| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
| * vim: set ts=8 sts=4 et sw=4 tw=99: |
| * This Source Code Form is subject to the terms of the Mozilla Public |
| * License, v. 2.0. If a copy of the MPL was not distributed with this |
| * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
| /* |
| * JS math package. |
| */ |
| |
| #include "jsmath.h" |
| |
| #include "mozilla/FloatingPoint.h" |
| #include "mozilla/MathAlgorithms.h" |
| #include "mozilla/MemoryReporting.h" |
| |
| #include <algorithm> // for std::max |
| #include <fcntl.h> |
| |
| #if defined(STARBOARD) |
| #include "starboard/system.h" |
| #endif |
| |
| #ifdef XP_UNIX |
| # include <unistd.h> |
| #endif |
| |
| #ifdef XP_WIN |
| # include "jswin.h" |
| #endif |
| |
| #include "jsapi.h" |
| #include "jsatom.h" |
| #include "jscntxt.h" |
| #include "jscompartment.h" |
| #include "jslibmath.h" |
| #include "jstypes.h" |
| |
| #include "jit/InlinableNatives.h" |
| #include "js/Class.h" |
| #include "vm/Time.h" |
| |
| #include "jsobjinlines.h" |
| |
| #if defined(XP_WIN) |
| // #define needed to link in RtlGenRandom(), a.k.a. SystemFunction036. See the |
| // "Community Additions" comment on MSDN here: |
| // https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694.aspx |
| # define SystemFunction036 NTAPI SystemFunction036 |
| # include <NTSecAPI.h> |
| # undef SystemFunction036 |
| #endif |
| |
| #if defined(ANDROID) || defined(XP_DARWIN) || defined(__DragonFly__) || \ |
| defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) |
| # include <stdlib.h> |
| # define HAVE_ARC4RANDOM |
| #endif |
| |
| #if defined(STARBOARD) |
| #undef HAVE_ARC4RANDOM |
| #define HAVE_LOG2 1 |
| #endif |
| |
| using namespace js; |
| |
| using mozilla::Abs; |
| using mozilla::NumberEqualsInt32; |
| using mozilla::NumberIsInt32; |
| using mozilla::ExponentComponent; |
| using mozilla::FloatingPoint; |
| using mozilla::IsFinite; |
| using mozilla::IsInfinite; |
| using mozilla::IsNaN; |
| using mozilla::IsNegative; |
| using mozilla::IsNegativeZero; |
| using mozilla::PositiveInfinity; |
| using mozilla::NegativeInfinity; |
| using JS::ToNumber; |
| using JS::GenericNaN; |
| |
| static const JSConstDoubleSpec math_constants[] = { |
| {"E" , M_E }, |
| {"LOG2E" , M_LOG2E }, |
| {"LOG10E" , M_LOG10E }, |
| {"LN2" , M_LN2 }, |
| {"LN10" , M_LN10 }, |
| {"PI" , M_PI }, |
| {"SQRT2" , M_SQRT2 }, |
| {"SQRT1_2", M_SQRT1_2 }, |
| {0,0} |
| }; |
| |
| MathCache::MathCache() { |
| memset(table, 0, sizeof(table)); |
| |
| /* See comments in lookup(). */ |
| MOZ_ASSERT(IsNegativeZero(-0.0)); |
| MOZ_ASSERT(!IsNegativeZero(+0.0)); |
| MOZ_ASSERT(hash(-0.0, MathCache::Sin) != hash(+0.0, MathCache::Sin)); |
| } |
| |
| size_t |
| MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) |
| { |
| return mallocSizeOf(this); |
| } |
| |
| const Class js::MathClass = { |
| js_Math_str, |
| JSCLASS_HAS_CACHED_PROTO(JSProto_Math) |
| }; |
| |
| bool |
| js::math_abs_handle(JSContext* cx, js::HandleValue v, js::MutableHandleValue r) |
| { |
| double x; |
| if (!ToNumber(cx, v, &x)) |
| return false; |
| |
| double z = Abs(x); |
| r.setNumber(z); |
| |
| return true; |
| } |
| |
| bool |
| js::math_abs(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| return math_abs_handle(cx, args[0], args.rval()); |
| } |
| |
| #if defined(SOLARIS) && defined(__GNUC__) |
| #define ACOS_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN(); |
| #else |
| #define ACOS_IF_OUT_OF_RANGE(x) |
| #endif |
| |
| double |
| js::math_acos_impl(MathCache* cache, double x) |
| { |
| ACOS_IF_OUT_OF_RANGE(x); |
| return cache->lookup(acos, x, MathCache::Acos); |
| } |
| |
| double |
| js::math_acos_uncached(double x) |
| { |
| ACOS_IF_OUT_OF_RANGE(x); |
| return acos(x); |
| } |
| |
| #undef ACOS_IF_OUT_OF_RANGE |
| |
| bool |
| js::math_acos(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| double x; |
| if (!ToNumber(cx, args[0], &x)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double z = math_acos_impl(mathCache, x); |
| args.rval().setDouble(z); |
| return true; |
| } |
| |
| #if defined(SOLARIS) && defined(__GNUC__) |
| #define ASIN_IF_OUT_OF_RANGE(x) if (x < -1 || 1 < x) return GenericNaN(); |
| #else |
| #define ASIN_IF_OUT_OF_RANGE(x) |
| #endif |
| |
| double |
| js::math_asin_impl(MathCache* cache, double x) |
| { |
| ASIN_IF_OUT_OF_RANGE(x); |
| return cache->lookup(asin, x, MathCache::Asin); |
| } |
| |
| double |
| js::math_asin_uncached(double x) |
| { |
| ASIN_IF_OUT_OF_RANGE(x); |
| return asin(x); |
| } |
| |
| #undef ASIN_IF_OUT_OF_RANGE |
| |
| bool |
| js::math_asin(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| double x; |
| if (!ToNumber(cx, args[0], &x)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double z = math_asin_impl(mathCache, x); |
| args.rval().setDouble(z); |
| return true; |
| } |
| |
| double |
| js::math_atan_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(atan, x, MathCache::Atan); |
| } |
| |
| double |
| js::math_atan_uncached(double x) |
| { |
| return atan(x); |
| } |
| |
| bool |
| js::math_atan(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| double x; |
| if (!ToNumber(cx, args[0], &x)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double z = math_atan_impl(mathCache, x); |
| args.rval().setDouble(z); |
| return true; |
| } |
| |
| double |
| js::ecmaAtan2(double y, double x) |
| { |
| #if defined(_MSC_VER) |
| /* |
| * MSVC's atan2 does not yield the result demanded by ECMA when both x |
| * and y are infinite. |
| * - The result is a multiple of pi/4. |
| * - The sign of y determines the sign of the result. |
| * - The sign of x determines the multiplicator, 1 or 3. |
| */ |
| if (IsInfinite(y) && IsInfinite(x)) { |
| double z = js_copysign(M_PI / 4, y); |
| if (x < 0) |
| z *= 3; |
| return z; |
| } |
| #endif |
| |
| #if defined(SOLARIS) && defined(__GNUC__) |
| if (y == 0) { |
| if (IsNegativeZero(x)) |
| return js_copysign(M_PI, y); |
| if (x == 0) |
| return y; |
| } |
| #endif |
| return atan2(y, x); |
| } |
| |
| bool |
| js::math_atan2_handle(JSContext* cx, HandleValue y, HandleValue x, MutableHandleValue res) |
| { |
| double dy; |
| if (!ToNumber(cx, y, &dy)) |
| return false; |
| |
| double dx; |
| if (!ToNumber(cx, x, &dx)) |
| return false; |
| |
| double z = ecmaAtan2(dy, dx); |
| res.setDouble(z); |
| return true; |
| } |
| |
| bool |
| js::math_atan2(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| return math_atan2_handle(cx, args.get(0), args.get(1), args.rval()); |
| } |
| |
| double |
| js::math_ceil_impl(double x) |
| { |
| #ifdef __APPLE__ |
| if (x < 0 && x > -1.0) |
| return js_copysign(0, -1); |
| #endif |
| return ceil(x); |
| } |
| |
| bool |
| js::math_ceil_handle(JSContext* cx, HandleValue v, MutableHandleValue res) |
| { |
| double d; |
| if(!ToNumber(cx, v, &d)) |
| return false; |
| |
| double result = math_ceil_impl(d); |
| res.setNumber(result); |
| return true; |
| } |
| |
| bool |
| js::math_ceil(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| return math_ceil_handle(cx, args[0], args.rval()); |
| } |
| |
| bool |
| js::math_clz32(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setInt32(32); |
| return true; |
| } |
| |
| uint32_t n; |
| if (!ToUint32(cx, args[0], &n)) |
| return false; |
| |
| if (n == 0) { |
| args.rval().setInt32(32); |
| return true; |
| } |
| |
| args.rval().setInt32(mozilla::CountLeadingZeroes32(n)); |
| return true; |
| } |
| |
| double |
| js::math_cos_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(cos, x, MathCache::Cos); |
| } |
| |
| double |
| js::math_cos_uncached(double x) |
| { |
| return cos(x); |
| } |
| |
| bool |
| js::math_cos(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| double x; |
| if (!ToNumber(cx, args[0], &x)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double z = math_cos_impl(mathCache, x); |
| args.rval().setDouble(z); |
| return true; |
| } |
| |
| #ifdef _WIN32 |
| #define EXP_IF_OUT_OF_RANGE(x) \ |
| if (!IsNaN(x)) { \ |
| if (x == PositiveInfinity<double>()) \ |
| return PositiveInfinity<double>(); \ |
| if (x == NegativeInfinity<double>()) \ |
| return 0.0; \ |
| } |
| #else |
| #define EXP_IF_OUT_OF_RANGE(x) |
| #endif |
| |
| double |
| js::math_exp_impl(MathCache* cache, double x) |
| { |
| EXP_IF_OUT_OF_RANGE(x); |
| return cache->lookup(exp, x, MathCache::Exp); |
| } |
| |
| double |
| js::math_exp_uncached(double x) |
| { |
| EXP_IF_OUT_OF_RANGE(x); |
| return exp(x); |
| } |
| |
| #undef EXP_IF_OUT_OF_RANGE |
| |
| bool |
| js::math_exp(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| double x; |
| if (!ToNumber(cx, args[0], &x)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double z = math_exp_impl(mathCache, x); |
| args.rval().setNumber(z); |
| return true; |
| } |
| |
| double |
| js::math_floor_impl(double x) |
| { |
| return floor(x); |
| } |
| |
| bool |
| js::math_floor_handle(JSContext* cx, HandleValue v, MutableHandleValue r) |
| { |
| double d; |
| if (!ToNumber(cx, v, &d)) |
| return false; |
| |
| double z = math_floor_impl(d); |
| r.setNumber(z); |
| |
| return true; |
| } |
| |
| bool |
| js::math_floor(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| return math_floor_handle(cx, args[0], args.rval()); |
| } |
| |
| bool |
| js::math_imul_handle(JSContext* cx, HandleValue lhs, HandleValue rhs, MutableHandleValue res) |
| { |
| uint32_t a = 0, b = 0; |
| if (!lhs.isUndefined() && !ToUint32(cx, lhs, &a)) |
| return false; |
| if (!rhs.isUndefined() && !ToUint32(cx, rhs, &b)) |
| return false; |
| |
| uint32_t product = a * b; |
| res.setInt32(product > INT32_MAX |
| ? int32_t(INT32_MIN + (product - INT32_MAX - 1)) |
| : int32_t(product)); |
| return true; |
| } |
| |
| bool |
| js::math_imul(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| return math_imul_handle(cx, args.get(0), args.get(1), args.rval()); |
| } |
| |
| // Implements Math.fround (20.2.2.16) up to step 3 |
| bool |
| js::RoundFloat32(JSContext* cx, HandleValue v, float* out) |
| { |
| double d; |
| bool success = ToNumber(cx, v, &d); |
| *out = static_cast<float>(d); |
| return success; |
| } |
| |
| bool |
| js::RoundFloat32(JSContext* cx, HandleValue arg, MutableHandleValue res) |
| { |
| float f; |
| if (!RoundFloat32(cx, arg, &f)) |
| return false; |
| |
| res.setDouble(static_cast<double>(f)); |
| return true; |
| } |
| |
| bool |
| js::math_fround(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| return RoundFloat32(cx, args[0], args.rval()); |
| } |
| |
| #if defined(SOLARIS) && defined(__GNUC__) |
| #define LOG_IF_OUT_OF_RANGE(x) if (x < 0) return GenericNaN(); |
| #else |
| #define LOG_IF_OUT_OF_RANGE(x) |
| #endif |
| |
| double |
| js::math_log_impl(MathCache* cache, double x) |
| { |
| LOG_IF_OUT_OF_RANGE(x); |
| return cache->lookup(math_log_uncached, x, MathCache::Log); |
| } |
| |
| double |
| js::math_log_uncached(double x) |
| { |
| LOG_IF_OUT_OF_RANGE(x); |
| return log(x); |
| } |
| |
| #undef LOG_IF_OUT_OF_RANGE |
| |
| bool |
| js::math_log_handle(JSContext* cx, HandleValue val, MutableHandleValue res) |
| { |
| double in; |
| if (!ToNumber(cx, val, &in)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double out = math_log_impl(mathCache, in); |
| res.setNumber(out); |
| return true; |
| } |
| |
| bool |
| js::math_log(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| return math_log_handle(cx, args[0], args.rval()); |
| } |
| |
| double |
| js::math_max_impl(double x, double y) |
| { |
| // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0 |
| if (x > y || IsNaN(x) || (x == y && IsNegative(y))) |
| return x; |
| return y; |
| } |
| |
| bool |
| js::math_max(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| double maxval = NegativeInfinity<double>(); |
| for (unsigned i = 0; i < args.length(); i++) { |
| double x; |
| if (!ToNumber(cx, args[i], &x)) |
| return false; |
| maxval = math_max_impl(x, maxval); |
| } |
| args.rval().setNumber(maxval); |
| return true; |
| } |
| |
| double |
| js::math_min_impl(double x, double y) |
| { |
| // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0 |
| if (x < y || IsNaN(x) || (x == y && IsNegativeZero(x))) |
| return x; |
| return y; |
| } |
| |
| bool |
| js::math_min(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| double minval = PositiveInfinity<double>(); |
| for (unsigned i = 0; i < args.length(); i++) { |
| double x; |
| if (!ToNumber(cx, args[i], &x)) |
| return false; |
| minval = math_min_impl(x, minval); |
| } |
| args.rval().setNumber(minval); |
| return true; |
| } |
| |
| bool |
| js::minmax_impl(JSContext* cx, bool max, HandleValue a, HandleValue b, MutableHandleValue res) |
| { |
| double x, y; |
| |
| if (!ToNumber(cx, a, &x)) |
| return false; |
| if (!ToNumber(cx, b, &y)) |
| return false; |
| |
| if (max) |
| res.setNumber(math_max_impl(x, y)); |
| else |
| res.setNumber(math_min_impl(x, y)); |
| |
| return true; |
| } |
| |
| double |
| js::powi(double x, int y) |
| { |
| unsigned n = (y < 0) ? -y : y; |
| double m = x; |
| double p = 1; |
| while (true) { |
| if ((n & 1) != 0) p *= m; |
| n >>= 1; |
| if (n == 0) { |
| if (y < 0) { |
| // Unfortunately, we have to be careful when p has reached |
| // infinity in the computation, because sometimes the higher |
| // internal precision in the pow() implementation would have |
| // given us a finite p. This happens very rarely. |
| |
| double result = 1.0 / p; |
| return (result == 0 && IsInfinite(p)) |
| ? pow(x, static_cast<double>(y)) // Avoid pow(double, int). |
| : result; |
| } |
| |
| return p; |
| } |
| m *= m; |
| } |
| } |
| |
| double |
| js::ecmaPow(double x, double y) |
| { |
| /* |
| * Use powi if the exponent is an integer-valued double. We don't have to |
| * check for NaN since a comparison with NaN is always false. |
| */ |
| int32_t yi; |
| if (NumberEqualsInt32(y, &yi)) |
| return powi(x, yi); |
| |
| /* |
| * Because C99 and ECMA specify different behavior for pow(), |
| * we need to wrap the libm call to make it ECMA compliant. |
| */ |
| if (!IsFinite(y) && (x == 1.0 || x == -1.0)) |
| return GenericNaN(); |
| |
| /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ |
| if (y == 0) |
| return 1; |
| |
| /* |
| * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) |
| * when x = -0.0, so we have to guard for this. |
| */ |
| if (IsFinite(x) && x != 0.0) { |
| if (y == 0.5) |
| return sqrt(x); |
| if (y == -0.5) |
| return 1.0 / sqrt(x); |
| } |
| return pow(x, y); |
| } |
| |
| bool |
| js::math_pow_handle(JSContext* cx, HandleValue base, HandleValue power, MutableHandleValue result) |
| { |
| double x; |
| if (!ToNumber(cx, base, &x)) |
| return false; |
| |
| double y; |
| if (!ToNumber(cx, power, &y)) |
| return false; |
| |
| double z = ecmaPow(x, y); |
| result.setNumber(z); |
| return true; |
| } |
| |
| bool |
| js::math_pow(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| return math_pow_handle(cx, args.get(0), args.get(1), args.rval()); |
| } |
| |
| static uint64_t |
| GenerateSeed() |
| { |
| uint64_t seed = 0; |
| |
| #if defined(XP_WIN) |
| MOZ_ALWAYS_TRUE(RtlGenRandom(&seed, sizeof(seed))); |
| #elif defined(HAVE_ARC4RANDOM) |
| seed = (static_cast<uint64_t>(arc4random()) << 32) | arc4random(); |
| #elif defined(XP_UNIX) |
| int fd = open("/dev/urandom", O_RDONLY); |
| if (fd >= 0) { |
| read(fd, static_cast<void*>(&seed), sizeof(seed)); |
| close(fd); |
| } |
| #elif defined(STARBOARD) |
| seed = SbSystemGetRandomUInt64(); |
| #else |
| # error "Platform needs to implement GenerateSeed()" |
| #endif |
| |
| // Also mix in PRMJ_Now() in case we couldn't read random bits from the OS. |
| return seed ^ PRMJ_Now(); |
| } |
| |
| void |
| js::GenerateXorShift128PlusSeed(mozilla::Array<uint64_t, 2>& seed) |
| { |
| // XorShift128PlusRNG must be initialized with a non-zero seed. |
| do { |
| seed[0] = GenerateSeed(); |
| seed[1] = GenerateSeed(); |
| } while (seed[0] == 0 && seed[1] == 0); |
| } |
| |
| void |
| JSCompartment::ensureRandomNumberGenerator() |
| { |
| if (randomNumberGenerator.isNothing()) { |
| mozilla::Array<uint64_t, 2> seed; |
| GenerateXorShift128PlusSeed(seed); |
| randomNumberGenerator.emplace(seed[0], seed[1]); |
| } |
| } |
| |
| bool |
| js::math_random(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| JSCompartment* comp = cx->compartment(); |
| comp->ensureRandomNumberGenerator(); |
| |
| double z = comp->randomNumberGenerator.ref().nextDouble(); |
| args.rval().setDouble(z); |
| return true; |
| } |
| |
| bool |
| js::math_round_handle(JSContext* cx, HandleValue arg, MutableHandleValue res) |
| { |
| double d; |
| if (!ToNumber(cx, arg, &d)) |
| return false; |
| |
| d = math_round_impl(d); |
| res.setNumber(d); |
| return true; |
| } |
| |
| template<typename T> |
| T |
| js::GetBiggestNumberLessThan(T x) |
| { |
| MOZ_ASSERT(!IsNegative(x)); |
| MOZ_ASSERT(IsFinite(x)); |
| typedef typename mozilla::FloatingPoint<T>::Bits Bits; |
| Bits bits = mozilla::BitwiseCast<Bits>(x); |
| MOZ_ASSERT(bits > 0, "will underflow"); |
| return mozilla::BitwiseCast<T>(bits - 1); |
| } |
| |
| template double js::GetBiggestNumberLessThan<>(double x); |
| template float js::GetBiggestNumberLessThan<>(float x); |
| |
| double |
| js::math_round_impl(double x) |
| { |
| int32_t ignored; |
| if (NumberIsInt32(x, &ignored)) |
| return x; |
| |
| /* Some numbers are so big that adding 0.5 would give the wrong number. */ |
| if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<double>::kExponentShift)) |
| return x; |
| |
| double add = (x >= 0) ? GetBiggestNumberLessThan(0.5) : 0.5; |
| return js_copysign(floor(x + add), x); |
| } |
| |
| float |
| js::math_roundf_impl(float x) |
| { |
| int32_t ignored; |
| if (NumberIsInt32(x, &ignored)) |
| return x; |
| |
| /* Some numbers are so big that adding 0.5 would give the wrong number. */ |
| if (ExponentComponent(x) >= int_fast16_t(FloatingPoint<float>::kExponentShift)) |
| return x; |
| |
| float add = (x >= 0) ? GetBiggestNumberLessThan(0.5f) : 0.5f; |
| return js_copysign(floorf(x + add), x); |
| } |
| |
| bool /* ES5 15.8.2.15. */ |
| js::math_round(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| return math_round_handle(cx, args[0], args.rval()); |
| } |
| |
| double |
| js::math_sin_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(math_sin_uncached, x, MathCache::Sin); |
| } |
| |
| double |
| js::math_sin_uncached(double x) |
| { |
| #ifdef _WIN64 |
| // Workaround MSVC bug where sin(-0) is +0 instead of -0 on x64 on |
| // CPUs without FMA3 (pre-Haswell). See bug 1076670. |
| if (IsNegativeZero(x)) |
| return -0.0; |
| #endif |
| return sin(x); |
| } |
| |
| bool |
| js::math_sin_handle(JSContext* cx, HandleValue val, MutableHandleValue res) |
| { |
| double in; |
| if (!ToNumber(cx, val, &in)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double out = math_sin_impl(mathCache, in); |
| res.setDouble(out); |
| return true; |
| } |
| |
| bool |
| js::math_sin(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| return math_sin_handle(cx, args[0], args.rval()); |
| } |
| |
| void |
| js::math_sincos_uncached(double x, double *sin, double *cos) |
| { |
| #if defined(__GLIBC__) |
| sincos(x, sin, cos); |
| #elif defined(HAVE_SINCOS) |
| __sincos(x, sin, cos); |
| #else |
| *sin = js::math_sin_uncached(x); |
| *cos = js::math_cos_uncached(x); |
| #endif |
| } |
| |
| void |
| js::math_sincos_impl(MathCache* mathCache, double x, double *sin, double *cos) |
| { |
| unsigned indexSin; |
| unsigned indexCos; |
| bool hasSin = mathCache->isCached(x, MathCache::Sin, sin, &indexSin); |
| bool hasCos = mathCache->isCached(x, MathCache::Cos, cos, &indexCos); |
| if (!(hasSin || hasCos)) { |
| js::math_sincos_uncached(x, sin, cos); |
| mathCache->store(MathCache::Sin, x, *sin, indexSin); |
| mathCache->store(MathCache::Cos, x, *cos, indexCos); |
| return; |
| } |
| |
| if (!hasSin) |
| *sin = js::math_sin_impl(mathCache, x); |
| |
| if (!hasCos) |
| *cos = js::math_cos_impl(mathCache, x); |
| } |
| |
| bool |
| js::math_sqrt_handle(JSContext* cx, HandleValue number, MutableHandleValue result) |
| { |
| double x; |
| if (!ToNumber(cx, number, &x)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double z = mathCache->lookup(sqrt, x, MathCache::Sqrt); |
| result.setDouble(z); |
| return true; |
| } |
| |
| bool |
| js::math_sqrt(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| return math_sqrt_handle(cx, args[0], args.rval()); |
| } |
| |
| double |
| js::math_tan_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(tan, x, MathCache::Tan); |
| } |
| |
| double |
| js::math_tan_uncached(double x) |
| { |
| return tan(x); |
| } |
| |
| bool |
| js::math_tan(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| |
| if (args.length() == 0) { |
| args.rval().setNaN(); |
| return true; |
| } |
| |
| double x; |
| if (!ToNumber(cx, args[0], &x)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| |
| double z = math_tan_impl(mathCache, x); |
| args.rval().setDouble(z); |
| return true; |
| } |
| |
| typedef double (*UnaryMathFunctionType)(MathCache* cache, double); |
| |
| template <UnaryMathFunctionType F> |
| static bool math_function(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| if (args.length() == 0) { |
| args.rval().setNumber(GenericNaN()); |
| return true; |
| } |
| |
| double x; |
| if (!ToNumber(cx, args[0], &x)) |
| return false; |
| |
| MathCache* mathCache = cx->runtime()->getMathCache(cx); |
| if (!mathCache) |
| return false; |
| double z = F(mathCache, x); |
| args.rval().setNumber(z); |
| |
| return true; |
| } |
| |
| double |
| js::math_log10_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(log10, x, MathCache::Log10); |
| } |
| |
| double |
| js::math_log10_uncached(double x) |
| { |
| return log10(x); |
| } |
| |
| bool |
| js::math_log10(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_log10_impl>(cx, argc, vp); |
| } |
| |
| #if !HAVE_LOG2 |
| double log2(double x) |
| { |
| return log(x) / M_LN2; |
| } |
| #endif |
| |
| double |
| js::math_log2_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(log2, x, MathCache::Log2); |
| } |
| |
| double |
| js::math_log2_uncached(double x) |
| { |
| return log2(x); |
| } |
| |
| bool |
| js::math_log2(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_log2_impl>(cx, argc, vp); |
| } |
| |
| #if !HAVE_LOG1P |
| double log1p(double x) |
| { |
| if (fabs(x) < 1e-4) { |
| /* |
| * Use Taylor approx. log(1 + x) = x - x^2 / 2 + x^3 / 3 - x^4 / 4 with error x^5 / 5 |
| * Since |x| < 10^-4, |x|^5 < 10^-20, relative error less than 10^-16 |
| */ |
| double z = -(x * x * x * x) / 4 + (x * x * x) / 3 - (x * x) / 2 + x; |
| return z; |
| } else { |
| /* For other large enough values of x use direct computation */ |
| return log(1.0 + x); |
| } |
| } |
| #endif |
| |
| #ifdef __APPLE__ |
| // Ensure that log1p(-0) is -0. |
| #define LOG1P_IF_OUT_OF_RANGE(x) if (x == 0) return x; |
| #else |
| #define LOG1P_IF_OUT_OF_RANGE(x) |
| #endif |
| |
| double |
| js::math_log1p_impl(MathCache* cache, double x) |
| { |
| LOG1P_IF_OUT_OF_RANGE(x); |
| return cache->lookup(log1p, x, MathCache::Log1p); |
| } |
| |
| double |
| js::math_log1p_uncached(double x) |
| { |
| LOG1P_IF_OUT_OF_RANGE(x); |
| return log1p(x); |
| } |
| |
| #undef LOG1P_IF_OUT_OF_RANGE |
| |
| bool |
| js::math_log1p(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_log1p_impl>(cx, argc, vp); |
| } |
| |
| #if !HAVE_EXPM1 |
| double expm1(double x) |
| { |
| /* Special handling for -0 */ |
| if (x == 0.0) |
| return x; |
| |
| if (fabs(x) < 1e-5) { |
| /* |
| * Use Taylor approx. exp(x) - 1 = x + x^2 / 2 + x^3 / 6 with error x^4 / 24 |
| * Since |x| < 10^-5, |x|^4 < 10^-20, relative error less than 10^-15 |
| */ |
| double z = (x * x * x) / 6 + (x * x) / 2 + x; |
| return z; |
| } else { |
| /* For other large enough values of x use direct computation */ |
| return exp(x) - 1.0; |
| } |
| } |
| #endif |
| |
| double |
| js::math_expm1_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(expm1, x, MathCache::Expm1); |
| } |
| |
| double |
| js::math_expm1_uncached(double x) |
| { |
| return expm1(x); |
| } |
| |
| bool |
| js::math_expm1(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_expm1_impl>(cx, argc, vp); |
| } |
| |
| #if !HAVE_SQRT1PM1 |
| /* This algorithm computes sqrt(1+x)-1 for small x */ |
| double sqrt1pm1(double x) |
| { |
| if (fabs(x) > 0.75) |
| return sqrt(1 + x) - 1; |
| |
| return expm1(log1p(x) / 2); |
| } |
| #endif |
| |
| double |
| js::math_cosh_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(cosh, x, MathCache::Cosh); |
| } |
| |
| double |
| js::math_cosh_uncached(double x) |
| { |
| return cosh(x); |
| } |
| |
| bool |
| js::math_cosh(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_cosh_impl>(cx, argc, vp); |
| } |
| |
| double |
| js::math_sinh_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(sinh, x, MathCache::Sinh); |
| } |
| |
| double |
| js::math_sinh_uncached(double x) |
| { |
| return sinh(x); |
| } |
| |
| bool |
| js::math_sinh(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_sinh_impl>(cx, argc, vp); |
| } |
| |
| double |
| js::math_tanh_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(tanh, x, MathCache::Tanh); |
| } |
| |
| double |
| js::math_tanh_uncached(double x) |
| { |
| return tanh(x); |
| } |
| |
| bool |
| js::math_tanh(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_tanh_impl>(cx, argc, vp); |
| } |
| |
| #if !HAVE_ACOSH |
| double acosh(double x) |
| { |
| const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits<double>::epsilon()); |
| |
| if ((x - 1) >= SQUARE_ROOT_EPSILON) { |
| if (x > 1 / SQUARE_ROOT_EPSILON) { |
| /* |
| * http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/06/01/0001/ |
| * approximation by laurent series in 1/x at 0+ order from -1 to 0 |
| */ |
| return log(x) + M_LN2; |
| } else if (x < 1.5) { |
| // This is just a rearrangement of the standard form below |
| // devised to minimize loss of precision when x ~ 1: |
| double y = x - 1; |
| return log1p(y + sqrt(y * y + 2 * y)); |
| } else { |
| // http://functions.wolfram.com/ElementaryFunctions/ArcCosh/02/ |
| return log(x + sqrt(x * x - 1)); |
| } |
| } else { |
| // see http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/04/01/0001/ |
| double y = x - 1; |
| // approximation by taylor series in y at 0 up to order 2. |
| // If x is less than 1, sqrt(2 * y) is NaN and the result is NaN. |
| return sqrt(2 * y) * (1 - y / 12 + 3 * y * y / 160); |
| } |
| } |
| #endif |
| |
| double |
| js::math_acosh_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(acosh, x, MathCache::Acosh); |
| } |
| |
| double |
| js::math_acosh_uncached(double x) |
| { |
| return acosh(x); |
| } |
| |
| bool |
| js::math_acosh(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_acosh_impl>(cx, argc, vp); |
| } |
| |
| #if !HAVE_ASINH |
| // Bug 899712 - gcc incorrectly rewrites -asinh(-x) to asinh(x) when overriding |
| // asinh. |
| static double my_asinh(double x) |
| { |
| const double SQUARE_ROOT_EPSILON = sqrt(std::numeric_limits<double>::epsilon()); |
| const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON); |
| |
| if (x >= FOURTH_ROOT_EPSILON) { |
| if (x > 1 / SQUARE_ROOT_EPSILON) |
| // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/ |
| // approximation by laurent series in 1/x at 0+ order from -1 to 1 |
| return M_LN2 + log(x) + 1 / (4 * x * x); |
| else if (x < 0.5) |
| return log1p(x + sqrt1pm1(x * x)); |
| else |
| return log(x + sqrt(x * x + 1)); |
| } else if (x <= -FOURTH_ROOT_EPSILON) { |
| return -my_asinh(-x); |
| } else { |
| // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/ |
| // approximation by taylor series in x at 0 up to order 2 |
| double result = x; |
| |
| if (fabs(x) >= SQUARE_ROOT_EPSILON) { |
| double x3 = x * x * x; |
| // approximation by taylor series in x at 0 up to order 4 |
| result -= x3 / 6; |
| } |
| |
| return result; |
| } |
| } |
| #endif |
| |
| double |
| js::math_asinh_impl(MathCache* cache, double x) |
| { |
| #ifdef HAVE_ASINH |
| return cache->lookup(asinh, x, MathCache::Asinh); |
| #else |
| return cache->lookup(my_asinh, x, MathCache::Asinh); |
| #endif |
| } |
| |
| double |
| js::math_asinh_uncached(double x) |
| { |
| #ifdef HAVE_ASINH |
| return asinh(x); |
| #else |
| return my_asinh(x); |
| #endif |
| } |
| |
| bool |
| js::math_asinh(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_asinh_impl>(cx, argc, vp); |
| } |
| |
| #if !HAVE_ATANH |
| double atanh(double x) |
| { |
| const double EPSILON = std::numeric_limits<double>::epsilon(); |
| const double SQUARE_ROOT_EPSILON = sqrt(EPSILON); |
| const double FOURTH_ROOT_EPSILON = sqrt(SQUARE_ROOT_EPSILON); |
| |
| if (fabs(x) >= FOURTH_ROOT_EPSILON) { |
| // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/02/ |
| if (fabs(x) < 0.5) |
| return (log1p(x) - log1p(-x)) / 2; |
| |
| return log((1 + x) / (1 - x)) / 2; |
| } else { |
| // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/06/01/03/01/ |
| // approximation by taylor series in x at 0 up to order 2 |
| double result = x; |
| |
| if (fabs(x) >= SQUARE_ROOT_EPSILON) { |
| double x3 = x * x * x; |
| result += x3 / 3; |
| } |
| |
| return result; |
| } |
| } |
| #endif |
| |
| double |
| js::math_atanh_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(atanh, x, MathCache::Atanh); |
| } |
| |
| double |
| js::math_atanh_uncached(double x) |
| { |
| return atanh(x); |
| } |
| |
| bool |
| js::math_atanh(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_atanh_impl>(cx, argc, vp); |
| } |
| |
| /* Consistency wrapper for platform deviations in hypot() */ |
| double |
| js::ecmaHypot(double x, double y) |
| { |
| #ifdef XP_WIN |
| /* |
| * Workaround MS hypot bug, where hypot(Infinity, NaN or Math.MIN_VALUE) |
| * is NaN, not Infinity. |
| */ |
| if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y)) { |
| return mozilla::PositiveInfinity<double>(); |
| } |
| #endif |
| return hypot(x, y); |
| } |
| |
| static inline |
| void |
| hypot_step(double& scale, double& sumsq, double x) |
| { |
| double xabs = mozilla::Abs(x); |
| if (scale < xabs) { |
| sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); |
| scale = xabs; |
| } else if (scale != 0) { |
| sumsq += (xabs / scale) * (xabs / scale); |
| } |
| } |
| |
| double |
| js::hypot4(double x, double y, double z, double w) |
| { |
| /* Check for infinity or NaNs so that we can return immediatelly. |
| * Does not need to be WIN_XP specific as ecmaHypot |
| */ |
| if (mozilla::IsInfinite(x) || mozilla::IsInfinite(y) || |
| mozilla::IsInfinite(z) || mozilla::IsInfinite(w)) |
| return mozilla::PositiveInfinity<double>(); |
| |
| if (mozilla::IsNaN(x) || mozilla::IsNaN(y) || mozilla::IsNaN(z) || |
| mozilla::IsNaN(w)) |
| return GenericNaN(); |
| |
| double scale = 0; |
| double sumsq = 1; |
| |
| hypot_step(scale, sumsq, x); |
| hypot_step(scale, sumsq, y); |
| hypot_step(scale, sumsq, z); |
| hypot_step(scale, sumsq, w); |
| |
| return scale * sqrt(sumsq); |
| } |
| |
| double |
| js::hypot3(double x, double y, double z) |
| { |
| return hypot4(x, y, z, 0.0); |
| } |
| |
| bool |
| js::math_hypot(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| return math_hypot_handle(cx, args, args.rval()); |
| } |
| |
| bool |
| js::math_hypot_handle(JSContext* cx, HandleValueArray args, MutableHandleValue res) |
| { |
| // IonMonkey calls the system hypot function directly if two arguments are |
| // given. Do that here as well to get the same results. |
| if (args.length() == 2) { |
| double x, y; |
| if (!ToNumber(cx, args[0], &x)) |
| return false; |
| if (!ToNumber(cx, args[1], &y)) |
| return false; |
| |
| double result = ecmaHypot(x, y); |
| res.setNumber(result); |
| return true; |
| } |
| |
| bool isInfinite = false; |
| bool isNaN = false; |
| |
| double scale = 0; |
| double sumsq = 1; |
| |
| for (unsigned i = 0; i < args.length(); i++) { |
| double x; |
| if (!ToNumber(cx, args[i], &x)) |
| return false; |
| |
| isInfinite |= mozilla::IsInfinite(x); |
| isNaN |= mozilla::IsNaN(x); |
| if (isInfinite || isNaN) |
| continue; |
| |
| hypot_step(scale, sumsq, x); |
| } |
| |
| double result = isInfinite ? PositiveInfinity<double>() : |
| isNaN ? GenericNaN() : |
| scale * sqrt(sumsq); |
| res.setNumber(result); |
| return true; |
| } |
| |
| double |
| js::math_trunc_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(trunc, x, MathCache::Trunc); |
| } |
| |
| double |
| js::math_trunc_uncached(double x) |
| { |
| return trunc(x); |
| } |
| |
| bool |
| js::math_trunc(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_trunc_impl>(cx, argc, vp); |
| } |
| |
| static double sign(double x) |
| { |
| if (mozilla::IsNaN(x)) |
| return GenericNaN(); |
| |
| return x == 0 ? x : x < 0 ? -1 : 1; |
| } |
| |
| double |
| js::math_sign_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(sign, x, MathCache::Sign); |
| } |
| |
| double |
| js::math_sign_uncached(double x) |
| { |
| return sign(x); |
| } |
| |
| bool |
| js::math_sign(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_sign_impl>(cx, argc, vp); |
| } |
| |
| #if !HAVE_CBRT |
| double cbrt(double x) |
| { |
| if (x > 0) { |
| return pow(x, 1.0 / 3.0); |
| } else if (x == 0) { |
| return x; |
| } else { |
| return -pow(-x, 1.0 / 3.0); |
| } |
| } |
| #endif |
| |
| double |
| js::math_cbrt_impl(MathCache* cache, double x) |
| { |
| return cache->lookup(cbrt, x, MathCache::Cbrt); |
| } |
| |
| double |
| js::math_cbrt_uncached(double x) |
| { |
| return cbrt(x); |
| } |
| |
| bool |
| js::math_cbrt(JSContext* cx, unsigned argc, Value* vp) |
| { |
| return math_function<math_cbrt_impl>(cx, argc, vp); |
| } |
| |
| #if JS_HAS_TOSOURCE |
| static bool |
| math_toSource(JSContext* cx, unsigned argc, Value* vp) |
| { |
| CallArgs args = CallArgsFromVp(argc, vp); |
| args.rval().setString(cx->names().Math); |
| return true; |
| } |
| #endif |
| |
| static const JSFunctionSpec math_static_methods[] = { |
| #if JS_HAS_TOSOURCE |
| JS_FN(js_toSource_str, math_toSource, 0, 0), |
| #endif |
| JS_INLINABLE_FN("abs", math_abs, 1, 0, MathAbs), |
| JS_INLINABLE_FN("acos", math_acos, 1, 0, MathACos), |
| JS_INLINABLE_FN("asin", math_asin, 1, 0, MathASin), |
| JS_INLINABLE_FN("atan", math_atan, 1, 0, MathATan), |
| JS_INLINABLE_FN("atan2", math_atan2, 2, 0, MathATan2), |
| JS_INLINABLE_FN("ceil", math_ceil, 1, 0, MathCeil), |
| JS_INLINABLE_FN("clz32", math_clz32, 1, 0, MathClz32), |
| JS_INLINABLE_FN("cos", math_cos, 1, 0, MathCos), |
| JS_INLINABLE_FN("exp", math_exp, 1, 0, MathExp), |
| JS_INLINABLE_FN("floor", math_floor, 1, 0, MathFloor), |
| JS_INLINABLE_FN("imul", math_imul, 2, 0, MathImul), |
| JS_INLINABLE_FN("fround", math_fround, 1, 0, MathFRound), |
| JS_INLINABLE_FN("log", math_log, 1, 0, MathLog), |
| JS_INLINABLE_FN("max", math_max, 2, 0, MathMax), |
| JS_INLINABLE_FN("min", math_min, 2, 0, MathMin), |
| JS_INLINABLE_FN("pow", math_pow, 2, 0, MathPow), |
| JS_INLINABLE_FN("random", math_random, 0, 0, MathRandom), |
| JS_INLINABLE_FN("round", math_round, 1, 0, MathRound), |
| JS_INLINABLE_FN("sin", math_sin, 1, 0, MathSin), |
| JS_INLINABLE_FN("sqrt", math_sqrt, 1, 0, MathSqrt), |
| JS_INLINABLE_FN("tan", math_tan, 1, 0, MathTan), |
| JS_INLINABLE_FN("log10", math_log10, 1, 0, MathLog10), |
| JS_INLINABLE_FN("log2", math_log2, 1, 0, MathLog2), |
| JS_INLINABLE_FN("log1p", math_log1p, 1, 0, MathLog1P), |
| JS_INLINABLE_FN("expm1", math_expm1, 1, 0, MathExpM1), |
| JS_INLINABLE_FN("cosh", math_cosh, 1, 0, MathCosH), |
| JS_INLINABLE_FN("sinh", math_sinh, 1, 0, MathSinH), |
| JS_INLINABLE_FN("tanh", math_tanh, 1, 0, MathTanH), |
| JS_INLINABLE_FN("acosh", math_acosh, 1, 0, MathACosH), |
| JS_INLINABLE_FN("asinh", math_asinh, 1, 0, MathASinH), |
| JS_INLINABLE_FN("atanh", math_atanh, 1, 0, MathATanH), |
| JS_INLINABLE_FN("hypot", math_hypot, 2, 0, MathHypot), |
| JS_INLINABLE_FN("trunc", math_trunc, 1, 0, MathTrunc), |
| JS_INLINABLE_FN("sign", math_sign, 1, 0, MathSign), |
| JS_INLINABLE_FN("cbrt", math_cbrt, 1, 0, MathCbrt), |
| JS_FS_END |
| }; |
| |
| JSObject* |
| js::InitMathClass(JSContext* cx, HandleObject obj) |
| { |
| RootedObject proto(cx, obj->as<GlobalObject>().getOrCreateObjectPrototype(cx)); |
| if (!proto) |
| return nullptr; |
| RootedObject Math(cx, NewObjectWithGivenProto(cx, &MathClass, proto, SingletonObject)); |
| if (!Math) |
| return nullptr; |
| |
| if (!JS_DefineProperty(cx, obj, js_Math_str, Math, JSPROP_RESOLVING, |
| JS_STUBGETTER, JS_STUBSETTER)) |
| { |
| return nullptr; |
| } |
| if (!JS_DefineFunctions(cx, Math, math_static_methods)) |
| return nullptr; |
| if (!JS_DefineConstDoubles(cx, Math, math_constants)) |
| return nullptr; |
| |
| obj->as<GlobalObject>().setConstructor(JSProto_Math, ObjectValue(*Math)); |
| |
| return Math; |
| } |