blob: 5c19f5a26f0f2be099ce02f74282e392b9bc031c [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/arm/Assembler-arm.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "jscompartment.h"
#ifdef JS_DISASM_ARM
#include "jsprf.h"
#endif
#include "jsutil.h"
#include "gc/Marking.h"
#include "jit/arm/disasm/Disasm-arm.h"
#include "jit/arm/MacroAssembler-arm.h"
#include "jit/ExecutableAllocator.h"
#include "jit/JitCompartment.h"
#include "jit/MacroAssembler.h"
using namespace js;
using namespace js::jit;
using mozilla::CountLeadingZeroes32;
void dbg_break() {}
// The ABIArgGenerator is used for making system ABI calls and for inter-AsmJS
// calls. The system ABI can either be SoftFp or HardFp, and inter-AsmJS calls
// are always HardFp calls. The initialization defaults to HardFp, and the ABI
// choice is made before any system ABI calls with the method "setUseHardFp".
ABIArgGenerator::ABIArgGenerator()
: intRegIndex_(0),
floatRegIndex_(0),
stackOffset_(0),
current_(),
useHardFp_(true)
{ }
// See the "Parameter Passing" section of the "Procedure Call Standard for the
// ARM Architecture" documentation.
ABIArg
ABIArgGenerator::softNext(MIRType type)
{
switch (type) {
case MIRType_Int32:
case MIRType_Pointer:
if (intRegIndex_ == NumIntArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint32_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_));
intRegIndex_++;
break;
case MIRType_Float32:
if (intRegIndex_ == NumIntArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint32_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_));
intRegIndex_++;
break;
case MIRType_Double:
// Make sure to use an even register index. Increase to next even number
// when odd.
intRegIndex_ = (intRegIndex_ + 1) & ~1;
if (intRegIndex_ == NumIntArgRegs) {
// Align the stack on 8 bytes.
static const int align = sizeof(double) - 1;
stackOffset_ = (stackOffset_ + align) & ~align;
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(double);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_), Register::FromCode(intRegIndex_ + 1));
intRegIndex_ += 2;
break;
default:
MOZ_CRASH("Unexpected argument type");
}
return current_;
}
ABIArg
ABIArgGenerator::hardNext(MIRType type)
{
switch (type) {
case MIRType_Int32:
case MIRType_Pointer:
if (intRegIndex_ == NumIntArgRegs) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint32_t);
break;
}
current_ = ABIArg(Register::FromCode(intRegIndex_));
intRegIndex_++;
break;
case MIRType_Float32:
if (floatRegIndex_ == NumFloatArgRegs) {
static const int align = sizeof(double) - 1;
stackOffset_ = (stackOffset_ + align) & ~align;
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint64_t);
break;
}
current_ = ABIArg(VFPRegister(floatRegIndex_, VFPRegister::Single));
floatRegIndex_++;
break;
case MIRType_Double:
// Double register are composed of 2 float registers, thus we have to
// skip any float register which cannot be used in a pair of float
// registers in which a double value can be stored.
floatRegIndex_ = (floatRegIndex_ + 1) & ~1;
if (floatRegIndex_ == NumFloatArgRegs) {
static const int align = sizeof(double) - 1;
stackOffset_ = (stackOffset_ + align) & ~align;
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint64_t);
break;
}
current_ = ABIArg(VFPRegister(floatRegIndex_ >> 1, VFPRegister::Double));
floatRegIndex_ += 2;
break;
default:
MOZ_CRASH("Unexpected argument type");
}
return current_;
}
ABIArg
ABIArgGenerator::next(MIRType type)
{
if (useHardFp_)
return hardNext(type);
return softNext(type);
}
const Register ABIArgGenerator::NonArgReturnReg0 = r4;
const Register ABIArgGenerator::NonArgReturnReg1 = r5;
const Register ABIArgGenerator::NonReturn_VolatileReg0 = r2;
const Register ABIArgGenerator::NonReturn_VolatileReg1 = r3;
// Encode a standard register when it is being used as src1, the dest, and an
// extra register. These should never be called with an InvalidReg.
uint32_t
js::jit::RT(Register r)
{
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 12;
}
uint32_t
js::jit::RN(Register r)
{
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 16;
}
uint32_t
js::jit::RD(Register r)
{
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 12;
}
uint32_t
js::jit::RM(Register r)
{
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 8;
}
// Encode a standard register when it is being used as src1, the dest, and an
// extra register. For these, an InvalidReg is used to indicate a optional
// register that has been omitted.
uint32_t
js::jit::maybeRT(Register r)
{
if (r == InvalidReg)
return 0;
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 12;
}
uint32_t
js::jit::maybeRN(Register r)
{
if (r == InvalidReg)
return 0;
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 16;
}
uint32_t
js::jit::maybeRD(Register r)
{
if (r == InvalidReg)
return 0;
MOZ_ASSERT((r.code() & ~0xf) == 0);
return r.code() << 12;
}
Register
js::jit::toRD(Instruction& i)
{
return Register::FromCode((i.encode() >> 12) & 0xf);
}
Register
js::jit::toR(Instruction& i)
{
return Register::FromCode(i.encode() & 0xf);
}
Register
js::jit::toRM(Instruction& i)
{
return Register::FromCode((i.encode() >> 8) & 0xf);
}
Register
js::jit::toRN(Instruction& i)
{
return Register::FromCode((i.encode() >> 16) & 0xf);
}
uint32_t
js::jit::VD(VFPRegister vr)
{
if (vr.isMissing())
return 0;
// Bits 15,14,13,12, 22.
VFPRegister::VFPRegIndexSplit s = vr.encode();
return s.bit << 22 | s.block << 12;
}
uint32_t
js::jit::VN(VFPRegister vr)
{
if (vr.isMissing())
return 0;
// Bits 19,18,17,16, 7.
VFPRegister::VFPRegIndexSplit s = vr.encode();
return s.bit << 7 | s.block << 16;
}
uint32_t
js::jit::VM(VFPRegister vr)
{
if (vr.isMissing())
return 0;
// Bits 5, 3,2,1,0.
VFPRegister::VFPRegIndexSplit s = vr.encode();
return s.bit << 5 | s.block;
}
VFPRegister::VFPRegIndexSplit
jit::VFPRegister::encode()
{
MOZ_ASSERT(!_isInvalid);
switch (kind) {
case Double:
return VFPRegIndexSplit(code_ & 0xf, code_ >> 4);
case Single:
return VFPRegIndexSplit(code_ >> 1, code_ & 1);
default:
// VFP register treated as an integer, NOT a gpr.
return VFPRegIndexSplit(code_ >> 1, code_ & 1);
}
}
bool
InstDTR::IsTHIS(const Instruction& i)
{
return (i.encode() & IsDTRMask) == (uint32_t)IsDTR;
}
InstDTR*
InstDTR::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstDTR*)&i;
return nullptr;
}
bool
InstLDR::IsTHIS(const Instruction& i)
{
return (i.encode() & IsDTRMask) == (uint32_t)IsDTR;
}
InstLDR*
InstLDR::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstLDR*)&i;
return nullptr;
}
InstNOP*
InstNOP::AsTHIS(Instruction& i)
{
if (IsTHIS(i))
return (InstNOP*)&i;
return nullptr;
}
bool
InstNOP::IsTHIS(const Instruction& i)
{
return (i.encode() & 0x0fffffff) == NopInst;
}
bool
InstBranchReg::IsTHIS(const Instruction& i)
{
return InstBXReg::IsTHIS(i) || InstBLXReg::IsTHIS(i);
}
InstBranchReg*
InstBranchReg::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstBranchReg*)&i;
return nullptr;
}
void
InstBranchReg::extractDest(Register* dest)
{
*dest = toR(*this);
}
bool
InstBranchReg::checkDest(Register dest)
{
return dest == toR(*this);
}
bool
InstBranchImm::IsTHIS(const Instruction& i)
{
return InstBImm::IsTHIS(i) || InstBLImm::IsTHIS(i);
}
InstBranchImm*
InstBranchImm::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstBranchImm*)&i;
return nullptr;
}
void
InstBranchImm::extractImm(BOffImm* dest)
{
*dest = BOffImm(*this);
}
bool
InstBXReg::IsTHIS(const Instruction& i)
{
return (i.encode() & IsBRegMask) == IsBX;
}
InstBXReg*
InstBXReg::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstBXReg*)&i;
return nullptr;
}
bool
InstBLXReg::IsTHIS(const Instruction& i)
{
return (i.encode() & IsBRegMask) == IsBLX;
}
InstBLXReg*
InstBLXReg::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstBLXReg*)&i;
return nullptr;
}
bool
InstBImm::IsTHIS(const Instruction& i)
{
return (i.encode () & IsBImmMask) == IsB;
}
InstBImm*
InstBImm::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstBImm*)&i;
return nullptr;
}
bool
InstBLImm::IsTHIS(const Instruction& i)
{
return (i.encode () & IsBImmMask) == IsBL;
}
InstBLImm*
InstBLImm::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstBLImm*)&i;
return nullptr;
}
bool
InstMovWT::IsTHIS(Instruction& i)
{
return InstMovW::IsTHIS(i) || InstMovT::IsTHIS(i);
}
InstMovWT*
InstMovWT::AsTHIS(Instruction& i)
{
if (IsTHIS(i))
return (InstMovWT*)&i;
return nullptr;
}
void
InstMovWT::extractImm(Imm16* imm)
{
*imm = Imm16(*this);
}
bool
InstMovWT::checkImm(Imm16 imm)
{
return imm.decode() == Imm16(*this).decode();
}
void
InstMovWT::extractDest(Register* dest)
{
*dest = toRD(*this);
}
bool
InstMovWT::checkDest(Register dest)
{
return dest == toRD(*this);
}
bool
InstMovW::IsTHIS(const Instruction& i)
{
return (i.encode() & IsWTMask) == IsW;
}
InstMovW*
InstMovW::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstMovW*)&i;
return nullptr;
}
InstMovT*
InstMovT::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstMovT*)&i;
return nullptr;
}
bool
InstMovT::IsTHIS(const Instruction& i)
{
return (i.encode() & IsWTMask) == IsT;
}
InstALU*
InstALU::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstALU*)&i;
return nullptr;
}
bool
InstALU::IsTHIS(const Instruction& i)
{
return (i.encode() & ALUMask) == 0;
}
void
InstALU::extractOp(ALUOp* ret)
{
*ret = ALUOp(encode() & (0xf << 21));
}
bool
InstALU::checkOp(ALUOp op)
{
ALUOp mine;
extractOp(&mine);
return mine == op;
}
void
InstALU::extractDest(Register* ret)
{
*ret = toRD(*this);
}
bool
InstALU::checkDest(Register rd)
{
return rd == toRD(*this);
}
void
InstALU::extractOp1(Register* ret)
{
*ret = toRN(*this);
}
bool
InstALU::checkOp1(Register rn)
{
return rn == toRN(*this);
}
Operand2
InstALU::extractOp2()
{
return Operand2(encode());
}
InstCMP*
InstCMP::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstCMP*)&i;
return nullptr;
}
bool
InstCMP::IsTHIS(const Instruction& i)
{
return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkDest(r0) && InstALU::AsTHIS(i)->checkOp(OpCmp);
}
InstMOV*
InstMOV::AsTHIS(const Instruction& i)
{
if (IsTHIS(i))
return (InstMOV*)&i;
return nullptr;
}
bool
InstMOV::IsTHIS(const Instruction& i)
{
return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkOp1(r0) && InstALU::AsTHIS(i)->checkOp(OpMov);
}
Op2Reg
Operand2::toOp2Reg() const {
return *(Op2Reg*)this;
}
O2RegImmShift
Op2Reg::toO2RegImmShift() const {
return *(O2RegImmShift*)this;
}
O2RegRegShift
Op2Reg::toO2RegRegShift() const {
return *(O2RegRegShift*)this;
}
Imm16::Imm16(Instruction& inst)
: lower(inst.encode() & 0xfff),
upper(inst.encode() >> 16),
invalid(0xfff)
{ }
Imm16::Imm16(uint32_t imm)
: lower(imm & 0xfff), pad(0),
upper((imm >> 12) & 0xf),
invalid(0)
{
MOZ_ASSERT(decode() == imm);
}
Imm16::Imm16()
: invalid(0xfff)
{ }
void
jit::PatchJump(CodeLocationJump& jump_, CodeLocationLabel label, ReprotectCode reprotect)
{
// We need to determine if this jump can fit into the standard 24+2 bit
// address or if we need a larger branch (or just need to use our pool
// entry).
Instruction* jump = (Instruction*)jump_.raw();
// jumpWithPatch() returns the offset of the jump and never a pool or nop.
Assembler::Condition c = jump->extractCond();
MOZ_ASSERT(jump->is<InstBranchImm>() || jump->is<InstLDR>());
int jumpOffset = label.raw() - jump_.raw();
if (BOffImm::IsInRange(jumpOffset)) {
// This instruction started off as a branch, and will remain one.
MaybeAutoWritableJitCode awjc(jump, sizeof(Instruction), reprotect);
Assembler::RetargetNearBranch(jump, jumpOffset, c);
} else {
// This instruction started off as a branch, but now needs to be demoted
// to an ldr.
uint8_t** slot = reinterpret_cast<uint8_t**>(jump_.jumpTableEntry());
// Ensure both the branch and the slot are writable.
MOZ_ASSERT(uintptr_t(slot) > uintptr_t(jump));
size_t size = uintptr_t(slot) - uintptr_t(jump) + sizeof(void*);
MaybeAutoWritableJitCode awjc(jump, size, reprotect);
Assembler::RetargetFarBranch(jump, slot, label.raw(), c);
}
}
void
Assembler::finish()
{
flush();
MOZ_ASSERT(!isFinished);
isFinished = true;
}
bool
Assembler::asmMergeWith(const Assembler& other)
{
flush();
if (!AssemblerShared::asmMergeWith(size(), other))
return false;
return m_buffer.appendBuffer(other.m_buffer);
}
void
Assembler::executableCopy(uint8_t* buffer)
{
MOZ_ASSERT(isFinished);
m_buffer.executableCopy(buffer);
AutoFlushICache::setRange(uintptr_t(buffer), m_buffer.size());
}
uint32_t
Assembler::actualIndex(uint32_t idx_) const
{
ARMBuffer::PoolEntry pe(idx_);
return m_buffer.poolEntryOffset(pe);
}
uint8_t*
Assembler::PatchableJumpAddress(JitCode* code, uint32_t pe_)
{
return code->raw() + pe_;
}
class RelocationIterator
{
CompactBufferReader reader_;
// Offset in bytes.
uint32_t offset_;
public:
RelocationIterator(CompactBufferReader& reader)
: reader_(reader)
{ }
bool read() {
if (!reader_.more())
return false;
offset_ = reader_.readUnsigned();
return true;
}
uint32_t offset() const {
return offset_;
}
};
template<class Iter>
const uint32_t*
Assembler::GetCF32Target(Iter* iter)
{
Instruction* inst1 = iter->cur();
if (inst1->is<InstBranchImm>()) {
// See if we have a simple case, b #offset.
BOffImm imm;
InstBranchImm* jumpB = inst1->as<InstBranchImm>();
jumpB->extractImm(&imm);
return imm.getDest(inst1)->raw();
}
if (inst1->is<InstMovW>())
{
// See if we have the complex case:
// movw r_temp, #imm1
// movt r_temp, #imm2
// bx r_temp
// OR
// movw r_temp, #imm1
// movt r_temp, #imm2
// str pc, [sp]
// bx r_temp
Imm16 targ_bot;
Imm16 targ_top;
Register temp;
// Extract both the temp register and the bottom immediate.
InstMovW* bottom = inst1->as<InstMovW>();
bottom->extractImm(&targ_bot);
bottom->extractDest(&temp);
// Extract the top part of the immediate.
Instruction* inst2 = iter->next();
MOZ_ASSERT(inst2->is<InstMovT>());
InstMovT* top = inst2->as<InstMovT>();
top->extractImm(&targ_top);
// Make sure they are being loaded into the same register.
MOZ_ASSERT(top->checkDest(temp));
// Make sure we're branching to the same register.
#ifdef DEBUG
// A toggled call sometimes has a NOP instead of a branch for the third
// instruction. No way to assert that it's valid in that situation.
Instruction* inst3 = iter->next();
if (!inst3->is<InstNOP>()) {
InstBranchReg* realBranch = nullptr;
if (inst3->is<InstBranchReg>()) {
realBranch = inst3->as<InstBranchReg>();
} else {
Instruction* inst4 = iter->next();
realBranch = inst4->as<InstBranchReg>();
}
MOZ_ASSERT(realBranch->checkDest(temp));
}
#endif
uint32_t* dest = (uint32_t*) (targ_bot.decode() | (targ_top.decode() << 16));
return dest;
}
if (inst1->is<InstLDR>()) {
InstLDR* load = inst1->as<InstLDR>();
uint32_t inst = load->encode();
// Get the address of the instruction as a raw pointer.
char* dataInst = reinterpret_cast<char*>(load);
IsUp_ iu = IsUp_(inst & IsUp);
int32_t offset = inst & 0xfff;
if (iu != IsUp) {
offset = - offset;
}
uint32_t** ptr = (uint32_t**)&dataInst[offset + 8];
return *ptr;
}
MOZ_CRASH("unsupported branch relocation");
}
uintptr_t
Assembler::GetPointer(uint8_t* instPtr)
{
InstructionIterator iter((Instruction*)instPtr);
uintptr_t ret = (uintptr_t)GetPtr32Target(&iter, nullptr, nullptr);
return ret;
}
template<class Iter>
const uint32_t*
Assembler::GetPtr32Target(Iter* start, Register* dest, RelocStyle* style)
{
Instruction* load1 = start->cur();
Instruction* load2 = start->next();
if (load1->is<InstMovW>() && load2->is<InstMovT>()) {
// See if we have the complex case:
// movw r_temp, #imm1
// movt r_temp, #imm2
Imm16 targ_bot;
Imm16 targ_top;
Register temp;
// Extract both the temp register and the bottom immediate.
InstMovW* bottom = load1->as<InstMovW>();
bottom->extractImm(&targ_bot);
bottom->extractDest(&temp);
// Extract the top part of the immediate.
InstMovT* top = load2->as<InstMovT>();
top->extractImm(&targ_top);
// Make sure they are being loaded into the same register.
MOZ_ASSERT(top->checkDest(temp));
if (dest)
*dest = temp;
if (style)
*style = L_MOVWT;
uint32_t* value = (uint32_t*) (targ_bot.decode() | (targ_top.decode() << 16));
return value;
}
if (load1->is<InstLDR>()) {
InstLDR* load = load1->as<InstLDR>();
uint32_t inst = load->encode();
// Get the address of the instruction as a raw pointer.
char* dataInst = reinterpret_cast<char*>(load);
IsUp_ iu = IsUp_(inst & IsUp);
int32_t offset = inst & 0xfff;
if (iu == IsDown)
offset = - offset;
if (dest)
*dest = toRD(*load);
if (style)
*style = L_LDR;
uint32_t** ptr = (uint32_t**)&dataInst[offset + 8];
return *ptr;
}
MOZ_CRASH("unsupported relocation");
}
static JitCode*
CodeFromJump(InstructionIterator* jump)
{
uint8_t* target = (uint8_t*)Assembler::GetCF32Target(jump);
return JitCode::FromExecutable(target);
}
void
Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader)
{
RelocationIterator iter(reader);
while (iter.read()) {
InstructionIterator institer((Instruction*) (code->raw() + iter.offset()));
JitCode* child = CodeFromJump(&institer);
TraceManuallyBarrieredEdge(trc, &child, "rel32");
}
}
template <class Iter>
static void
TraceOneDataRelocation(JSTracer* trc, Iter* iter)
{
Instruction* ins = iter->cur();
Register dest;
Assembler::RelocStyle rs;
const void* prior = Assembler::GetPtr32Target(iter, &dest, &rs);
void* ptr = const_cast<void*>(prior);
// No barrier needed since these are constants.
TraceManuallyBarrieredGenericPointerEdge(trc, reinterpret_cast<gc::Cell**>(&ptr),
"ion-masm-ptr");
if (ptr != prior) {
MacroAssemblerARM::ma_mov_patch(Imm32(int32_t(ptr)), dest, Assembler::Always, rs, ins);
// L_LDR won't cause any instructions to be updated.
if (rs != Assembler::L_LDR) {
AutoFlushICache::flush(uintptr_t(ins), 4);
AutoFlushICache::flush(uintptr_t(ins->next()), 4);
}
}
}
static void
TraceDataRelocations(JSTracer* trc, uint8_t* buffer, CompactBufferReader& reader)
{
while (reader.more()) {
size_t offset = reader.readUnsigned();
InstructionIterator iter((Instruction*)(buffer + offset));
TraceOneDataRelocation(trc, &iter);
}
}
static void
TraceDataRelocations(JSTracer* trc, ARMBuffer* buffer, CompactBufferReader& reader)
{
while (reader.more()) {
BufferOffset offset(reader.readUnsigned());
ARMBuffer::AssemblerBufferInstIterator iter(offset, buffer);
TraceOneDataRelocation(trc, &iter);
}
}
void
Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader)
{
::TraceDataRelocations(trc, code->raw(), reader);
}
void
Assembler::copyJumpRelocationTable(uint8_t* dest)
{
if (jumpRelocations_.length())
memcpy(dest, jumpRelocations_.buffer(), jumpRelocations_.length());
}
void
Assembler::copyDataRelocationTable(uint8_t* dest)
{
if (dataRelocations_.length())
memcpy(dest, dataRelocations_.buffer(), dataRelocations_.length());
}
void
Assembler::copyPreBarrierTable(uint8_t* dest)
{
if (preBarriers_.length())
memcpy(dest, preBarriers_.buffer(), preBarriers_.length());
}
void
Assembler::trace(JSTracer* trc)
{
for (size_t i = 0; i < jumps_.length(); i++) {
RelativePatch& rp = jumps_[i];
if (rp.kind == Relocation::JITCODE) {
JitCode* code = JitCode::FromExecutable((uint8_t*)rp.target);
TraceManuallyBarrieredEdge(trc, &code, "masmrel32");
MOZ_ASSERT(code == JitCode::FromExecutable((uint8_t*)rp.target));
}
}
if (dataRelocations_.length()) {
CompactBufferReader reader(dataRelocations_);
::TraceDataRelocations(trc, &m_buffer, reader);
}
}
void
Assembler::processCodeLabels(uint8_t* rawCode)
{
for (size_t i = 0; i < codeLabels_.length(); i++) {
CodeLabel label = codeLabels_[i];
Bind(rawCode, label.patchAt(), rawCode + label.target()->offset());
}
}
void
Assembler::writeCodePointer(CodeOffset* label) {
BufferOffset off = writeInst(LabelBase::INVALID_OFFSET);
label->bind(off.getOffset());
}
void
Assembler::Bind(uint8_t* rawCode, CodeOffset* label, const void* address)
{
*reinterpret_cast<const void**>(rawCode + label->offset()) = address;
}
Assembler::Condition
Assembler::InvertCondition(Condition cond)
{
const uint32_t ConditionInversionBit = 0x10000000;
return Condition(ConditionInversionBit ^ cond);
}
Imm8::TwoImm8mData
Imm8::EncodeTwoImms(uint32_t imm)
{
// In the ideal case, we are looking for a number that (in binary) looks
// like:
// 0b((00)*)n_1((00)*)n_2((00)*)
// left n1 mid n2
// where both n_1 and n_2 fit into 8 bits.
// Since this is being done with rotates, we also need to handle the case
// that one of these numbers is in fact split between the left and right
// sides, in which case the constant will look like:
// 0bn_1a((00)*)n_2((00)*)n_1b
// n1a mid n2 rgh n1b
// Also remember, values are rotated by multiples of two, and left, mid or
// right can have length zero.
uint32_t imm1, imm2;
int left = CountLeadingZeroes32(imm) & 0x1E;
uint32_t no_n1 = imm & ~(0xff << (24 - left));
// Not technically needed: this case only happens if we can encode as a
// single imm8m. There is a perfectly reasonable encoding in this case, but
// we shouldn't encourage people to do things like this.
if (no_n1 == 0)
return TwoImm8mData();
int mid = CountLeadingZeroes32(no_n1) & 0x1E;
uint32_t no_n2 = no_n1 & ~((0xff << ((24 - mid) & 0x1f)) | 0xff >> ((8 + mid) & 0x1f));
if (no_n2 == 0) {
// We hit the easy case, no wraparound.
// Note: a single constant *may* look like this.
int imm1shift = left + 8;
int imm2shift = mid + 8;
imm1 = (imm >> (32 - imm1shift)) & 0xff;
if (imm2shift >= 32) {
imm2shift = 0;
// This assert does not always hold, in fact, this would lead to
// some incredibly subtle bugs.
// assert((imm & 0xff) == no_n1);
imm2 = no_n1;
} else {
imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff;
MOZ_ASSERT( ((no_n1 >> (32 - imm2shift)) | (no_n1 << imm2shift)) ==
imm2);
}
MOZ_ASSERT((imm1shift & 0x1) == 0);
MOZ_ASSERT((imm2shift & 0x1) == 0);
return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1),
datastore::Imm8mData(imm2, imm2shift >> 1));
}
// Either it wraps, or it does not fit. If we initially chopped off more
// than 8 bits, then it won't fit.
if (left >= 8)
return TwoImm8mData();
int right = 32 - (CountLeadingZeroes32(no_n2) & 30);
// All remaining set bits *must* fit into the lower 8 bits.
// The right == 8 case should be handled by the previous case.
if (right > 8)
return TwoImm8mData();
// Make sure the initial bits that we removed for no_n1 fit into the
// 8-(32-right) leftmost bits.
if (((imm & (0xff << (24 - left))) << (8 - right)) != 0) {
// BUT we may have removed more bits than we needed to for no_n1
// 0x04104001 e.g. we can encode 0x104 with a single op, then 0x04000001
// with a second, but we try to encode 0x0410000 and find that we need a
// second op for 0x4000, and 0x1 cannot be included in the encoding of
// 0x04100000.
no_n1 = imm & ~((0xff >> (8 - right)) | (0xff << (24 + right)));
mid = CountLeadingZeroes32(no_n1) & 30;
no_n2 = no_n1 & ~((0xff << ((24 - mid)&31)) | 0xff >> ((8 + mid)&31));
if (no_n2 != 0)
return TwoImm8mData();
}
// Now assemble all of this information into a two coherent constants it is
// a rotate right from the lower 8 bits.
int imm1shift = 8 - right;
imm1 = 0xff & ((imm << imm1shift) | (imm >> (32 - imm1shift)));
MOZ_ASSERT((imm1shift & ~0x1e) == 0);
// left + 8 + mid is the position of the leftmost bit of n_2.
// We needed to rotate 0x000000ab right by 8 in order to get 0xab000000,
// then shift again by the leftmost bit in order to get the constant that we
// care about.
int imm2shift = mid + 8;
imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff;
MOZ_ASSERT((imm1shift & 0x1) == 0);
MOZ_ASSERT((imm2shift & 0x1) == 0);
return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1),
datastore::Imm8mData(imm2, imm2shift >> 1));
}
ALUOp
jit::ALUNeg(ALUOp op, Register dest, Imm32* imm, Register* negDest)
{
// Find an alternate ALUOp to get the job done, and use a different imm.
*negDest = dest;
switch (op) {
case OpMov:
*imm = Imm32(~imm->value);
return OpMvn;
case OpMvn:
*imm = Imm32(~imm->value);
return OpMov;
case OpAnd:
*imm = Imm32(~imm->value);
return OpBic;
case OpBic:
*imm = Imm32(~imm->value);
return OpAnd;
case OpAdd:
*imm = Imm32(-imm->value);
return OpSub;
case OpSub:
*imm = Imm32(-imm->value);
return OpAdd;
case OpCmp:
*imm = Imm32(-imm->value);
return OpCmn;
case OpCmn:
*imm = Imm32(-imm->value);
return OpCmp;
case OpTst:
MOZ_ASSERT(dest == InvalidReg);
*imm = Imm32(~imm->value);
*negDest = ScratchRegister;
return OpBic;
// orr has orn on thumb2 only.
default:
return OpInvalid;
}
}
bool
jit::can_dbl(ALUOp op)
{
// Some instructions can't be processed as two separate instructions such as
// and, and possibly add (when we're setting ccodes). There is also some
// hilarity with *reading* condition codes. For example, adc dest, src1,
// 0xfff; (add with carry) can be split up into adc dest, src1, 0xf00; add
// dest, dest, 0xff, since "reading" the condition code increments the
// result by one conditionally, that only needs to be done on one of the two
// instructions.
switch (op) {
case OpBic:
case OpAdd:
case OpSub:
case OpEor:
case OpOrr:
return true;
default:
return false;
}
}
bool
jit::condsAreSafe(ALUOp op) {
// Even when we are setting condition codes, sometimes we can get away with
// splitting an operation into two. For example, if our immediate is
// 0x00ff00ff, and the operation is eors we can split this in half, since x
// ^ 0x00ff0000 ^ 0x000000ff should set all of its condition codes exactly
// the same as x ^ 0x00ff00ff. However, if the operation were adds, we
// cannot split this in half. If the source on the add is 0xfff00ff0, the
// result sholud be 0xef10ef, but do we set the overflow bit or not?
// Depending on which half is performed first (0x00ff0000 or 0x000000ff) the
// V bit will be set differently, and *not* updating the V bit would be
// wrong. Theoretically, the following should work:
// adds r0, r1, 0x00ff0000;
// addsvs r0, r1, 0x000000ff;
// addvc r0, r1, 0x000000ff;
// But this is 3 instructions, and at that point, we might as well use
// something else.
switch(op) {
case OpBic:
case OpOrr:
case OpEor:
return true;
default:
return false;
}
}
ALUOp
jit::getDestVariant(ALUOp op)
{
// All of the compare operations are dest-less variants of a standard
// operation. Given the dest-less variant, return the dest-ful variant.
switch (op) {
case OpCmp:
return OpSub;
case OpCmn:
return OpAdd;
case OpTst:
return OpAnd;
case OpTeq:
return OpEor;
default:
return op;
}
}
O2RegImmShift
jit::O2Reg(Register r) {
return O2RegImmShift(r, LSL, 0);
}
O2RegImmShift
jit::lsl(Register r, int amt)
{
MOZ_ASSERT(0 <= amt && amt <= 31);
return O2RegImmShift(r, LSL, amt);
}
O2RegImmShift
jit::lsr(Register r, int amt)
{
MOZ_ASSERT(1 <= amt && amt <= 32);
return O2RegImmShift(r, LSR, amt);
}
O2RegImmShift
jit::ror(Register r, int amt)
{
MOZ_ASSERT(1 <= amt && amt <= 31);
return O2RegImmShift(r, ROR, amt);
}
O2RegImmShift
jit::rol(Register r, int amt)
{
MOZ_ASSERT(1 <= amt && amt <= 31);
return O2RegImmShift(r, ROR, 32 - amt);
}
O2RegImmShift
jit::asr (Register r, int amt)
{
MOZ_ASSERT(1 <= amt && amt <= 32);
return O2RegImmShift(r, ASR, amt);
}
O2RegRegShift
jit::lsl(Register r, Register amt)
{
return O2RegRegShift(r, LSL, amt);
}
O2RegRegShift
jit::lsr(Register r, Register amt)
{
return O2RegRegShift(r, LSR, amt);
}
O2RegRegShift
jit::ror(Register r, Register amt)
{
return O2RegRegShift(r, ROR, amt);
}
O2RegRegShift
jit::asr (Register r, Register amt)
{
return O2RegRegShift(r, ASR, amt);
}
static js::jit::DoubleEncoder doubleEncoder;
/* static */ const js::jit::VFPImm js::jit::VFPImm::One(0x3FF00000);
js::jit::VFPImm::VFPImm(uint32_t top)
{
data = -1;
datastore::Imm8VFPImmData tmp;
if (doubleEncoder.lookup(top, &tmp))
data = tmp.encode();
}
BOffImm::BOffImm(Instruction& inst)
: data(inst.encode() & 0x00ffffff)
{
}
Instruction*
BOffImm::getDest(Instruction* src) const
{
// TODO: It is probably worthwhile to verify that src is actually a branch.
// NOTE: This does not explicitly shift the offset of the destination left by 2,
// since it is indexing into an array of instruction sized objects.
return &src[(((int32_t)data << 8) >> 8) + 2];
}
const js::jit::DoubleEncoder::DoubleEntry js::jit::DoubleEncoder::table[256] = {
#include "jit/arm/DoubleEntryTable.tbl"
};
// VFPRegister implementation
VFPRegister
VFPRegister::doubleOverlay(unsigned int which) const
{
MOZ_ASSERT(!_isInvalid);
MOZ_ASSERT(which == 0);
if (kind != Double)
return VFPRegister(code_ >> 1, Double);
return *this;
}
VFPRegister
VFPRegister::singleOverlay(unsigned int which) const
{
MOZ_ASSERT(!_isInvalid);
if (kind == Double) {
// There are no corresponding float registers for d16-d31.
MOZ_ASSERT(code_ < 16);
MOZ_ASSERT(which < 2);
return VFPRegister((code_ << 1) + which, Single);
}
MOZ_ASSERT(which == 0);
return VFPRegister(code_, Single);
}
VFPRegister
VFPRegister::sintOverlay(unsigned int which) const
{
MOZ_ASSERT(!_isInvalid);
if (kind == Double) {
// There are no corresponding float registers for d16-d31.
MOZ_ASSERT(code_ < 16);
MOZ_ASSERT(which < 2);
return VFPRegister((code_ << 1) + which, Int);
}
MOZ_ASSERT(which == 0);
return VFPRegister(code_, Int);
}
VFPRegister
VFPRegister::uintOverlay(unsigned int which) const
{
MOZ_ASSERT(!_isInvalid);
if (kind == Double) {
// There are no corresponding float registers for d16-d31.
MOZ_ASSERT(code_ < 16);
MOZ_ASSERT(which < 2);
return VFPRegister((code_ << 1) + which, UInt);
}
MOZ_ASSERT(which == 0);
return VFPRegister(code_, UInt);
}
bool
VFPRegister::isInvalid() const
{
return _isInvalid;
}
bool
VFPRegister::isMissing() const
{
MOZ_ASSERT(!_isInvalid);
return _isMissing;
}
bool
Assembler::oom() const
{
return AssemblerShared::oom() ||
m_buffer.oom() ||
jumpRelocations_.oom() ||
dataRelocations_.oom() ||
preBarriers_.oom();
}
// Size of the instruction stream, in bytes. Including pools. This function
// expects all pools that need to be placed have been placed. If they haven't
// then we need to go an flush the pools :(
size_t
Assembler::size() const
{
return m_buffer.size();
}
// Size of the relocation table, in bytes.
size_t
Assembler::jumpRelocationTableBytes() const
{
return jumpRelocations_.length();
}
size_t
Assembler::dataRelocationTableBytes() const
{
return dataRelocations_.length();
}
size_t
Assembler::preBarrierTableBytes() const
{
return preBarriers_.length();
}
// Size of the data table, in bytes.
size_t
Assembler::bytesNeeded() const
{
return size() +
jumpRelocationTableBytes() +
dataRelocationTableBytes() +
preBarrierTableBytes();
}
#ifdef JS_DISASM_ARM
void
Assembler::spewInst(Instruction* i)
{
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
uint8_t* loc = reinterpret_cast<uint8_t*>(const_cast<uint32_t*>(i->raw()));
dasm.InstructionDecode(buffer, loc);
printf(" %08x %s\n", reinterpret_cast<uint32_t>(loc), buffer.start());
}
// Labels are named as they are encountered by adding names to a
// table, using the Label address as the key. This is made tricky by
// the (memory for) Label objects being reused, but reused label
// objects are recognizable from being marked as not used or not
// bound. See spewResolve().
//
// In a number of cases there is no information about the target, and
// we just end up printing "patchable constant load to PC". This is
// true especially for jumps to bailout handlers (which have no
// names). See spewData() and its callers. In some cases (loop back
// edges) some information about the intended target may be propagated
// from higher levels, and if so it's printed here.
void
Assembler::spew(Instruction* i)
{
if (spewDisabled() || !i)
return;
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
uint8_t* loc = reinterpret_cast<uint8_t*>(const_cast<uint32_t*>(i->raw()));
dasm.InstructionDecode(buffer, loc);
spew(" %08x %s", reinterpret_cast<uint32_t>(loc), buffer.start());
}
void
Assembler::spewTarget(Label* target)
{
if (spewDisabled())
return;
spew(" -> %d%s", spewResolve(target), !target->bound() ? "f" : "");
}
// If a target label is known, always print that and do not attempt to
// disassemble the branch operands, as they will often be encoding
// metainformation (pointers for a chain of jump instructions), and
// not actual branch targets.
void
Assembler::spewBranch(Instruction* i, Label* target /* may be nullptr */)
{
if (spewDisabled() || !i)
return;
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
uint8_t* loc = reinterpret_cast<uint8_t*>(const_cast<uint32_t*>(i->raw()));
dasm.InstructionDecode(buffer, loc);
char labelBuf[128];
labelBuf[0] = 0;
if (!target)
JS_snprintf(labelBuf, sizeof(labelBuf), " -> (link-time target)");
if (InstBranchImm::IsTHIS(*i)) {
InstBranchImm* bimm = InstBranchImm::AsTHIS(*i);
BOffImm destOff;
bimm->extractImm(&destOff);
if (destOff.isInvalid() || target) {
// The target information in the instruction is likely garbage, so remove it.
// The target label will in any case be printed if we have it.
//
// The format of the instruction disassembly is [0-9a-f]{8}\s+\S+\s+.*,
// where the \S+ string is the opcode. Strip everything after the opcode,
// and attach the label if we have it.
int i;
for ( i=8 ; i < buffer.length() && buffer[i] == ' ' ; i++ )
;
for ( ; i < buffer.length() && buffer[i] != ' ' ; i++ )
;
buffer[i] = 0;
if (target) {
JS_snprintf(labelBuf, sizeof(labelBuf), " -> %d%s", spewResolve(target),
!target->bound() ? "f" : "");
target = nullptr;
}
}
}
spew(" %08x %s%s", reinterpret_cast<uint32_t>(loc), buffer.start(), labelBuf);
if (target)
spewTarget(target);
}
void
Assembler::spewLabel(Label* l)
{
if (spewDisabled())
return;
spew(" %d:", spewResolve(l));
}
void
Assembler::spewRetarget(Label* label, Label* target)
{
if (spewDisabled())
return;
spew(" %d: .retarget -> %d%s",
spewResolve(label), spewResolve(target), !target->bound() ? "f" : "");
}
void
Assembler::spewData(BufferOffset addr, size_t numInstr, bool loadToPC)
{
if (spewDisabled())
return;
Instruction* inst = m_buffer.getInstOrNull(addr);
if (!inst)
return;
uint32_t *instr = reinterpret_cast<uint32_t*>(inst);
for ( size_t k=0 ; k < numInstr ; k++ ) {
spew(" %08x %08x (patchable constant load%s)",
reinterpret_cast<uint32_t>(instr+k), *(instr+k), loadToPC ? " to PC" : "");
}
}
bool
Assembler::spewDisabled()
{
return !(JitSpewEnabled(JitSpew_Codegen) || printer_);
}
void
Assembler::spew(const char* fmt, ...)
{
va_list args;
va_start(args, fmt);
spew(fmt, args);
va_end(args);
}
void
Assembler::spew(const char* fmt, va_list va)
{
if (printer_) {
printer_->vprintf(fmt, va);
printer_->put("\n");
}
js::jit::JitSpewVA(js::jit::JitSpew_Codegen, fmt, va);
}
uint32_t
Assembler::spewResolve(Label* l)
{
// Note, spewResolve will sometimes return 0 when it is triggered
// by the profiler and not by a full disassembly, since in that
// case a label can be used or bound but not previously have been
// defined.
return l->used() || l->bound() ? spewProbe(l) : spewDefine(l);
}
uint32_t
Assembler::spewProbe(Label* l)
{
uint32_t key = reinterpret_cast<uint32_t>(l);
uint32_t value = 0;
spewNodes_.lookup(key, &value);
return value;
}
uint32_t
Assembler::spewDefine(Label* l)
{
uint32_t key = reinterpret_cast<uint32_t>(l);
spewNodes_.remove(key);
uint32_t value = spewNext_++;
if (!spewNodes_.add(key, value))
return 0;
return value;
}
Assembler::SpewNodes::~SpewNodes()
{
Node* p = nodes;
while (p) {
Node* victim = p;
p = p->next;
js_free(victim);
}
}
bool
Assembler::SpewNodes::lookup(uint32_t key, uint32_t* value)
{
for ( Node* p = nodes ; p ; p = p->next ) {
if (p->key == key) {
*value = p->value;
return true;
}
}
return false;
}
bool
Assembler::SpewNodes::add(uint32_t key, uint32_t value)
{
Node* node = (Node*)js_malloc(sizeof(Node));
if (!node)
return false;
node->key = key;
node->value = value;
node->next = nodes;
nodes = node;
return true;
}
bool
Assembler::SpewNodes::remove(uint32_t key)
{
for ( Node* p = nodes, *pp = nullptr ; p ; pp = p, p = p->next ) {
if (p->key == key) {
if (pp)
pp->next = p->next;
else
nodes = p->next;
js_free(p);
return true;
}
}
return false;
}
#endif // JS_DISASM_ARM
// Write a blob of binary into the instruction stream.
BufferOffset
Assembler::writeInst(uint32_t x)
{
BufferOffset offs = m_buffer.putInt(x);
#ifdef JS_DISASM_ARM
spew(m_buffer.getInstOrNull(offs));
#endif
return offs;
}
BufferOffset
Assembler::writeBranchInst(uint32_t x, Label* documentation)
{
BufferOffset offs = m_buffer.putInt(x, /* markAsBranch = */ true);
#ifdef JS_DISASM_ARM
spewBranch(m_buffer.getInstOrNull(offs), documentation);
#endif
return offs;
}
// Allocate memory for a branch instruction, it will be overwritten
// subsequently and should not be disassembled.
BufferOffset
Assembler::allocBranchInst()
{
return m_buffer.putInt(Always | InstNOP::NopInst, /* markAsBranch = */ true);
}
void
Assembler::WriteInstStatic(uint32_t x, uint32_t* dest)
{
MOZ_ASSERT(dest != nullptr);
*dest = x;
}
void
Assembler::haltingAlign(int alignment)
{
// TODO: Implement a proper halting align.
nopAlign(alignment);
}
void
Assembler::nopAlign(int alignment)
{
m_buffer.align(alignment);
}
BufferOffset
Assembler::as_nop()
{
return writeInst(0xe320f000);
}
static uint32_t
EncodeAlu(Register dest, Register src1, Operand2 op2, ALUOp op, SBit s, Assembler::Condition c)
{
return (int)op | (int)s | (int)c | op2.encode() |
((dest == InvalidReg) ? 0 : RD(dest)) |
((src1 == InvalidReg) ? 0 : RN(src1));
}
BufferOffset
Assembler::as_alu(Register dest, Register src1, Operand2 op2,
ALUOp op, SBit s, Condition c)
{
return writeInst(EncodeAlu(dest, src1, op2, op, s, c));
}
BufferOffset
Assembler::as_mov(Register dest, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, InvalidReg, op2, OpMov, s, c);
}
/* static */ void
Assembler::as_alu_patch(Register dest, Register src1, Operand2 op2, ALUOp op, SBit s,
Condition c, uint32_t* pos)
{
WriteInstStatic(EncodeAlu(dest, src1, op2, op, s, c), pos);
}
/* static */ void
Assembler::as_mov_patch(Register dest, Operand2 op2, SBit s, Condition c, uint32_t* pos)
{
as_alu_patch(dest, InvalidReg, op2, OpMov, s, c, pos);
}
BufferOffset
Assembler::as_mvn(Register dest, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, InvalidReg, op2, OpMvn, s, c);
}
// Logical operations.
BufferOffset
Assembler::as_and(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpAnd, s, c);
}
BufferOffset
Assembler::as_bic(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpBic, s, c);
}
BufferOffset
Assembler::as_eor(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpEor, s, c);
}
BufferOffset
Assembler::as_orr(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpOrr, s, c);
}
// Mathematical operations.
BufferOffset
Assembler::as_adc(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpAdc, s, c);
}
BufferOffset
Assembler::as_add(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpAdd, s, c);
}
BufferOffset
Assembler::as_sbc(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpSbc, s, c);
}
BufferOffset
Assembler::as_sub(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpSub, s, c);
}
BufferOffset
Assembler::as_rsb(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpRsb, s, c);
}
BufferOffset
Assembler::as_rsc(Register dest, Register src1, Operand2 op2, SBit s, Condition c)
{
return as_alu(dest, src1, op2, OpRsc, s, c);
}
// Test operations.
BufferOffset
Assembler::as_cmn(Register src1, Operand2 op2, Condition c)
{
return as_alu(InvalidReg, src1, op2, OpCmn, SetCC, c);
}
BufferOffset
Assembler::as_cmp(Register src1, Operand2 op2, Condition c)
{
return as_alu(InvalidReg, src1, op2, OpCmp, SetCC, c);
}
BufferOffset
Assembler::as_teq(Register src1, Operand2 op2, Condition c)
{
return as_alu(InvalidReg, src1, op2, OpTeq, SetCC, c);
}
BufferOffset
Assembler::as_tst(Register src1, Operand2 op2, Condition c)
{
return as_alu(InvalidReg, src1, op2, OpTst, SetCC, c);
}
static MOZ_CONSTEXPR_VAR Register NoAddend = { Registers::pc };
static const int SignExtend = 0x06000070;
enum SignExtend {
SxSxtb = 10 << 20,
SxSxth = 11 << 20,
SxUxtb = 14 << 20,
SxUxth = 15 << 20
};
// Sign extension operations.
BufferOffset
Assembler::as_sxtb(Register dest, Register src, int rotate, Condition c)
{
return writeInst((int)c | SignExtend | SxSxtb | RN(NoAddend) | RD(dest) | ((rotate & 3) << 10) | src.code());
}
BufferOffset
Assembler::as_sxth(Register dest, Register src, int rotate, Condition c)
{
return writeInst((int)c | SignExtend | SxSxth | RN(NoAddend) | RD(dest) | ((rotate & 3) << 10) | src.code());
}
BufferOffset
Assembler::as_uxtb(Register dest, Register src, int rotate, Condition c)
{
return writeInst((int)c | SignExtend | SxUxtb | RN(NoAddend) | RD(dest) | ((rotate & 3) << 10) | src.code());
}
BufferOffset
Assembler::as_uxth(Register dest, Register src, int rotate, Condition c)
{
return writeInst((int)c | SignExtend | SxUxth | RN(NoAddend) | RD(dest) | ((rotate & 3) << 10) | src.code());
}
static uint32_t
EncodeMovW(Register dest, Imm16 imm, Assembler::Condition c)
{
MOZ_ASSERT(HasMOVWT());
return 0x03000000 | c | imm.encode() | RD(dest);
}
static uint32_t
EncodeMovT(Register dest, Imm16 imm, Assembler::Condition c)
{
MOZ_ASSERT(HasMOVWT());
return 0x03400000 | c | imm.encode() | RD(dest);
}
// Not quite ALU worthy, but these are useful none the less. These also have
// the isue of these being formatted completly differently from the standard ALU
// operations.
BufferOffset
Assembler::as_movw(Register dest, Imm16 imm, Condition c)
{
return writeInst(EncodeMovW(dest, imm, c));
}
/* static */ void
Assembler::as_movw_patch(Register dest, Imm16 imm, Condition c, Instruction* pos)
{
WriteInstStatic(EncodeMovW(dest, imm, c), (uint32_t*)pos);
}
BufferOffset
Assembler::as_movt(Register dest, Imm16 imm, Condition c)
{
return writeInst(EncodeMovT(dest, imm, c));
}
/* static */ void
Assembler::as_movt_patch(Register dest, Imm16 imm, Condition c, Instruction* pos)
{
WriteInstStatic(EncodeMovT(dest, imm, c), (uint32_t*)pos);
}
static const int mull_tag = 0x90;
BufferOffset
Assembler::as_genmul(Register dhi, Register dlo, Register rm, Register rn,
MULOp op, SBit s, Condition c)
{
return writeInst(RN(dhi) | maybeRD(dlo) | RM(rm) | rn.code() | op | s | c | mull_tag);
}
BufferOffset
Assembler::as_mul(Register dest, Register src1, Register src2, SBit s, Condition c)
{
return as_genmul(dest, InvalidReg, src1, src2, OpmMul, s, c);
}
BufferOffset
Assembler::as_mla(Register dest, Register acc, Register src1, Register src2,
SBit s, Condition c)
{
return as_genmul(dest, acc, src1, src2, OpmMla, s, c);
}
BufferOffset
Assembler::as_umaal(Register destHI, Register destLO, Register src1, Register src2, Condition c)
{
return as_genmul(destHI, destLO, src1, src2, OpmUmaal, LeaveCC, c);
}
BufferOffset
Assembler::as_mls(Register dest, Register acc, Register src1, Register src2, Condition c)
{
return as_genmul(dest, acc, src1, src2, OpmMls, LeaveCC, c);
}
BufferOffset
Assembler::as_umull(Register destHI, Register destLO, Register src1, Register src2,
SBit s, Condition c)
{
return as_genmul(destHI, destLO, src1, src2, OpmUmull, s, c);
}
BufferOffset
Assembler::as_umlal(Register destHI, Register destLO, Register src1, Register src2,
SBit s, Condition c)
{
return as_genmul(destHI, destLO, src1, src2, OpmUmlal, s, c);
}
BufferOffset
Assembler::as_smull(Register destHI, Register destLO, Register src1, Register src2,
SBit s, Condition c)
{
return as_genmul(destHI, destLO, src1, src2, OpmSmull, s, c);
}
BufferOffset
Assembler::as_smlal(Register destHI, Register destLO, Register src1, Register src2,
SBit s, Condition c)
{
return as_genmul(destHI, destLO, src1, src2, OpmSmlal, s, c);
}
BufferOffset
Assembler::as_sdiv(Register rd, Register rn, Register rm, Condition c)
{
return writeInst(0x0710f010 | c | RN(rd) | RM(rm) | rn.code());
}
BufferOffset
Assembler::as_udiv(Register rd, Register rn, Register rm, Condition c)
{
return writeInst(0x0730f010 | c | RN(rd) | RM(rm) | rn.code());
}
BufferOffset
Assembler::as_clz(Register dest, Register src, Condition c)
{
return writeInst(RD(dest) | src.code() | c | 0x016f0f10);
}
// Data transfer instructions: ldr, str, ldrb, strb. Using an int to
// differentiate between 8 bits and 32 bits is overkill, but meh.
static uint32_t
EncodeDtr(LoadStore ls, int size, Index mode, Register rt, DTRAddr addr, Assembler::Condition c)
{
MOZ_ASSERT(mode == Offset || (rt != addr.getBase() && pc != addr.getBase()));
MOZ_ASSERT(size == 32 || size == 8);
return 0x04000000 | ls | (size == 8 ? 0x00400000 : 0) | mode | c | RT(rt) | addr.encode();
}
BufferOffset
Assembler::as_dtr(LoadStore ls, int size, Index mode, Register rt, DTRAddr addr, Condition c)
{
return writeInst(EncodeDtr(ls, size, mode, rt, addr, c));
}
/* static */ void
Assembler::as_dtr_patch(LoadStore ls, int size, Index mode, Register rt, DTRAddr addr, Condition c,
uint32_t* dest)
{
WriteInstStatic(EncodeDtr(ls, size, mode, rt, addr, c), dest);
}
class PoolHintData
{
public:
enum LoadType {
// Set 0 to bogus, since that is the value most likely to be
// accidentally left somewhere.
PoolBOGUS = 0,
PoolDTR = 1,
PoolBranch = 2,
PoolVDTR = 3
};
private:
uint32_t index_ : 16;
uint32_t cond_ : 4;
LoadType loadType_ : 2;
uint32_t destReg_ : 5;
uint32_t destType_ : 1;
uint32_t ONES : 4;
static const uint32_t ExpectedOnes = 0xfu;
public:
void init(uint32_t index, Assembler::Condition cond, LoadType lt, Register destReg) {
index_ = index;
MOZ_ASSERT(index_ == index);
cond_ = cond >> 28;
MOZ_ASSERT(cond_ == cond >> 28);
loadType_ = lt;
ONES = ExpectedOnes;
destReg_ = destReg.code();
destType_ = 0;
}
void init(uint32_t index, Assembler::Condition cond, LoadType lt, const VFPRegister& destReg) {
MOZ_ASSERT(destReg.isFloat());
index_ = index;
MOZ_ASSERT(index_ == index);
cond_ = cond >> 28;
MOZ_ASSERT(cond_ == cond >> 28);
loadType_ = lt;
ONES = ExpectedOnes;
destReg_ = destReg.id();
destType_ = destReg.isDouble();
}
Assembler::Condition getCond() const {
return Assembler::Condition(cond_ << 28);
}
Register getReg() const {
return Register::FromCode(destReg_);
}
VFPRegister getVFPReg() const {
VFPRegister r = VFPRegister(destReg_, destType_ ? VFPRegister::Double : VFPRegister::Single);
return r;
}
int32_t getIndex() const {
return index_;
}
void setIndex(uint32_t index) {
MOZ_ASSERT(ONES == ExpectedOnes && loadType_ != PoolBOGUS);
index_ = index;
MOZ_ASSERT(index_ == index);
}
LoadType getLoadType() const {
// If this *was* a PoolBranch, but the branch has already been bound
// then this isn't going to look like a real poolhintdata, but we still
// want to lie about it so everyone knows it *used* to be a branch.
if (ONES != ExpectedOnes)
return PoolHintData::PoolBranch;
return loadType_;
}
bool isValidPoolHint() const {
// Most instructions cannot have a condition that is 0xf. Notable
// exceptions are blx and the entire NEON instruction set. For the
// purposes of pool loads, and possibly patched branches, the possible
// instructions are ldr and b, neither of which can have a condition
// code of 0xf.
return ONES == ExpectedOnes;
}
};
union PoolHintPun
{
PoolHintData phd;
uint32_t raw;
};
// Handles all of the other integral data transferring functions: ldrsb, ldrsh,
// ldrd, etc. The size is given in bits.
BufferOffset
Assembler::as_extdtr(LoadStore ls, int size, bool IsSigned, Index mode,
Register rt, EDtrAddr addr, Condition c)
{
int extra_bits2 = 0;
int extra_bits1 = 0;
switch(size) {
case 8:
MOZ_ASSERT(IsSigned);
MOZ_ASSERT(ls != IsStore);
extra_bits1 = 0x1;
extra_bits2 = 0x2;
break;
case 16:
// 'case 32' doesn't need to be handled, it is handled by the default
// ldr/str.
extra_bits2 = 0x01;
extra_bits1 = (ls == IsStore) ? 0 : 1;
if (IsSigned) {
MOZ_ASSERT(ls != IsStore);
extra_bits2 |= 0x2;
}
break;
case 64:
extra_bits2 = (ls == IsStore) ? 0x3 : 0x2;
extra_bits1 = 0;
break;
default:
MOZ_CRASH("SAY WHAT?");
}
return writeInst(extra_bits2 << 5 | extra_bits1 << 20 | 0x90 |
addr.encode() | RT(rt) | mode | c);
}
BufferOffset
Assembler::as_dtm(LoadStore ls, Register rn, uint32_t mask,
DTMMode mode, DTMWriteBack wb, Condition c)
{
return writeInst(0x08000000 | RN(rn) | ls | mode | mask | c | wb);
}
// Note, it's possible for markAsBranch and loadToPC to disagree,
// because some loads to the PC are not necessarily encoding
// instructions that should be marked as branches: only patchable
// near branch instructions should be marked.
BufferOffset
Assembler::allocEntry(size_t numInst, unsigned numPoolEntries,
uint8_t* inst, uint8_t* data, ARMBuffer::PoolEntry* pe,
bool markAsBranch, bool loadToPC)
{
BufferOffset offs = m_buffer.allocEntry(numInst, numPoolEntries, inst, data, pe, markAsBranch);
propagateOOM(offs.assigned());
#ifdef JS_DISASM_ARM
spewData(offs, numInst, loadToPC);
#endif
return offs;
}
// This is also used for instructions that might be resolved into branches,
// or might not. If dest==pc then it is effectively a branch.
BufferOffset
Assembler::as_Imm32Pool(Register dest, uint32_t value, Condition c)
{
PoolHintPun php;
php.phd.init(0, c, PoolHintData::PoolDTR, dest);
BufferOffset offs = allocEntry(1, 1, (uint8_t*)&php.raw, (uint8_t*)&value, nullptr, false,
dest == pc);
return offs;
}
/* static */ void
Assembler::WritePoolEntry(Instruction* addr, Condition c, uint32_t data)
{
MOZ_ASSERT(addr->is<InstLDR>());
int32_t offset = addr->encode() & 0xfff;
if ((addr->encode() & IsUp) != IsUp)
offset = -offset;
char * rawAddr = reinterpret_cast<char*>(addr);
uint32_t * dest = reinterpret_cast<uint32_t*>(&rawAddr[offset + 8]);
*dest = data;
MOZ_ASSERT(addr->extractCond() == c);
}
BufferOffset
Assembler::as_BranchPool(uint32_t value, RepatchLabel* label, ARMBuffer::PoolEntry* pe, Condition c,
Label* documentation)
{
PoolHintPun php;
php.phd.init(0, c, PoolHintData::PoolBranch, pc);
BufferOffset ret = allocEntry(1, 1, (uint8_t*)&php.raw, (uint8_t*)&value, pe,
/* markAsBranch = */ true, /* loadToPC = */ true);
// If this label is already bound, then immediately replace the stub load
// with a correct branch.
if (label->bound()) {
BufferOffset dest(label);
as_b(dest.diffB<BOffImm>(ret), c, ret);
} else if (!oom()) {
label->use(ret.getOffset());
}
#ifdef JS_DISASM_ARM
if (documentation)
spewTarget(documentation);
#endif
return ret;
}
BufferOffset
Assembler::as_FImm64Pool(VFPRegister dest, double value, Condition c)
{
MOZ_ASSERT(dest.isDouble());
PoolHintPun php;
php.phd.init(0, c, PoolHintData::PoolVDTR, dest);
return allocEntry(1, 2, (uint8_t*)&php.raw, (uint8_t*)&value);
}
BufferOffset
Assembler::as_FImm32Pool(VFPRegister dest, float value, Condition c)
{
// Insert floats into the double pool as they have the same limitations on
// immediate offset. This wastes 4 bytes padding per float. An alternative
// would be to have a separate pool for floats.
MOZ_ASSERT(dest.isSingle());
PoolHintPun php;
php.phd.init(0, c, PoolHintData::PoolVDTR, dest);
return allocEntry(1, 1, (uint8_t*)&php.raw, (uint8_t*)&value);
}
// Pool callbacks stuff:
void
Assembler::InsertIndexIntoTag(uint8_t* load_, uint32_t index)
{
uint32_t* load = (uint32_t*)load_;
PoolHintPun php;
php.raw = *load;
php.phd.setIndex(index);
*load = php.raw;
}
// patchConstantPoolLoad takes the address of the instruction that wants to be
// patched, and the address of the start of the constant pool, and figures
// things out from there.
void
Assembler::PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr)
{
PoolHintData data = *(PoolHintData*)loadAddr;
uint32_t* instAddr = (uint32_t*) loadAddr;
int offset = (char*)constPoolAddr - (char*)loadAddr;
switch(data.getLoadType()) {
case PoolHintData::PoolBOGUS:
MOZ_CRASH("bogus load type!");
case PoolHintData::PoolDTR:
Assembler::as_dtr_patch(IsLoad, 32, Offset, data.getReg(),
DTRAddr(pc, DtrOffImm(offset+4*data.getIndex() - 8)),
data.getCond(), instAddr);
break;
case PoolHintData::PoolBranch:
// Either this used to be a poolBranch, and the label was already bound,
// so it was replaced with a real branch, or this may happen in the
// future. If this is going to happen in the future, then the actual
// bits that are written here don't matter (except the condition code,
// since that is always preserved across patchings) but if it does not
// get bound later, then we want to make sure this is a load from the
// pool entry (and the pool entry should be nullptr so it will crash).
if (data.isValidPoolHint()) {
Assembler::as_dtr_patch(IsLoad, 32, Offset, pc,
DTRAddr(pc, DtrOffImm(offset+4*data.getIndex() - 8)),
data.getCond(), instAddr);
}
break;
case PoolHintData::PoolVDTR: {
VFPRegister dest = data.getVFPReg();
int32_t imm = offset + (data.getIndex() * 4) - 8;
MOZ_ASSERT(-1024 < imm && imm < 1024);
Assembler::as_vdtr_patch(IsLoad, dest, VFPAddr(pc, VFPOffImm(imm)), data.getCond(),
instAddr);
break;
}
}
}
// Atomic instruction stuff:
BufferOffset
Assembler::as_ldrex(Register rt, Register rn, Condition c)
{
return writeInst(0x01900f9f | (int)c | RT(rt) | RN(rn));
}
BufferOffset
Assembler::as_ldrexh(Register rt, Register rn, Condition c)
{
return writeInst(0x01f00f9f | (int)c | RT(rt) | RN(rn));
}
BufferOffset
Assembler::as_ldrexb(Register rt, Register rn, Condition c)
{
return writeInst(0x01d00f9f | (int)c | RT(rt) | RN(rn));
}
BufferOffset
Assembler::as_strex(Register rd, Register rt, Register rn, Condition c)
{
MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2)
return writeInst(0x01800f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}
BufferOffset
Assembler::as_strexh(Register rd, Register rt, Register rn, Condition c)
{
MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2)
return writeInst(0x01e00f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}
BufferOffset
Assembler::as_strexb(Register rd, Register rt, Register rn, Condition c)
{
MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2)
return writeInst(0x01c00f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}
// Memory barrier stuff:
BufferOffset
Assembler::as_dmb(BarrierOption option)
{
return writeInst(0xf57ff050U | (int)option);
}
BufferOffset
Assembler::as_dsb(BarrierOption option)
{
return writeInst(0xf57ff040U | (int)option);
}
BufferOffset
Assembler::as_isb()
{
return writeInst(0xf57ff06fU); // option == SY
}
BufferOffset
Assembler::as_dsb_trap()
{
// DSB is "mcr 15, 0, r0, c7, c10, 4".
// See eg https://bugs.kde.org/show_bug.cgi?id=228060.
// ARMv7 manual, "VMSA CP15 c7 register summary".
// Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
// ARMv8 manual E2.7.3 and G3.18.16.
return writeInst(0xee070f9a);
}
BufferOffset
Assembler::as_dmb_trap()
{
// DMB is "mcr 15, 0, r0, c7, c10, 5".
// ARMv7 manual, "VMSA CP15 c7 register summary".
// Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
// ARMv8 manual E2.7.3 and G3.18.16.
return writeInst(0xee070fba);
}
BufferOffset
Assembler::as_isb_trap()
{
// ISB is "mcr 15, 0, r0, c7, c5, 4".
// ARMv7 manual, "VMSA CP15 c7 register summary".
// Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
// ARMv8 manual E2.7.3 and G3.18.16.
return writeInst(0xee070f94);
}
// Control flow stuff:
// bx can *only* branch to a register, never to an immediate.
BufferOffset
Assembler::as_bx(Register r, Condition c)
{
BufferOffset ret = writeInst(((int) c) | OpBx | r.code());
return ret;
}
void
Assembler::WritePoolGuard(BufferOffset branch, Instruction* dest, BufferOffset afterPool)
{
BOffImm off = afterPool.diffB<BOffImm>(branch);
*dest = InstBImm(off, Always);
}
// Branch can branch to an immediate *or* to a register.
// Branches to immediates are pc relative, branches to registers are absolute.
BufferOffset
Assembler::as_b(BOffImm off, Condition c, Label* documentation)
{
BufferOffset ret = writeBranchInst(((int)c) | OpB | off.encode(), documentation);
return ret;
}
BufferOffset
Assembler::as_b(Label* l, Condition c)
{
if (l->bound()) {
// Note only one instruction is emitted here, the NOP is overwritten.
BufferOffset ret = allocBranchInst();
if (oom())
return BufferOffset();
as_b(BufferOffset(l).diffB<BOffImm>(ret), c, ret);
#ifdef JS_DISASM_ARM
spewBranch(m_buffer.getInstOrNull(ret), l);
#endif
return ret;
}
if (oom())
return BufferOffset();
int32_t old;
BufferOffset ret;
if (l->used()) {
old = l->offset();
// This will currently throw an assertion if we couldn't actually
// encode the offset of the branch.
if (!BOffImm::IsInRange(old)) {
m_buffer.fail_bail();
return ret;
}
ret = as_b(BOffImm(old), c, l);
} else {
old = LabelBase::INVALID_OFFSET;
BOffImm inv;
ret = as_b(inv, c, l);
}
if (oom())
return BufferOffset();
DebugOnly<int32_t> check = l->use(ret.getOffset());
MOZ_ASSERT(check == old);
return ret;
}
BufferOffset
Assembler::as_b(BOffImm off, Condition c, BufferOffset inst)
{
// JS_DISASM_ARM NOTE: Can't disassemble here, because numerous callers use this to
// patchup old code. Must disassemble in caller where it makes sense. Not many callers.
*editSrc(inst) = InstBImm(off, c);
return inst;
}
// blx can go to either an immediate or a register.
// When blx'ing to a register, we change processor state depending on the low
// bit of the register when blx'ing to an immediate, we *always* change
// processor state.
BufferOffset
Assembler::as_blx(Register r, Condition c)
{
return writeInst(((int) c) | OpBlx | r.code());
}
// bl can only branch to an pc-relative immediate offset
// It cannot change the processor state.
BufferOffset
Assembler::as_bl(BOffImm off, Condition c, Label* documentation)
{
return writeBranchInst(((int)c) | OpBl | off.encode(), documentation);
}
BufferOffset
Assembler::as_bl(Label* l, Condition c)
{
if (l->bound()) {
// Note only one instruction is emitted here, the NOP is overwritten.
BufferOffset ret = allocBranchInst();
if (oom())
return BufferOffset();
as_bl(BufferOffset(l).diffB<BOffImm>(ret), c, ret);
#ifdef JS_DISASM_ARM
spewBranch(m_buffer.getInstOrNull(ret), l);
#endif
return ret;
}
if (oom())
return BufferOffset();
int32_t old;
BufferOffset ret;
// See if the list was empty :(
if (l->used()) {
// This will currently throw an assertion if we couldn't actually encode
// the offset of the branch.
old = l->offset();
if (!BOffImm::IsInRange(old)) {
m_buffer.fail_bail();
return ret;
}
ret = as_bl(BOffImm(old), c, l);
} else {
old = LabelBase::INVALID_OFFSET;
BOffImm inv;
ret = as_bl(inv, c, l);
}
if (oom())
return BufferOffset();
DebugOnly<int32_t> check = l->use(ret.getOffset());
MOZ_ASSERT(check == old);
return ret;
}
BufferOffset
Assembler::as_bl(BOffImm off, Condition c, BufferOffset inst)
{
*editSrc(inst) = InstBLImm(off, c);
return inst;
}
BufferOffset
Assembler::as_mrs(Register r, Condition c)
{
return writeInst(0x010f0000 | int(c) | RD(r));
}
BufferOffset
Assembler::as_msr(Register r, Condition c)
{
// Hardcode the 'mask' field to 0b11 for now. It is bits 18 and 19, which
// are the two high bits of the 'c' in this constant.
MOZ_ASSERT((r.code() & ~0xf) == 0);
return writeInst(0x012cf000 | int(c) | r.code());
}
// VFP instructions!
enum vfp_tags {
VfpTag = 0x0C000A00,
VfpArith = 0x02000000
};
BufferOffset
Assembler::writeVFPInst(vfp_size sz, uint32_t blob)
{
MOZ_ASSERT((sz & blob) == 0);
MOZ_ASSERT((VfpTag & blob) == 0);
return writeInst(VfpTag | sz | blob);
}
/* static */ void
Assembler::WriteVFPInstStatic(vfp_size sz, uint32_t blob, uint32_t* dest)
{
MOZ_ASSERT((sz & blob) == 0);
MOZ_ASSERT((VfpTag & blob) == 0);
WriteInstStatic(VfpTag | sz | blob, dest);
}
// Unityped variants: all registers hold the same (ieee754 single/double)
// notably not included are vcvt; vmov vd, #imm; vmov rt, vn.
BufferOffset
Assembler::as_vfp_float(VFPRegister vd, VFPRegister vn, VFPRegister vm,
VFPOp op, Condition c)
{
// Make sure we believe that all of our operands are the same kind.
MOZ_ASSERT_IF(!vn.isMissing(), vd.equiv(vn));
MOZ_ASSERT_IF(!vm.isMissing(), vd.equiv(vm));
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
return writeVFPInst(sz, VD(vd) | VN(vn) | VM(vm) | op | VfpArith | c);
}
BufferOffset
Assembler::as_vadd(VFPRegister vd, VFPRegister vn, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, vn, vm, OpvAdd, c);
}
BufferOffset
Assembler::as_vdiv(VFPRegister vd, VFPRegister vn, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, vn, vm, OpvDiv, c);
}
BufferOffset
Assembler::as_vmul(VFPRegister vd, VFPRegister vn, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, vn, vm, OpvMul, c);
}
BufferOffset
Assembler::as_vnmul(VFPRegister vd, VFPRegister vn, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, vn, vm, OpvMul, c);
}
BufferOffset
Assembler::as_vnmla(VFPRegister vd, VFPRegister vn, VFPRegister vm, Condition c)
{
MOZ_CRASH("Feature NYI");
}
BufferOffset
Assembler::as_vnmls(VFPRegister vd, VFPRegister vn, VFPRegister vm, Condition c)
{
MOZ_CRASH("Feature NYI");
}
BufferOffset
Assembler::as_vneg(VFPRegister vd, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, NoVFPRegister, vm, OpvNeg, c);
}
BufferOffset
Assembler::as_vsqrt(VFPRegister vd, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, NoVFPRegister, vm, OpvSqrt, c);
}
BufferOffset
Assembler::as_vabs(VFPRegister vd, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, NoVFPRegister, vm, OpvAbs, c);
}
BufferOffset
Assembler::as_vsub(VFPRegister vd, VFPRegister vn, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, vn, vm, OpvSub, c);
}
BufferOffset
Assembler::as_vcmp(VFPRegister vd, VFPRegister vm, Condition c)
{
return as_vfp_float(vd, NoVFPRegister, vm, OpvCmp, c);
}
BufferOffset
Assembler::as_vcmpz(VFPRegister vd, Condition c)
{
return as_vfp_float(vd, NoVFPRegister, NoVFPRegister, OpvCmpz, c);
}
// Specifically, a move between two same sized-registers.
BufferOffset
Assembler::as_vmov(VFPRegister vd, VFPRegister vsrc, Condition c)
{
return as_vfp_float(vd, NoVFPRegister, vsrc, OpvMov, c);
}
// Transfer between Core and VFP.
// Unlike the next function, moving between the core registers and vfp registers
// can't be *that* properly typed. Namely, since I don't want to munge the type
// VFPRegister to also include core registers. Thus, the core and vfp registers
// are passed in based on their type, and src/dest is determined by the
// float2core.
BufferOffset
Assembler::as_vxfer(Register vt1, Register vt2, VFPRegister vm, FloatToCore_ f2c,
Condition c, int idx)
{
vfp_size sz = IsSingle;
if (vm.isDouble()) {
// Technically, this can be done with a vmov à la ARM ARM under vmov
// however, that requires at least an extra bit saying if the operation
// should be performed on the lower or upper half of the double. Moving
// a single to/from 2N/2N+1 isn't equivalent, since there are 32 single
// registers, and 32 double registers so there is no way to encode the
// last 16 double registers.
sz = IsDouble;
MOZ_ASSERT(idx == 0 || idx == 1);
// If we are transferring a single half of the double then it must be
// moving a VFP reg to a core reg.
MOZ_ASSERT_IF(vt2 == InvalidReg, f2c == FloatToCore);
idx = idx << 21;
} else {
MOZ_ASSERT(idx == 0);
}
if (vt2 == InvalidReg)
return writeVFPInst(sz, WordTransfer | f2c | c | RT(vt1) | maybeRN(vt2) | VN(vm) | idx);
// We are doing a 64 bit transfer.
return writeVFPInst(sz, DoubleTransfer | f2c | c | RT(vt1) | maybeRN(vt2) | VM(vm) | idx);
}
enum vcvt_destFloatness {
VcvtToInteger = 1 << 18,
VcvtToFloat = 0 << 18
};
enum vcvt_toZero {
VcvtToZero = 1 << 7, // Use the default rounding mode, which rounds truncates.
VcvtToFPSCR = 0 << 7 // Use whatever rounding mode the fpscr specifies.
};
enum vcvt_Signedness {
VcvtToSigned = 1 << 16,
VcvtToUnsigned = 0 << 16,
VcvtFromSigned = 1 << 7,
VcvtFromUnsigned = 0 << 7
};
// Our encoding actually allows just the src and the dest (and their types) to
// uniquely specify the encoding that we are going to use.
BufferOffset
Assembler::as_vcvt(VFPRegister vd, VFPRegister vm, bool useFPSCR,
Condition c)
{
// Unlike other cases, the source and dest types cannot be the same.
MOZ_ASSERT(!vd.equiv(vm));
vfp_size sz = IsDouble;
if (vd.isFloat() && vm.isFloat()) {
// Doing a float -> float conversion.
if (vm.isSingle())
sz = IsSingle;
return writeVFPInst(sz, c | 0x02B700C0 | VM(vm) | VD(vd));
}
// At least one of the registers should be a float.
vcvt_destFloatness destFloat;
vcvt_Signedness opSign;
vcvt_toZero doToZero = VcvtToFPSCR;
MOZ_ASSERT(vd.isFloat() || vm.isFloat());
if (vd.isSingle() || vm.isSingle())
sz = IsSingle;
if (vd.isFloat()) {
destFloat = VcvtToFloat;
opSign = (vm.isSInt()) ? VcvtFromSigned : VcvtFromUnsigned;
} else {
destFloat = VcvtToInteger;
opSign = (vd.isSInt()) ? VcvtToSigned : VcvtToUnsigned;
doToZero = useFPSCR ? VcvtToFPSCR : VcvtToZero;
}
return writeVFPInst(sz, c | 0x02B80040 | VD(vd) | VM(vm) | destFloat | opSign | doToZero);
}
BufferOffset
Assembler::as_vcvtFixed(VFPRegister vd, bool isSigned, uint32_t fixedPoint, bool toFixed, Condition c)
{
MOZ_ASSERT(vd.isFloat());
uint32_t sx = 0x1;
vfp_size sf = vd.isDouble() ? IsDouble : IsSingle;
int32_t imm5 = fixedPoint;
imm5 = (sx ? 32 : 16) - imm5;
MOZ_ASSERT(imm5 >= 0);
imm5 = imm5 >> 1 | (imm5 & 1) << 5;
return writeVFPInst(sf, 0x02BA0040 | VD(vd) | toFixed << 18 | sx << 7 |
(!isSigned) << 16 | imm5 | c);
}
// Transfer between VFP and memory.
static uint32_t
EncodeVdtr(LoadStore ls, VFPRegister vd, VFPAddr addr, Assembler::Condition c)
{
return ls | 0x01000000 | addr.encode() | VD(vd) | c;
}
BufferOffset
Assembler::as_vdtr(LoadStore ls, VFPRegister vd, VFPAddr addr,
Condition c /* vfp doesn't have a wb option */)
{
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
return writeVFPInst(sz, EncodeVdtr(ls, vd, addr, c));
}
/* static */ void
Assembler::as_vdtr_patch(LoadStore ls, VFPRegister vd, VFPAddr addr, Condition c, uint32_t* dest)
{
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
WriteVFPInstStatic(sz, EncodeVdtr(ls, vd, addr, c), dest);
}
// VFP's ldm/stm work differently from the standard arm ones. You can only
// transfer a range.
BufferOffset
Assembler::as_vdtm(LoadStore st, Register rn, VFPRegister vd, int length,
/* also has update conditions */ Condition c)
{
MOZ_ASSERT(length <= 16 && length >= 0);
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
if (vd.isDouble())
length *= 2;
return writeVFPInst(sz, dtmLoadStore | RN(rn) | VD(vd) | length |
dtmMode | dtmUpdate | dtmCond);
}
BufferOffset
Assembler::as_vimm(VFPRegister vd, VFPImm imm, Condition c)
{
MOZ_ASSERT(imm.isValid());
vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
return writeVFPInst(sz, c | imm.encode() | VD(vd) | 0x02B00000);
}
BufferOffset
Assembler::as_vmrs(Register r, Condition c)
{
return writeInst(c | 0x0ef10a10 | RT(r));
}
BufferOffset
Assembler::as_vmsr(Register r, Condition c)
{
return writeInst(c | 0x0ee10a10 | RT(r));
}
bool
Assembler::nextLink(BufferOffset b, BufferOffset* next)
{
Instruction branch = *editSrc(b);
MOZ_ASSERT(branch.is<InstBranchImm>());
BOffImm destOff;
branch.as<InstBranchImm>()->extractImm(&destOff);
if (destOff.isInvalid())
return false;
// Propagate the next link back to the caller, by constructing a new
// BufferOffset into the space they provided.
new (next) BufferOffset(destOff.decode());
return true;
}
void
Assembler::bind(Label* label, BufferOffset boff)
{
#ifdef JS_DISASM_ARM
spewLabel(label);
#endif
if (label->used()) {
bool more;
// If our caller didn't give us an explicit target to bind to then we
// want to bind to the location of the next instruction.
BufferOffset dest = boff.assigned() ? boff : nextOffset();
BufferOffset b(label);
do {
// Even a 0 offset may be invalid if we're out of memory.
if (oom())
return;
BufferOffset next;
more = nextLink(b, &next);
Instruction branch = *editSrc(b);
Condition c = branch.extractCond();
if (branch.is<InstBImm>())
as_b(dest.diffB<BOffImm>(b), c, b);
else if (branch.is<InstBLImm>())
as_bl(dest.diffB<BOffImm>(b), c, b);
else
MOZ_CRASH("crazy fixup!");
b = next;
} while (more);
}
label->bind(nextOffset().getOffset());
}
void
Assembler::bind(RepatchLabel* label)
{
// It does not seem to be useful to record this label for
// disassembly, as the value that is bound to the label is often
// effectively garbage and is replaced by something else later.
BufferOffset dest = nextOffset();
if (label->used() && !oom()) {
// If the label has a use, then change this use to refer to the bound
// label.
BufferOffset branchOff(label->offset());
// Since this was created with a RepatchLabel, the value written in the
// instruction stream is not branch shaped, it is PoolHintData shaped.
Instruction* branch = editSrc(branchOff);
PoolHintPun p;
p.raw = branch->encode();
Condition cond;
if (p.phd.isValidPoolHint())
cond = p.phd.getCond();
else
cond = branch->extractCond();
as_b(dest.diffB<BOffImm>(branchOff), cond, branchOff);
}
label->bind(dest.getOffset());
}
void
Assembler::retarget(Label* label, Label* target)
{
#ifdef JS_DISASM_ARM
spewRetarget(label, target);
#endif
if (label->used() && !oom()) {
if (target->bound()) {
bind(label, BufferOffset(target));
} else if (target->used()) {
// The target is not bound but used. Prepend label's branch list
// onto target's.
BufferOffset labelBranchOffset(label);
BufferOffset next;
// Find the head of the use chain for label.
while (nextLink(labelBranchOffset, &next))
labelBranchOffset = next;
// Then patch the head of label's use chain to the tail of target's
// use chain, prepending the entire use chain of target.
Instruction branch = *editSrc(labelBranchOffset);
Condition c = branch.extractCond();
int32_t prev = target->use(label->offset());
if (branch.is<InstBImm>())
as_b(BOffImm(prev), c, labelBranchOffset);
else if (branch.is<InstBLImm>())
as_bl(BOffImm(prev), c, labelBranchOffset);
else
MOZ_CRASH("crazy fixup!");
} else {
// The target is unbound and unused. We can just take the head of
// the list hanging off of label, and dump that into target.
DebugOnly<uint32_t> prev = target->use(label->offset());
MOZ_ASSERT((int32_t)prev == Label::INVALID_OFFSET);
}
}
label->reset();
}
void
Assembler::retargetWithOffset(size_t baseOffset, const LabelBase* label, LabelBase* target)
{
if (!label->used())
return;
MOZ_ASSERT(!target->bound());
bool more;
BufferOffset labelBranchOffset(label->offset() + baseOffset);
do {
BufferOffset next;
more = nextLink(labelBranchOffset, &next);
Instruction branch = *editSrc(labelBranchOffset);
Condition c = branch.extractCond();
int32_t prev = target->use(labelBranchOffset.getOffset());
MOZ_RELEASE_ASSERT(prev == Label::INVALID_OFFSET || unsigned(prev) < size());
BOffImm newOffset;
if (prev != Label::INVALID_OFFSET)
newOffset = BOffImm(prev);
if (branch.is<InstBImm>())
as_b(newOffset, c, labelBranchOffset);
else if (branch.is<InstBLImm>())
as_bl(newOffset, c, labelBranchOffset);
else
MOZ_CRASH("crazy fixup!");
labelBranchOffset = BufferOffset(next.getOffset() + baseOffset);
} while (more);
}
static int stopBKPT = -1;
void
Assembler::as_bkpt()
{
// This is a count of how many times a breakpoint instruction has been
// generated. It is embedded into the instruction for debugging
// purposes. Gdb will print "bkpt xxx" when you attempt to dissassemble a
// breakpoint with the number xxx embedded into it. If this breakpoint is
// being hit, then you can run (in gdb):
// >b dbg_break
// >b main
// >commands
// >set stopBKPT = xxx
// >c
// >end
// which will set a breakpoint on the function dbg_break above set a
// scripted breakpoint on main that will set the (otherwise unmodified)
// value to the number of the breakpoint, so dbg_break will actuall be
// called and finally, when you run the executable, execution will halt when
// that breakpoint is generated.
static int hit = 0;
if (stopBKPT == hit)
dbg_break();
writeInst(0xe1200070 | (hit & 0xf) | ((hit & 0xfff0) << 4));
hit++;
}
void
Assembler::flushBuffer()
{
m_buffer.flushPool();
}
void
Assembler::enterNoPool(size_t maxInst)
{