| //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Pass to verify generated machine code. The following is checked: | 
 | // | 
 | // Operand counts: All explicit operands must be present. | 
 | // | 
 | // Register classes: All physical and virtual register operands must be | 
 | // compatible with the register class required by the instruction descriptor. | 
 | // | 
 | // Register live intervals: Registers must be defined only once, and must be | 
 | // defined before use. | 
 | // | 
 | // The machine code verifier is enabled from LLVMTargetMachine.cpp with the | 
 | // command-line option -verify-machineinstrs, or by defining the environment | 
 | // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive | 
 | // the verifier errors. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SetOperations.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/ADT/Twine.h" | 
 | #include "llvm/Analysis/EHPersonalities.h" | 
 | #include "llvm/CodeGen/GlobalISel/RegisterBank.h" | 
 | #include "llvm/CodeGen/LiveInterval.h" | 
 | #include "llvm/CodeGen/LiveIntervals.h" | 
 | #include "llvm/CodeGen/LiveStacks.h" | 
 | #include "llvm/CodeGen/LiveVariables.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBundle.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/CodeGen/SlotIndexes.h" | 
 | #include "llvm/CodeGen/StackMaps.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/CodeGen/TargetOpcodes.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/InlineAsm.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/MC/LaneBitmask.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/MC/MCInstrDesc.h" | 
 | #include "llvm/MC/MCRegisterInfo.h" | 
 | #include "llvm/MC/MCTargetOptions.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/LowLevelTypeImpl.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <string> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |  | 
 |   struct MachineVerifier { | 
 |     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} | 
 |  | 
 |     unsigned verify(MachineFunction &MF); | 
 |  | 
 |     Pass *const PASS; | 
 |     const char *Banner; | 
 |     const MachineFunction *MF; | 
 |     const TargetMachine *TM; | 
 |     const TargetInstrInfo *TII; | 
 |     const TargetRegisterInfo *TRI; | 
 |     const MachineRegisterInfo *MRI; | 
 |  | 
 |     unsigned foundErrors; | 
 |  | 
 |     // Avoid querying the MachineFunctionProperties for each operand. | 
 |     bool isFunctionRegBankSelected; | 
 |     bool isFunctionSelected; | 
 |  | 
 |     using RegVector = SmallVector<unsigned, 16>; | 
 |     using RegMaskVector = SmallVector<const uint32_t *, 4>; | 
 |     using RegSet = DenseSet<unsigned>; | 
 |     using RegMap = DenseMap<unsigned, const MachineInstr *>; | 
 |     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; | 
 |  | 
 |     const MachineInstr *FirstTerminator; | 
 |     BlockSet FunctionBlocks; | 
 |  | 
 |     BitVector regsReserved; | 
 |     RegSet regsLive; | 
 |     RegVector regsDefined, regsDead, regsKilled; | 
 |     RegMaskVector regMasks; | 
 |  | 
 |     SlotIndex lastIndex; | 
 |  | 
 |     // Add Reg and any sub-registers to RV | 
 |     void addRegWithSubRegs(RegVector &RV, unsigned Reg) { | 
 |       RV.push_back(Reg); | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
 |         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) | 
 |           RV.push_back(*SubRegs); | 
 |     } | 
 |  | 
 |     struct BBInfo { | 
 |       // Is this MBB reachable from the MF entry point? | 
 |       bool reachable = false; | 
 |  | 
 |       // Vregs that must be live in because they are used without being | 
 |       // defined. Map value is the user. | 
 |       RegMap vregsLiveIn; | 
 |  | 
 |       // Regs killed in MBB. They may be defined again, and will then be in both | 
 |       // regsKilled and regsLiveOut. | 
 |       RegSet regsKilled; | 
 |  | 
 |       // Regs defined in MBB and live out. Note that vregs passing through may | 
 |       // be live out without being mentioned here. | 
 |       RegSet regsLiveOut; | 
 |  | 
 |       // Vregs that pass through MBB untouched. This set is disjoint from | 
 |       // regsKilled and regsLiveOut. | 
 |       RegSet vregsPassed; | 
 |  | 
 |       // Vregs that must pass through MBB because they are needed by a successor | 
 |       // block. This set is disjoint from regsLiveOut. | 
 |       RegSet vregsRequired; | 
 |  | 
 |       // Set versions of block's predecessor and successor lists. | 
 |       BlockSet Preds, Succs; | 
 |  | 
 |       BBInfo() = default; | 
 |  | 
 |       // Add register to vregsPassed if it belongs there. Return true if | 
 |       // anything changed. | 
 |       bool addPassed(unsigned Reg) { | 
 |         if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |           return false; | 
 |         if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) | 
 |           return false; | 
 |         return vregsPassed.insert(Reg).second; | 
 |       } | 
 |  | 
 |       // Same for a full set. | 
 |       bool addPassed(const RegSet &RS) { | 
 |         bool changed = false; | 
 |         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) | 
 |           if (addPassed(*I)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Add register to vregsRequired if it belongs there. Return true if | 
 |       // anything changed. | 
 |       bool addRequired(unsigned Reg) { | 
 |         if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |           return false; | 
 |         if (regsLiveOut.count(Reg)) | 
 |           return false; | 
 |         return vregsRequired.insert(Reg).second; | 
 |       } | 
 |  | 
 |       // Same for a full set. | 
 |       bool addRequired(const RegSet &RS) { | 
 |         bool changed = false; | 
 |         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) | 
 |           if (addRequired(*I)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Same for a full map. | 
 |       bool addRequired(const RegMap &RM) { | 
 |         bool changed = false; | 
 |         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) | 
 |           if (addRequired(I->first)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Live-out registers are either in regsLiveOut or vregsPassed. | 
 |       bool isLiveOut(unsigned Reg) const { | 
 |         return regsLiveOut.count(Reg) || vregsPassed.count(Reg); | 
 |       } | 
 |     }; | 
 |  | 
 |     // Extra register info per MBB. | 
 |     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; | 
 |  | 
 |     bool isReserved(unsigned Reg) { | 
 |       return Reg < regsReserved.size() && regsReserved.test(Reg); | 
 |     } | 
 |  | 
 |     bool isAllocatable(unsigned Reg) const { | 
 |       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && | 
 |         !regsReserved.test(Reg); | 
 |     } | 
 |  | 
 |     // Analysis information if available | 
 |     LiveVariables *LiveVars; | 
 |     LiveIntervals *LiveInts; | 
 |     LiveStacks *LiveStks; | 
 |     SlotIndexes *Indexes; | 
 |  | 
 |     void visitMachineFunctionBefore(); | 
 |     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); | 
 |     void visitMachineBundleBefore(const MachineInstr *MI); | 
 |     void visitMachineInstrBefore(const MachineInstr *MI); | 
 |     void visitMachineOperand(const MachineOperand *MO, unsigned MONum); | 
 |     void visitMachineInstrAfter(const MachineInstr *MI); | 
 |     void visitMachineBundleAfter(const MachineInstr *MI); | 
 |     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); | 
 |     void visitMachineFunctionAfter(); | 
 |  | 
 |     void report(const char *msg, const MachineFunction *MF); | 
 |     void report(const char *msg, const MachineBasicBlock *MBB); | 
 |     void report(const char *msg, const MachineInstr *MI); | 
 |     void report(const char *msg, const MachineOperand *MO, unsigned MONum, | 
 |                 LLT MOVRegType = LLT{}); | 
 |  | 
 |     void report_context(const LiveInterval &LI) const; | 
 |     void report_context(const LiveRange &LR, unsigned VRegUnit, | 
 |                         LaneBitmask LaneMask) const; | 
 |     void report_context(const LiveRange::Segment &S) const; | 
 |     void report_context(const VNInfo &VNI) const; | 
 |     void report_context(SlotIndex Pos) const; | 
 |     void report_context_liverange(const LiveRange &LR) const; | 
 |     void report_context_lanemask(LaneBitmask LaneMask) const; | 
 |     void report_context_vreg(unsigned VReg) const; | 
 |     void report_context_vreg_regunit(unsigned VRegOrUnit) const; | 
 |  | 
 |     void verifyInlineAsm(const MachineInstr *MI); | 
 |  | 
 |     void checkLiveness(const MachineOperand *MO, unsigned MONum); | 
 |     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, | 
 |                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, | 
 |                             LaneBitmask LaneMask = LaneBitmask::getNone()); | 
 |     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, | 
 |                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, | 
 |                             LaneBitmask LaneMask = LaneBitmask::getNone()); | 
 |  | 
 |     void markReachable(const MachineBasicBlock *MBB); | 
 |     void calcRegsPassed(); | 
 |     void checkPHIOps(const MachineBasicBlock &MBB); | 
 |  | 
 |     void calcRegsRequired(); | 
 |     void verifyLiveVariables(); | 
 |     void verifyLiveIntervals(); | 
 |     void verifyLiveInterval(const LiveInterval&); | 
 |     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, | 
 |                               LaneBitmask); | 
 |     void verifyLiveRangeSegment(const LiveRange&, | 
 |                                 const LiveRange::const_iterator I, unsigned, | 
 |                                 LaneBitmask); | 
 |     void verifyLiveRange(const LiveRange&, unsigned, | 
 |                          LaneBitmask LaneMask = LaneBitmask::getNone()); | 
 |  | 
 |     void verifyStackFrame(); | 
 |  | 
 |     void verifySlotIndexes() const; | 
 |     void verifyProperties(const MachineFunction &MF); | 
 |   }; | 
 |  | 
 |   struct MachineVerifierPass : public MachineFunctionPass { | 
 |     static char ID; // Pass ID, replacement for typeid | 
 |  | 
 |     const std::string Banner; | 
 |  | 
 |     MachineVerifierPass(std::string banner = std::string()) | 
 |       : MachineFunctionPass(ID), Banner(std::move(banner)) { | 
 |         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); | 
 |       } | 
 |  | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |       AU.setPreservesAll(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF) override { | 
 |       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); | 
 |       if (FoundErrors) | 
 |         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); | 
 |       return false; | 
 |     } | 
 |   }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char MachineVerifierPass::ID = 0; | 
 |  | 
 | INITIALIZE_PASS(MachineVerifierPass, "machineverifier", | 
 |                 "Verify generated machine code", false, false) | 
 |  | 
 | FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { | 
 |   return new MachineVerifierPass(Banner); | 
 | } | 
 |  | 
 | bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) | 
 |     const { | 
 |   MachineFunction &MF = const_cast<MachineFunction&>(*this); | 
 |   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); | 
 |   if (AbortOnErrors && FoundErrors) | 
 |     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); | 
 |   return FoundErrors == 0; | 
 | } | 
 |  | 
 | void MachineVerifier::verifySlotIndexes() const { | 
 |   if (Indexes == nullptr) | 
 |     return; | 
 |  | 
 |   // Ensure the IdxMBB list is sorted by slot indexes. | 
 |   SlotIndex Last; | 
 |   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), | 
 |        E = Indexes->MBBIndexEnd(); I != E; ++I) { | 
 |     assert(!Last.isValid() || I->first > Last); | 
 |     Last = I->first; | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::verifyProperties(const MachineFunction &MF) { | 
 |   // If a pass has introduced virtual registers without clearing the | 
 |   // NoVRegs property (or set it without allocating the vregs) | 
 |   // then report an error. | 
 |   if (MF.getProperties().hasProperty( | 
 |           MachineFunctionProperties::Property::NoVRegs) && | 
 |       MRI->getNumVirtRegs()) | 
 |     report("Function has NoVRegs property but there are VReg operands", &MF); | 
 | } | 
 |  | 
 | unsigned MachineVerifier::verify(MachineFunction &MF) { | 
 |   foundErrors = 0; | 
 |  | 
 |   this->MF = &MF; | 
 |   TM = &MF.getTarget(); | 
 |   TII = MF.getSubtarget().getInstrInfo(); | 
 |   TRI = MF.getSubtarget().getRegisterInfo(); | 
 |   MRI = &MF.getRegInfo(); | 
 |  | 
 |   const bool isFunctionFailedISel = MF.getProperties().hasProperty( | 
 |       MachineFunctionProperties::Property::FailedISel); | 
 |   isFunctionRegBankSelected = | 
 |       !isFunctionFailedISel && | 
 |       MF.getProperties().hasProperty( | 
 |           MachineFunctionProperties::Property::RegBankSelected); | 
 |   isFunctionSelected = !isFunctionFailedISel && | 
 |                        MF.getProperties().hasProperty( | 
 |                            MachineFunctionProperties::Property::Selected); | 
 |   LiveVars = nullptr; | 
 |   LiveInts = nullptr; | 
 |   LiveStks = nullptr; | 
 |   Indexes = nullptr; | 
 |   if (PASS) { | 
 |     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); | 
 |     // We don't want to verify LiveVariables if LiveIntervals is available. | 
 |     if (!LiveInts) | 
 |       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); | 
 |     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); | 
 |     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); | 
 |   } | 
 |  | 
 |   verifySlotIndexes(); | 
 |  | 
 |   verifyProperties(MF); | 
 |  | 
 |   visitMachineFunctionBefore(); | 
 |   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); | 
 |        MFI!=MFE; ++MFI) { | 
 |     visitMachineBasicBlockBefore(&*MFI); | 
 |     // Keep track of the current bundle header. | 
 |     const MachineInstr *CurBundle = nullptr; | 
 |     // Do we expect the next instruction to be part of the same bundle? | 
 |     bool InBundle = false; | 
 |  | 
 |     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), | 
 |            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { | 
 |       if (MBBI->getParent() != &*MFI) { | 
 |         report("Bad instruction parent pointer", &*MFI); | 
 |         errs() << "Instruction: " << *MBBI; | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Check for consistent bundle flags. | 
 |       if (InBundle && !MBBI->isBundledWithPred()) | 
 |         report("Missing BundledPred flag, " | 
 |                "BundledSucc was set on predecessor", | 
 |                &*MBBI); | 
 |       if (!InBundle && MBBI->isBundledWithPred()) | 
 |         report("BundledPred flag is set, " | 
 |                "but BundledSucc not set on predecessor", | 
 |                &*MBBI); | 
 |  | 
 |       // Is this a bundle header? | 
 |       if (!MBBI->isInsideBundle()) { | 
 |         if (CurBundle) | 
 |           visitMachineBundleAfter(CurBundle); | 
 |         CurBundle = &*MBBI; | 
 |         visitMachineBundleBefore(CurBundle); | 
 |       } else if (!CurBundle) | 
 |         report("No bundle header", &*MBBI); | 
 |       visitMachineInstrBefore(&*MBBI); | 
 |       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { | 
 |         const MachineInstr &MI = *MBBI; | 
 |         const MachineOperand &Op = MI.getOperand(I); | 
 |         if (Op.getParent() != &MI) { | 
 |           // Make sure to use correct addOperand / RemoveOperand / ChangeTo | 
 |           // functions when replacing operands of a MachineInstr. | 
 |           report("Instruction has operand with wrong parent set", &MI); | 
 |         } | 
 |  | 
 |         visitMachineOperand(&Op, I); | 
 |       } | 
 |  | 
 |       visitMachineInstrAfter(&*MBBI); | 
 |  | 
 |       // Was this the last bundled instruction? | 
 |       InBundle = MBBI->isBundledWithSucc(); | 
 |     } | 
 |     if (CurBundle) | 
 |       visitMachineBundleAfter(CurBundle); | 
 |     if (InBundle) | 
 |       report("BundledSucc flag set on last instruction in block", &MFI->back()); | 
 |     visitMachineBasicBlockAfter(&*MFI); | 
 |   } | 
 |   visitMachineFunctionAfter(); | 
 |  | 
 |   // Clean up. | 
 |   regsLive.clear(); | 
 |   regsDefined.clear(); | 
 |   regsDead.clear(); | 
 |   regsKilled.clear(); | 
 |   regMasks.clear(); | 
 |   MBBInfoMap.clear(); | 
 |  | 
 |   return foundErrors; | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineFunction *MF) { | 
 |   assert(MF); | 
 |   errs() << '\n'; | 
 |   if (!foundErrors++) { | 
 |     if (Banner) | 
 |       errs() << "# " << Banner << '\n'; | 
 |     if (LiveInts != nullptr) | 
 |       LiveInts->print(errs()); | 
 |     else | 
 |       MF->print(errs(), Indexes); | 
 |   } | 
 |   errs() << "*** Bad machine code: " << msg << " ***\n" | 
 |       << "- function:    " << MF->getName() << "\n"; | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { | 
 |   assert(MBB); | 
 |   report(msg, MBB->getParent()); | 
 |   errs() << "- basic block: " << printMBBReference(*MBB) << ' ' | 
 |          << MBB->getName() << " (" << (const void *)MBB << ')'; | 
 |   if (Indexes) | 
 |     errs() << " [" << Indexes->getMBBStartIdx(MBB) | 
 |         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')'; | 
 |   errs() << '\n'; | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineInstr *MI) { | 
 |   assert(MI); | 
 |   report(msg, MI->getParent()); | 
 |   errs() << "- instruction: "; | 
 |   if (Indexes && Indexes->hasIndex(*MI)) | 
 |     errs() << Indexes->getInstructionIndex(*MI) << '\t'; | 
 |   MI->print(errs(), /*SkipOpers=*/true); | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineOperand *MO, | 
 |                              unsigned MONum, LLT MOVRegType) { | 
 |   assert(MO); | 
 |   report(msg, MO->getParent()); | 
 |   errs() << "- operand " << MONum << ":   "; | 
 |   MO->print(errs(), MOVRegType, TRI); | 
 |   errs() << "\n"; | 
 | } | 
 |  | 
 | void MachineVerifier::report_context(SlotIndex Pos) const { | 
 |   errs() << "- at:          " << Pos << '\n'; | 
 | } | 
 |  | 
 | void MachineVerifier::report_context(const LiveInterval &LI) const { | 
 |   errs() << "- interval:    " << LI << '\n'; | 
 | } | 
 |  | 
 | void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, | 
 |                                      LaneBitmask LaneMask) const { | 
 |   report_context_liverange(LR); | 
 |   report_context_vreg_regunit(VRegUnit); | 
 |   if (LaneMask.any()) | 
 |     report_context_lanemask(LaneMask); | 
 | } | 
 |  | 
 | void MachineVerifier::report_context(const LiveRange::Segment &S) const { | 
 |   errs() << "- segment:     " << S << '\n'; | 
 | } | 
 |  | 
 | void MachineVerifier::report_context(const VNInfo &VNI) const { | 
 |   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n"; | 
 | } | 
 |  | 
 | void MachineVerifier::report_context_liverange(const LiveRange &LR) const { | 
 |   errs() << "- liverange:   " << LR << '\n'; | 
 | } | 
 |  | 
 | void MachineVerifier::report_context_vreg(unsigned VReg) const { | 
 |   errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; | 
 | } | 
 |  | 
 | void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { | 
 |   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { | 
 |     report_context_vreg(VRegOrUnit); | 
 |   } else { | 
 |     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n'; | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { | 
 |   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n'; | 
 | } | 
 |  | 
 | void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { | 
 |   BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |   if (!MInfo.reachable) { | 
 |     MInfo.reachable = true; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), | 
 |            SuE = MBB->succ_end(); SuI != SuE; ++SuI) | 
 |       markReachable(*SuI); | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineFunctionBefore() { | 
 |   lastIndex = SlotIndex(); | 
 |   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() | 
 |                                            : TRI->getReservedRegs(*MF); | 
 |  | 
 |   if (!MF->empty()) | 
 |     markReachable(&MF->front()); | 
 |  | 
 |   // Build a set of the basic blocks in the function. | 
 |   FunctionBlocks.clear(); | 
 |   for (const auto &MBB : *MF) { | 
 |     FunctionBlocks.insert(&MBB); | 
 |     BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |  | 
 |     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); | 
 |     if (MInfo.Preds.size() != MBB.pred_size()) | 
 |       report("MBB has duplicate entries in its predecessor list.", &MBB); | 
 |  | 
 |     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); | 
 |     if (MInfo.Succs.size() != MBB.succ_size()) | 
 |       report("MBB has duplicate entries in its successor list.", &MBB); | 
 |   } | 
 |  | 
 |   // Check that the register use lists are sane. | 
 |   MRI->verifyUseLists(); | 
 |  | 
 |   if (!MF->empty()) | 
 |     verifyStackFrame(); | 
 | } | 
 |  | 
 | // Does iterator point to a and b as the first two elements? | 
 | static bool matchPair(MachineBasicBlock::const_succ_iterator i, | 
 |                       const MachineBasicBlock *a, const MachineBasicBlock *b) { | 
 |   if (*i == a) | 
 |     return *++i == b; | 
 |   if (*i == b) | 
 |     return *++i == a; | 
 |   return false; | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { | 
 |   FirstTerminator = nullptr; | 
 |  | 
 |   if (!MF->getProperties().hasProperty( | 
 |       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { | 
 |     // If this block has allocatable physical registers live-in, check that | 
 |     // it is an entry block or landing pad. | 
 |     for (const auto &LI : MBB->liveins()) { | 
 |       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && | 
 |           MBB->getIterator() != MBB->getParent()->begin()) { | 
 |         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Count the number of landing pad successors. | 
 |   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; | 
 |   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), | 
 |        E = MBB->succ_end(); I != E; ++I) { | 
 |     if ((*I)->isEHPad()) | 
 |       LandingPadSuccs.insert(*I); | 
 |     if (!FunctionBlocks.count(*I)) | 
 |       report("MBB has successor that isn't part of the function.", MBB); | 
 |     if (!MBBInfoMap[*I].Preds.count(MBB)) { | 
 |       report("Inconsistent CFG", MBB); | 
 |       errs() << "MBB is not in the predecessor list of the successor " | 
 |              << printMBBReference(*(*I)) << ".\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check the predecessor list. | 
 |   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), | 
 |        E = MBB->pred_end(); I != E; ++I) { | 
 |     if (!FunctionBlocks.count(*I)) | 
 |       report("MBB has predecessor that isn't part of the function.", MBB); | 
 |     if (!MBBInfoMap[*I].Succs.count(MBB)) { | 
 |       report("Inconsistent CFG", MBB); | 
 |       errs() << "MBB is not in the successor list of the predecessor " | 
 |              << printMBBReference(*(*I)) << ".\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); | 
 |   const BasicBlock *BB = MBB->getBasicBlock(); | 
 |   const Function &F = MF->getFunction(); | 
 |   if (LandingPadSuccs.size() > 1 && | 
 |       !(AsmInfo && | 
 |         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && | 
 |         BB && isa<SwitchInst>(BB->getTerminator())) && | 
 |       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) | 
 |     report("MBB has more than one landing pad successor", MBB); | 
 |  | 
 |   // Call AnalyzeBranch. If it succeeds, there several more conditions to check. | 
 |   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
 |   SmallVector<MachineOperand, 4> Cond; | 
 |   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, | 
 |                           Cond)) { | 
 |     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's | 
 |     // check whether its answers match up with reality. | 
 |     if (!TBB && !FBB) { | 
 |       // Block falls through to its successor. | 
 |       MachineFunction::const_iterator MBBI = MBB->getIterator(); | 
 |       ++MBBI; | 
 |       if (MBBI == MF->end()) { | 
 |         // It's possible that the block legitimately ends with a noreturn | 
 |         // call or an unreachable, in which case it won't actually fall | 
 |         // out the bottom of the function. | 
 |       } else if (MBB->succ_size() == LandingPadSuccs.size()) { | 
 |         // It's possible that the block legitimately ends with a noreturn | 
 |         // call or an unreachable, in which case it won't actuall fall | 
 |         // out of the block. | 
 |       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { | 
 |         report("MBB exits via unconditional fall-through but doesn't have " | 
 |                "exactly one CFG successor!", MBB); | 
 |       } else if (!MBB->isSuccessor(&*MBBI)) { | 
 |         report("MBB exits via unconditional fall-through but its successor " | 
 |                "differs from its CFG successor!", MBB); | 
 |       } | 
 |       if (!MBB->empty() && MBB->back().isBarrier() && | 
 |           !TII->isPredicated(MBB->back())) { | 
 |         report("MBB exits via unconditional fall-through but ends with a " | 
 |                "barrier instruction!", MBB); | 
 |       } | 
 |       if (!Cond.empty()) { | 
 |         report("MBB exits via unconditional fall-through but has a condition!", | 
 |                MBB); | 
 |       } | 
 |     } else if (TBB && !FBB && Cond.empty()) { | 
 |       // Block unconditionally branches somewhere. | 
 |       // If the block has exactly one successor, that happens to be a | 
 |       // landingpad, accept it as valid control flow. | 
 |       if (MBB->succ_size() != 1+LandingPadSuccs.size() && | 
 |           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || | 
 |            *MBB->succ_begin() != *LandingPadSuccs.begin())) { | 
 |         report("MBB exits via unconditional branch but doesn't have " | 
 |                "exactly one CFG successor!", MBB); | 
 |       } else if (!MBB->isSuccessor(TBB)) { | 
 |         report("MBB exits via unconditional branch but the CFG " | 
 |                "successor doesn't match the actual successor!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via unconditional branch but doesn't contain " | 
 |                "any instructions!", MBB); | 
 |       } else if (!MBB->back().isBarrier()) { | 
 |         report("MBB exits via unconditional branch but doesn't end with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().isTerminator()) { | 
 |         report("MBB exits via unconditional branch but the branch isn't a " | 
 |                "terminator instruction!", MBB); | 
 |       } | 
 |     } else if (TBB && !FBB && !Cond.empty()) { | 
 |       // Block conditionally branches somewhere, otherwise falls through. | 
 |       MachineFunction::const_iterator MBBI = MBB->getIterator(); | 
 |       ++MBBI; | 
 |       if (MBBI == MF->end()) { | 
 |         report("MBB conditionally falls through out of function!", MBB); | 
 |       } else if (MBB->succ_size() == 1) { | 
 |         // A conditional branch with only one successor is weird, but allowed. | 
 |         if (&*MBBI != TBB) | 
 |           report("MBB exits via conditional branch/fall-through but only has " | 
 |                  "one CFG successor!", MBB); | 
 |         else if (TBB != *MBB->succ_begin()) | 
 |           report("MBB exits via conditional branch/fall-through but the CFG " | 
 |                  "successor don't match the actual successor!", MBB); | 
 |       } else if (MBB->succ_size() != 2) { | 
 |         report("MBB exits via conditional branch/fall-through but doesn't have " | 
 |                "exactly two CFG successors!", MBB); | 
 |       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { | 
 |         report("MBB exits via conditional branch/fall-through but the CFG " | 
 |                "successors don't match the actual successors!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via conditional branch/fall-through but doesn't " | 
 |                "contain any instructions!", MBB); | 
 |       } else if (MBB->back().isBarrier()) { | 
 |         report("MBB exits via conditional branch/fall-through but ends with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().isTerminator()) { | 
 |         report("MBB exits via conditional branch/fall-through but the branch " | 
 |                "isn't a terminator instruction!", MBB); | 
 |       } | 
 |     } else if (TBB && FBB) { | 
 |       // Block conditionally branches somewhere, otherwise branches | 
 |       // somewhere else. | 
 |       if (MBB->succ_size() == 1) { | 
 |         // A conditional branch with only one successor is weird, but allowed. | 
 |         if (FBB != TBB) | 
 |           report("MBB exits via conditional branch/branch through but only has " | 
 |                  "one CFG successor!", MBB); | 
 |         else if (TBB != *MBB->succ_begin()) | 
 |           report("MBB exits via conditional branch/branch through but the CFG " | 
 |                  "successor don't match the actual successor!", MBB); | 
 |       } else if (MBB->succ_size() != 2) { | 
 |         report("MBB exits via conditional branch/branch but doesn't have " | 
 |                "exactly two CFG successors!", MBB); | 
 |       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { | 
 |         report("MBB exits via conditional branch/branch but the CFG " | 
 |                "successors don't match the actual successors!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via conditional branch/branch but doesn't " | 
 |                "contain any instructions!", MBB); | 
 |       } else if (!MBB->back().isBarrier()) { | 
 |         report("MBB exits via conditional branch/branch but doesn't end with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().isTerminator()) { | 
 |         report("MBB exits via conditional branch/branch but the branch " | 
 |                "isn't a terminator instruction!", MBB); | 
 |       } | 
 |       if (Cond.empty()) { | 
 |         report("MBB exits via conditinal branch/branch but there's no " | 
 |                "condition!", MBB); | 
 |       } | 
 |     } else { | 
 |       report("AnalyzeBranch returned invalid data!", MBB); | 
 |     } | 
 |   } | 
 |  | 
 |   regsLive.clear(); | 
 |   if (MRI->tracksLiveness()) { | 
 |     for (const auto &LI : MBB->liveins()) { | 
 |       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { | 
 |         report("MBB live-in list contains non-physical register", MBB); | 
 |         continue; | 
 |       } | 
 |       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); | 
 |            SubRegs.isValid(); ++SubRegs) | 
 |         regsLive.insert(*SubRegs); | 
 |     } | 
 |   } | 
 |  | 
 |   const MachineFrameInfo &MFI = MF->getFrameInfo(); | 
 |   BitVector PR = MFI.getPristineRegs(*MF); | 
 |   for (unsigned I : PR.set_bits()) { | 
 |     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); | 
 |          SubRegs.isValid(); ++SubRegs) | 
 |       regsLive.insert(*SubRegs); | 
 |   } | 
 |  | 
 |   regsKilled.clear(); | 
 |   regsDefined.clear(); | 
 |  | 
 |   if (Indexes) | 
 |     lastIndex = Indexes->getMBBStartIdx(MBB); | 
 | } | 
 |  | 
 | // This function gets called for all bundle headers, including normal | 
 | // stand-alone unbundled instructions. | 
 | void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { | 
 |   if (Indexes && Indexes->hasIndex(*MI)) { | 
 |     SlotIndex idx = Indexes->getInstructionIndex(*MI); | 
 |     if (!(idx > lastIndex)) { | 
 |       report("Instruction index out of order", MI); | 
 |       errs() << "Last instruction was at " << lastIndex << '\n'; | 
 |     } | 
 |     lastIndex = idx; | 
 |   } | 
 |  | 
 |   // Ensure non-terminators don't follow terminators. | 
 |   // Ignore predicated terminators formed by if conversion. | 
 |   // FIXME: If conversion shouldn't need to violate this rule. | 
 |   if (MI->isTerminator() && !TII->isPredicated(*MI)) { | 
 |     if (!FirstTerminator) | 
 |       FirstTerminator = MI; | 
 |   } else if (FirstTerminator) { | 
 |     report("Non-terminator instruction after the first terminator", MI); | 
 |     errs() << "First terminator was:\t" << *FirstTerminator; | 
 |   } | 
 | } | 
 |  | 
 | // The operands on an INLINEASM instruction must follow a template. | 
 | // Verify that the flag operands make sense. | 
 | void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { | 
 |   // The first two operands on INLINEASM are the asm string and global flags. | 
 |   if (MI->getNumOperands() < 2) { | 
 |     report("Too few operands on inline asm", MI); | 
 |     return; | 
 |   } | 
 |   if (!MI->getOperand(0).isSymbol()) | 
 |     report("Asm string must be an external symbol", MI); | 
 |   if (!MI->getOperand(1).isImm()) | 
 |     report("Asm flags must be an immediate", MI); | 
 |   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, | 
 |   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, | 
 |   // and Extra_IsConvergent = 32. | 
 |   if (!isUInt<6>(MI->getOperand(1).getImm())) | 
 |     report("Unknown asm flags", &MI->getOperand(1), 1); | 
 |  | 
 |   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); | 
 |  | 
 |   unsigned OpNo = InlineAsm::MIOp_FirstOperand; | 
 |   unsigned NumOps; | 
 |   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { | 
 |     const MachineOperand &MO = MI->getOperand(OpNo); | 
 |     // There may be implicit ops after the fixed operands. | 
 |     if (!MO.isImm()) | 
 |       break; | 
 |     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); | 
 |   } | 
 |  | 
 |   if (OpNo > MI->getNumOperands()) | 
 |     report("Missing operands in last group", MI); | 
 |  | 
 |   // An optional MDNode follows the groups. | 
 |   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) | 
 |     ++OpNo; | 
 |  | 
 |   // All trailing operands must be implicit registers. | 
 |   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { | 
 |     const MachineOperand &MO = MI->getOperand(OpNo); | 
 |     if (!MO.isReg() || !MO.isImplicit()) | 
 |       report("Expected implicit register after groups", &MO, OpNo); | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |   if (MI->getNumOperands() < MCID.getNumOperands()) { | 
 |     report("Too few operands", MI); | 
 |     errs() << MCID.getNumOperands() << " operands expected, but " | 
 |            << MI->getNumOperands() << " given.\n"; | 
 |   } | 
 |  | 
 |   if (MI->isPHI() && MF->getProperties().hasProperty( | 
 |                          MachineFunctionProperties::Property::NoPHIs)) | 
 |     report("Found PHI instruction with NoPHIs property set", MI); | 
 |  | 
 |   // Check the tied operands. | 
 |   if (MI->isInlineAsm()) | 
 |     verifyInlineAsm(MI); | 
 |  | 
 |   // Check the MachineMemOperands for basic consistency. | 
 |   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), | 
 |                                   E = MI->memoperands_end(); | 
 |        I != E; ++I) { | 
 |     if ((*I)->isLoad() && !MI->mayLoad()) | 
 |       report("Missing mayLoad flag", MI); | 
 |     if ((*I)->isStore() && !MI->mayStore()) | 
 |       report("Missing mayStore flag", MI); | 
 |   } | 
 |  | 
 |   // Debug values must not have a slot index. | 
 |   // Other instructions must have one, unless they are inside a bundle. | 
 |   if (LiveInts) { | 
 |     bool mapped = !LiveInts->isNotInMIMap(*MI); | 
 |     if (MI->isDebugInstr()) { | 
 |       if (mapped) | 
 |         report("Debug instruction has a slot index", MI); | 
 |     } else if (MI->isInsideBundle()) { | 
 |       if (mapped) | 
 |         report("Instruction inside bundle has a slot index", MI); | 
 |     } else { | 
 |       if (!mapped) | 
 |         report("Missing slot index", MI); | 
 |     } | 
 |   } | 
 |  | 
 |   if (isPreISelGenericOpcode(MCID.getOpcode())) { | 
 |     if (isFunctionSelected) | 
 |       report("Unexpected generic instruction in a Selected function", MI); | 
 |  | 
 |     // Check types. | 
 |     SmallVector<LLT, 4> Types; | 
 |     for (unsigned I = 0; I < MCID.getNumOperands(); ++I) { | 
 |       if (!MCID.OpInfo[I].isGenericType()) | 
 |         continue; | 
 |       // Generic instructions specify type equality constraints between some of | 
 |       // their operands. Make sure these are consistent. | 
 |       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); | 
 |       Types.resize(std::max(TypeIdx + 1, Types.size())); | 
 |  | 
 |       const MachineOperand *MO = &MI->getOperand(I); | 
 |       LLT OpTy = MRI->getType(MO->getReg()); | 
 |       // Don't report a type mismatch if there is no actual mismatch, only a | 
 |       // type missing, to reduce noise: | 
 |       if (OpTy.isValid()) { | 
 |         // Only the first valid type for a type index will be printed: don't | 
 |         // overwrite it later so it's always clear which type was expected: | 
 |         if (!Types[TypeIdx].isValid()) | 
 |           Types[TypeIdx] = OpTy; | 
 |         else if (Types[TypeIdx] != OpTy) | 
 |           report("Type mismatch in generic instruction", MO, I, OpTy); | 
 |       } else { | 
 |         // Generic instructions must have types attached to their operands. | 
 |         report("Generic instruction is missing a virtual register type", MO, I); | 
 |       } | 
 |     } | 
 |  | 
 |     // Generic opcodes must not have physical register operands. | 
 |     for (unsigned I = 0; I < MI->getNumOperands(); ++I) { | 
 |       const MachineOperand *MO = &MI->getOperand(I); | 
 |       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) | 
 |         report("Generic instruction cannot have physical register", MO, I); | 
 |     } | 
 |   } | 
 |  | 
 |   StringRef ErrorInfo; | 
 |   if (!TII->verifyInstruction(*MI, ErrorInfo)) | 
 |     report(ErrorInfo.data(), MI); | 
 |  | 
 |   // Verify properties of various specific instruction types | 
 |   switch(MI->getOpcode()) { | 
 |   default: | 
 |     break; | 
 |   case TargetOpcode::G_LOAD: | 
 |   case TargetOpcode::G_STORE: | 
 |     // Generic loads and stores must have a single MachineMemOperand | 
 |     // describing that access. | 
 |     if (!MI->hasOneMemOperand()) | 
 |       report("Generic instruction accessing memory must have one mem operand", | 
 |              MI); | 
 |     break; | 
 |   case TargetOpcode::G_PHI: { | 
 |     LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); | 
 |     if (!DstTy.isValid() || | 
 |         !std::all_of(MI->operands_begin() + 1, MI->operands_end(), | 
 |                      [this, &DstTy](const MachineOperand &MO) { | 
 |                        if (!MO.isReg()) | 
 |                          return true; | 
 |                        LLT Ty = MRI->getType(MO.getReg()); | 
 |                        if (!Ty.isValid() || (Ty != DstTy)) | 
 |                          return false; | 
 |                        return true; | 
 |                      })) | 
 |       report("Generic Instruction G_PHI has operands with incompatible/missing " | 
 |              "types", | 
 |              MI); | 
 |     break; | 
 |   } | 
 |   case TargetOpcode::G_SEXT: | 
 |   case TargetOpcode::G_ZEXT: | 
 |   case TargetOpcode::G_ANYEXT: | 
 |   case TargetOpcode::G_TRUNC: | 
 |   case TargetOpcode::G_FPEXT: | 
 |   case TargetOpcode::G_FPTRUNC: { | 
 |     // Number of operands and presense of types is already checked (and | 
 |     // reported in case of any issues), so no need to report them again. As | 
 |     // we're trying to report as many issues as possible at once, however, the | 
 |     // instructions aren't guaranteed to have the right number of operands or | 
 |     // types attached to them at this point | 
 |     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); | 
 |     if (MI->getNumOperands() < MCID.getNumOperands()) | 
 |       break; | 
 |     LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); | 
 |     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); | 
 |     if (!DstTy.isValid() || !SrcTy.isValid()) | 
 |       break; | 
 |  | 
 |     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; | 
 |     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; | 
 |     if (DstElTy.isPointer() || SrcElTy.isPointer()) | 
 |       report("Generic extend/truncate can not operate on pointers", MI); | 
 |  | 
 |     if (DstTy.isVector() != SrcTy.isVector()) { | 
 |       report("Generic extend/truncate must be all-vector or all-scalar", MI); | 
 |       // Generally we try to report as many issues as possible at once, but in | 
 |       // this case it's not clear what should we be comparing the size of the | 
 |       // scalar with: the size of the whole vector or its lane. Instead of | 
 |       // making an arbitrary choice and emitting not so helpful message, let's | 
 |       // avoid the extra noise and stop here. | 
 |       break; | 
 |     } | 
 |     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) | 
 |       report("Generic vector extend/truncate must preserve number of lanes", | 
 |              MI); | 
 |     unsigned DstSize = DstElTy.getSizeInBits(); | 
 |     unsigned SrcSize = SrcElTy.getSizeInBits(); | 
 |     switch (MI->getOpcode()) { | 
 |     default: | 
 |       if (DstSize <= SrcSize) | 
 |         report("Generic extend has destination type no larger than source", MI); | 
 |       break; | 
 |     case TargetOpcode::G_TRUNC: | 
 |     case TargetOpcode::G_FPTRUNC: | 
 |       if (DstSize >= SrcSize) | 
 |         report("Generic truncate has destination type no smaller than source", | 
 |                MI); | 
 |       break; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case TargetOpcode::COPY: { | 
 |     if (foundErrors) | 
 |       break; | 
 |     const MachineOperand &DstOp = MI->getOperand(0); | 
 |     const MachineOperand &SrcOp = MI->getOperand(1); | 
 |     LLT DstTy = MRI->getType(DstOp.getReg()); | 
 |     LLT SrcTy = MRI->getType(SrcOp.getReg()); | 
 |     if (SrcTy.isValid() && DstTy.isValid()) { | 
 |       // If both types are valid, check that the types are the same. | 
 |       if (SrcTy != DstTy) { | 
 |         report("Copy Instruction is illegal with mismatching types", MI); | 
 |         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; | 
 |       } | 
 |     } | 
 |     if (SrcTy.isValid() || DstTy.isValid()) { | 
 |       // If one of them have valid types, let's just check they have the same | 
 |       // size. | 
 |       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); | 
 |       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); | 
 |       assert(SrcSize && "Expecting size here"); | 
 |       assert(DstSize && "Expecting size here"); | 
 |       if (SrcSize != DstSize) | 
 |         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { | 
 |           report("Copy Instruction is illegal with mismatching sizes", MI); | 
 |           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize | 
 |                  << "\n"; | 
 |         } | 
 |     } | 
 |     break; | 
 |   } | 
 |   case TargetOpcode::STATEPOINT: | 
 |     if (!MI->getOperand(StatepointOpers::IDPos).isImm() || | 
 |         !MI->getOperand(StatepointOpers::NBytesPos).isImm() || | 
 |         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) | 
 |       report("meta operands to STATEPOINT not constant!", MI); | 
 |     break; | 
 |  | 
 |     auto VerifyStackMapConstant = [&](unsigned Offset) { | 
 |       if (!MI->getOperand(Offset).isImm() || | 
 |           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || | 
 |           !MI->getOperand(Offset + 1).isImm()) | 
 |         report("stack map constant to STATEPOINT not well formed!", MI); | 
 |     }; | 
 |     const unsigned VarStart = StatepointOpers(MI).getVarIdx(); | 
 |     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); | 
 |     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); | 
 |     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); | 
 |  | 
 |     // TODO: verify we have properly encoded deopt arguments | 
 |   }; | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { | 
 |   const MachineInstr *MI = MO->getParent(); | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |   unsigned NumDefs = MCID.getNumDefs(); | 
 |   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) | 
 |     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; | 
 |  | 
 |   // The first MCID.NumDefs operands must be explicit register defines | 
 |   if (MONum < NumDefs) { | 
 |     const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; | 
 |     if (!MO->isReg()) | 
 |       report("Explicit definition must be a register", MO, MONum); | 
 |     else if (!MO->isDef() && !MCOI.isOptionalDef()) | 
 |       report("Explicit definition marked as use", MO, MONum); | 
 |     else if (MO->isImplicit()) | 
 |       report("Explicit definition marked as implicit", MO, MONum); | 
 |   } else if (MONum < MCID.getNumOperands()) { | 
 |     const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; | 
 |     // Don't check if it's the last operand in a variadic instruction. See, | 
 |     // e.g., LDM_RET in the arm back end. | 
 |     if (MO->isReg() && | 
 |         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { | 
 |       if (MO->isDef() && !MCOI.isOptionalDef()) | 
 |         report("Explicit operand marked as def", MO, MONum); | 
 |       if (MO->isImplicit()) | 
 |         report("Explicit operand marked as implicit", MO, MONum); | 
 |     } | 
 |  | 
 |     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); | 
 |     if (TiedTo != -1) { | 
 |       if (!MO->isReg()) | 
 |         report("Tied use must be a register", MO, MONum); | 
 |       else if (!MO->isTied()) | 
 |         report("Operand should be tied", MO, MONum); | 
 |       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) | 
 |         report("Tied def doesn't match MCInstrDesc", MO, MONum); | 
 |       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { | 
 |         const MachineOperand &MOTied = MI->getOperand(TiedTo); | 
 |         if (!MOTied.isReg()) | 
 |           report("Tied counterpart must be a register", &MOTied, TiedTo); | 
 |         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && | 
 |                  MO->getReg() != MOTied.getReg()) | 
 |           report("Tied physical registers must match.", &MOTied, TiedTo); | 
 |       } | 
 |     } else if (MO->isReg() && MO->isTied()) | 
 |       report("Explicit operand should not be tied", MO, MONum); | 
 |   } else { | 
 |     // ARM adds %reg0 operands to indicate predicates. We'll allow that. | 
 |     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) | 
 |       report("Extra explicit operand on non-variadic instruction", MO, MONum); | 
 |   } | 
 |  | 
 |   switch (MO->getType()) { | 
 |   case MachineOperand::MO_Register: { | 
 |     const unsigned Reg = MO->getReg(); | 
 |     if (!Reg) | 
 |       return; | 
 |     if (MRI->tracksLiveness() && !MI->isDebugValue()) | 
 |       checkLiveness(MO, MONum); | 
 |  | 
 |     // Verify the consistency of tied operands. | 
 |     if (MO->isTied()) { | 
 |       unsigned OtherIdx = MI->findTiedOperandIdx(MONum); | 
 |       const MachineOperand &OtherMO = MI->getOperand(OtherIdx); | 
 |       if (!OtherMO.isReg()) | 
 |         report("Must be tied to a register", MO, MONum); | 
 |       if (!OtherMO.isTied()) | 
 |         report("Missing tie flags on tied operand", MO, MONum); | 
 |       if (MI->findTiedOperandIdx(OtherIdx) != MONum) | 
 |         report("Inconsistent tie links", MO, MONum); | 
 |       if (MONum < MCID.getNumDefs()) { | 
 |         if (OtherIdx < MCID.getNumOperands()) { | 
 |           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) | 
 |             report("Explicit def tied to explicit use without tie constraint", | 
 |                    MO, MONum); | 
 |         } else { | 
 |           if (!OtherMO.isImplicit()) | 
 |             report("Explicit def should be tied to implicit use", MO, MONum); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Verify two-address constraints after leaving SSA form. | 
 |     unsigned DefIdx; | 
 |     if (!MRI->isSSA() && MO->isUse() && | 
 |         MI->isRegTiedToDefOperand(MONum, &DefIdx) && | 
 |         Reg != MI->getOperand(DefIdx).getReg()) | 
 |       report("Two-address instruction operands must be identical", MO, MONum); | 
 |  | 
 |     // Check register classes. | 
 |     unsigned SubIdx = MO->getSubReg(); | 
 |  | 
 |     if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |       if (SubIdx) { | 
 |         report("Illegal subregister index for physical register", MO, MONum); | 
 |         return; | 
 |       } | 
 |       if (MONum < MCID.getNumOperands()) { | 
 |         if (const TargetRegisterClass *DRC = | 
 |               TII->getRegClass(MCID, MONum, TRI, *MF)) { | 
 |           if (!DRC->contains(Reg)) { | 
 |             report("Illegal physical register for instruction", MO, MONum); | 
 |             errs() << printReg(Reg, TRI) << " is not a " | 
 |                    << TRI->getRegClassName(DRC) << " register.\n"; | 
 |           } | 
 |         } | 
 |       } | 
 |       if (MO->isRenamable()) { | 
 |         if (MRI->isReserved(Reg)) { | 
 |           report("isRenamable set on reserved register", MO, MONum); | 
 |           return; | 
 |         } | 
 |       } | 
 |       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { | 
 |         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); | 
 |         return; | 
 |       } | 
 |     } else { | 
 |       // Virtual register. | 
 |       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); | 
 |       if (!RC) { | 
 |         // This is a generic virtual register. | 
 |  | 
 |         // If we're post-Select, we can't have gvregs anymore. | 
 |         if (isFunctionSelected) { | 
 |           report("Generic virtual register invalid in a Selected function", | 
 |                  MO, MONum); | 
 |           return; | 
 |         } | 
 |  | 
 |         // The gvreg must have a type and it must not have a SubIdx. | 
 |         LLT Ty = MRI->getType(Reg); | 
 |         if (!Ty.isValid()) { | 
 |           report("Generic virtual register must have a valid type", MO, | 
 |                  MONum); | 
 |           return; | 
 |         } | 
 |  | 
 |         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); | 
 |  | 
 |         // If we're post-RegBankSelect, the gvreg must have a bank. | 
 |         if (!RegBank && isFunctionRegBankSelected) { | 
 |           report("Generic virtual register must have a bank in a " | 
 |                  "RegBankSelected function", | 
 |                  MO, MONum); | 
 |           return; | 
 |         } | 
 |  | 
 |         // Make sure the register fits into its register bank if any. | 
 |         if (RegBank && Ty.isValid() && | 
 |             RegBank->getSize() < Ty.getSizeInBits()) { | 
 |           report("Register bank is too small for virtual register", MO, | 
 |                  MONum); | 
 |           errs() << "Register bank " << RegBank->getName() << " too small(" | 
 |                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() | 
 |                  << "-bits\n"; | 
 |           return; | 
 |         } | 
 |         if (SubIdx)  { | 
 |           report("Generic virtual register does not subregister index", MO, | 
 |                  MONum); | 
 |           return; | 
 |         } | 
 |  | 
 |         // If this is a target specific instruction and this operand | 
 |         // has register class constraint, the virtual register must | 
 |         // comply to it. | 
 |         if (!isPreISelGenericOpcode(MCID.getOpcode()) && | 
 |             MONum < MCID.getNumOperands() && | 
 |             TII->getRegClass(MCID, MONum, TRI, *MF)) { | 
 |           report("Virtual register does not match instruction constraint", MO, | 
 |                  MONum); | 
 |           errs() << "Expect register class " | 
 |                  << TRI->getRegClassName( | 
 |                         TII->getRegClass(MCID, MONum, TRI, *MF)) | 
 |                  << " but got nothing\n"; | 
 |           return; | 
 |         } | 
 |  | 
 |         break; | 
 |       } | 
 |       if (SubIdx) { | 
 |         const TargetRegisterClass *SRC = | 
 |           TRI->getSubClassWithSubReg(RC, SubIdx); | 
 |         if (!SRC) { | 
 |           report("Invalid subregister index for virtual register", MO, MONum); | 
 |           errs() << "Register class " << TRI->getRegClassName(RC) | 
 |               << " does not support subreg index " << SubIdx << "\n"; | 
 |           return; | 
 |         } | 
 |         if (RC != SRC) { | 
 |           report("Invalid register class for subregister index", MO, MONum); | 
 |           errs() << "Register class " << TRI->getRegClassName(RC) | 
 |               << " does not fully support subreg index " << SubIdx << "\n"; | 
 |           return; | 
 |         } | 
 |       } | 
 |       if (MONum < MCID.getNumOperands()) { | 
 |         if (const TargetRegisterClass *DRC = | 
 |               TII->getRegClass(MCID, MONum, TRI, *MF)) { | 
 |           if (SubIdx) { | 
 |             const TargetRegisterClass *SuperRC = | 
 |                 TRI->getLargestLegalSuperClass(RC, *MF); | 
 |             if (!SuperRC) { | 
 |               report("No largest legal super class exists.", MO, MONum); | 
 |               return; | 
 |             } | 
 |             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); | 
 |             if (!DRC) { | 
 |               report("No matching super-reg register class.", MO, MONum); | 
 |               return; | 
 |             } | 
 |           } | 
 |           if (!RC->hasSuperClassEq(DRC)) { | 
 |             report("Illegal virtual register for instruction", MO, MONum); | 
 |             errs() << "Expected a " << TRI->getRegClassName(DRC) | 
 |                 << " register, but got a " << TRI->getRegClassName(RC) | 
 |                 << " register\n"; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   case MachineOperand::MO_RegisterMask: | 
 |     regMasks.push_back(MO->getRegMask()); | 
 |     break; | 
 |  | 
 |   case MachineOperand::MO_MachineBasicBlock: | 
 |     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) | 
 |       report("PHI operand is not in the CFG", MO, MONum); | 
 |     break; | 
 |  | 
 |   case MachineOperand::MO_FrameIndex: | 
 |     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && | 
 |         LiveInts && !LiveInts->isNotInMIMap(*MI)) { | 
 |       int FI = MO->getIndex(); | 
 |       LiveInterval &LI = LiveStks->getInterval(FI); | 
 |       SlotIndex Idx = LiveInts->getInstructionIndex(*MI); | 
 |  | 
 |       bool stores = MI->mayStore(); | 
 |       bool loads = MI->mayLoad(); | 
 |       // For a memory-to-memory move, we need to check if the frame | 
 |       // index is used for storing or loading, by inspecting the | 
 |       // memory operands. | 
 |       if (stores && loads) { | 
 |         for (auto *MMO : MI->memoperands()) { | 
 |           const PseudoSourceValue *PSV = MMO->getPseudoValue(); | 
 |           if (PSV == nullptr) continue; | 
 |           const FixedStackPseudoSourceValue *Value = | 
 |             dyn_cast<FixedStackPseudoSourceValue>(PSV); | 
 |           if (Value == nullptr) continue; | 
 |           if (Value->getFrameIndex() != FI) continue; | 
 |  | 
 |           if (MMO->isStore()) | 
 |             loads = false; | 
 |           else | 
 |             stores = false; | 
 |           break; | 
 |         } | 
 |         if (loads == stores) | 
 |           report("Missing fixed stack memoperand.", MI); | 
 |       } | 
 |       if (loads && !LI.liveAt(Idx.getRegSlot(true))) { | 
 |         report("Instruction loads from dead spill slot", MO, MONum); | 
 |         errs() << "Live stack: " << LI << '\n'; | 
 |       } | 
 |       if (stores && !LI.liveAt(Idx.getRegSlot())) { | 
 |         report("Instruction stores to dead spill slot", MO, MONum); | 
 |         errs() << "Live stack: " << LI << '\n'; | 
 |       } | 
 |     } | 
 |     break; | 
 |  | 
 |   default: | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, | 
 |     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, | 
 |     LaneBitmask LaneMask) { | 
 |   LiveQueryResult LRQ = LR.Query(UseIdx); | 
 |   // Check if we have a segment at the use, note however that we only need one | 
 |   // live subregister range, the others may be dead. | 
 |   if (!LRQ.valueIn() && LaneMask.none()) { | 
 |     report("No live segment at use", MO, MONum); | 
 |     report_context_liverange(LR); | 
 |     report_context_vreg_regunit(VRegOrUnit); | 
 |     report_context(UseIdx); | 
 |   } | 
 |   if (MO->isKill() && !LRQ.isKill()) { | 
 |     report("Live range continues after kill flag", MO, MONum); | 
 |     report_context_liverange(LR); | 
 |     report_context_vreg_regunit(VRegOrUnit); | 
 |     if (LaneMask.any()) | 
 |       report_context_lanemask(LaneMask); | 
 |     report_context(UseIdx); | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, | 
 |     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, | 
 |     LaneBitmask LaneMask) { | 
 |   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { | 
 |     assert(VNI && "NULL valno is not allowed"); | 
 |     if (VNI->def != DefIdx) { | 
 |       report("Inconsistent valno->def", MO, MONum); | 
 |       report_context_liverange(LR); | 
 |       report_context_vreg_regunit(VRegOrUnit); | 
 |       if (LaneMask.any()) | 
 |         report_context_lanemask(LaneMask); | 
 |       report_context(*VNI); | 
 |       report_context(DefIdx); | 
 |     } | 
 |   } else { | 
 |     report("No live segment at def", MO, MONum); | 
 |     report_context_liverange(LR); | 
 |     report_context_vreg_regunit(VRegOrUnit); | 
 |     if (LaneMask.any()) | 
 |       report_context_lanemask(LaneMask); | 
 |     report_context(DefIdx); | 
 |   } | 
 |   // Check that, if the dead def flag is present, LiveInts agree. | 
 |   if (MO->isDead()) { | 
 |     LiveQueryResult LRQ = LR.Query(DefIdx); | 
 |     if (!LRQ.isDeadDef()) { | 
 |       // In case of physregs we can have a non-dead definition on another | 
 |       // operand. | 
 |       bool otherDef = false; | 
 |       if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { | 
 |         const MachineInstr &MI = *MO->getParent(); | 
 |         for (const MachineOperand &MO : MI.operands()) { | 
 |           if (!MO.isReg() || !MO.isDef() || MO.isDead()) | 
 |             continue; | 
 |           unsigned Reg = MO.getReg(); | 
 |           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { | 
 |             if (*Units == VRegOrUnit) { | 
 |               otherDef = true; | 
 |               break; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       if (!otherDef) { | 
 |         report("Live range continues after dead def flag", MO, MONum); | 
 |         report_context_liverange(LR); | 
 |         report_context_vreg_regunit(VRegOrUnit); | 
 |         if (LaneMask.any()) | 
 |           report_context_lanemask(LaneMask); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { | 
 |   const MachineInstr *MI = MO->getParent(); | 
 |   const unsigned Reg = MO->getReg(); | 
 |  | 
 |   // Both use and def operands can read a register. | 
 |   if (MO->readsReg()) { | 
 |     if (MO->isKill()) | 
 |       addRegWithSubRegs(regsKilled, Reg); | 
 |  | 
 |     // Check that LiveVars knows this kill. | 
 |     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |         MO->isKill()) { | 
 |       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); | 
 |       if (!is_contained(VI.Kills, MI)) | 
 |         report("Kill missing from LiveVariables", MO, MONum); | 
 |     } | 
 |  | 
 |     // Check LiveInts liveness and kill. | 
 |     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { | 
 |       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); | 
 |       // Check the cached regunit intervals. | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { | 
 |         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { | 
 |           if (MRI->isReservedRegUnit(*Units)) | 
 |             continue; | 
 |           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) | 
 |             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); | 
 |         } | 
 |       } | 
 |  | 
 |       if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
 |         if (LiveInts->hasInterval(Reg)) { | 
 |           // This is a virtual register interval. | 
 |           const LiveInterval &LI = LiveInts->getInterval(Reg); | 
 |           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); | 
 |  | 
 |           if (LI.hasSubRanges() && !MO->isDef()) { | 
 |             unsigned SubRegIdx = MO->getSubReg(); | 
 |             LaneBitmask MOMask = SubRegIdx != 0 | 
 |                                ? TRI->getSubRegIndexLaneMask(SubRegIdx) | 
 |                                : MRI->getMaxLaneMaskForVReg(Reg); | 
 |             LaneBitmask LiveInMask; | 
 |             for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
 |               if ((MOMask & SR.LaneMask).none()) | 
 |                 continue; | 
 |               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); | 
 |               LiveQueryResult LRQ = SR.Query(UseIdx); | 
 |               if (LRQ.valueIn()) | 
 |                 LiveInMask |= SR.LaneMask; | 
 |             } | 
 |             // At least parts of the register has to be live at the use. | 
 |             if ((LiveInMask & MOMask).none()) { | 
 |               report("No live subrange at use", MO, MONum); | 
 |               report_context(LI); | 
 |               report_context(UseIdx); | 
 |             } | 
 |           } | 
 |         } else { | 
 |           report("Virtual register has no live interval", MO, MONum); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Use of a dead register. | 
 |     if (!regsLive.count(Reg)) { | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |         // Reserved registers may be used even when 'dead'. | 
 |         bool Bad = !isReserved(Reg); | 
 |         // We are fine if just any subregister has a defined value. | 
 |         if (Bad) { | 
 |           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); | 
 |                ++SubRegs) { | 
 |             if (regsLive.count(*SubRegs)) { | 
 |               Bad = false; | 
 |               break; | 
 |             } | 
 |           } | 
 |         } | 
 |         // If there is an additional implicit-use of a super register we stop | 
 |         // here. By definition we are fine if the super register is not | 
 |         // (completely) dead, if the complete super register is dead we will | 
 |         // get a report for its operand. | 
 |         if (Bad) { | 
 |           for (const MachineOperand &MOP : MI->uses()) { | 
 |             if (!MOP.isReg()) | 
 |               continue; | 
 |             if (!MOP.isImplicit()) | 
 |               continue; | 
 |             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); | 
 |                  ++SubRegs) { | 
 |               if (*SubRegs == Reg) { | 
 |                 Bad = false; | 
 |                 break; | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |         if (Bad) | 
 |           report("Using an undefined physical register", MO, MONum); | 
 |       } else if (MRI->def_empty(Reg)) { | 
 |         report("Reading virtual register without a def", MO, MONum); | 
 |       } else { | 
 |         BBInfo &MInfo = MBBInfoMap[MI->getParent()]; | 
 |         // We don't know which virtual registers are live in, so only complain | 
 |         // if vreg was killed in this MBB. Otherwise keep track of vregs that | 
 |         // must be live in. PHI instructions are handled separately. | 
 |         if (MInfo.regsKilled.count(Reg)) | 
 |           report("Using a killed virtual register", MO, MONum); | 
 |         else if (!MI->isPHI()) | 
 |           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (MO->isDef()) { | 
 |     // Register defined. | 
 |     // TODO: verify that earlyclobber ops are not used. | 
 |     if (MO->isDead()) | 
 |       addRegWithSubRegs(regsDead, Reg); | 
 |     else | 
 |       addRegWithSubRegs(regsDefined, Reg); | 
 |  | 
 |     // Verify SSA form. | 
 |     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |         std::next(MRI->def_begin(Reg)) != MRI->def_end()) | 
 |       report("Multiple virtual register defs in SSA form", MO, MONum); | 
 |  | 
 |     // Check LiveInts for a live segment, but only for virtual registers. | 
 |     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { | 
 |       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); | 
 |       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); | 
 |  | 
 |       if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
 |         if (LiveInts->hasInterval(Reg)) { | 
 |           const LiveInterval &LI = LiveInts->getInterval(Reg); | 
 |           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); | 
 |  | 
 |           if (LI.hasSubRanges()) { | 
 |             unsigned SubRegIdx = MO->getSubReg(); | 
 |             LaneBitmask MOMask = SubRegIdx != 0 | 
 |               ? TRI->getSubRegIndexLaneMask(SubRegIdx) | 
 |               : MRI->getMaxLaneMaskForVReg(Reg); | 
 |             for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
 |               if ((SR.LaneMask & MOMask).none()) | 
 |                 continue; | 
 |               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); | 
 |             } | 
 |           } | 
 |         } else { | 
 |           report("Virtual register has no Live interval", MO, MONum); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} | 
 |  | 
 | // This function gets called after visiting all instructions in a bundle. The | 
 | // argument points to the bundle header. | 
 | // Normal stand-alone instructions are also considered 'bundles', and this | 
 | // function is called for all of them. | 
 | void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { | 
 |   BBInfo &MInfo = MBBInfoMap[MI->getParent()]; | 
 |   set_union(MInfo.regsKilled, regsKilled); | 
 |   set_subtract(regsLive, regsKilled); regsKilled.clear(); | 
 |   // Kill any masked registers. | 
 |   while (!regMasks.empty()) { | 
 |     const uint32_t *Mask = regMasks.pop_back_val(); | 
 |     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) | 
 |       if (TargetRegisterInfo::isPhysicalRegister(*I) && | 
 |           MachineOperand::clobbersPhysReg(Mask, *I)) | 
 |         regsDead.push_back(*I); | 
 |   } | 
 |   set_subtract(regsLive, regsDead);   regsDead.clear(); | 
 |   set_union(regsLive, regsDefined);   regsDefined.clear(); | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { | 
 |   MBBInfoMap[MBB].regsLiveOut = regsLive; | 
 |   regsLive.clear(); | 
 |  | 
 |   if (Indexes) { | 
 |     SlotIndex stop = Indexes->getMBBEndIdx(MBB); | 
 |     if (!(stop > lastIndex)) { | 
 |       report("Block ends before last instruction index", MBB); | 
 |       errs() << "Block ends at " << stop | 
 |           << " last instruction was at " << lastIndex << '\n'; | 
 |     } | 
 |     lastIndex = stop; | 
 |   } | 
 | } | 
 |  | 
 | // Calculate the largest possible vregsPassed sets. These are the registers that | 
 | // can pass through an MBB live, but may not be live every time. It is assumed | 
 | // that all vregsPassed sets are empty before the call. | 
 | void MachineVerifier::calcRegsPassed() { | 
 |   // First push live-out regs to successors' vregsPassed. Remember the MBBs that | 
 |   // have any vregsPassed. | 
 |   SmallPtrSet<const MachineBasicBlock*, 8> todo; | 
 |   for (const auto &MBB : *MF) { | 
 |     BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |     if (!MInfo.reachable) | 
 |       continue; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), | 
 |            SuE = MBB.succ_end(); SuI != SuE; ++SuI) { | 
 |       BBInfo &SInfo = MBBInfoMap[*SuI]; | 
 |       if (SInfo.addPassed(MInfo.regsLiveOut)) | 
 |         todo.insert(*SuI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Iteratively push vregsPassed to successors. This will converge to the same | 
 |   // final state regardless of DenseSet iteration order. | 
 |   while (!todo.empty()) { | 
 |     const MachineBasicBlock *MBB = *todo.begin(); | 
 |     todo.erase(MBB); | 
 |     BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), | 
 |            SuE = MBB->succ_end(); SuI != SuE; ++SuI) { | 
 |       if (*SuI == MBB) | 
 |         continue; | 
 |       BBInfo &SInfo = MBBInfoMap[*SuI]; | 
 |       if (SInfo.addPassed(MInfo.vregsPassed)) | 
 |         todo.insert(*SuI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Calculate the set of virtual registers that must be passed through each basic | 
 | // block in order to satisfy the requirements of successor blocks. This is very | 
 | // similar to calcRegsPassed, only backwards. | 
 | void MachineVerifier::calcRegsRequired() { | 
 |   // First push live-in regs to predecessors' vregsRequired. | 
 |   SmallPtrSet<const MachineBasicBlock*, 8> todo; | 
 |   for (const auto &MBB : *MF) { | 
 |     BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), | 
 |            PrE = MBB.pred_end(); PrI != PrE; ++PrI) { | 
 |       BBInfo &PInfo = MBBInfoMap[*PrI]; | 
 |       if (PInfo.addRequired(MInfo.vregsLiveIn)) | 
 |         todo.insert(*PrI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Iteratively push vregsRequired to predecessors. This will converge to the | 
 |   // same final state regardless of DenseSet iteration order. | 
 |   while (!todo.empty()) { | 
 |     const MachineBasicBlock *MBB = *todo.begin(); | 
 |     todo.erase(MBB); | 
 |     BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), | 
 |            PrE = MBB->pred_end(); PrI != PrE; ++PrI) { | 
 |       if (*PrI == MBB) | 
 |         continue; | 
 |       BBInfo &SInfo = MBBInfoMap[*PrI]; | 
 |       if (SInfo.addRequired(MInfo.vregsRequired)) | 
 |         todo.insert(*PrI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Check PHI instructions at the beginning of MBB. It is assumed that | 
 | // calcRegsPassed has been run so BBInfo::isLiveOut is valid. | 
 | void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { | 
 |   BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |  | 
 |   SmallPtrSet<const MachineBasicBlock*, 8> seen; | 
 |   for (const MachineInstr &Phi : MBB) { | 
 |     if (!Phi.isPHI()) | 
 |       break; | 
 |     seen.clear(); | 
 |  | 
 |     const MachineOperand &MODef = Phi.getOperand(0); | 
 |     if (!MODef.isReg() || !MODef.isDef()) { | 
 |       report("Expected first PHI operand to be a register def", &MODef, 0); | 
 |       continue; | 
 |     } | 
 |     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || | 
 |         MODef.isEarlyClobber() || MODef.isDebug()) | 
 |       report("Unexpected flag on PHI operand", &MODef, 0); | 
 |     unsigned DefReg = MODef.getReg(); | 
 |     if (!TargetRegisterInfo::isVirtualRegister(DefReg)) | 
 |       report("Expected first PHI operand to be a virtual register", &MODef, 0); | 
 |  | 
 |     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { | 
 |       const MachineOperand &MO0 = Phi.getOperand(I); | 
 |       if (!MO0.isReg()) { | 
 |         report("Expected PHI operand to be a register", &MO0, I); | 
 |         continue; | 
 |       } | 
 |       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || | 
 |           MO0.isDebug() || MO0.isTied()) | 
 |         report("Unexpected flag on PHI operand", &MO0, I); | 
 |  | 
 |       const MachineOperand &MO1 = Phi.getOperand(I + 1); | 
 |       if (!MO1.isMBB()) { | 
 |         report("Expected PHI operand to be a basic block", &MO1, I + 1); | 
 |         continue; | 
 |       } | 
 |  | 
 |       const MachineBasicBlock &Pre = *MO1.getMBB(); | 
 |       if (!Pre.isSuccessor(&MBB)) { | 
 |         report("PHI input is not a predecessor block", &MO1, I + 1); | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (MInfo.reachable) { | 
 |         seen.insert(&Pre); | 
 |         BBInfo &PrInfo = MBBInfoMap[&Pre]; | 
 |         if (!MO0.isUndef() && PrInfo.reachable && | 
 |             !PrInfo.isLiveOut(MO0.getReg())) | 
 |           report("PHI operand is not live-out from predecessor", &MO0, I); | 
 |       } | 
 |     } | 
 |  | 
 |     // Did we see all predecessors? | 
 |     if (MInfo.reachable) { | 
 |       for (MachineBasicBlock *Pred : MBB.predecessors()) { | 
 |         if (!seen.count(Pred)) { | 
 |           report("Missing PHI operand", &Phi); | 
 |           errs() << printMBBReference(*Pred) | 
 |                  << " is a predecessor according to the CFG.\n"; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineFunctionAfter() { | 
 |   calcRegsPassed(); | 
 |  | 
 |   for (const MachineBasicBlock &MBB : *MF) | 
 |     checkPHIOps(MBB); | 
 |  | 
 |   // Now check liveness info if available | 
 |   calcRegsRequired(); | 
 |  | 
 |   // Check for killed virtual registers that should be live out. | 
 |   for (const auto &MBB : *MF) { | 
 |     BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |     for (RegSet::iterator | 
 |          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; | 
 |          ++I) | 
 |       if (MInfo.regsKilled.count(*I)) { | 
 |         report("Virtual register killed in block, but needed live out.", &MBB); | 
 |         errs() << "Virtual register " << printReg(*I) | 
 |                << " is used after the block.\n"; | 
 |       } | 
 |   } | 
 |  | 
 |   if (!MF->empty()) { | 
 |     BBInfo &MInfo = MBBInfoMap[&MF->front()]; | 
 |     for (RegSet::iterator | 
 |          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; | 
 |          ++I) { | 
 |       report("Virtual register defs don't dominate all uses.", MF); | 
 |       report_context_vreg(*I); | 
 |     } | 
 |   } | 
 |  | 
 |   if (LiveVars) | 
 |     verifyLiveVariables(); | 
 |   if (LiveInts) | 
 |     verifyLiveIntervals(); | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveVariables() { | 
 |   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); | 
 |   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
 |     unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
 |     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); | 
 |     for (const auto &MBB : *MF) { | 
 |       BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |  | 
 |       // Our vregsRequired should be identical to LiveVariables' AliveBlocks | 
 |       if (MInfo.vregsRequired.count(Reg)) { | 
 |         if (!VI.AliveBlocks.test(MBB.getNumber())) { | 
 |           report("LiveVariables: Block missing from AliveBlocks", &MBB); | 
 |           errs() << "Virtual register " << printReg(Reg) | 
 |                  << " must be live through the block.\n"; | 
 |         } | 
 |       } else { | 
 |         if (VI.AliveBlocks.test(MBB.getNumber())) { | 
 |           report("LiveVariables: Block should not be in AliveBlocks", &MBB); | 
 |           errs() << "Virtual register " << printReg(Reg) | 
 |                  << " is not needed live through the block.\n"; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveIntervals() { | 
 |   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); | 
 |   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
 |     unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
 |  | 
 |     // Spilling and splitting may leave unused registers around. Skip them. | 
 |     if (MRI->reg_nodbg_empty(Reg)) | 
 |       continue; | 
 |  | 
 |     if (!LiveInts->hasInterval(Reg)) { | 
 |       report("Missing live interval for virtual register", MF); | 
 |       errs() << printReg(Reg, TRI) << " still has defs or uses\n"; | 
 |       continue; | 
 |     } | 
 |  | 
 |     const LiveInterval &LI = LiveInts->getInterval(Reg); | 
 |     assert(Reg == LI.reg && "Invalid reg to interval mapping"); | 
 |     verifyLiveInterval(LI); | 
 |   } | 
 |  | 
 |   // Verify all the cached regunit intervals. | 
 |   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) | 
 |     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) | 
 |       verifyLiveRange(*LR, i); | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, | 
 |                                            const VNInfo *VNI, unsigned Reg, | 
 |                                            LaneBitmask LaneMask) { | 
 |   if (VNI->isUnused()) | 
 |     return; | 
 |  | 
 |   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); | 
 |  | 
 |   if (!DefVNI) { | 
 |     report("Value not live at VNInfo def and not marked unused", MF); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(*VNI); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (DefVNI != VNI) { | 
 |     report("Live segment at def has different VNInfo", MF); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(*VNI); | 
 |     return; | 
 |   } | 
 |  | 
 |   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); | 
 |   if (!MBB) { | 
 |     report("Invalid VNInfo definition index", MF); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(*VNI); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (VNI->isPHIDef()) { | 
 |     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { | 
 |       report("PHIDef VNInfo is not defined at MBB start", MBB); | 
 |       report_context(LR, Reg, LaneMask); | 
 |       report_context(*VNI); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Non-PHI def. | 
 |   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); | 
 |   if (!MI) { | 
 |     report("No instruction at VNInfo def index", MBB); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(*VNI); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (Reg != 0) { | 
 |     bool hasDef = false; | 
 |     bool isEarlyClobber = false; | 
 |     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { | 
 |       if (!MOI->isReg() || !MOI->isDef()) | 
 |         continue; | 
 |       if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
 |         if (MOI->getReg() != Reg) | 
 |           continue; | 
 |       } else { | 
 |         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || | 
 |             !TRI->hasRegUnit(MOI->getReg(), Reg)) | 
 |           continue; | 
 |       } | 
 |       if (LaneMask.any() && | 
 |           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) | 
 |         continue; | 
 |       hasDef = true; | 
 |       if (MOI->isEarlyClobber()) | 
 |         isEarlyClobber = true; | 
 |     } | 
 |  | 
 |     if (!hasDef) { | 
 |       report("Defining instruction does not modify register", MI); | 
 |       report_context(LR, Reg, LaneMask); | 
 |       report_context(*VNI); | 
 |     } | 
 |  | 
 |     // Early clobber defs begin at USE slots, but other defs must begin at | 
 |     // DEF slots. | 
 |     if (isEarlyClobber) { | 
 |       if (!VNI->def.isEarlyClobber()) { | 
 |         report("Early clobber def must be at an early-clobber slot", MBB); | 
 |         report_context(LR, Reg, LaneMask); | 
 |         report_context(*VNI); | 
 |       } | 
 |     } else if (!VNI->def.isRegister()) { | 
 |       report("Non-PHI, non-early clobber def must be at a register slot", MBB); | 
 |       report_context(LR, Reg, LaneMask); | 
 |       report_context(*VNI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, | 
 |                                              const LiveRange::const_iterator I, | 
 |                                              unsigned Reg, LaneBitmask LaneMask) | 
 | { | 
 |   const LiveRange::Segment &S = *I; | 
 |   const VNInfo *VNI = S.valno; | 
 |   assert(VNI && "Live segment has no valno"); | 
 |  | 
 |   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { | 
 |     report("Foreign valno in live segment", MF); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(S); | 
 |     report_context(*VNI); | 
 |   } | 
 |  | 
 |   if (VNI->isUnused()) { | 
 |     report("Live segment valno is marked unused", MF); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(S); | 
 |   } | 
 |  | 
 |   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); | 
 |   if (!MBB) { | 
 |     report("Bad start of live segment, no basic block", MF); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(S); | 
 |     return; | 
 |   } | 
 |   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); | 
 |   if (S.start != MBBStartIdx && S.start != VNI->def) { | 
 |     report("Live segment must begin at MBB entry or valno def", MBB); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(S); | 
 |   } | 
 |  | 
 |   const MachineBasicBlock *EndMBB = | 
 |     LiveInts->getMBBFromIndex(S.end.getPrevSlot()); | 
 |   if (!EndMBB) { | 
 |     report("Bad end of live segment, no basic block", MF); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(S); | 
 |     return; | 
 |   } | 
 |  | 
 |   // No more checks for live-out segments. | 
 |   if (S.end == LiveInts->getMBBEndIdx(EndMBB)) | 
 |     return; | 
 |  | 
 |   // RegUnit intervals are allowed dead phis. | 
 |   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && | 
 |       S.start == VNI->def && S.end == VNI->def.getDeadSlot()) | 
 |     return; | 
 |  | 
 |   // The live segment is ending inside EndMBB | 
 |   const MachineInstr *MI = | 
 |     LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); | 
 |   if (!MI) { | 
 |     report("Live segment doesn't end at a valid instruction", EndMBB); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(S); | 
 |     return; | 
 |   } | 
 |  | 
 |   // The block slot must refer to a basic block boundary. | 
 |   if (S.end.isBlock()) { | 
 |     report("Live segment ends at B slot of an instruction", EndMBB); | 
 |     report_context(LR, Reg, LaneMask); | 
 |     report_context(S); | 
 |   } | 
 |  | 
 |   if (S.end.isDead()) { | 
 |     // Segment ends on the dead slot. | 
 |     // That means there must be a dead def. | 
 |     if (!SlotIndex::isSameInstr(S.start, S.end)) { | 
 |       report("Live segment ending at dead slot spans instructions", EndMBB); | 
 |       report_context(LR, Reg, LaneMask); | 
 |       report_context(S); | 
 |     } | 
 |   } | 
 |  | 
 |   // A live segment can only end at an early-clobber slot if it is being | 
 |   // redefined by an early-clobber def. | 
 |   if (S.end.isEarlyClobber()) { | 
 |     if (I+1 == LR.end() || (I+1)->start != S.end) { | 
 |       report("Live segment ending at early clobber slot must be " | 
 |              "redefined by an EC def in the same instruction", EndMBB); | 
 |       report_context(LR, Reg, LaneMask); | 
 |       report_context(S); | 
 |     } | 
 |   } | 
 |  | 
 |   // The following checks only apply to virtual registers. Physreg liveness | 
 |   // is too weird to check. | 
 |   if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
 |     // A live segment can end with either a redefinition, a kill flag on a | 
 |     // use, or a dead flag on a def. | 
 |     bool hasRead = false; | 
 |     bool hasSubRegDef = false; | 
 |     bool hasDeadDef = false; | 
 |     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { | 
 |       if (!MOI->isReg() || MOI->getReg() != Reg) | 
 |         continue; | 
 |       unsigned Sub = MOI->getSubReg(); | 
 |       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) | 
 |                                  : LaneBitmask::getAll(); | 
 |       if (MOI->isDef()) { | 
 |         if (Sub != 0) { | 
 |           hasSubRegDef = true; | 
 |           // An operand %0:sub0 reads %0:sub1..n. Invert the lane | 
 |           // mask for subregister defs. Read-undef defs will be handled by | 
 |           // readsReg below. | 
 |           SLM = ~SLM; | 
 |         } | 
 |         if (MOI->isDead()) | 
 |           hasDeadDef = true; | 
 |       } | 
 |       if (LaneMask.any() && (LaneMask & SLM).none()) | 
 |         continue; | 
 |       if (MOI->readsReg()) | 
 |         hasRead = true; | 
 |     } | 
 |     if (S.end.isDead()) { | 
 |       // Make sure that the corresponding machine operand for a "dead" live | 
 |       // range has the dead flag. We cannot perform this check for subregister | 
 |       // liveranges as partially dead values are allowed. | 
 |       if (LaneMask.none() && !hasDeadDef) { | 
 |         report("Instruction ending live segment on dead slot has no dead flag", | 
 |                MI); | 
 |         report_context(LR, Reg, LaneMask); | 
 |         report_context(S); | 
 |       } | 
 |     } else { | 
 |       if (!hasRead) { | 
 |         // When tracking subregister liveness, the main range must start new | 
 |         // values on partial register writes, even if there is no read. | 
 |         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || | 
 |             !hasSubRegDef) { | 
 |           report("Instruction ending live segment doesn't read the register", | 
 |                  MI); | 
 |           report_context(LR, Reg, LaneMask); | 
 |           report_context(S); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Now check all the basic blocks in this live segment. | 
 |   MachineFunction::const_iterator MFI = MBB->getIterator(); | 
 |   // Is this live segment the beginning of a non-PHIDef VN? | 
 |   if (S.start == VNI->def && !VNI->isPHIDef()) { | 
 |     // Not live-in to any blocks. | 
 |     if (MBB == EndMBB) | 
 |       return; | 
 |     // Skip this block. | 
 |     ++MFI; | 
 |   } | 
 |   while (true) { | 
 |     assert(LiveInts->isLiveInToMBB(LR, &*MFI)); | 
 |     // We don't know how to track physregs into a landing pad. | 
 |     if (!TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |         MFI->isEHPad()) { | 
 |       if (&*MFI == EndMBB) | 
 |         break; | 
 |       ++MFI; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Is VNI a PHI-def in the current block? | 
 |     bool IsPHI = VNI->isPHIDef() && | 
 |       VNI->def == LiveInts->getMBBStartIdx(&*MFI); | 
 |  | 
 |     // Check that VNI is live-out of all predecessors. | 
 |     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), | 
 |          PE = MFI->pred_end(); PI != PE; ++PI) { | 
 |       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); | 
 |       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); | 
 |  | 
 |       // All predecessors must have a live-out value. However for a phi | 
 |       // instruction with subregister intervals | 
 |       // only one of the subregisters (not necessarily the current one) needs to | 
 |       // be defined. | 
 |       if (!PVNI && (LaneMask.none() || !IsPHI) ) { | 
 |         report("Register not marked live out of predecessor", *PI); | 
 |         report_context(LR, Reg, LaneMask); | 
 |         report_context(*VNI); | 
 |         errs() << " live into " << printMBBReference(*MFI) << '@' | 
 |                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " | 
 |                << PEnd << '\n'; | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Only PHI-defs can take different predecessor values. | 
 |       if (!IsPHI && PVNI != VNI) { | 
 |         report("Different value live out of predecessor", *PI); | 
 |         report_context(LR, Reg, LaneMask); | 
 |         errs() << "Valno #" << PVNI->id << " live out of " | 
 |                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" | 
 |                << VNI->id << " live into " << printMBBReference(*MFI) << '@' | 
 |                << LiveInts->getMBBStartIdx(&*MFI) << '\n'; | 
 |       } | 
 |     } | 
 |     if (&*MFI == EndMBB) | 
 |       break; | 
 |     ++MFI; | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, | 
 |                                       LaneBitmask LaneMask) { | 
 |   for (const VNInfo *VNI : LR.valnos) | 
 |     verifyLiveRangeValue(LR, VNI, Reg, LaneMask); | 
 |  | 
 |   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) | 
 |     verifyLiveRangeSegment(LR, I, Reg, LaneMask); | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { | 
 |   unsigned Reg = LI.reg; | 
 |   assert(TargetRegisterInfo::isVirtualRegister(Reg)); | 
 |   verifyLiveRange(LI, Reg); | 
 |  | 
 |   LaneBitmask Mask; | 
 |   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); | 
 |   for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
 |     if ((Mask & SR.LaneMask).any()) { | 
 |       report("Lane masks of sub ranges overlap in live interval", MF); | 
 |       report_context(LI); | 
 |     } | 
 |     if ((SR.LaneMask & ~MaxMask).any()) { | 
 |       report("Subrange lanemask is invalid", MF); | 
 |       report_context(LI); | 
 |     } | 
 |     if (SR.empty()) { | 
 |       report("Subrange must not be empty", MF); | 
 |       report_context(SR, LI.reg, SR.LaneMask); | 
 |     } | 
 |     Mask |= SR.LaneMask; | 
 |     verifyLiveRange(SR, LI.reg, SR.LaneMask); | 
 |     if (!LI.covers(SR)) { | 
 |       report("A Subrange is not covered by the main range", MF); | 
 |       report_context(LI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Check the LI only has one connected component. | 
 |   ConnectedVNInfoEqClasses ConEQ(*LiveInts); | 
 |   unsigned NumComp = ConEQ.Classify(LI); | 
 |   if (NumComp > 1) { | 
 |     report("Multiple connected components in live interval", MF); | 
 |     report_context(LI); | 
 |     for (unsigned comp = 0; comp != NumComp; ++comp) { | 
 |       errs() << comp << ": valnos"; | 
 |       for (LiveInterval::const_vni_iterator I = LI.vni_begin(), | 
 |            E = LI.vni_end(); I!=E; ++I) | 
 |         if (comp == ConEQ.getEqClass(*I)) | 
 |           errs() << ' ' << (*I)->id; | 
 |       errs() << '\n'; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 |   // FrameSetup and FrameDestroy can have zero adjustment, so using a single | 
 |   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the | 
 |   // value is zero. | 
 |   // We use a bool plus an integer to capture the stack state. | 
 |   struct StackStateOfBB { | 
 |     StackStateOfBB() = default; | 
 |     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : | 
 |       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), | 
 |       ExitIsSetup(ExitSetup) {} | 
 |  | 
 |     // Can be negative, which means we are setting up a frame. | 
 |     int EntryValue = 0; | 
 |     int ExitValue = 0; | 
 |     bool EntryIsSetup = false; | 
 |     bool ExitIsSetup = false; | 
 |   }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | /// Make sure on every path through the CFG, a FrameSetup <n> is always followed | 
 | /// by a FrameDestroy <n>, stack adjustments are identical on all | 
 | /// CFG edges to a merge point, and frame is destroyed at end of a return block. | 
 | void MachineVerifier::verifyStackFrame() { | 
 |   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode(); | 
 |   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); | 
 |   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) | 
 |     return; | 
 |  | 
 |   SmallVector<StackStateOfBB, 8> SPState; | 
 |   SPState.resize(MF->getNumBlockIDs()); | 
 |   df_iterator_default_set<const MachineBasicBlock*> Reachable; | 
 |  | 
 |   // Visit the MBBs in DFS order. | 
 |   for (df_ext_iterator<const MachineFunction *, | 
 |                        df_iterator_default_set<const MachineBasicBlock *>> | 
 |        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); | 
 |        DFI != DFE; ++DFI) { | 
 |     const MachineBasicBlock *MBB = *DFI; | 
 |  | 
 |     StackStateOfBB BBState; | 
 |     // Check the exit state of the DFS stack predecessor. | 
 |     if (DFI.getPathLength() >= 2) { | 
 |       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); | 
 |       assert(Reachable.count(StackPred) && | 
 |              "DFS stack predecessor is already visited.\n"); | 
 |       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; | 
 |       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; | 
 |       BBState.ExitValue = BBState.EntryValue; | 
 |       BBState.ExitIsSetup = BBState.EntryIsSetup; | 
 |     } | 
 |  | 
 |     // Update stack state by checking contents of MBB. | 
 |     for (const auto &I : *MBB) { | 
 |       if (I.getOpcode() == FrameSetupOpcode) { | 
 |         if (BBState.ExitIsSetup) | 
 |           report("FrameSetup is after another FrameSetup", &I); | 
 |         BBState.ExitValue -= TII->getFrameTotalSize(I); | 
 |         BBState.ExitIsSetup = true; | 
 |       } | 
 |  | 
 |       if (I.getOpcode() == FrameDestroyOpcode) { | 
 |         int Size = TII->getFrameTotalSize(I); | 
 |         if (!BBState.ExitIsSetup) | 
 |           report("FrameDestroy is not after a FrameSetup", &I); | 
 |         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : | 
 |                                                BBState.ExitValue; | 
 |         if (BBState.ExitIsSetup && AbsSPAdj != Size) { | 
 |           report("FrameDestroy <n> is after FrameSetup <m>", &I); | 
 |           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" | 
 |               << AbsSPAdj << ">.\n"; | 
 |         } | 
 |         BBState.ExitValue += Size; | 
 |         BBState.ExitIsSetup = false; | 
 |       } | 
 |     } | 
 |     SPState[MBB->getNumber()] = BBState; | 
 |  | 
 |     // Make sure the exit state of any predecessor is consistent with the entry | 
 |     // state. | 
 |     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), | 
 |          E = MBB->pred_end(); I != E; ++I) { | 
 |       if (Reachable.count(*I) && | 
 |           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || | 
 |            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { | 
 |         report("The exit stack state of a predecessor is inconsistent.", MBB); | 
 |         errs() << "Predecessor " << printMBBReference(*(*I)) | 
 |                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue | 
 |                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " | 
 |                << printMBBReference(*MBB) << " has entry state (" | 
 |                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; | 
 |       } | 
 |     } | 
 |  | 
 |     // Make sure the entry state of any successor is consistent with the exit | 
 |     // state. | 
 |     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), | 
 |          E = MBB->succ_end(); I != E; ++I) { | 
 |       if (Reachable.count(*I) && | 
 |           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || | 
 |            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { | 
 |         report("The entry stack state of a successor is inconsistent.", MBB); | 
 |         errs() << "Successor " << printMBBReference(*(*I)) | 
 |                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue | 
 |                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " | 
 |                << printMBBReference(*MBB) << " has exit state (" | 
 |                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; | 
 |       } | 
 |     } | 
 |  | 
 |     // Make sure a basic block with return ends with zero stack adjustment. | 
 |     if (!MBB->empty() && MBB->back().isReturn()) { | 
 |       if (BBState.ExitIsSetup) | 
 |         report("A return block ends with a FrameSetup.", MBB); | 
 |       if (BBState.ExitValue) | 
 |         report("A return block ends with a nonzero stack adjustment.", MBB); | 
 |     } | 
 |   } | 
 | } |