|  | //===- Chunks.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Chunks.h" | 
|  | #include "InputFiles.h" | 
|  | #include "Symbols.h" | 
|  | #include "Writer.h" | 
|  | #include "lld/Common/ErrorHandler.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/BinaryFormat/COFF.h" | 
|  | #include "llvm/Object/COFF.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support::endian; | 
|  | using namespace llvm::COFF; | 
|  | using llvm::support::ulittle32_t; | 
|  |  | 
|  | namespace lld { | 
|  | namespace coff { | 
|  |  | 
|  | SectionChunk::SectionChunk(ObjFile *F, const coff_section *H) | 
|  | : Chunk(SectionKind), Repl(this), Header(H), File(F), | 
|  | Relocs(File->getCOFFObj()->getRelocations(Header)) { | 
|  | // Initialize SectionName. | 
|  | File->getCOFFObj()->getSectionName(Header, SectionName); | 
|  |  | 
|  | Alignment = Header->getAlignment(); | 
|  |  | 
|  | // If linker GC is disabled, every chunk starts out alive.  If linker GC is | 
|  | // enabled, treat non-comdat sections as roots. Generally optimized object | 
|  | // files will be built with -ffunction-sections or /Gy, so most things worth | 
|  | // stripping will be in a comdat. | 
|  | Live = !Config->DoGC || !isCOMDAT(); | 
|  | } | 
|  |  | 
|  | static void add16(uint8_t *P, int16_t V) { write16le(P, read16le(P) + V); } | 
|  | static void add32(uint8_t *P, int32_t V) { write32le(P, read32le(P) + V); } | 
|  | static void add64(uint8_t *P, int64_t V) { write64le(P, read64le(P) + V); } | 
|  | static void or16(uint8_t *P, uint16_t V) { write16le(P, read16le(P) | V); } | 
|  | static void or32(uint8_t *P, uint32_t V) { write32le(P, read32le(P) | V); } | 
|  |  | 
|  | // Verify that given sections are appropriate targets for SECREL | 
|  | // relocations. This check is relaxed because unfortunately debug | 
|  | // sections have section-relative relocations against absolute symbols. | 
|  | static bool checkSecRel(const SectionChunk *Sec, OutputSection *OS) { | 
|  | if (OS) | 
|  | return true; | 
|  | if (Sec->isCodeView()) | 
|  | return false; | 
|  | fatal("SECREL relocation cannot be applied to absolute symbols"); | 
|  | } | 
|  |  | 
|  | static void applySecRel(const SectionChunk *Sec, uint8_t *Off, | 
|  | OutputSection *OS, uint64_t S) { | 
|  | if (!checkSecRel(Sec, OS)) | 
|  | return; | 
|  | uint64_t SecRel = S - OS->getRVA(); | 
|  | if (SecRel > UINT32_MAX) { | 
|  | error("overflow in SECREL relocation in section: " + Sec->getSectionName()); | 
|  | return; | 
|  | } | 
|  | add32(Off, SecRel); | 
|  | } | 
|  |  | 
|  | static void applySecIdx(uint8_t *Off, OutputSection *OS) { | 
|  | // Absolute symbol doesn't have section index, but section index relocation | 
|  | // against absolute symbol should be resolved to one plus the last output | 
|  | // section index. This is required for compatibility with MSVC. | 
|  | if (OS) | 
|  | add16(Off, OS->SectionIndex); | 
|  | else | 
|  | add16(Off, DefinedAbsolute::NumOutputSections + 1); | 
|  | } | 
|  |  | 
|  | void SectionChunk::applyRelX64(uint8_t *Off, uint16_t Type, OutputSection *OS, | 
|  | uint64_t S, uint64_t P) const { | 
|  | switch (Type) { | 
|  | case IMAGE_REL_AMD64_ADDR32:   add32(Off, S + Config->ImageBase); break; | 
|  | case IMAGE_REL_AMD64_ADDR64:   add64(Off, S + Config->ImageBase); break; | 
|  | case IMAGE_REL_AMD64_ADDR32NB: add32(Off, S); break; | 
|  | case IMAGE_REL_AMD64_REL32:    add32(Off, S - P - 4); break; | 
|  | case IMAGE_REL_AMD64_REL32_1:  add32(Off, S - P - 5); break; | 
|  | case IMAGE_REL_AMD64_REL32_2:  add32(Off, S - P - 6); break; | 
|  | case IMAGE_REL_AMD64_REL32_3:  add32(Off, S - P - 7); break; | 
|  | case IMAGE_REL_AMD64_REL32_4:  add32(Off, S - P - 8); break; | 
|  | case IMAGE_REL_AMD64_REL32_5:  add32(Off, S - P - 9); break; | 
|  | case IMAGE_REL_AMD64_SECTION:  applySecIdx(Off, OS); break; | 
|  | case IMAGE_REL_AMD64_SECREL:   applySecRel(this, Off, OS, S); break; | 
|  | default: | 
|  | fatal("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + | 
|  | toString(File)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SectionChunk::applyRelX86(uint8_t *Off, uint16_t Type, OutputSection *OS, | 
|  | uint64_t S, uint64_t P) const { | 
|  | switch (Type) { | 
|  | case IMAGE_REL_I386_ABSOLUTE: break; | 
|  | case IMAGE_REL_I386_DIR32:    add32(Off, S + Config->ImageBase); break; | 
|  | case IMAGE_REL_I386_DIR32NB:  add32(Off, S); break; | 
|  | case IMAGE_REL_I386_REL32:    add32(Off, S - P - 4); break; | 
|  | case IMAGE_REL_I386_SECTION:  applySecIdx(Off, OS); break; | 
|  | case IMAGE_REL_I386_SECREL:   applySecRel(this, Off, OS, S); break; | 
|  | default: | 
|  | fatal("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + | 
|  | toString(File)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void applyMOV(uint8_t *Off, uint16_t V) { | 
|  | write16le(Off, (read16le(Off) & 0xfbf0) | ((V & 0x800) >> 1) | ((V >> 12) & 0xf)); | 
|  | write16le(Off + 2, (read16le(Off + 2) & 0x8f00) | ((V & 0x700) << 4) | (V & 0xff)); | 
|  | } | 
|  |  | 
|  | static uint16_t readMOV(uint8_t *Off) { | 
|  | uint16_t Op1 = read16le(Off); | 
|  | uint16_t Op2 = read16le(Off + 2); | 
|  | return (Op2 & 0x00ff) | ((Op2 >> 4) & 0x0700) | ((Op1 << 1) & 0x0800) | | 
|  | ((Op1 & 0x000f) << 12); | 
|  | } | 
|  |  | 
|  | void applyMOV32T(uint8_t *Off, uint32_t V) { | 
|  | uint16_t ImmW = readMOV(Off);     // read MOVW operand | 
|  | uint16_t ImmT = readMOV(Off + 4); // read MOVT operand | 
|  | uint32_t Imm = ImmW | (ImmT << 16); | 
|  | V += Imm;                         // add the immediate offset | 
|  | applyMOV(Off, V);           // set MOVW operand | 
|  | applyMOV(Off + 4, V >> 16); // set MOVT operand | 
|  | } | 
|  |  | 
|  | static void applyBranch20T(uint8_t *Off, int32_t V) { | 
|  | if (!isInt<21>(V)) | 
|  | fatal("relocation out of range"); | 
|  | uint32_t S = V < 0 ? 1 : 0; | 
|  | uint32_t J1 = (V >> 19) & 1; | 
|  | uint32_t J2 = (V >> 18) & 1; | 
|  | or16(Off, (S << 10) | ((V >> 12) & 0x3f)); | 
|  | or16(Off + 2, (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff)); | 
|  | } | 
|  |  | 
|  | void applyBranch24T(uint8_t *Off, int32_t V) { | 
|  | if (!isInt<25>(V)) | 
|  | fatal("relocation out of range"); | 
|  | uint32_t S = V < 0 ? 1 : 0; | 
|  | uint32_t J1 = ((~V >> 23) & 1) ^ S; | 
|  | uint32_t J2 = ((~V >> 22) & 1) ^ S; | 
|  | or16(Off, (S << 10) | ((V >> 12) & 0x3ff)); | 
|  | // Clear out the J1 and J2 bits which may be set. | 
|  | write16le(Off + 2, (read16le(Off + 2) & 0xd000) | (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff)); | 
|  | } | 
|  |  | 
|  | void SectionChunk::applyRelARM(uint8_t *Off, uint16_t Type, OutputSection *OS, | 
|  | uint64_t S, uint64_t P) const { | 
|  | // Pointer to thumb code must have the LSB set. | 
|  | uint64_t SX = S; | 
|  | if (OS && (OS->Header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) | 
|  | SX |= 1; | 
|  | switch (Type) { | 
|  | case IMAGE_REL_ARM_ADDR32:    add32(Off, SX + Config->ImageBase); break; | 
|  | case IMAGE_REL_ARM_ADDR32NB:  add32(Off, SX); break; | 
|  | case IMAGE_REL_ARM_MOV32T:    applyMOV32T(Off, SX + Config->ImageBase); break; | 
|  | case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(Off, SX - P - 4); break; | 
|  | case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(Off, SX - P - 4); break; | 
|  | case IMAGE_REL_ARM_BLX23T:    applyBranch24T(Off, SX - P - 4); break; | 
|  | case IMAGE_REL_ARM_SECTION:   applySecIdx(Off, OS); break; | 
|  | case IMAGE_REL_ARM_SECREL:    applySecRel(this, Off, OS, S); break; | 
|  | default: | 
|  | fatal("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + | 
|  | toString(File)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Interpret the existing immediate value as a byte offset to the | 
|  | // target symbol, then update the instruction with the immediate as | 
|  | // the page offset from the current instruction to the target. | 
|  | static void applyArm64Addr(uint8_t *Off, uint64_t S, uint64_t P, int Shift) { | 
|  | uint32_t Orig = read32le(Off); | 
|  | uint64_t Imm = ((Orig >> 29) & 0x3) | ((Orig >> 3) & 0x1FFFFC); | 
|  | S += Imm; | 
|  | Imm = (S >> Shift) - (P >> Shift); | 
|  | uint32_t ImmLo = (Imm & 0x3) << 29; | 
|  | uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; | 
|  | uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); | 
|  | write32le(Off, (Orig & ~Mask) | ImmLo | ImmHi); | 
|  | } | 
|  |  | 
|  | // Update the immediate field in a AARCH64 ldr, str, and add instruction. | 
|  | // Optionally limit the range of the written immediate by one or more bits | 
|  | // (RangeLimit). | 
|  | static void applyArm64Imm(uint8_t *Off, uint64_t Imm, uint32_t RangeLimit) { | 
|  | uint32_t Orig = read32le(Off); | 
|  | Imm += (Orig >> 10) & 0xFFF; | 
|  | Orig &= ~(0xFFF << 10); | 
|  | write32le(Off, Orig | ((Imm & (0xFFF >> RangeLimit)) << 10)); | 
|  | } | 
|  |  | 
|  | // Add the 12 bit page offset to the existing immediate. | 
|  | // Ldr/str instructions store the opcode immediate scaled | 
|  | // by the load/store size (giving a larger range for larger | 
|  | // loads/stores). The immediate is always (both before and after | 
|  | // fixing up the relocation) stored scaled similarly. | 
|  | // Even if larger loads/stores have a larger range, limit the | 
|  | // effective offset to 12 bit, since it is intended to be a | 
|  | // page offset. | 
|  | static void applyArm64Ldr(uint8_t *Off, uint64_t Imm) { | 
|  | uint32_t Orig = read32le(Off); | 
|  | uint32_t Size = Orig >> 30; | 
|  | // 0x04000000 indicates SIMD/FP registers | 
|  | // 0x00800000 indicates 128 bit | 
|  | if ((Orig & 0x4800000) == 0x4800000) | 
|  | Size += 4; | 
|  | if ((Imm & ((1 << Size) - 1)) != 0) | 
|  | fatal("misaligned ldr/str offset"); | 
|  | applyArm64Imm(Off, Imm >> Size, Size); | 
|  | } | 
|  |  | 
|  | static void applySecRelLow12A(const SectionChunk *Sec, uint8_t *Off, | 
|  | OutputSection *OS, uint64_t S) { | 
|  | if (checkSecRel(Sec, OS)) | 
|  | applyArm64Imm(Off, (S - OS->getRVA()) & 0xfff, 0); | 
|  | } | 
|  |  | 
|  | static void applySecRelHigh12A(const SectionChunk *Sec, uint8_t *Off, | 
|  | OutputSection *OS, uint64_t S) { | 
|  | if (!checkSecRel(Sec, OS)) | 
|  | return; | 
|  | uint64_t SecRel = (S - OS->getRVA()) >> 12; | 
|  | if (0xfff < SecRel) { | 
|  | error("overflow in SECREL_HIGH12A relocation in section: " + | 
|  | Sec->getSectionName()); | 
|  | return; | 
|  | } | 
|  | applyArm64Imm(Off, SecRel & 0xfff, 0); | 
|  | } | 
|  |  | 
|  | static void applySecRelLdr(const SectionChunk *Sec, uint8_t *Off, | 
|  | OutputSection *OS, uint64_t S) { | 
|  | if (checkSecRel(Sec, OS)) | 
|  | applyArm64Ldr(Off, (S - OS->getRVA()) & 0xfff); | 
|  | } | 
|  |  | 
|  | static void applyArm64Branch26(uint8_t *Off, int64_t V) { | 
|  | if (!isInt<28>(V)) | 
|  | fatal("relocation out of range"); | 
|  | or32(Off, (V & 0x0FFFFFFC) >> 2); | 
|  | } | 
|  |  | 
|  | static void applyArm64Branch19(uint8_t *Off, int64_t V) { | 
|  | if (!isInt<21>(V)) | 
|  | fatal("relocation out of range"); | 
|  | or32(Off, (V & 0x001FFFFC) << 3); | 
|  | } | 
|  |  | 
|  | static void applyArm64Branch14(uint8_t *Off, int64_t V) { | 
|  | if (!isInt<16>(V)) | 
|  | fatal("relocation out of range"); | 
|  | or32(Off, (V & 0x0000FFFC) << 3); | 
|  | } | 
|  |  | 
|  | void SectionChunk::applyRelARM64(uint8_t *Off, uint16_t Type, OutputSection *OS, | 
|  | uint64_t S, uint64_t P) const { | 
|  | switch (Type) { | 
|  | case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(Off, S, P, 12); break; | 
|  | case IMAGE_REL_ARM64_REL21:          applyArm64Addr(Off, S, P, 0); break; | 
|  | case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(Off, S & 0xfff, 0); break; | 
|  | case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(Off, S & 0xfff); break; | 
|  | case IMAGE_REL_ARM64_BRANCH26:       applyArm64Branch26(Off, S - P); break; | 
|  | case IMAGE_REL_ARM64_BRANCH19:       applyArm64Branch19(Off, S - P); break; | 
|  | case IMAGE_REL_ARM64_BRANCH14:       applyArm64Branch14(Off, S - P); break; | 
|  | case IMAGE_REL_ARM64_ADDR32:         add32(Off, S + Config->ImageBase); break; | 
|  | case IMAGE_REL_ARM64_ADDR32NB:       add32(Off, S); break; | 
|  | case IMAGE_REL_ARM64_ADDR64:         add64(Off, S + Config->ImageBase); break; | 
|  | case IMAGE_REL_ARM64_SECREL:         applySecRel(this, Off, OS, S); break; | 
|  | case IMAGE_REL_ARM64_SECREL_LOW12A:  applySecRelLow12A(this, Off, OS, S); break; | 
|  | case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, Off, OS, S); break; | 
|  | case IMAGE_REL_ARM64_SECREL_LOW12L:  applySecRelLdr(this, Off, OS, S); break; | 
|  | case IMAGE_REL_ARM64_SECTION:        applySecIdx(Off, OS); break; | 
|  | default: | 
|  | fatal("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + | 
|  | toString(File)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SectionChunk::writeTo(uint8_t *Buf) const { | 
|  | if (!hasData()) | 
|  | return; | 
|  | // Copy section contents from source object file to output file. | 
|  | ArrayRef<uint8_t> A = getContents(); | 
|  | if (!A.empty()) | 
|  | memcpy(Buf + OutputSectionOff, A.data(), A.size()); | 
|  |  | 
|  | // Apply relocations. | 
|  | size_t InputSize = getSize(); | 
|  | for (const coff_relocation &Rel : Relocs) { | 
|  | // Check for an invalid relocation offset. This check isn't perfect, because | 
|  | // we don't have the relocation size, which is only known after checking the | 
|  | // machine and relocation type. As a result, a relocation may overwrite the | 
|  | // beginning of the following input section. | 
|  | if (Rel.VirtualAddress >= InputSize) | 
|  | fatal("relocation points beyond the end of its parent section"); | 
|  |  | 
|  | uint8_t *Off = Buf + OutputSectionOff + Rel.VirtualAddress; | 
|  |  | 
|  | // Get the output section of the symbol for this relocation.  The output | 
|  | // section is needed to compute SECREL and SECTION relocations used in debug | 
|  | // info. | 
|  | auto *Sym = | 
|  | dyn_cast_or_null<Defined>(File->getSymbol(Rel.SymbolTableIndex)); | 
|  | if (!Sym) { | 
|  | if (isCodeView() || isDWARF()) | 
|  | continue; | 
|  | // Symbols in early discarded sections are represented using null pointers, | 
|  | // so we need to retrieve the name from the object file. | 
|  | COFFSymbolRef Sym = | 
|  | check(File->getCOFFObj()->getSymbol(Rel.SymbolTableIndex)); | 
|  | StringRef Name; | 
|  | File->getCOFFObj()->getSymbolName(Sym, Name); | 
|  | fatal("relocation against symbol in discarded section: " + Name); | 
|  | } | 
|  | Chunk *C = Sym->getChunk(); | 
|  | OutputSection *OS = C ? C->getOutputSection() : nullptr; | 
|  |  | 
|  | // Only absolute and __ImageBase symbols lack an output section. For any | 
|  | // other symbol, this indicates that the chunk was discarded.  Normally | 
|  | // relocations against discarded sections are an error.  However, debug info | 
|  | // sections are not GC roots and can end up with these kinds of relocations. | 
|  | // Skip these relocations. | 
|  | if (!OS && !isa<DefinedAbsolute>(Sym) && !isa<DefinedSynthetic>(Sym)) { | 
|  | if (isCodeView() || isDWARF()) | 
|  | continue; | 
|  | fatal("relocation against symbol in discarded section: " + | 
|  | Sym->getName()); | 
|  | } | 
|  | uint64_t S = Sym->getRVA(); | 
|  |  | 
|  | // Compute the RVA of the relocation for relative relocations. | 
|  | uint64_t P = RVA + Rel.VirtualAddress; | 
|  | switch (Config->Machine) { | 
|  | case AMD64: | 
|  | applyRelX64(Off, Rel.Type, OS, S, P); | 
|  | break; | 
|  | case I386: | 
|  | applyRelX86(Off, Rel.Type, OS, S, P); | 
|  | break; | 
|  | case ARMNT: | 
|  | applyRelARM(Off, Rel.Type, OS, S, P); | 
|  | break; | 
|  | case ARM64: | 
|  | applyRelARM64(Off, Rel.Type, OS, S, P); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unknown machine type"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SectionChunk::addAssociative(SectionChunk *Child) { | 
|  | AssocChildren.push_back(Child); | 
|  | } | 
|  |  | 
|  | static uint8_t getBaserelType(const coff_relocation &Rel) { | 
|  | switch (Config->Machine) { | 
|  | case AMD64: | 
|  | if (Rel.Type == IMAGE_REL_AMD64_ADDR64) | 
|  | return IMAGE_REL_BASED_DIR64; | 
|  | return IMAGE_REL_BASED_ABSOLUTE; | 
|  | case I386: | 
|  | if (Rel.Type == IMAGE_REL_I386_DIR32) | 
|  | return IMAGE_REL_BASED_HIGHLOW; | 
|  | return IMAGE_REL_BASED_ABSOLUTE; | 
|  | case ARMNT: | 
|  | if (Rel.Type == IMAGE_REL_ARM_ADDR32) | 
|  | return IMAGE_REL_BASED_HIGHLOW; | 
|  | if (Rel.Type == IMAGE_REL_ARM_MOV32T) | 
|  | return IMAGE_REL_BASED_ARM_MOV32T; | 
|  | return IMAGE_REL_BASED_ABSOLUTE; | 
|  | case ARM64: | 
|  | if (Rel.Type == IMAGE_REL_ARM64_ADDR64) | 
|  | return IMAGE_REL_BASED_DIR64; | 
|  | return IMAGE_REL_BASED_ABSOLUTE; | 
|  | default: | 
|  | llvm_unreachable("unknown machine type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Windows-specific. | 
|  | // Collect all locations that contain absolute addresses, which need to be | 
|  | // fixed by the loader if load-time relocation is needed. | 
|  | // Only called when base relocation is enabled. | 
|  | void SectionChunk::getBaserels(std::vector<Baserel> *Res) { | 
|  | for (const coff_relocation &Rel : Relocs) { | 
|  | uint8_t Ty = getBaserelType(Rel); | 
|  | if (Ty == IMAGE_REL_BASED_ABSOLUTE) | 
|  | continue; | 
|  | Symbol *Target = File->getSymbol(Rel.SymbolTableIndex); | 
|  | if (!Target || isa<DefinedAbsolute>(Target)) | 
|  | continue; | 
|  | Res->emplace_back(RVA + Rel.VirtualAddress, Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SectionChunk::hasData() const { | 
|  | return !(Header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); | 
|  | } | 
|  |  | 
|  | uint32_t SectionChunk::getOutputCharacteristics() const { | 
|  | return Header->Characteristics & (PermMask | TypeMask); | 
|  | } | 
|  |  | 
|  | bool SectionChunk::isCOMDAT() const { | 
|  | return Header->Characteristics & IMAGE_SCN_LNK_COMDAT; | 
|  | } | 
|  |  | 
|  | void SectionChunk::printDiscardedMessage() const { | 
|  | // Removed by dead-stripping. If it's removed by ICF, ICF already | 
|  | // printed out the name, so don't repeat that here. | 
|  | if (Sym && this == Repl) | 
|  | message("Discarded " + Sym->getName()); | 
|  | } | 
|  |  | 
|  | StringRef SectionChunk::getDebugName() { | 
|  | if (Sym) | 
|  | return Sym->getName(); | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | ArrayRef<uint8_t> SectionChunk::getContents() const { | 
|  | ArrayRef<uint8_t> A; | 
|  | File->getCOFFObj()->getSectionContents(Header, A); | 
|  | return A; | 
|  | } | 
|  |  | 
|  | void SectionChunk::replace(SectionChunk *Other) { | 
|  | Alignment = std::max(Alignment, Other->Alignment); | 
|  | Other->Repl = Repl; | 
|  | Other->Live = false; | 
|  | } | 
|  |  | 
|  | CommonChunk::CommonChunk(const COFFSymbolRef S) : Sym(S) { | 
|  | // Common symbols are aligned on natural boundaries up to 32 bytes. | 
|  | // This is what MSVC link.exe does. | 
|  | Alignment = std::min(uint64_t(32), PowerOf2Ceil(Sym.getValue())); | 
|  | } | 
|  |  | 
|  | uint32_t CommonChunk::getOutputCharacteristics() const { | 
|  | return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | | 
|  | IMAGE_SCN_MEM_WRITE; | 
|  | } | 
|  |  | 
|  | void StringChunk::writeTo(uint8_t *Buf) const { | 
|  | memcpy(Buf + OutputSectionOff, Str.data(), Str.size()); | 
|  | } | 
|  |  | 
|  | ImportThunkChunkX64::ImportThunkChunkX64(Defined *S) : ImpSymbol(S) { | 
|  | // Intel Optimization Manual says that all branch targets | 
|  | // should be 16-byte aligned. MSVC linker does this too. | 
|  | Alignment = 16; | 
|  | } | 
|  |  | 
|  | void ImportThunkChunkX64::writeTo(uint8_t *Buf) const { | 
|  | memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86)); | 
|  | // The first two bytes is a JMP instruction. Fill its operand. | 
|  | write32le(Buf + OutputSectionOff + 2, ImpSymbol->getRVA() - RVA - getSize()); | 
|  | } | 
|  |  | 
|  | void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *Res) { | 
|  | Res->emplace_back(getRVA() + 2); | 
|  | } | 
|  |  | 
|  | void ImportThunkChunkX86::writeTo(uint8_t *Buf) const { | 
|  | memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86)); | 
|  | // The first two bytes is a JMP instruction. Fill its operand. | 
|  | write32le(Buf + OutputSectionOff + 2, | 
|  | ImpSymbol->getRVA() + Config->ImageBase); | 
|  | } | 
|  |  | 
|  | void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *Res) { | 
|  | Res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); | 
|  | } | 
|  |  | 
|  | void ImportThunkChunkARM::writeTo(uint8_t *Buf) const { | 
|  | memcpy(Buf + OutputSectionOff, ImportThunkARM, sizeof(ImportThunkARM)); | 
|  | // Fix mov.w and mov.t operands. | 
|  | applyMOV32T(Buf + OutputSectionOff, ImpSymbol->getRVA() + Config->ImageBase); | 
|  | } | 
|  |  | 
|  | void ImportThunkChunkARM64::writeTo(uint8_t *Buf) const { | 
|  | int64_t Off = ImpSymbol->getRVA() & 0xfff; | 
|  | memcpy(Buf + OutputSectionOff, ImportThunkARM64, sizeof(ImportThunkARM64)); | 
|  | applyArm64Addr(Buf + OutputSectionOff, ImpSymbol->getRVA(), RVA, 12); | 
|  | applyArm64Ldr(Buf + OutputSectionOff + 4, Off); | 
|  | } | 
|  |  | 
|  | void LocalImportChunk::getBaserels(std::vector<Baserel> *Res) { | 
|  | Res->emplace_back(getRVA()); | 
|  | } | 
|  |  | 
|  | size_t LocalImportChunk::getSize() const { | 
|  | return Config->is64() ? 8 : 4; | 
|  | } | 
|  |  | 
|  | void LocalImportChunk::writeTo(uint8_t *Buf) const { | 
|  | if (Config->is64()) { | 
|  | write64le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase); | 
|  | } else { | 
|  | write32le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RVATableChunk::writeTo(uint8_t *Buf) const { | 
|  | ulittle32_t *Begin = reinterpret_cast<ulittle32_t *>(Buf + OutputSectionOff); | 
|  | size_t Cnt = 0; | 
|  | for (const ChunkAndOffset &CO : Syms) | 
|  | Begin[Cnt++] = CO.InputChunk->getRVA() + CO.Offset; | 
|  | std::sort(Begin, Begin + Cnt); | 
|  | assert(std::unique(Begin, Begin + Cnt) == Begin + Cnt && | 
|  | "RVA tables should be de-duplicated"); | 
|  | } | 
|  |  | 
|  | // Windows-specific. This class represents a block in .reloc section. | 
|  | // The format is described here. | 
|  | // | 
|  | // On Windows, each DLL is linked against a fixed base address and | 
|  | // usually loaded to that address. However, if there's already another | 
|  | // DLL that overlaps, the loader has to relocate it. To do that, DLLs | 
|  | // contain .reloc sections which contain offsets that need to be fixed | 
|  | // up at runtime. If the loader finds that a DLL cannot be loaded to its | 
|  | // desired base address, it loads it to somewhere else, and add <actual | 
|  | // base address> - <desired base address> to each offset that is | 
|  | // specified by the .reloc section. In ELF terms, .reloc sections | 
|  | // contain relative relocations in REL format (as opposed to RELA.) | 
|  | // | 
|  | // This already significantly reduces the size of relocations compared | 
|  | // to ELF .rel.dyn, but Windows does more to reduce it (probably because | 
|  | // it was invented for PCs in the late '80s or early '90s.)  Offsets in | 
|  | // .reloc are grouped by page where the page size is 12 bits, and | 
|  | // offsets sharing the same page address are stored consecutively to | 
|  | // represent them with less space. This is very similar to the page | 
|  | // table which is grouped by (multiple stages of) pages. | 
|  | // | 
|  | // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, | 
|  | // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 | 
|  | // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they | 
|  | // are represented like this: | 
|  | // | 
|  | //   0x00000  -- page address (4 bytes) | 
|  | //   16       -- size of this block (4 bytes) | 
|  | //     0xA030 -- entries (2 bytes each) | 
|  | //     0xA500 | 
|  | //     0xA700 | 
|  | //     0xAA00 | 
|  | //   0x20000  -- page address (4 bytes) | 
|  | //   12       -- size of this block (4 bytes) | 
|  | //     0xA004 -- entries (2 bytes each) | 
|  | //     0xA008 | 
|  | // | 
|  | // Usually we have a lot of relocations for each page, so the number of | 
|  | // bytes for one .reloc entry is close to 2 bytes on average. | 
|  | BaserelChunk::BaserelChunk(uint32_t Page, Baserel *Begin, Baserel *End) { | 
|  | // Block header consists of 4 byte page RVA and 4 byte block size. | 
|  | // Each entry is 2 byte. Last entry may be padding. | 
|  | Data.resize(alignTo((End - Begin) * 2 + 8, 4)); | 
|  | uint8_t *P = Data.data(); | 
|  | write32le(P, Page); | 
|  | write32le(P + 4, Data.size()); | 
|  | P += 8; | 
|  | for (Baserel *I = Begin; I != End; ++I) { | 
|  | write16le(P, (I->Type << 12) | (I->RVA - Page)); | 
|  | P += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void BaserelChunk::writeTo(uint8_t *Buf) const { | 
|  | memcpy(Buf + OutputSectionOff, Data.data(), Data.size()); | 
|  | } | 
|  |  | 
|  | uint8_t Baserel::getDefaultType() { | 
|  | switch (Config->Machine) { | 
|  | case AMD64: | 
|  | case ARM64: | 
|  | return IMAGE_REL_BASED_DIR64; | 
|  | case I386: | 
|  | case ARMNT: | 
|  | return IMAGE_REL_BASED_HIGHLOW; | 
|  | default: | 
|  | llvm_unreachable("unknown machine type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::map<uint32_t, MergeChunk *> MergeChunk::Instances; | 
|  |  | 
|  | MergeChunk::MergeChunk(uint32_t Alignment) | 
|  | : Builder(StringTableBuilder::RAW, Alignment) { | 
|  | this->Alignment = Alignment; | 
|  | } | 
|  |  | 
|  | void MergeChunk::addSection(SectionChunk *C) { | 
|  | auto *&MC = Instances[C->Alignment]; | 
|  | if (!MC) | 
|  | MC = make<MergeChunk>(C->Alignment); | 
|  | MC->Sections.push_back(C); | 
|  | } | 
|  |  | 
|  | void MergeChunk::finalizeContents() { | 
|  | for (SectionChunk *C : Sections) | 
|  | if (C->isLive()) | 
|  | Builder.add(toStringRef(C->getContents())); | 
|  | Builder.finalize(); | 
|  |  | 
|  | for (SectionChunk *C : Sections) { | 
|  | if (!C->isLive()) | 
|  | continue; | 
|  | size_t Off = Builder.getOffset(toStringRef(C->getContents())); | 
|  | C->setOutputSection(Out); | 
|  | C->setRVA(RVA + Off); | 
|  | C->OutputSectionOff = OutputSectionOff + Off; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t MergeChunk::getOutputCharacteristics() const { | 
|  | return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; | 
|  | } | 
|  |  | 
|  | size_t MergeChunk::getSize() const { | 
|  | return Builder.getSize(); | 
|  | } | 
|  |  | 
|  | void MergeChunk::writeTo(uint8_t *Buf) const { | 
|  | Builder.write(Buf + OutputSectionOff); | 
|  | } | 
|  |  | 
|  | } // namespace coff | 
|  | } // namespace lld |