) { |
| return -1; |
| } |
| Vp8BitReader bit_reader(encoded_data, partition_size); |
| if (is_key) { |
| bit_reader.DecodeValue(1 + 1); // Parse two bits: color_space + clamp_type. |
| } |
| ParseSegmentHeader(&bit_reader); |
| ParseFilterHeader(&bit_reader); |
| // Parse the number of coefficient data partitions. |
| bit_reader.DecodeValue(2); |
| // Parse the base q_index. |
| uint8_t q_index = static_cast<uint8_t>(bit_reader.DecodeValue(7)); |
| if (q_index > 127) { |
| return 63; |
| } |
| return vp8_quantizer_lookup[q_index]; |
| } |
| |
| } // namespace cast |
| } // namespace media |