| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "jit/arm/Simulator-arm.h" |
| |
| #include "mozilla/Casting.h" |
| #include "mozilla/DebugOnly.h" |
| #include "mozilla/FloatingPoint.h" |
| #include "mozilla/Likely.h" |
| #include "mozilla/MathAlgorithms.h" |
| #include "mozilla/SizePrintfMacros.h" |
| |
| #include "asmjs/AsmJSValidate.h" |
| #include "jit/arm/Assembler-arm.h" |
| #include "jit/arm/disasm/Constants-arm.h" |
| #include "jit/AtomicOperations.h" |
| #include "vm/Runtime.h" |
| #include "vm/SharedMem.h" |
| |
| extern "C" { |
| |
| int64_t |
| __aeabi_idivmod(int x, int y) |
| { |
| uint32_t lo = uint32_t(x / y); |
| uint32_t hi = uint32_t(x % y); |
| return (int64_t(hi) << 32) | lo; |
| } |
| |
| int64_t |
| __aeabi_uidivmod(int x, int y) |
| { |
| uint32_t lo = uint32_t(x) / uint32_t(y); |
| uint32_t hi = uint32_t(x) % uint32_t(y); |
| return (int64_t(hi) << 32) | lo; |
| } |
| } |
| |
| namespace js { |
| namespace jit { |
| |
| // Load/store multiple addressing mode. |
| enum BlockAddrMode { |
| // Alias modes for comparison when writeback does not matter. |
| da_x = (0|0|0) << 21, // Decrement after. |
| ia_x = (0|4|0) << 21, // Increment after. |
| db_x = (8|0|0) << 21, // Decrement before. |
| ib_x = (8|4|0) << 21, // Increment before. |
| }; |
| |
| // Type of VFP register. Determines register encoding. |
| enum VFPRegPrecision { |
| kSinglePrecision = 0, |
| kDoublePrecision = 1 |
| }; |
| |
| enum NeonListType { |
| nlt_1 = 0x7, |
| nlt_2 = 0xA, |
| nlt_3 = 0x6, |
| nlt_4 = 0x2 |
| }; |
| |
| // Supervisor Call (svc) specific support. |
| |
| // Special Software Interrupt codes when used in the presence of the ARM |
| // simulator. |
| // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for |
| // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. |
| enum SoftwareInterruptCodes { |
| kCallRtRedirected = 0x10, // Transition to C code. |
| kBreakpoint= 0x20, // Breakpoint. |
| kStopCode = 1 << 23 // Stop. |
| }; |
| |
| const uint32_t kStopCodeMask = kStopCode - 1; |
| const uint32_t kMaxStopCode = kStopCode - 1; |
| |
| // ----------------------------------------------------------------------------- |
| // Instruction abstraction. |
| |
| // The class Instruction enables access to individual fields defined in the ARM |
| // architecture instruction set encoding as described in figure A3-1. |
| // Note that the Assembler uses typedef int32_t Instr. |
| // |
| // Example: Test whether the instruction at ptr does set the condition code |
| // bits. |
| // |
| // bool InstructionSetsConditionCodes(byte* ptr) { |
| // Instruction* instr = Instruction::At(ptr); |
| // int type = instr->TypeValue(); |
| // return ((type == 0) || (type == 1)) && instr->hasS(); |
| // } |
| // |
| class SimInstruction { |
| public: |
| enum { |
| kInstrSize = 4, |
| kPCReadOffset = 8 |
| }; |
| |
| // Get the raw instruction bits. |
| inline Instr instructionBits() const { |
| return *reinterpret_cast<const Instr*>(this); |
| } |
| |
| // Set the raw instruction bits to value. |
| inline void setInstructionBits(Instr value) { |
| *reinterpret_cast<Instr*>(this) = value; |
| } |
| |
| // Read one particular bit out of the instruction bits. |
| inline int bit(int nr) const { |
| return (instructionBits() >> nr) & 1; |
| } |
| |
| // Read a bit field's value out of the instruction bits. |
| inline int bits(int hi, int lo) const { |
| return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1); |
| } |
| |
| // Read a bit field out of the instruction bits. |
| inline int bitField(int hi, int lo) const { |
| return instructionBits() & (((2 << (hi - lo)) - 1) << lo); |
| } |
| |
| // Accessors for the different named fields used in the ARM encoding. |
| // The naming of these accessor corresponds to figure A3-1. |
| // |
| // Two kind of accessors are declared: |
| // - <Name>Field() will return the raw field, i.e. the field's bits at their |
| // original place in the instruction encoding. |
| // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as |
| // 0xC0810002 conditionField(instr) will return 0xC0000000. |
| // - <Name>Value() will return the field value, shifted back to bit 0. |
| // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as |
| // 0xC0810002 conditionField(instr) will return 0xC. |
| |
| // Generally applicable fields |
| inline Assembler::ARMCondition conditionField() const { |
| return static_cast<Assembler::ARMCondition>(bitField(31, 28)); |
| } |
| inline int typeValue() const { return bits(27, 25); } |
| inline int specialValue() const { return bits(27, 23); } |
| |
| inline int rnValue() const { return bits(19, 16); } |
| inline int rdValue() const { return bits(15, 12); } |
| |
| inline int coprocessorValue() const { return bits(11, 8); } |
| |
| // Support for VFP. |
| // Vn(19-16) | Vd(15-12) | Vm(3-0) |
| inline int vnValue() const { return bits(19, 16); } |
| inline int vmValue() const { return bits(3, 0); } |
| inline int vdValue() const { return bits(15, 12); } |
| inline int nValue() const { return bit(7); } |
| inline int mValue() const { return bit(5); } |
| inline int dValue() const { return bit(22); } |
| inline int rtValue() const { return bits(15, 12); } |
| inline int pValue() const { return bit(24); } |
| inline int uValue() const { return bit(23); } |
| inline int opc1Value() const { return (bit(23) << 2) | bits(21, 20); } |
| inline int opc2Value() const { return bits(19, 16); } |
| inline int opc3Value() const { return bits(7, 6); } |
| inline int szValue() const { return bit(8); } |
| inline int VLValue() const { return bit(20); } |
| inline int VCValue() const { return bit(8); } |
| inline int VAValue() const { return bits(23, 21); } |
| inline int VBValue() const { return bits(6, 5); } |
| inline int VFPNRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 16, 7); } |
| inline int VFPMRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 0, 5); } |
| inline int VFPDRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 12, 22); } |
| |
| // Fields used in Data processing instructions. |
| inline int opcodeValue() const { return static_cast<ALUOp>(bits(24, 21)); } |
| inline ALUOp opcodeField() const { return static_cast<ALUOp>(bitField(24, 21)); } |
| inline int sValue() const { return bit(20); } |
| |
| // With register. |
| inline int rmValue() const { return bits(3, 0); } |
| inline ShiftType shifttypeValue() const { return static_cast<ShiftType>(bits(6, 5)); } |
| inline int rsValue() const { return bits(11, 8); } |
| inline int shiftAmountValue() const { return bits(11, 7); } |
| |
| // With immediate. |
| inline int rotateValue() const { return bits(11, 8); } |
| inline int immed8Value() const { return bits(7, 0); } |
| inline int immed4Value() const { return bits(19, 16); } |
| inline int immedMovwMovtValue() const { return immed4Value() << 12 | offset12Value(); } |
| |
| // Fields used in Load/Store instructions. |
| inline int PUValue() const { return bits(24, 23); } |
| inline int PUField() const { return bitField(24, 23); } |
| inline int bValue() const { return bit(22); } |
| inline int wValue() const { return bit(21); } |
| inline int lValue() const { return bit(20); } |
| |
| // With register uses same fields as Data processing instructions above with |
| // immediate. |
| inline int offset12Value() const { return bits(11, 0); } |
| |
| // Multiple. |
| inline int rlistValue() const { return bits(15, 0); } |
| |
| // Extra loads and stores. |
| inline int signValue() const { return bit(6); } |
| inline int hValue() const { return bit(5); } |
| inline int immedHValue() const { return bits(11, 8); } |
| inline int immedLValue() const { return bits(3, 0); } |
| |
| // Fields used in Branch instructions. |
| inline int linkValue() const { return bit(24); } |
| inline int sImmed24Value() const { return ((instructionBits() << 8) >> 8); } |
| |
| // Fields used in Software interrupt instructions. |
| inline SoftwareInterruptCodes svcValue() const { |
| return static_cast<SoftwareInterruptCodes>(bits(23, 0)); |
| } |
| |
| // Test for special encodings of type 0 instructions (extra loads and |
| // stores, as well as multiplications). |
| inline bool isSpecialType0() const { return (bit(7) == 1) && (bit(4) == 1); } |
| |
| // Test for miscellaneous instructions encodings of type 0 instructions. |
| inline bool isMiscType0() const { |
| return bit(24) == 1 && bit(23) == 0 && bit(20) == 0 && (bit(7) == 0); |
| } |
| |
| // Test for a nop instruction, which falls under type 1. |
| inline bool isNopType1() const { return bits(24, 0) == 0x0120F000; } |
| |
| // Test for a stop instruction. |
| inline bool isStop() const { |
| return typeValue() == 7 && bit(24) == 1 && svcValue() >= kStopCode; |
| } |
| |
| // Special accessors that test for existence of a value. |
| inline bool hasS() const { return sValue() == 1; } |
| inline bool hasB() const { return bValue() == 1; } |
| inline bool hasW() const { return wValue() == 1; } |
| inline bool hasL() const { return lValue() == 1; } |
| inline bool hasU() const { return uValue() == 1; } |
| inline bool hasSign() const { return signValue() == 1; } |
| inline bool hasH() const { return hValue() == 1; } |
| inline bool hasLink() const { return linkValue() == 1; } |
| |
| // Decoding the double immediate in the vmov instruction. |
| double doubleImmedVmov() const; |
| // Decoding the float32 immediate in the vmov.f32 instruction. |
| float float32ImmedVmov() const; |
| |
| private: |
| // Join split register codes, depending on single or double precision. |
| // four_bit is the position of the least-significant bit of the four |
| // bit specifier. one_bit is the position of the additional single bit |
| // specifier. |
| inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { |
| if (pre == kSinglePrecision) |
| return (bits(four_bit + 3, four_bit) << 1) | bit(one_bit); |
| return (bit(one_bit) << 4) | bits(four_bit + 3, four_bit); |
| } |
| |
| SimInstruction() = delete; |
| SimInstruction(const SimInstruction& other) = delete; |
| void operator=(const SimInstruction& other) = delete; |
| }; |
| |
| double |
| SimInstruction::doubleImmedVmov() const |
| { |
| // Reconstruct a double from the immediate encoded in the vmov instruction. |
| // |
| // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh] |
| // double: [aBbbbbbb,bbcdefgh,00000000,00000000, |
| // 00000000,00000000,00000000,00000000] |
| // |
| // where B = ~b. Only the high 16 bits are affected. |
| uint64_t high16; |
| high16 = (bits(17, 16) << 4) | bits(3, 0); // xxxxxxxx,xxcdefgh. |
| high16 |= (0xff * bit(18)) << 6; // xxbbbbbb,bbxxxxxx. |
| high16 |= (bit(18) ^ 1) << 14; // xBxxxxxx,xxxxxxxx. |
| high16 |= bit(19) << 15; // axxxxxxx,xxxxxxxx. |
| |
| uint64_t imm = high16 << 48; |
| return mozilla::BitwiseCast<double>(imm); |
| } |
| |
| float |
| SimInstruction::float32ImmedVmov() const |
| { |
| // Reconstruct a float32 from the immediate encoded in the vmov instruction. |
| // |
| // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh] |
| // float32: [aBbbbbbc, defgh000, 00000000, 00000000] |
| // |
| // where B = ~b. Only the high 16 bits are affected. |
| uint32_t imm; |
| imm = (bits(17, 16) << 23) | (bits(3, 0) << 19); // xxxxxxxc,defgh000.0.0 |
| imm |= (0x1f * bit(18)) << 25; // xxbbbbbx,xxxxxxxx.0.0 |
| imm |= (bit(18) ^ 1) << 30; // xBxxxxxx,xxxxxxxx.0.0 |
| imm |= bit(19) << 31; // axxxxxxx,xxxxxxxx.0.0 |
| |
| return mozilla::BitwiseCast<float>(imm); |
| } |
| |
| class CachePage |
| { |
| public: |
| static const int LINE_VALID = 0; |
| static const int LINE_INVALID = 1; |
| static const int kPageShift = 12; |
| static const int kPageSize = 1 << kPageShift; |
| static const int kPageMask = kPageSize - 1; |
| static const int kLineShift = 2; // The cache line is only 4 bytes right now. |
| static const int kLineLength = 1 << kLineShift; |
| static const int kLineMask = kLineLength - 1; |
| |
| CachePage() { |
| memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); |
| } |
| char* validityByte(int offset) { |
| return &validity_map_[offset >> kLineShift]; |
| } |
| char* cachedData(int offset) { |
| return &data_[offset]; |
| } |
| |
| private: |
| char data_[kPageSize]; // The cached data. |
| static const int kValidityMapSize = kPageSize >> kLineShift; |
| char validity_map_[kValidityMapSize]; // One byte per line. |
| }; |
| |
| // Protects the icache() and redirection() properties of the |
| // Simulator. |
| class AutoLockSimulatorCache |
| { |
| public: |
| explicit AutoLockSimulatorCache(Simulator* sim) : sim_(sim) { |
| PR_Lock(sim_->cacheLock_); |
| MOZ_ASSERT(!sim_->cacheLockHolder_); |
| #ifdef DEBUG |
| sim_->cacheLockHolder_ = PR_GetCurrentThread(); |
| #endif |
| } |
| |
| ~AutoLockSimulatorCache() { |
| MOZ_ASSERT(sim_->cacheLockHolder_); |
| #ifdef DEBUG |
| sim_->cacheLockHolder_ = nullptr; |
| #endif |
| PR_Unlock(sim_->cacheLock_); |
| } |
| |
| private: |
| Simulator* const sim_; |
| }; |
| |
| bool Simulator::ICacheCheckingEnabled = false; |
| |
| int64_t Simulator::StopSimAt = -1L; |
| |
| Simulator* |
| Simulator::Create() |
| { |
| Simulator* sim = js_new<Simulator>(); |
| if (!sim) |
| return nullptr; |
| |
| if (!sim->init()) { |
| js_delete(sim); |
| return nullptr; |
| } |
| |
| if (js_sb_getenv("ARM_SIM_ICACHE_CHECKS")) |
| Simulator::ICacheCheckingEnabled = true; |
| |
| char* stopAtStr = js_sb_getenv("ARM_SIM_STOP_AT"); |
| int64_t stopAt; |
| if (stopAtStr && sscanf(stopAtStr, "%lld", &stopAt) == 1) { |
| fprintf(stderr, "\nStopping simulation at icount %lld\n", stopAt); |
| Simulator::StopSimAt = stopAt; |
| } |
| |
| return sim; |
| } |
| |
| void |
| Simulator::Destroy(Simulator* sim) |
| { |
| js_delete(sim); |
| } |
| |
| // The ArmDebugger class is used by the simulator while debugging simulated ARM |
| // code. |
| class ArmDebugger { |
| public: |
| explicit ArmDebugger(Simulator* sim) : sim_(sim) { } |
| |
| void stop(SimInstruction* instr); |
| void debug(); |
| |
| private: |
| static const Instr kBreakpointInstr = (Assembler::AL | (7 * (1 << 25)) | (1* (1 << 24)) | kBreakpoint); |
| static const Instr kNopInstr = (Assembler::AL | (13 * (1 << 21))); |
| |
| Simulator* sim_; |
| |
| int32_t getRegisterValue(int regnum); |
| double getRegisterPairDoubleValue(int regnum); |
| double getVFPDoubleRegisterValue(int regnum); |
| bool getValue(const char* desc, int32_t* value); |
| bool getVFPDoubleValue(const char* desc, double* value); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool setBreakpoint(SimInstruction* breakpc); |
| bool deleteBreakpoint(SimInstruction* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void undoBreakpoints(); |
| void redoBreakpoints(); |
| }; |
| |
| void |
| ArmDebugger::stop(SimInstruction * instr) |
| { |
| // Get the stop code. |
| uint32_t code = instr->svcValue() & kStopCodeMask; |
| // Retrieve the encoded address, which comes just after this stop. |
| char* msg = *reinterpret_cast<char**>(sim_->get_pc() |
| + SimInstruction::kInstrSize); |
| // Update this stop description. |
| if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { |
| sim_->watched_stops_[code].desc = msg; |
| } |
| // Print the stop message and code if it is not the default code. |
| if (code != kMaxStopCode) { |
| printf("Simulator hit stop %u: %s\n", code, msg); |
| } else { |
| printf("Simulator hit %s\n", msg); |
| } |
| sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize); |
| debug(); |
| } |
| |
| int32_t |
| ArmDebugger::getRegisterValue(int regnum) |
| { |
| if (regnum == Registers::pc) |
| return sim_->get_pc(); |
| return sim_->get_register(regnum); |
| } |
| |
| double |
| ArmDebugger::getRegisterPairDoubleValue(int regnum) |
| { |
| return sim_->get_double_from_register_pair(regnum); |
| } |
| |
| double |
| ArmDebugger::getVFPDoubleRegisterValue(int regnum) |
| { |
| return sim_->get_double_from_d_register(regnum); |
| } |
| |
| bool |
| ArmDebugger::getValue(const char* desc, int32_t* value) |
| { |
| Register reg = Register::FromName(desc); |
| if (reg != InvalidReg) { |
| *value = getRegisterValue(reg.code()); |
| return true; |
| } |
| if (strncmp(desc, "0x", 2) == 0) |
| return sscanf(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; |
| return sscanf(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; |
| } |
| |
| bool |
| ArmDebugger::getVFPDoubleValue(const char* desc, double* value) |
| { |
| FloatRegister reg(FloatRegister::FromName(desc)); |
| if (reg != InvalidFloatReg) { |
| *value = sim_->get_double_from_d_register(reg.code()); |
| return true; |
| } |
| return false; |
| } |
| |
| bool |
| ArmDebugger::setBreakpoint(SimInstruction* breakpc) |
| { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_) |
| return false; |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->instructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| bool |
| ArmDebugger::deleteBreakpoint(SimInstruction* breakpc) |
| { |
| if (sim_->break_pc_ != nullptr) |
| sim_->break_pc_->setInstructionBits(sim_->break_instr_); |
| |
| sim_->break_pc_ = nullptr; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| void |
| ArmDebugger::undoBreakpoints() |
| { |
| if (sim_->break_pc_) |
| sim_->break_pc_->setInstructionBits(sim_->break_instr_); |
| } |
| |
| void |
| ArmDebugger::redoBreakpoints() |
| { |
| if (sim_->break_pc_) |
| sim_->break_pc_->setInstructionBits(kBreakpointInstr); |
| } |
| |
| static char* |
| ReadLine(const char* prompt) |
| { |
| char* result = nullptr; |
| char line_buf[256]; |
| int offset = 0; |
| bool keep_going = true; |
| fprintf(stdout, "%s", prompt); |
| fflush(stdout); |
| while (keep_going) { |
| if (fgets(line_buf, sizeof(line_buf), stdin) == nullptr) { |
| // fgets got an error. Just give up. |
| if (result) |
| js_delete(result); |
| return nullptr; |
| } |
| int len = strlen(line_buf); |
| if (len > 0 && line_buf[len - 1] == '\n') { |
| // Since we read a new line we are done reading the line. This will |
| // exit the loop after copying this buffer into the result. |
| keep_going = false; |
| } |
| if (!result) { |
| // Allocate the initial result and make room for the terminating |
| // '\0'. |
| result = (char*)js_malloc(len + 1); |
| if (!result) |
| return nullptr; |
| } else { |
| // Allocate a new result with enough room for the new addition. |
| int new_len = offset + len + 1; |
| char* new_result = (char*)js_malloc(new_len); |
| if (!new_result) |
| return nullptr; |
| // Copy the existing input into the new array and set the new |
| // array as the result. |
| memcpy(new_result, result, offset * sizeof(char)); |
| js_free(result); |
| result = new_result; |
| } |
| // Copy the newly read line into the result. |
| memcpy(result + offset, line_buf, len * sizeof(char)); |
| offset += len; |
| } |
| |
| MOZ_ASSERT(result); |
| result[offset] = '\0'; |
| return result; |
| } |
| |
| |
| void |
| ArmDebugger::debug() |
| { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| char* argv[3] = { cmd, arg1, arg2 }; |
| |
| // Make sure to have a proper terminating character if reaching the limit. |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| undoBreakpoints(); |
| |
| #ifndef JS_DISASM_ARM |
| static bool disasm_warning_printed = false; |
| if (!disasm_warning_printed) { |
| printf(" No ARM disassembler present. Enable JS_DISASM_ARM in configure.in."); |
| disasm_warning_printed = true; |
| } |
| #endif |
| |
| while (!done && !sim_->has_bad_pc()) { |
| if (last_pc != sim_->get_pc()) { |
| #ifdef JS_DISASM_ARM |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; |
| dasm.InstructionDecode(buffer, |
| reinterpret_cast<uint8_t*>(sim_->get_pc())); |
| printf(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); |
| #endif |
| last_pc = sim_->get_pc(); |
| } |
| char* line = ReadLine("sim> "); |
| if (line == nullptr) { |
| break; |
| } else { |
| char* last_input = sim_->lastDebuggerInput(); |
| if (strcmp(line, "\n") == 0 && last_input != nullptr) { |
| line = last_input; |
| } else { |
| // Ownership is transferred to sim_; |
| sim_->setLastDebuggerInput(line); |
| } |
| |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int argc = sscanf(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if (argc < 0) { |
| continue; |
| } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| sim_->instructionDecode(reinterpret_cast<SimInstruction*>(sim_->get_pc())); |
| sim_->icount_++; |
| } else if ((strcmp(cmd, "skip") == 0)) { |
| sim_->set_pc(sim_->get_pc() + 4); |
| sim_->icount_++; |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints |
| // disabled. |
| sim_->instructionDecode(reinterpret_cast<SimInstruction*>(sim_->get_pc())); |
| sim_->icount_++; |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { |
| int32_t value; |
| double dvalue; |
| if (strcmp(arg1, "all") == 0) { |
| for (uint32_t i = 0; i < Registers::Total; i++) { |
| value = getRegisterValue(i); |
| printf("%3s: 0x%08x %10d", Registers::GetName(i), value, value); |
| if ((argc == 3 && strcmp(arg2, "fp") == 0) && |
| i < 8 && |
| (i % 2) == 0) { |
| dvalue = getRegisterPairDoubleValue(i); |
| printf(" (%.16g)\n", dvalue); |
| } else { |
| printf("\n"); |
| } |
| } |
| for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) { |
| dvalue = getVFPDoubleRegisterValue(i); |
| uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue); |
| printf("%3s: %.16g 0x%08x %08x\n", |
| FloatRegister::FromCode(i).name(), |
| dvalue, |
| static_cast<uint32_t>(as_words >> 32), |
| static_cast<uint32_t>(as_words & 0xffffffff)); |
| } |
| } else { |
| if (getValue(arg1, &value)) { |
| printf("%s: 0x%08x %d \n", arg1, value, value); |
| } else if (getVFPDoubleValue(arg1, &dvalue)) { |
| uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue); |
| printf("%s: %.16g 0x%08x %08x\n", |
| arg1, |
| dvalue, |
| static_cast<uint32_t>(as_words >> 32), |
| static_cast<uint32_t>(as_words & 0xffffffff)); |
| } else { |
| printf("%s unrecognized\n", arg1); |
| } |
| } |
| } else { |
| printf("print <register>\n"); |
| } |
| } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
| int32_t* cur = nullptr; |
| int32_t* end = nullptr; |
| int next_arg = 1; |
| |
| if (strcmp(cmd, "stack") == 0) { |
| cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); |
| } else { // "mem" |
| int32_t value; |
| if (!getValue(arg1, &value)) { |
| printf("%s unrecognized\n", arg1); |
| continue; |
| } |
| cur = reinterpret_cast<int32_t*>(value); |
| next_arg++; |
| } |
| |
| int32_t words; |
| if (argc == next_arg) { |
| words = 10; |
| } else { |
| if (!getValue(argv[next_arg], &words)) { |
| words = 10; |
| } |
| } |
| end = cur + words; |
| |
| while (cur < end) { |
| printf(" %p: 0x%08x %10d", cur, *cur, *cur); |
| printf("\n"); |
| cur++; |
| } |
| } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { |
| #ifdef JS_DISASM_ARM |
| uint8_t* prev = nullptr; |
| uint8_t* cur = nullptr; |
| uint8_t* end = nullptr; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); |
| end = cur + (10 * SimInstruction::kInstrSize); |
| } else if (argc == 2) { |
| Register reg = Register::FromName(arg1); |
| if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) { |
| // The argument is an address or a register name. |
| int32_t value; |
| if (getValue(arg1, &value)) { |
| cur = reinterpret_cast<uint8_t*>(value); |
| // Disassemble 10 instructions at <arg1>. |
| end = cur + (10 * SimInstruction::kInstrSize); |
| } |
| } else { |
| // The argument is the number of instructions. |
| int32_t value; |
| if (getValue(arg1, &value)) { |
| cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); |
| // Disassemble <arg1> instructions. |
| end = cur + (value * SimInstruction::kInstrSize); |
| } |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (getValue(arg1, &value1) && getValue(arg2, &value2)) { |
| cur = reinterpret_cast<uint8_t*>(value1); |
| end = cur + (value2 * SimInstruction::kInstrSize); |
| } |
| } |
| while (cur < end) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; |
| |
| prev = cur; |
| cur += dasm.InstructionDecode(buffer, cur); |
| printf(" 0x%08x %s\n", reinterpret_cast<uint32_t>(prev), buffer.start()); |
| } |
| #endif |
| } else if (strcmp(cmd, "gdb") == 0) { |
| printf("relinquishing control to gdb\n"); |
| asm("int $3"); |
| printf("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (argc == 2) { |
| int32_t value; |
| if (getValue(arg1, &value)) { |
| if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) |
| printf("setting breakpoint failed\n"); |
| } else { |
| printf("%s unrecognized\n", arg1); |
| } |
| } else { |
| printf("break <address>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!deleteBreakpoint(nullptr)) { |
| printf("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| printf("N flag: %d; ", sim_->n_flag_); |
| printf("Z flag: %d; ", sim_->z_flag_); |
| printf("C flag: %d; ", sim_->c_flag_); |
| printf("V flag: %d\n", sim_->v_flag_); |
| printf("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); |
| printf("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); |
| printf("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); |
| printf("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); |
| printf("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); |
| } else if (strcmp(cmd, "stop") == 0) { |
| int32_t value; |
| intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize; |
| SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc); |
| SimInstruction* msg_address = |
| reinterpret_cast<SimInstruction*>(stop_pc + SimInstruction::kInstrSize); |
| if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { |
| // Remove the current stop. |
| if (sim_->isStopInstruction(stop_instr)) { |
| stop_instr->setInstructionBits(kNopInstr); |
| msg_address->setInstructionBits(kNopInstr); |
| } else { |
| printf("Not at debugger stop.\n"); |
| } |
| } else if (argc == 3) { |
| // Print information about all/the specified breakpoint(s). |
| if (strcmp(arg1, "info") == 0) { |
| if (strcmp(arg2, "all") == 0) { |
| printf("Stop information:\n"); |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) |
| sim_->printStopInfo(i); |
| } else if (getValue(arg2, &value)) { |
| sim_->printStopInfo(value); |
| } else { |
| printf("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "enable") == 0) { |
| // Enable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) |
| sim_->enableStop(i); |
| } else if (getValue(arg2, &value)) { |
| sim_->enableStop(value); |
| } else { |
| printf("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "disable") == 0) { |
| // Disable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->disableStop(i); |
| } |
| } else if (getValue(arg2, &value)) { |
| sim_->disableStop(value); |
| } else { |
| printf("Unrecognized argument.\n"); |
| } |
| } |
| } else { |
| printf("Wrong usage. Use help command for more information.\n"); |
| } |
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| printf("cont\n"); |
| printf(" continue execution (alias 'c')\n"); |
| printf("skip\n"); |
| printf(" skip one instruction (set pc to next instruction)\n"); |
| printf("stepi\n"); |
| printf(" step one instruction (alias 'si')\n"); |
| printf("print <register>\n"); |
| printf(" print register content (alias 'p')\n"); |
| printf(" use register name 'all' to print all registers\n"); |
| printf(" add argument 'fp' to print register pair double values\n"); |
| printf("flags\n"); |
| printf(" print flags\n"); |
| printf("stack [<words>]\n"); |
| printf(" dump stack content, default dump 10 words)\n"); |
| printf("mem <address> [<words>]\n"); |
| printf(" dump memory content, default dump 10 words)\n"); |
| printf("disasm [<instructions>]\n"); |
| printf("disasm [<address/register>]\n"); |
| printf("disasm [[<address/register>] <instructions>]\n"); |
| printf(" disassemble code, default is 10 instructions\n"); |
| printf(" from pc (alias 'di')\n"); |
| printf("gdb\n"); |
| printf(" enter gdb\n"); |
| printf("break <address>\n"); |
| printf(" set a break point on the address\n"); |
| printf("del\n"); |
| printf(" delete the breakpoint\n"); |
| printf("stop feature:\n"); |
| printf(" Description:\n"); |
| printf(" Stops are debug instructions inserted by\n"); |
| printf(" the Assembler::stop() function.\n"); |
| printf(" When hitting a stop, the Simulator will\n"); |
| printf(" stop and and give control to the ArmDebugger.\n"); |
| printf(" The first %d stop codes are watched:\n", |
| Simulator::kNumOfWatchedStops); |
| printf(" - They can be enabled / disabled: the Simulator\n"); |
| printf(" will / won't stop when hitting them.\n"); |
| printf(" - The Simulator keeps track of how many times they \n"); |
| printf(" are met. (See the info command.) Going over a\n"); |
| printf(" disabled stop still increases its counter. \n"); |
| printf(" Commands:\n"); |
| printf(" stop info all/<code> : print infos about number <code>\n"); |
| printf(" or all stop(s).\n"); |
| printf(" stop enable/disable all/<code> : enables / disables\n"); |
| printf(" all or number <code> stop(s)\n"); |
| printf(" stop unstop\n"); |
| printf(" ignore the stop instruction at the current location\n"); |
| printf(" from now on\n"); |
| } else { |
| printf("Unknown command: %s\n", cmd); |
| } |
| } |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| redoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| static bool |
| AllOnOnePage(uintptr_t start, int size) |
| { |
| intptr_t start_page = (start & ~CachePage::kPageMask); |
| intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
| return start_page == end_page; |
| } |
| |
| static CachePage* |
| GetCachePageLocked(Simulator::ICacheMap& i_cache, void* page) |
| { |
| MOZ_ASSERT(Simulator::ICacheCheckingEnabled); |
| |
| Simulator::ICacheMap::AddPtr p = i_cache.lookupForAdd(page); |
| if (p) |
| return p->value(); |
| |
| AutoEnterOOMUnsafeRegion oomUnsafe; |
| CachePage* new_page = js_new<CachePage>(); |
| if (!new_page || !i_cache.add(p, page, new_page)) |
| oomUnsafe.crash("Simulator CachePage"); |
| |
| return new_page; |
| } |
| |
| // Flush from start up to and not including start + size. |
| static void |
| FlushOnePageLocked(Simulator::ICacheMap& i_cache, intptr_t start, int size) |
| { |
| MOZ_ASSERT(size <= CachePage::kPageSize); |
| MOZ_ASSERT(AllOnOnePage(start, size - 1)); |
| MOZ_ASSERT((start & CachePage::kLineMask) == 0); |
| MOZ_ASSERT((size & CachePage::kLineMask) == 0); |
| |
| void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
| int offset = (start & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePageLocked(i_cache, page); |
| char* valid_bytemap = cache_page->validityByte(offset); |
| memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
| } |
| |
| static void |
| FlushICacheLocked(Simulator::ICacheMap& i_cache, void* start_addr, size_t size) |
| { |
| intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
| int intra_line = (start & CachePage::kLineMask); |
| start -= intra_line; |
| size += intra_line; |
| size = ((size - 1) | CachePage::kLineMask) + 1; |
| int offset = (start & CachePage::kPageMask); |
| while (!AllOnOnePage(start, size - 1)) { |
| int bytes_to_flush = CachePage::kPageSize - offset; |
| FlushOnePageLocked(i_cache, start, bytes_to_flush); |
| start += bytes_to_flush; |
| size -= bytes_to_flush; |
| MOZ_ASSERT((start & CachePage::kPageMask) == 0); |
| offset = 0; |
| } |
| if (size != 0) |
| FlushOnePageLocked(i_cache, start, size); |
| } |
| |
| static void |
| CheckICacheLocked(Simulator::ICacheMap& i_cache, SimInstruction* instr) |
| { |
| intptr_t address = reinterpret_cast<intptr_t>(instr); |
| void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
| void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
| int offset = (address & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePageLocked(i_cache, page); |
| char* cache_valid_byte = cache_page->validityByte(offset); |
| bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
| char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask); |
| if (cache_hit) { |
| // Check that the data in memory matches the contents of the I-cache. |
| MOZ_ASSERT(memcmp(reinterpret_cast<void*>(instr), |
| cache_page->cachedData(offset), |
| SimInstruction::kInstrSize) == 0); |
| } else { |
| // Cache miss. Load memory into the cache. |
| memcpy(cached_line, line, CachePage::kLineLength); |
| *cache_valid_byte = CachePage::LINE_VALID; |
| } |
| } |
| |
| HashNumber |
| Simulator::ICacheHasher::hash(const Lookup& l) |
| { |
| return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(l)) >> 2; |
| } |
| |
| bool |
| Simulator::ICacheHasher::match(const Key& k, const Lookup& l) |
| { |
| MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0); |
| MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0); |
| return k == l; |
| } |
| |
| void |
| Simulator::setLastDebuggerInput(char* input) |
| { |
| js_free(lastDebuggerInput_); |
| lastDebuggerInput_ = input; |
| } |
| |
| void |
| Simulator::FlushICache(void* start_addr, size_t size) |
| { |
| JitSpewCont(JitSpew_CacheFlush, "[%p %" PRIxSIZE "]", start_addr, size); |
| if (Simulator::ICacheCheckingEnabled) { |
| Simulator* sim = Simulator::Current(); |
| |
| AutoLockSimulatorCache als(sim); |
| |
| js::jit::FlushICacheLocked(sim->icache(), start_addr, size); |
| } |
| } |
| |
| Simulator::Simulator() |
| { |
| // Set up simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| |
| // Note, allocation and anything that depends on allocated memory is |
| // deferred until init(), in order to handle OOM properly. |
| |
| stack_ = nullptr; |
| stackLimit_ = 0; |
| pc_modified_ = false; |
| icount_ = 0L; |
| resume_pc_ = 0; |
| break_pc_ = nullptr; |
| break_instr_ = 0; |
| single_stepping_ = false; |
| single_step_callback_ = nullptr; |
| single_step_callback_arg_ = nullptr; |
| skipCalleeSavedRegsCheck = false; |
| |
| // Set up architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < num_registers; i++) |
| registers_[i] = 0; |
| |
| n_flag_ = false; |
| z_flag_ = false; |
| c_flag_ = false; |
| v_flag_ = false; |
| |
| for (int i = 0; i < num_d_registers * 2; i++) |
| vfp_registers_[i] = 0; |
| |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| FPSCR_rounding_mode_ = SimRZ; |
| FPSCR_default_NaN_mode_ = true; |
| |
| inv_op_vfp_flag_ = false; |
| div_zero_vfp_flag_ = false; |
| overflow_vfp_flag_ = false; |
| underflow_vfp_flag_ = false; |
| inexact_vfp_flag_ = false; |
| |
| // The lr and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[pc] = bad_lr; |
| registers_[lr] = bad_lr; |
| |
| lastDebuggerInput_ = nullptr; |
| |
| cacheLock_ = nullptr; |
| #ifdef DEBUG |
| cacheLockHolder_ = nullptr; |
| #endif |
| redirection_ = nullptr; |
| exclusiveMonitorHeld_ = false; |
| exclusiveMonitor_ = 0; |
| } |
| |
| bool |
| Simulator::init() |
| { |
| cacheLock_ = PR_NewLock(); |
| if (!cacheLock_) |
| return false; |
| |
| if (!icache_.init()) |
| return false; |
| |
| // Allocate 2MB for the stack. Note that we will only use 1MB, see below. |
| static const size_t stackSize = 2 * 1024*1024; |
| stack_ = reinterpret_cast<char*>(js_malloc(stackSize)); |
| if (!stack_) |
| return false; |
| |
| // Leave a safety margin of 1MB to prevent overrunning the stack when |
| // pushing values (total stack size is 2MB). |
| stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024; |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. To be safe in potential stack underflows we leave |
| // some buffer below. |
| registers_[sp] = reinterpret_cast<int32_t>(stack_) + stackSize - 64; |
| |
| return true; |
| } |
| |
| // When the generated code calls a VM function (masm.callWithABI) we need to |
| // call that function instead of trying to execute it with the simulator |
| // (because it's x86 code instead of arm code). We do that by redirecting the VM |
| // call to a svc (Supervisor Call) instruction that is handled by the |
| // simulator. We write the original destination of the jump just at a known |
| // offset from the svc instruction so the simulator knows what to call. |
| class Redirection |
| { |
| friend class Simulator; |
| |
| // sim's lock must already be held. |
| Redirection(void* nativeFunction, ABIFunctionType type, Simulator* sim) |
| : nativeFunction_(nativeFunction), |
| swiInstruction_(Assembler::AL | (0xf * (1 << 24)) | kCallRtRedirected), |
| type_(type), |
| next_(nullptr) |
| { |
| next_ = sim->redirection(); |
| if (Simulator::ICacheCheckingEnabled) |
| FlushICacheLocked(sim->icache(), addressOfSwiInstruction(), SimInstruction::kInstrSize); |
| sim->setRedirection(this); |
| } |
| |
| public: |
| void* addressOfSwiInstruction() { return &swiInstruction_; } |
| void* nativeFunction() const { return nativeFunction_; } |
| ABIFunctionType type() const { return type_; } |
| |
| static Redirection* Get(void* nativeFunction, ABIFunctionType type) { |
| Simulator* sim = Simulator::Current(); |
| |
| AutoLockSimulatorCache als(sim); |
| |
| Redirection* current = sim->redirection(); |
| for (; current != nullptr; current = current->next_) { |
| if (current->nativeFunction_ == nativeFunction) { |
| MOZ_ASSERT(current->type() == type); |
| return current; |
| } |
| } |
| |
| AutoEnterOOMUnsafeRegion oomUnsafe; |
| Redirection* redir = (Redirection*)js_malloc(sizeof(Redirection)); |
| if (!redir) |
| oomUnsafe.crash("Simulator redirection"); |
| new(redir) Redirection(nativeFunction, type, sim); |
| return redir; |
| } |
| |
| static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) { |
| uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction); |
| uint8_t* addrOfRedirection = addrOfSwi - offsetof(Redirection, swiInstruction_); |
| return reinterpret_cast<Redirection*>(addrOfRedirection); |
| } |
| |
| private: |
| void* nativeFunction_; |
| uint32_t swiInstruction_; |
| ABIFunctionType type_; |
| Redirection* next_; |
| }; |
| |
| Simulator::~Simulator() |
| { |
| js_free(stack_); |
| PR_DestroyLock(cacheLock_); |
| Redirection* r = redirection_; |
| while (r) { |
| Redirection* next = r->next_; |
| js_delete(r); |
| r = next; |
| } |
| } |
| |
| /* static */ void* |
| Simulator::RedirectNativeFunction(void* nativeFunction, ABIFunctionType type) |
| { |
| Redirection* redirection = Redirection::Get(nativeFunction, type); |
| return redirection->addressOfSwiInstruction(); |
| } |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| void |
| Simulator::set_register(int reg, int32_t value) |
| { |
| MOZ_ASSERT(reg >= 0 && reg < num_registers); |
| if (reg == pc) |
| pc_modified_ = true; |
| registers_[reg] = value; |
| } |
| |
| // Get the register from the architecture state. This function does handle the |
| // special case of accessing the PC register. |
| int32_t |
| Simulator::get_register(int reg) const |
| { |
| MOZ_ASSERT(reg >= 0 && reg < num_registers); |
| // Work around GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
| if (reg >= num_registers) return 0; |
| return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0); |
| } |
| |
| double |
| Simulator::get_double_from_register_pair(int reg) |
| { |
| MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0); |
| |
| // Read the bits from the unsigned integer register_[] array into the double |
| // precision floating point value and return it. |
| double dm_val = 0.0; |
| char buffer[2 * sizeof(vfp_registers_[0])]; |
| memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); |
| memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); |
| return dm_val; |
| } |
| |
| void |
| Simulator::set_register_pair_from_double(int reg, double* value) |
| { |
| MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0); |
| memcpy(registers_ + reg, value, sizeof(*value)); |
| } |
| |
| void |
| Simulator::set_dw_register(int dreg, const int* dbl) |
| { |
| MOZ_ASSERT(dreg >= 0 && dreg < num_d_registers); |
| registers_[dreg] = dbl[0]; |
| registers_[dreg + 1] = dbl[1]; |
| } |
| |
| void |
| Simulator::get_d_register(int dreg, uint64_t* value) |
| { |
| MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); |
| memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); |
| } |
| |
| void |
| Simulator::set_d_register(int dreg, const uint64_t* value) |
| { |
| MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); |
| memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); |
| } |
| |
| void |
| Simulator::get_d_register(int dreg, uint32_t* value) |
| { |
| MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); |
| memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); |
| } |
| |
| void |
| Simulator::set_d_register(int dreg, const uint32_t* value) |
| { |
| MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); |
| memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); |
| } |
| |
| void |
| Simulator::get_q_register(int qreg, uint64_t* value) |
| { |
| MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); |
| memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2); |
| } |
| |
| void |
| Simulator::set_q_register(int qreg, const uint64_t* value) |
| { |
| MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); |
| memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2); |
| } |
| |
| void |
| Simulator::get_q_register(int qreg, uint32_t* value) |
| { |
| MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); |
| memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4); |
| } |
| |
| void |
| Simulator::set_q_register(int qreg, const uint32_t* value) |
| { |
| MOZ_ASSERT((qreg >= 0) && (qreg < num_q_registers)); |
| memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4); |
| } |
| |
| void |
| Simulator::set_pc(int32_t value) |
| { |
| pc_modified_ = true; |
| registers_[pc] = value; |
| } |
| |
| bool |
| Simulator::has_bad_pc() const |
| { |
| return registers_[pc] == bad_lr || registers_[pc] == end_sim_pc; |
| } |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| int32_t |
| Simulator::get_pc() const |
| { |
| return registers_[pc]; |
| } |
| |
| void |
| Simulator::set_s_register(int sreg, unsigned int value) |
| { |
| MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers); |
| vfp_registers_[sreg] = value; |
| } |
| |
| unsigned |
| Simulator::get_s_register(int sreg) const |
| { |
| MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers); |
| return vfp_registers_[sreg]; |
| } |
| |
| template<class InputType, int register_size> |
| void |
| Simulator::setVFPRegister(int reg_index, const InputType& value) |
| { |
| MOZ_ASSERT(reg_index >= 0); |
| MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers); |
| MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys)); |
| |
| char buffer[register_size * sizeof(vfp_registers_[0])]; |
| memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0])); |
| memcpy(&vfp_registers_[reg_index * register_size], buffer, |
| register_size * sizeof(vfp_registers_[0])); |
| } |
| |
| template<class ReturnType, int register_size> |
| ReturnType Simulator::getFromVFPRegister(int reg_index) |
| { |
| MOZ_ASSERT(reg_index >= 0); |
| MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers); |
| MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys)); |
| |
| ReturnType value = 0; |
| char buffer[register_size * sizeof(vfp_registers_[0])]; |
| memcpy(buffer, &vfp_registers_[register_size * reg_index], |
| register_size * sizeof(vfp_registers_[0])); |
| memcpy(&value, buffer, register_size * sizeof(vfp_registers_[0])); |
| return value; |
| } |
| |
| // These forced-instantiations are for jsapi-tests. Evidently, nothing |
| // requires these to be instantiated. |
| template double Simulator::getFromVFPRegister<double, 2>(int reg_index); |
| template float Simulator::getFromVFPRegister<float, 1>(int reg_index); |
| template void Simulator::setVFPRegister<double, 2>(int reg_index, const double& value); |
| template void Simulator::setVFPRegister<float, 1>(int reg_index, const float& value); |
| |
| void |
| Simulator::getFpArgs(double* x, double* y, int32_t* z) |
| { |
| if (UseHardFpABI()) { |
| *x = get_double_from_d_register(0); |
| *y = get_double_from_d_register(1); |
| *z = get_register(0); |
| } else { |
| *x = get_double_from_register_pair(0); |
| *y = get_double_from_register_pair(2); |
| *z = get_register(2); |
| } |
| } |
| |
| void |
| Simulator::getFpFromStack(int32_t* stack, double* x) |
| { |
| MOZ_ASSERT(stack && x); |
| char buffer[2 * sizeof(stack[0])]; |
| memcpy(buffer, stack, 2 * sizeof(stack[0])); |
| memcpy(x, buffer, 2 * sizeof(stack[0])); |
| } |
| |
| void |
| Simulator::setCallResultDouble(double result) |
| { |
| // The return value is either in r0/r1 or d0. |
| if (UseHardFpABI()) { |
| char buffer[2 * sizeof(vfp_registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to d0. |
| memcpy(vfp_registers_, buffer, sizeof(buffer)); |
| } else { |
| char buffer[2 * sizeof(registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to r0 and r1. |
| memcpy(registers_, buffer, sizeof(buffer)); |
| } |
| } |
| |
| void |
| Simulator::setCallResultFloat(float result) |
| { |
| if (UseHardFpABI()) { |
| char buffer[sizeof(registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to s0. |
| memcpy(vfp_registers_, buffer, sizeof(buffer)); |
| } else { |
| char buffer[sizeof(registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to r0. |
| memcpy(registers_, buffer, sizeof(buffer)); |
| } |
| } |
| |
| void |
| Simulator::setCallResult(int64_t res) |
| { |
| set_register(r0, static_cast<int32_t>(res)); |
| set_register(r1, static_cast<int32_t>(res >> 32)); |
| } |
| |
| void |
| Simulator::exclusiveMonitorSet(uint64_t value) |
| { |
| exclusiveMonitor_ = value; |
| exclusiveMonitorHeld_ = true; |
| } |
| |
| uint64_t |
| Simulator::exclusiveMonitorGetAndClear(bool* held) |
| { |
| *held = exclusiveMonitorHeld_; |
| exclusiveMonitorHeld_ = false; |
| return *held ? exclusiveMonitor_ : 0; |
| } |
| |
| void |
| Simulator::exclusiveMonitorClear() |
| { |
| exclusiveMonitorHeld_ = false; |
| } |
| |
| int |
| Simulator::readW(int32_t addr, SimInstruction* instr) |
| { |
| // The regexp engine emits unaligned loads, so we don't check for them here |
| // like most of the other methods do. |
| if ((addr & 3) == 0 || !HasAlignmentFault()) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| } else { |
| printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| } |
| } |
| |
| void |
| Simulator::writeW(int32_t addr, int value, SimInstruction* instr) |
| { |
| if ((addr & 3) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| } else { |
| printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| } |
| } |
| |
| // For the time being, define Relaxed operations in terms of SeqCst |
| // operations - we don't yet need Relaxed operations anywhere else in |
| // the system, and the distinction is not important to the simulation |
| // at the level where we're operating. |
| |
| template<typename T> |
| static |
| T loadRelaxed(SharedMem<T*> addr) |
| { |
| return AtomicOperations::loadSeqCst(addr); |
| } |
| |
| template<typename T> |
| static |
| T compareExchangeRelaxed(SharedMem<T*> addr, T oldval, T newval) |
| { |
| return AtomicOperations::compareExchangeSeqCst(addr, oldval, newval); |
| } |
| |
| int |
| Simulator::readExW(int32_t addr, SimInstruction* instr) |
| { |
| // The regexp engine emits unaligned loads, so we don't check for them here |
| // like most of the other methods do. |
| if ((addr & 3) == 0 || !HasAlignmentFault()) { |
| SharedMem<int32_t*> ptr = SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); |
| int32_t value = loadRelaxed(ptr); |
| exclusiveMonitorSet(value); |
| return value; |
| } else { |
| printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| } |
| } |
| |
| int32_t |
| Simulator::writeExW(int32_t addr, int value, SimInstruction* instr) |
| { |
| if ((addr & 3) == 0) { |
| SharedMem<int32_t*> ptr = SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); |
| bool held; |
| int32_t expected = int32_t(exclusiveMonitorGetAndClear(&held)); |
| if (!held) |
| return 1; |
| int32_t old = compareExchangeRelaxed(ptr, expected, int32_t(value)); |
| return old != expected; |
| } else { |
| printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| } |
| } |
| |
| uint16_t |
| Simulator::readHU(int32_t addr, SimInstruction* instr) |
| { |
| // The regexp engine emits unaligned loads, so we don't check for them here |
| // like most of the other methods do. |
| if ((addr & 1) == 0 || !HasAlignmentFault()) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| printf("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| return 0; |
| } |
| |
| int16_t |
| Simulator::readH(int32_t addr, SimInstruction* instr) |
| { |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| } |
| printf("Unaligned signed halfword read at 0x%08x\n", addr); |
| MOZ_CRASH(); |
| return 0; |
| } |
| |
| void |
| Simulator::writeH(int32_t addr, uint16_t value, SimInstruction* instr) |
| { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| } else { |
| printf("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| } |
| } |
| |
| void |
| Simulator::writeH(int32_t addr, int16_t value, SimInstruction* instr) |
| { |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| *ptr = value; |
| } else { |
| printf("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| } |
| } |
| |
| uint16_t |
| Simulator::readExHU(int32_t addr, SimInstruction* instr) |
| { |
| // The regexp engine emits unaligned loads, so we don't check for them here |
| // like most of the other methods do. |
| if ((addr & 1) == 0 || !HasAlignmentFault()) { |
| SharedMem<uint16_t*> ptr = SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr)); |
| uint16_t value = loadRelaxed(ptr); |
| exclusiveMonitorSet(value); |
| return value; |
| } |
| printf("Unaligned atomic unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| return 0; |
| } |
| |
| int32_t |
| Simulator::writeExH(int32_t addr, uint16_t value, SimInstruction* instr) |
| { |
| if ((addr & 1) == 0) { |
| SharedMem<uint16_t*> ptr = SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr)); |
| bool held; |
| uint16_t expected = uint16_t(exclusiveMonitorGetAndClear(&held)); |
| if (!held) |
| return 1; |
| uint16_t old = compareExchangeRelaxed(ptr, expected, value); |
| return old != expected; |
| } else { |
| printf("Unaligned atomic unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| MOZ_CRASH(); |
| } |
| } |
| |
| uint8_t |
| Simulator::readBU(int32_t addr) |
| { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| uint8_t |
| Simulator::readExBU(int32_t addr) |
| { |
| SharedMem<uint8_t*> ptr = SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr)); |
| uint8_t value = loadRelaxed(ptr); |
| exclusiveMonitorSet(value); |
| return value; |
| } |
| |
| int32_t |
| Simulator::writeExB(int32_t addr, uint8_t value) |
| { |
| SharedMem<uint8_t*> ptr = SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr)); |
| bool held; |
| uint8_t expected = uint8_t(exclusiveMonitorGetAndClear(&held)); |
| if (!held) |
| return 1; |
| uint8_t old = compareExchangeRelaxed(ptr, expected, value); |
| return old != expected; |
| } |
| |
| int8_t |
| Simulator::readB(int32_t addr) |
| { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return *ptr; |
| } |
| |
| void |
| Simulator::writeB(int32_t addr, uint8_t value) |
| { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| void |
| Simulator::writeB(int32_t addr, int8_t value) |
| { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| *ptr = value; |
| } |
| |
| int32_t* |
| Simulator::readDW(int32_t addr) |
| { |
| if ((addr & 3) == 0) { |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| return ptr; |
| } |
| printf("Unaligned read at 0x%08x\n", addr); |
| MOZ_CRASH(); |
| return 0; |
| } |
| |
| void |
| Simulator::writeDW(int32_t addr, int32_t value1, int32_t value2) |
| { |
| if ((addr & 3) == 0) { |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| *ptr++ = value1; |
| *ptr = value2; |
| } else { |
| printf("Unaligned write at 0x%08x\n", addr); |
| MOZ_CRASH(); |
| } |
| } |
| |
| int32_t |
| Simulator::readExDW(int32_t addr, int32_t* hibits) |
| { |
| #if defined(__clang__) && defined(__i386) |
| // This is OK for now, we don't yet generate LDREXD. |
| MOZ_CRASH("Unimplemented - 8-byte atomics are unsupported in Clang on i386"); |
| #else |
| if ((addr & 3) == 0) { |
| SharedMem<uint64_t*> ptr = SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr)); |
| uint64_t value = loadRelaxed(ptr); |
| exclusiveMonitorSet(value); |
| *hibits = int32_t(value); |
| return int32_t(value >> 32); |
| } |
| printf("Unaligned read at 0x%08x\n", addr); |
| MOZ_CRASH(); |
| return 0; |
| #endif |
| } |
| |
| int32_t |
| Simulator::writeExDW(int32_t addr, int32_t value1, int32_t value2) |
| { |
| #if defined(__clang__) && defined(__i386) |
| // This is OK for now, we don't yet generate STREXD. |
| MOZ_CRASH("Unimplemented - 8-byte atomics are unsupported in Clang on i386"); |
| #else |
| if ((addr & 3) == 0) { |
| SharedMem<uint64_t*> ptr = SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr)); |
| uint64_t value = (uint64_t(value1) << 32) | uint32_t(value2); |
| bool held; |
| uint64_t expected = exclusiveMonitorGetAndClear(&held); |
| if (!held) |
| return 1; |
| uint64_t old = compareExchangeRelaxed(ptr, expected, value); |
| return old != expected; |
| } else { |
| printf("Unaligned write at 0x%08x\n", addr); |
| MOZ_CRASH(); |
| } |
| #endif |
| } |
| |
| uintptr_t |
| Simulator::stackLimit() const |
| { |
| return stackLimit_; |
| } |
| |
| uintptr_t* |
| Simulator::addressOfStackLimit() |
| { |
| return &stackLimit_; |
| } |
| |
| bool |
| Simulator::overRecursed(uintptr_t newsp) const |
| { |
| if (newsp == 0) |
| newsp = get_register(sp); |
| return newsp <= stackLimit(); |
| } |
| |
| bool |
| Simulator::overRecursedWithExtra(uint32_t extra) const |
| { |
| uintptr_t newsp = get_register(sp) - extra; |
| return newsp <= stackLimit(); |
| } |
| |
| // Checks if the current instruction should be executed based on its condition |
| // bits. |
| bool |
| Simulator::conditionallyExecute(SimInstruction* instr) |
| { |
| switch (instr->conditionField()) { |
| case Assembler::EQ: return z_flag_; |
| case Assembler::NE: return !z_flag_; |
| case Assembler::CS: return c_flag_; |
| case Assembler::CC: return !c_flag_; |
| case Assembler::MI: return n_flag_; |
| case Assembler::PL: return !n_flag_; |
| case Assembler::VS: return v_flag_; |
| case Assembler::VC: return !v_flag_; |
| case Assembler::HI: return c_flag_ && !z_flag_; |
| case Assembler::LS: return !c_flag_ || z_flag_; |
| case Assembler::GE: return n_flag_ == v_flag_; |
| case Assembler::LT: return n_flag_ != v_flag_; |
| case Assembler::GT: return !z_flag_ && (n_flag_ == v_flag_); |
| case Assembler::LE: return z_flag_ || (n_flag_ != v_flag_); |
| case Assembler::AL: return true; |
| default: MOZ_CRASH(); |
| } |
| return false; |
| } |
| |
| // Calculate and set the Negative and Zero flags. |
| void |
| Simulator::setNZFlags(int32_t val) |
| { |
| n_flag_ = (val < 0); |
| z_flag_ = (val == 0); |
| } |
| |
| // Set the Carry flag. |
| void |
| Simulator::setCFlag(bool val) |
| { |
| c_flag_ = val; |
| } |
| |
| // Set the oVerflow flag. |
| void |
| Simulator::setVFlag(bool val) |
| { |
| v_flag_ = val; |
| } |
| |
| // Calculate C flag value for additions. |
| bool |
| Simulator::carryFrom(int32_t left, int32_t right, int32_t carry) |
| { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| uint32_t urest = 0xffffffffU - uleft; |
| return (uright > urest) || |
| (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); |
| } |
| |
| // Calculate C flag value for subtractions. |
| bool |
| Simulator::borrowFrom(int32_t left, int32_t right) |
| { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| return (uright > uleft); |
| } |
| |
| // Calculate V flag value for additions and subtractions. |
| bool |
| Simulator::overflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition) |
| { |
| bool overflow; |
| if (addition) { |
| // Operands have the same sign. |
| overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
| // And operands and result have different sign. |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } else { |
| // Operands have different signs. |
| overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
| // And first operand and result have different signs. |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } |
| return overflow; |
| } |
| |
| // Support for VFP comparisons. |
| void |
| Simulator::compute_FPSCR_Flags(double val1, double val2) |
| { |
| if (mozilla::IsNaN(val1) || mozilla::IsNaN(val2)) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = true; |
| // All non-NaN cases. |
| } else if (val1 == val2) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = true; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } else if (val1 < val2) { |
| n_flag_FPSCR_ = true; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| } else { |
| // Case when (val1 > val2). |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } |
| } |
| |
| void |
| Simulator::copy_FPSCR_to_APSR() |
| { |
| n_flag_ = n_flag_FPSCR_; |
| z_flag_ = z_flag_FPSCR_; |
| c_flag_ = c_flag_FPSCR_; |
| v_flag_ = v_flag_FPSCR_; |
| } |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with register. |
| int32_t |
| Simulator::getShiftRm(SimInstruction* instr, bool* carry_out) |
| { |
| ShiftType shift = instr->shifttypeValue(); |
| int shift_amount = instr->shiftAmountValue(); |
| int32_t result = get_register(instr->rmValue()); |
| if (instr->bit(4) == 0) { |
| // By immediate. |
| if (shift == ROR && shift_amount == 0) { |
| MOZ_CRASH("NYI"); |
| return result; |
| } |
| if ((shift == LSR || shift == ASR) && shift_amount == 0) |
| shift_amount = 32; |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| if (result < 0) { |
| result = 0xffffffff; |
| *carry_out = true; |
| } else { |
| result = 0; |
| *carry_out = false; |
| } |
| } else { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| result <<= (shift_amount - 1); |
| *carry_out = (result < 0); |
| result <<= 1; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| result = 0; |
| *carry_out = c_flag_; |
| } else { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } |
| break; |
| } |
| |
| case ROR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| uint32_t left = static_cast<uint32_t>(result) >> shift_amount; |
| uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); |
| result = right | left; |
| *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; |
| } |
| break; |
| } |
| |
| default: |
| MOZ_CRASH(); |
| } |
| } else { |
| // By register. |
| int rs = instr->rsValue(); |
| shift_amount = get_register(rs) &0xff; |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } else { |
| MOZ_ASSERT(shift_amount >= 32); |
| if (result < 0) { |
| *carry_out = true; |
| result = 0xffffffff; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result <<= (shift_amount - 1); |
| *carry_out = (result < 0); |
| result <<= 1; |
| } else if (shift_amount == 32) { |
| *carry_out = (result & 1) == 1; |
| result = 0; |
| } else { |
| MOZ_ASSERT(shift_amount > 32); |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } else if (shift_amount == 32) { |
| *carry_out = (result < 0); |
| result = 0; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case ROR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| uint32_t left = static_cast<uint32_t>(result) >> shift_amount; |
| uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); |
| result = right | left; |
| *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; |
| } |
| break; |
| } |
| |
| default: |
| MOZ_CRASH(); |
| } |
| } |
| return result; |
| } |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with immediate. |
| int32_t |
| Simulator::getImm(SimInstruction* instr, bool* carry_out) |
| { |
| int rotate = instr->rotateValue() * 2; |
| int immed8 = instr->immed8Value(); |
| int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); |
| *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); |
| return imm; |
| } |
| |
| int32_t |
| Simulator::processPU(SimInstruction* instr, int num_regs, int reg_size, |
| intptr_t* start_address, intptr_t* end_address) |
| { |
| int rn = instr->rnValue(); |
| int32_t rn_val = get_register(rn); |
| switch (instr->PUField()) { |
| case da_x: |
| MOZ_CRASH(); |
| break; |
| case ia_x: |
| *start_address = rn_val; |
| *end_address = rn_val + (num_regs * reg_size) - reg_size; |
| rn_val = rn_val + (num_regs * reg_size); |
| break; |
| case db_x: |
| *start_address = rn_val - (num_regs * reg_size); |
| *end_address = rn_val - reg_size; |
| rn_val = *start_address; |
| break; |
| case ib_x: |
| *start_address = rn_val + reg_size; |
| *end_address = rn_val + (num_regs * reg_size); |
| rn_val = *end_address; |
| break; |
| default: |
| MOZ_CRASH(); |
| } |
| return rn_val; |
| } |
| |
| // Addressing Mode 4 - Load and Store Multiple |
| void |
| Simulator::handleRList(SimInstruction* instr, bool load) |
| { |
| int rlist = instr->rlistValue(); |
| int num_regs = mozilla::CountPopulation32(rlist); |
| |
| intptr_t start_address = 0; |
| intptr_t end_address = 0; |
| int32_t rn_val = processPU(instr, num_regs, sizeof(void*), &start_address, &end_address); |
| intptr_t* address = reinterpret_cast<intptr_t*>(start_address); |
| |
| // Catch null pointers a little earlier. |
| MOZ_ASSERT(start_address > 8191 || start_address < 0); |
| |
| int reg = 0; |
| while (rlist != 0) { |
| if ((rlist & 1) != 0) { |
| if (load) { |
| set_register(reg, *address); |
| } else { |
| *address = get_register(reg); |
| } |
| address += 1; |
| } |
| reg++; |
| rlist >>= 1; |
| } |
| MOZ_ASSERT(end_address == ((intptr_t)address) - 4); |
| if (instr->hasW()) |
| set_register(instr->rnValue(), rn_val); |
| } |
| |
| // Addressing Mode 6 - Load and Store Multiple Coprocessor registers. |
| void |
| Simulator::handleVList(SimInstruction* instr) |
| { |
| VFPRegPrecision precision = (instr->szValue() == 0) ? kSinglePrecision : kDoublePrecision; |
| int operand_size = (precision == kSinglePrecision) ? 4 : 8; |
| bool load = (instr->VLValue() == 0x1); |
| |
| int vd; |
| int num_regs; |
| vd = instr->VFPDRegValue(precision); |
| if (precision == kSinglePrecision) |
| num_regs = instr->immed8Value(); |
| else |
| num_regs = instr->immed8Value() / 2; |
| |
| intptr_t start_address = 0; |
| intptr_t end_address = 0; |
| int32_t rn_val = processPU(instr, num_regs, operand_size, &start_address, &end_address); |
| |
| intptr_t* address = reinterpret_cast<intptr_t*>(start_address); |
| for (int reg = vd; reg < vd + num_regs; reg++) { |
| if (precision == kSinglePrecision) { |
| if (load) |
| set_s_register_from_sinteger(reg, readW(reinterpret_cast<int32_t>(address), instr)); |
| else |
| writeW(reinterpret_cast<int32_t>(address), get_sinteger_from_s_register(reg), instr); |
| address += 1; |
| } else { |
| if (load) { |
| int32_t data[] = { |
| readW(reinterpret_cast<int32_t>(address), instr), |
| readW(reinterpret_cast<int32_t>(address + 1), instr) |
| }; |
| double d; |
| memcpy(&d, data, 8); |
| set_d_register_from_double(reg, d); |
| } else { |
| int32_t data[2]; |
| double d = get_double_from_d_register(reg); |
| memcpy(data, &d, 8); |
| writeW(reinterpret_cast<int32_t>(address), data[0], instr); |
| writeW(reinterpret_cast<int32_t>(address + 1), data[1], instr); |
| } |
| address += 2; |
| } |
| } |
| MOZ_ASSERT(reinterpret_cast<intptr_t>(address) - operand_size == end_address); |
| if (instr->hasW()) |
| set_register(instr->rnValue(), rn_val); |
| } |
| |
| |
| // Note: With the code below we assume that all runtime calls return a 64 bits |
| // result. If they don't, the r1 result register contains a bogus value, which |
| // is fine because it is caller-saved. |
| typedef int64_t (*Prototype_General0)(); |
| typedef int64_t (*Prototype_General1)(int32_t arg0); |
| typedef int64_t (*Prototype_General2)(int32_t arg0, int32_t arg1); |
| typedef int64_t (*Prototype_General3)(int32_t arg0, int32_t arg1, int32_t arg2); |
| typedef int64_t (*Prototype_General4)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3); |
| typedef int64_t (*Prototype_General5)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3, |
| int32_t arg4); |
| typedef int64_t (*Prototype_General6)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3, |
| int32_t arg4, int32_t arg5); |
| typedef int64_t (*Prototype_General7)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3, |
| int32_t arg4, int32_t arg5, int32_t arg6); |
| typedef int64_t (*Prototype_General8)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3, |
| int32_t arg4, int32_t arg5, int32_t arg6, int32_t arg7); |
| |
| typedef double (*Prototype_Double_None)(); |
| typedef double (*Prototype_Double_Double)(double arg0); |
| typedef double (*Prototype_Double_Int)(int32_t arg0); |
| typedef int32_t (*Prototype_Int_Double)(double arg0); |
| typedef int32_t (*Prototype_Int_DoubleIntInt)(double arg0, int32_t arg1, int32_t arg2); |
| typedef int32_t (*Prototype_Int_IntDoubleIntInt)(int32_t arg0, double arg1, int32_t arg2, |
| int32_t arg3); |
| typedef float (*Prototype_Float32_Float32)(float arg0); |
| |
| typedef double (*Prototype_DoubleInt)(double arg0, int32_t arg1); |
| typedef double (*Prototype_Double_IntDouble)(int32_t arg0, double arg1); |
| typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1); |
| typedef int32_t (*Prototype_Int_IntDouble)(int32_t arg0, double arg1); |
| |
| typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1, double arg2); |
| typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0, double arg1, |
| double arg2, double arg3); |
| |
| // Fill the volatile registers with scratch values. |
| // |
| // Some of the ABI calls assume that the float registers are not scratched, even |
| // though the ABI defines them as volatile - a performance optimization. These |
| // are all calls passing operands in integer registers, so for now the simulator |
| // does not scratch any float registers for these calls. Should try to narrow it |
| // further in future. |
| // |
| void |
| Simulator::scratchVolatileRegisters(bool scratchFloat) |
| { |
| int32_t scratch_value = 0xa5a5a5a5 ^ uint32_t(icount_); |
| set_register(r0, scratch_value); |
| set_register(r1, scratch_value); |
| set_register(r2, scratch_value); |
| set_register(r3, scratch_value); |
| set_register(r12, scratch_value); // Intra-Procedure-call scratch register. |
| set_register(r14, scratch_value); // Link register. |
| |
| if (scratchFloat) { |
| uint64_t scratch_value_d = 0x5a5a5a5a5a5a5a5aLU ^ uint64_t(icount_) ^ (uint64_t(icount_) << 30); |
| for (uint32_t i = d0; i < d8; i++) |
| set_d_register(i, &scratch_value_d); |
| for (uint32_t i = d16; i < FloatRegisters::TotalPhys; i++) |
| set_d_register(i, &scratch_value_d); |
| } |
| } |
| |
| // Software interrupt instructions are used by the simulator to call into C++. |
| void |
| Simulator::softwareInterrupt(SimInstruction* instr) |
| { |
| int svc = instr->svcValue(); |
| switch (svc) { |
| case kCallRtRedirected: { |
| Redirection* redirection = Redirection::FromSwiInstruction(instr); |
| int32_t arg0 = get_register(r0); |
| int32_t arg1 = get_register(r1); |
| int32_t arg2 = get_register(r2); |
| int32_t arg3 = get_register(r3); |
| int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); |
| int32_t arg4 = stack_pointer[0]; |
| int32_t arg5 = stack_pointer[1]; |
| |
| int32_t saved_lr = get_register(lr); |
| intptr_t external = reinterpret_cast<intptr_t>(redirection->nativeFunction()); |
| |
| bool stack_aligned = (get_register(sp) & (ABIStackAlignment - 1)) == 0; |
| if (!stack_aligned) { |
| fprintf(stderr, "Runtime call with unaligned stack!\n"); |
| MOZ_CRASH(); |
| } |
| |
| if (single_stepping_) |
| single_step_callback_(single_step_callback_arg_, this, nullptr); |
| |
| switch (redirection->type()) { |
| case Args_General0: { |
| Prototype_General0 target = reinterpret_cast<Prototype_General0>(external); |
| int64_t result = target(); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResult(result); |
| break; |
| } |
| case Args_General1: { |
| Prototype_General1 target = reinterpret_cast<Prototype_General1>(external); |
| int64_t result = target(arg0); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResult(result); |
| break; |
| } |
| case Args_General2: { |
| Prototype_General2 target = reinterpret_cast<Prototype_General2>(external); |
| int64_t result = target(arg0, arg1); |
| // The ARM backend makes calls to __aeabi_idivmod and |
| // __aeabi_uidivmod assuming that the float registers are |
| // non-volatile as a performance optimization, so the float |
| // registers must not be scratch when calling these. |
| bool scratchFloat = target != __aeabi_idivmod && target != __aeabi_uidivmod; |
| scratchVolatileRegisters(/* scratchFloat = */ scratchFloat); |
| setCallResult(result); |
| break; |
| } |
| case Args_General3: { |
| Prototype_General3 target = reinterpret_cast<Prototype_General3>(external); |
| int64_t result = target(arg0, arg1, arg2); |
| scratchVolatileRegisters(/* scratchFloat = true*/); |
| setCallResult(result); |
| break; |
| } |
| case Args_General4: { |
| Prototype_General4 target = reinterpret_cast<Prototype_General4>(external); |
| int64_t result = target(arg0, arg1, arg2, arg3); |
| scratchVolatileRegisters(/* scratchFloat = true*/); |
| setCallResult(result); |
| break; |
| } |
| case Args_General5: { |
| Prototype_General5 target = reinterpret_cast<Prototype_General5>(external); |
| int64_t result = target(arg0, arg1, arg2, arg3, arg4); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResult(result); |
| break; |
| } |
| case Args_General6: { |
| Prototype_General6 target = reinterpret_cast<Prototype_General6>(external); |
| int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResult(result); |
| break; |
| } |
| case Args_General7: { |
| Prototype_General7 target = reinterpret_cast<Prototype_General7>(external); |
| int32_t arg6 = stack_pointer[2]; |
| int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResult(result); |
| break; |
| } |
| case Args_General8: { |
| Prototype_General8 target = reinterpret_cast<Prototype_General8>(external); |
| int32_t arg6 = stack_pointer[2]; |
| int32_t arg7 = stack_pointer[3]; |
| int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResult(result); |
| break; |
| } |
| case Args_Double_None: { |
| Prototype_Double_None target = reinterpret_cast<Prototype_Double_None>(external); |
| double dresult = target(); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultDouble(dresult); |
| break; |
| } |
| case Args_Int_Double: { |
| double dval0, dval1; |
| int32_t ival; |
| getFpArgs(&dval0, &dval1, &ival); |
| Prototype_Int_Double target = reinterpret_cast<Prototype_Int_Double>(external); |
| int32_t res = target(dval0); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| set_register(r0, res); |
| break; |
| } |
| case Args_Double_Double: { |
| double dval0, dval1; |
| int32_t ival; |
| getFpArgs(&dval0, &dval1, &ival); |
| Prototype_Double_Double target = reinterpret_cast<Prototype_Double_Double>(external); |
| double dresult = target(dval0); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultDouble(dresult); |
| break; |
| } |
| case Args_Float32_Float32: { |
| float fval0; |
| if (UseHardFpABI()) |
| fval0 = get_float_from_s_register(0); |
| else |
| fval0 = mozilla::BitwiseCast<float>(arg0); |
| Prototype_Float32_Float32 target = reinterpret_cast<Prototype_Float32_Float32>(external); |
| float fresult = target(fval0); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultFloat(fresult); |
| break; |
| } |
| case Args_Double_Int: { |
| Prototype_Double_Int target = reinterpret_cast<Prototype_Double_Int>(external); |
| double dresult = target(arg0); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultDouble(dresult); |
| break; |
| } |
| case Args_Double_DoubleInt: { |
| double dval0, dval1; |
| int32_t ival; |
| getFpArgs(&dval0, &dval1, &ival); |
| Prototype_DoubleInt target = reinterpret_cast<Prototype_DoubleInt>(external); |
| double dresult = target(dval0, ival); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultDouble(dresult); |
| break; |
| } |
| case Args_Double_DoubleDouble: { |
| double dval0, dval1; |
| int32_t ival; |
| getFpArgs(&dval0, &dval1, &ival); |
| Prototype_Double_DoubleDouble target = reinterpret_cast<Prototype_Double_DoubleDouble>(external); |
| double dresult = target(dval0, dval1); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultDouble(dresult); |
| break; |
| } |
| case Args_Double_IntDouble: { |
| int32_t ival = get_register(0); |
| double dval0; |
| if (UseHardFpABI()) |
| dval0 = get_double_from_d_register(0); |
| else |
| dval0 = get_double_from_register_pair(2); |
| Prototype_Double_IntDouble target = reinterpret_cast<Prototype_Double_IntDouble>(external); |
| double dresult = target(ival, dval0); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultDouble(dresult); |
| break; |
| } |
| case Args_Int_IntDouble: { |
| int32_t ival = get_register(0); |
| double dval0; |
| if (UseHardFpABI()) |
| dval0 = get_double_from_d_register(0); |
| else |
| dval0 = get_double_from_register_pair(2); |
| Prototype_Int_IntDouble target = reinterpret_cast<Prototype_Int_IntDouble>(external); |
| int32_t result = target(ival, dval0); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| set_register(r0, result); |
| break; |
| } |
| case Args_Int_DoubleIntInt: { |
| double dval; |
| int32_t result; |
| Prototype_Int_DoubleIntInt target = reinterpret_cast<Prototype_Int_DoubleIntInt>(external); |
| if (UseHardFpABI()) { |
| dval = get_double_from_d_register(0); |
| result = target(dval, arg0, arg1); |
| } else { |
| dval = get_double_from_register_pair(0); |
| result = target(dval, arg2, arg3); |
| } |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| set_register(r0, result); |
| break; |
| } |
| case Args_Int_IntDoubleIntInt: { |
| double dval; |
| int32_t result; |
| Prototype_Int_IntDoubleIntInt target = reinterpret_cast<Prototype_Int_IntDoubleIntInt>(external); |
| if (UseHardFpABI()) { |
| dval = get_double_from_d_register(0); |
| result = target(arg0, dval, arg1, arg2); |
| } else { |
| dval = get_double_from_register_pair(2); |
| result = target(arg0, dval, arg4, arg5); |
| } |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| set_register(r0, result); |
| break; |
| } |
| case Args_Double_DoubleDoubleDouble: { |
| double dval0, dval1, dval2; |
| int32_t ival; |
| getFpArgs(&dval0, &dval1, &ival); |
| // the last argument is on stack |
| getFpFromStack(stack_pointer, &dval2); |
| Prototype_Double_DoubleDoubleDouble target = reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(external); |
| double dresult = target(dval0, dval1, dval2); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultDouble(dresult); |
| break; |
| } |
| case Args_Double_DoubleDoubleDoubleDouble: { |
| double dval0, dval1, dval2, dval3; |
| int32_t ival; |
| getFpArgs(&dval0, &dval1, &ival); |
| // the two last arguments are on stack |
| getFpFromStack(stack_pointer, &dval2); |
| getFpFromStack(stack_pointer + 2, &dval3); |
| Prototype_Double_DoubleDoubleDoubleDouble target = reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>(external); |
| double dresult = target(dval0, dval1, dval2, dval3); |
| scratchVolatileRegisters(/* scratchFloat = true */); |
| setCallResultDouble(dresult); |
| break; |
| } |
| default: |
| MOZ_CRASH("call"); |
| } |
| |
| if (single_stepping_) |
| single_step_callback_(single_step_callback_arg_, this, nullptr); |
| |
| set_register(lr, saved_lr); |
| set_pc(get_register(lr)); |
| break; |
| } |
| case kBreakpoint: { |
| ArmDebugger dbg(this); |
| dbg.debug(); |
| break; |
| } |
| default: { // Stop uses all codes greater than 1 << 23. |
| if (svc >= (1 << 23)) { |
| uint32_t code = svc & kStopCodeMask; |
| if (isWatchedStop(code)) |
| increaseStopCounter(code); |
| |
| // Stop if it is enabled, otherwise go on jumping over the stop and |
| // the message address. |
| if (isEnabledStop(code)) { |
| ArmDebugger dbg(this); |
| dbg.stop(instr); |
| } else { |
| set_pc(get_pc() + 2 * SimInstruction::kInstrSize); |
| } |
| } else { |
| // This is not a valid svc code. |
| MOZ_CRASH(); |
| break; |
| } |
| } |
| } |
| } |
| |
| double |
| Simulator::canonicalizeNaN(double value) |
| { |
| return FPSCR_default_NaN_mode_ ? JS::CanonicalizeNaN(value) : value; |
| } |
| |
| // Stop helper functions. |
| bool |
| Simulator::isStopInstruction(SimInstruction* instr) |
| { |
| return (instr->bits(27, 24) == 0xF) && (instr->svcValue() >= kStopCode); |
| } |
| |
| bool Simulator::isWatchedStop(uint32_t code) |
| { |
| MOZ_ASSERT(code <= kMaxStopCode); |
| return code < kNumOfWatchedStops; |
| } |
| |
| bool |
| Simulator::isEnabledStop(uint32_t code) |
| { |
| MOZ_ASSERT(code <= kMaxStopCode); |
| // Unwatched stops are always enabled. |
| return !isWatchedStop(code) || !(watched_stops_[code].count & kStopDisabledBit); |
| } |
| |
| void |
| Simulator::enableStop(uint32_t code) |
| { |
| MOZ_ASSERT(isWatchedStop(code)); |
| if (!isEnabledStop(code)) |
| watched_stops_[code].count &= ~kStopDisabledBit; |
| } |
| |
| void |
| Simulator::disableStop(uint32_t code) |
| { |
| MOZ_ASSERT(isWatchedStop(code)); |
| if (isEnabledStop(code)) |
| watched_stops_[code].count |= kStopDisabledBit; |
| } |
| |
| void |
| Simulator::increaseStopCounter(uint32_t code) |
| { |
| MOZ_ASSERT(code <= kMaxStopCode); |
| MOZ_ASSERT(isWatchedStop(code)); |
| if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { |
| printf("Stop counter for code %i has overflowed.\n" |
| "Enabling this code and reseting the counter to 0.\n", code); |
| watched_stops_[code].count = 0; |
| enableStop(code); |
| } else { |
| watched_stops_[code].count++; |
| } |
| } |
| |
| // Print a stop status. |
| void |
| Simulator::printStopInfo(uint32_t code) |
| { |
| MOZ_ASSERT(code <= kMaxStopCode); |
| if (!isWatchedStop(code)) { |
| printf("Stop not watched."); |
| } else { |
| const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; |
| int32_t count = watched_stops_[code].count & ~kStopDisabledBit; |
| // Don't print the state of unused breakpoints. |
| if (count != 0) { |
| if (watched_stops_[code].desc) { |
| printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", |
| code, code, state, count, watched_stops_[code].desc); |
| } else { |
| printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", |
| code, code, state, count); |
| } |
| } |
| } |
| } |
| |
| // Instruction types 0 and 1 are both rolled into one function because they only |
| // differ in the handling of the shifter_operand. |
| void |
| Simulator::decodeType01(SimInstruction* instr) |
| { |
| int type = instr->typeValue(); |
| if (type == 0 && instr->isSpecialType0()) { |
| // Multiply instruction or extra loads and stores. |
| if (instr->bits(7, 4) == 9) { |
| if (instr->bit(24) == 0) { |
| // Raw field decoding here. Multiply instructions have their Rd |
| // in funny places. |
| int rn = instr->rnValue(); |
| int rm = instr->rmValue(); |
| int rs = instr->rsValue(); |
| int32_t rs_val = get_register(rs); |
| int32_t rm_val = get_register(rm); |
| if (instr->bit(23) == 0) { |
| if (instr->bit(21) == 0) { |
| // The MUL instruction description (A 4.1.33) refers to |
| // Rd as being the destination for the operation, but it |
| // confusingly uses the Rn field to encode it. |
| int rd = rn; // Remap the rn field to the Rd register. |
| int32_t alu_out = rm_val * rs_val; |
| set_register(rd, alu_out); |
| if (instr->hasS()) |
| setNZFlags(alu_out); |
| } else { |
| int rd = instr->rdValue(); |
| int32_t acc_value = get_register(rd); |
| if (instr->bit(22) == 0) { |
| // The MLA instruction description (A 4.1.28) refers |
| // to the order of registers as "Rd, Rm, Rs, |
| // Rn". But confusingly it uses the Rn field to |
| // encode the Rd register and the Rd field to encode |
| // the Rn register. |
| int32_t mul_out = rm_val * rs_val; |
| int32_t result = acc_value + mul_out; |
| set_register(rn, result); |
| } else { |
| int32_t mul_out = rm_val * rs_val; |
| int32_t result = acc_value - mul_out; |
| set_register(rn, result); |
| } |
| } |
| } else { |
| // The signed/long multiply instructions use the terms RdHi |
| // and RdLo when referring to the target registers. They are |
| // mapped to the Rn and Rd fields as follows: |
| // RdLo == Rd |
| // RdHi == Rn (This is confusingly stored in variable rd here |
| // because the mul instruction from above uses the |
| // Rn field to encode the Rd register. Good luck figuring |
| // this out without reading the ARM instruction manual |
| // at a very detailed level.) |
| int rd_hi = rn; // Remap the rn field to the RdHi register. |
| int rd_lo = instr->rdValue(); |
| int32_t hi_res = 0; |
| int32_t lo_res = 0; |
| if (instr->bit(22) == 1) { |
| int64_t left_op = static_cast<int32_t>(rm_val); |
| int64_t right_op = static_cast<int32_t>(rs_val); |
| uint64_t result = left_op * right_op; |
| hi_res = static_cast<int32_t>(result >> 32); |
| lo_res = static_cast<int32_t>(result & 0xffffffff); |
| } else { |
| // Unsigned multiply. |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| uint64_t result = left_op * right_op; |
| hi_res = static_cast<int32_t>(result >> 32); |
| lo_res = static_cast<int32_t>(result & 0xffffffff); |
| } |
| set_register(rd_lo, lo_res); |
| set_register(rd_hi, hi_res); |
| if (instr->hasS()) |
| MOZ_CRASH(); |
| } |
| } else { |
| if (instr->bits(disasm::ExclusiveOpHi, disasm::ExclusiveOpLo) == disasm::ExclusiveOpcode) { |
| // Load-exclusive / store-exclusive. |
| if (instr->bit(disasm::ExclusiveLoad)) |