|  | //===- Instructions.cpp - Implement the LLVM instructions -----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements all of the non-inline methods for the LLVM instruction | 
|  | // classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "LLVMContextImpl.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/AtomicOrdering.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            AllocaInst Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | Optional<uint64_t> | 
|  | AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { | 
|  | uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType()); | 
|  | if (isArrayAllocation()) { | 
|  | auto C = dyn_cast<ConstantInt>(getArraySize()); | 
|  | if (!C) | 
|  | return None; | 
|  | Size *= C->getZExtValue(); | 
|  | } | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            CallSite Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | User::op_iterator CallSite::getCallee() const { | 
|  | Instruction *II(getInstruction()); | 
|  | return isCall() | 
|  | ? cast<CallInst>(II)->op_end() - 1 // Skip Callee | 
|  | : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            TerminatorInst Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | unsigned TerminatorInst::getNumSuccessors() const { | 
|  | switch (getOpcode()) { | 
|  | #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \ | 
|  | case Instruction::OPC:                                                       \ | 
|  | return static_cast<const CLASS *>(this)->getNumSuccessors(); | 
|  | #include "llvm/IR/Instruction.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("not a terminator"); | 
|  | } | 
|  |  | 
|  | BasicBlock *TerminatorInst::getSuccessor(unsigned idx) const { | 
|  | switch (getOpcode()) { | 
|  | #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \ | 
|  | case Instruction::OPC:                                                       \ | 
|  | return static_cast<const CLASS *>(this)->getSuccessor(idx); | 
|  | #include "llvm/IR/Instruction.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("not a terminator"); | 
|  | } | 
|  |  | 
|  | void TerminatorInst::setSuccessor(unsigned idx, BasicBlock *B) { | 
|  | switch (getOpcode()) { | 
|  | #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \ | 
|  | case Instruction::OPC:                                                       \ | 
|  | return static_cast<CLASS *>(this)->setSuccessor(idx, B); | 
|  | #include "llvm/IR/Instruction.def" | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("not a terminator"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              SelectInst Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// areInvalidOperands - Return a string if the specified operands are invalid | 
|  | /// for a select operation, otherwise return null. | 
|  | const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { | 
|  | if (Op1->getType() != Op2->getType()) | 
|  | return "both values to select must have same type"; | 
|  |  | 
|  | if (Op1->getType()->isTokenTy()) | 
|  | return "select values cannot have token type"; | 
|  |  | 
|  | if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { | 
|  | // Vector select. | 
|  | if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) | 
|  | return "vector select condition element type must be i1"; | 
|  | VectorType *ET = dyn_cast<VectorType>(Op1->getType()); | 
|  | if (!ET) | 
|  | return "selected values for vector select must be vectors"; | 
|  | if (ET->getNumElements() != VT->getNumElements()) | 
|  | return "vector select requires selected vectors to have " | 
|  | "the same vector length as select condition"; | 
|  | } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { | 
|  | return "select condition must be i1 or <n x i1>"; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                               PHINode Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | PHINode::PHINode(const PHINode &PN) | 
|  | : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), | 
|  | ReservedSpace(PN.getNumOperands()) { | 
|  | allocHungoffUses(PN.getNumOperands()); | 
|  | std::copy(PN.op_begin(), PN.op_end(), op_begin()); | 
|  | std::copy(PN.block_begin(), PN.block_end(), block_begin()); | 
|  | SubclassOptionalData = PN.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | // removeIncomingValue - Remove an incoming value.  This is useful if a | 
|  | // predecessor basic block is deleted. | 
|  | Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { | 
|  | Value *Removed = getIncomingValue(Idx); | 
|  |  | 
|  | // Move everything after this operand down. | 
|  | // | 
|  | // FIXME: we could just swap with the end of the list, then erase.  However, | 
|  | // clients might not expect this to happen.  The code as it is thrashes the | 
|  | // use/def lists, which is kinda lame. | 
|  | std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); | 
|  | std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); | 
|  |  | 
|  | // Nuke the last value. | 
|  | Op<-1>().set(nullptr); | 
|  | setNumHungOffUseOperands(getNumOperands() - 1); | 
|  |  | 
|  | // If the PHI node is dead, because it has zero entries, nuke it now. | 
|  | if (getNumOperands() == 0 && DeletePHIIfEmpty) { | 
|  | // If anyone is using this PHI, make them use a dummy value instead... | 
|  | replaceAllUsesWith(UndefValue::get(getType())); | 
|  | eraseFromParent(); | 
|  | } | 
|  | return Removed; | 
|  | } | 
|  |  | 
|  | /// growOperands - grow operands - This grows the operand list in response | 
|  | /// to a push_back style of operation.  This grows the number of ops by 1.5 | 
|  | /// times. | 
|  | /// | 
|  | void PHINode::growOperands() { | 
|  | unsigned e = getNumOperands(); | 
|  | unsigned NumOps = e + e / 2; | 
|  | if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common. | 
|  |  | 
|  | ReservedSpace = NumOps; | 
|  | growHungoffUses(ReservedSpace, /* IsPhi */ true); | 
|  | } | 
|  |  | 
|  | /// hasConstantValue - If the specified PHI node always merges together the same | 
|  | /// value, return the value, otherwise return null. | 
|  | Value *PHINode::hasConstantValue() const { | 
|  | // Exploit the fact that phi nodes always have at least one entry. | 
|  | Value *ConstantValue = getIncomingValue(0); | 
|  | for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) | 
|  | if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { | 
|  | if (ConstantValue != this) | 
|  | return nullptr; // Incoming values not all the same. | 
|  | // The case where the first value is this PHI. | 
|  | ConstantValue = getIncomingValue(i); | 
|  | } | 
|  | if (ConstantValue == this) | 
|  | return UndefValue::get(getType()); | 
|  | return ConstantValue; | 
|  | } | 
|  |  | 
|  | /// hasConstantOrUndefValue - Whether the specified PHI node always merges | 
|  | /// together the same value, assuming that undefs result in the same value as | 
|  | /// non-undefs. | 
|  | /// Unlike \ref hasConstantValue, this does not return a value because the | 
|  | /// unique non-undef incoming value need not dominate the PHI node. | 
|  | bool PHINode::hasConstantOrUndefValue() const { | 
|  | Value *ConstantValue = nullptr; | 
|  | for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { | 
|  | Value *Incoming = getIncomingValue(i); | 
|  | if (Incoming != this && !isa<UndefValue>(Incoming)) { | 
|  | if (ConstantValue && ConstantValue != Incoming) | 
|  | return false; | 
|  | ConstantValue = Incoming; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       LandingPadInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, | 
|  | const Twine &NameStr, Instruction *InsertBefore) | 
|  | : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { | 
|  | init(NumReservedValues, NameStr); | 
|  | } | 
|  |  | 
|  | LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, | 
|  | const Twine &NameStr, BasicBlock *InsertAtEnd) | 
|  | : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { | 
|  | init(NumReservedValues, NameStr); | 
|  | } | 
|  |  | 
|  | LandingPadInst::LandingPadInst(const LandingPadInst &LP) | 
|  | : Instruction(LP.getType(), Instruction::LandingPad, nullptr, | 
|  | LP.getNumOperands()), | 
|  | ReservedSpace(LP.getNumOperands()) { | 
|  | allocHungoffUses(LP.getNumOperands()); | 
|  | Use *OL = getOperandList(); | 
|  | const Use *InOL = LP.getOperandList(); | 
|  | for (unsigned I = 0, E = ReservedSpace; I != E; ++I) | 
|  | OL[I] = InOL[I]; | 
|  |  | 
|  | setCleanup(LP.isCleanup()); | 
|  | } | 
|  |  | 
|  | LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, | 
|  | const Twine &NameStr, | 
|  | Instruction *InsertBefore) { | 
|  | return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); | 
|  | } | 
|  |  | 
|  | LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, | 
|  | const Twine &NameStr, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { | 
|  | ReservedSpace = NumReservedValues; | 
|  | setNumHungOffUseOperands(0); | 
|  | allocHungoffUses(ReservedSpace); | 
|  | setName(NameStr); | 
|  | setCleanup(false); | 
|  | } | 
|  |  | 
|  | /// growOperands - grow operands - This grows the operand list in response to a | 
|  | /// push_back style of operation. This grows the number of ops by 2 times. | 
|  | void LandingPadInst::growOperands(unsigned Size) { | 
|  | unsigned e = getNumOperands(); | 
|  | if (ReservedSpace >= e + Size) return; | 
|  | ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; | 
|  | growHungoffUses(ReservedSpace); | 
|  | } | 
|  |  | 
|  | void LandingPadInst::addClause(Constant *Val) { | 
|  | unsigned OpNo = getNumOperands(); | 
|  | growOperands(1); | 
|  | assert(OpNo < ReservedSpace && "Growing didn't work!"); | 
|  | setNumHungOffUseOperands(getNumOperands() + 1); | 
|  | getOperandList()[OpNo] = Val; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        CallInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, | 
|  | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { | 
|  | this->FTy = FTy; | 
|  | assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && | 
|  | "NumOperands not set up?"); | 
|  | Op<-1>() = Func; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | assert((Args.size() == FTy->getNumParams() || | 
|  | (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && | 
|  | "Calling a function with bad signature!"); | 
|  |  | 
|  | for (unsigned i = 0; i != Args.size(); ++i) | 
|  | assert((i >= FTy->getNumParams() || | 
|  | FTy->getParamType(i) == Args[i]->getType()) && | 
|  | "Calling a function with a bad signature!"); | 
|  | #endif | 
|  |  | 
|  | std::copy(Args.begin(), Args.end(), op_begin()); | 
|  |  | 
|  | auto It = populateBundleOperandInfos(Bundles, Args.size()); | 
|  | (void)It; | 
|  | assert(It + 1 == op_end() && "Should add up!"); | 
|  |  | 
|  | setName(NameStr); | 
|  | } | 
|  |  | 
|  | void CallInst::init(Value *Func, const Twine &NameStr) { | 
|  | FTy = | 
|  | cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); | 
|  | assert(getNumOperands() == 1 && "NumOperands not set up?"); | 
|  | Op<-1>() = Func; | 
|  |  | 
|  | assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); | 
|  |  | 
|  | setName(NameStr); | 
|  | } | 
|  |  | 
|  | CallInst::CallInst(Value *Func, const Twine &Name, Instruction *InsertBefore) | 
|  | : CallBase<CallInst>( | 
|  | cast<FunctionType>( | 
|  | cast<PointerType>(Func->getType())->getElementType()) | 
|  | ->getReturnType(), | 
|  | Instruction::Call, | 
|  | OperandTraits<CallBase<CallInst>>::op_end(this) - 1, 1, | 
|  | InsertBefore) { | 
|  | init(Func, Name); | 
|  | } | 
|  |  | 
|  | CallInst::CallInst(Value *Func, const Twine &Name, BasicBlock *InsertAtEnd) | 
|  | : CallBase<CallInst>( | 
|  | cast<FunctionType>( | 
|  | cast<PointerType>(Func->getType())->getElementType()) | 
|  | ->getReturnType(), | 
|  | Instruction::Call, | 
|  | OperandTraits<CallBase<CallInst>>::op_end(this) - 1, 1, InsertAtEnd) { | 
|  | init(Func, Name); | 
|  | } | 
|  |  | 
|  | CallInst::CallInst(const CallInst &CI) | 
|  | : CallBase<CallInst>(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, | 
|  | OperandTraits<CallBase<CallInst>>::op_end(this) - | 
|  | CI.getNumOperands(), | 
|  | CI.getNumOperands()) { | 
|  | setTailCallKind(CI.getTailCallKind()); | 
|  | setCallingConv(CI.getCallingConv()); | 
|  |  | 
|  | std::copy(CI.op_begin(), CI.op_end(), op_begin()); | 
|  | std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), | 
|  | bundle_op_info_begin()); | 
|  | SubclassOptionalData = CI.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, | 
|  | Instruction *InsertPt) { | 
|  | std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); | 
|  |  | 
|  | auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(), | 
|  | InsertPt); | 
|  | NewCI->setTailCallKind(CI->getTailCallKind()); | 
|  | NewCI->setCallingConv(CI->getCallingConv()); | 
|  | NewCI->SubclassOptionalData = CI->SubclassOptionalData; | 
|  | NewCI->setAttributes(CI->getAttributes()); | 
|  | NewCI->setDebugLoc(CI->getDebugLoc()); | 
|  | return NewCI; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | /// IsConstantOne - Return true only if val is constant int 1 | 
|  | static bool IsConstantOne(Value *val) { | 
|  | assert(val && "IsConstantOne does not work with nullptr val"); | 
|  | const ConstantInt *CVal = dyn_cast<ConstantInt>(val); | 
|  | return CVal && CVal->isOne(); | 
|  | } | 
|  |  | 
|  | static Instruction *createMalloc(Instruction *InsertBefore, | 
|  | BasicBlock *InsertAtEnd, Type *IntPtrTy, | 
|  | Type *AllocTy, Value *AllocSize, | 
|  | Value *ArraySize, | 
|  | ArrayRef<OperandBundleDef> OpB, | 
|  | Function *MallocF, const Twine &Name) { | 
|  | assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && | 
|  | "createMalloc needs either InsertBefore or InsertAtEnd"); | 
|  |  | 
|  | // malloc(type) becomes: | 
|  | //       bitcast (i8* malloc(typeSize)) to type* | 
|  | // malloc(type, arraySize) becomes: | 
|  | //       bitcast (i8* malloc(typeSize*arraySize)) to type* | 
|  | if (!ArraySize) | 
|  | ArraySize = ConstantInt::get(IntPtrTy, 1); | 
|  | else if (ArraySize->getType() != IntPtrTy) { | 
|  | if (InsertBefore) | 
|  | ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, | 
|  | "", InsertBefore); | 
|  | else | 
|  | ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, | 
|  | "", InsertAtEnd); | 
|  | } | 
|  |  | 
|  | if (!IsConstantOne(ArraySize)) { | 
|  | if (IsConstantOne(AllocSize)) { | 
|  | AllocSize = ArraySize;         // Operand * 1 = Operand | 
|  | } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { | 
|  | Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, | 
|  | false /*ZExt*/); | 
|  | // Malloc arg is constant product of type size and array size | 
|  | AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); | 
|  | } else { | 
|  | // Multiply type size by the array size... | 
|  | if (InsertBefore) | 
|  | AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, | 
|  | "mallocsize", InsertBefore); | 
|  | else | 
|  | AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, | 
|  | "mallocsize", InsertAtEnd); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); | 
|  | // Create the call to Malloc. | 
|  | BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; | 
|  | Module *M = BB->getParent()->getParent(); | 
|  | Type *BPTy = Type::getInt8PtrTy(BB->getContext()); | 
|  | Value *MallocFunc = MallocF; | 
|  | if (!MallocFunc) | 
|  | // prototype malloc as "void *malloc(size_t)" | 
|  | MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); | 
|  | PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); | 
|  | CallInst *MCall = nullptr; | 
|  | Instruction *Result = nullptr; | 
|  | if (InsertBefore) { | 
|  | MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", | 
|  | InsertBefore); | 
|  | Result = MCall; | 
|  | if (Result->getType() != AllocPtrType) | 
|  | // Create a cast instruction to convert to the right type... | 
|  | Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); | 
|  | } else { | 
|  | MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); | 
|  | Result = MCall; | 
|  | if (Result->getType() != AllocPtrType) { | 
|  | InsertAtEnd->getInstList().push_back(MCall); | 
|  | // Create a cast instruction to convert to the right type... | 
|  | Result = new BitCastInst(MCall, AllocPtrType, Name); | 
|  | } | 
|  | } | 
|  | MCall->setTailCall(); | 
|  | if (Function *F = dyn_cast<Function>(MallocFunc)) { | 
|  | MCall->setCallingConv(F->getCallingConv()); | 
|  | if (!F->returnDoesNotAlias()) | 
|  | F->setReturnDoesNotAlias(); | 
|  | } | 
|  | assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// CreateMalloc - Generate the IR for a call to malloc: | 
|  | /// 1. Compute the malloc call's argument as the specified type's size, | 
|  | ///    possibly multiplied by the array size if the array size is not | 
|  | ///    constant 1. | 
|  | /// 2. Call malloc with that argument. | 
|  | /// 3. Bitcast the result of the malloc call to the specified type. | 
|  | Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, | 
|  | Type *IntPtrTy, Type *AllocTy, | 
|  | Value *AllocSize, Value *ArraySize, | 
|  | Function *MallocF, | 
|  | const Twine &Name) { | 
|  | return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, | 
|  | ArraySize, None, MallocF, Name); | 
|  | } | 
|  | Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, | 
|  | Type *IntPtrTy, Type *AllocTy, | 
|  | Value *AllocSize, Value *ArraySize, | 
|  | ArrayRef<OperandBundleDef> OpB, | 
|  | Function *MallocF, | 
|  | const Twine &Name) { | 
|  | return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, | 
|  | ArraySize, OpB, MallocF, Name); | 
|  | } | 
|  |  | 
|  | /// CreateMalloc - Generate the IR for a call to malloc: | 
|  | /// 1. Compute the malloc call's argument as the specified type's size, | 
|  | ///    possibly multiplied by the array size if the array size is not | 
|  | ///    constant 1. | 
|  | /// 2. Call malloc with that argument. | 
|  | /// 3. Bitcast the result of the malloc call to the specified type. | 
|  | /// Note: This function does not add the bitcast to the basic block, that is the | 
|  | /// responsibility of the caller. | 
|  | Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, | 
|  | Type *IntPtrTy, Type *AllocTy, | 
|  | Value *AllocSize, Value *ArraySize, | 
|  | Function *MallocF, const Twine &Name) { | 
|  | return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, | 
|  | ArraySize, None, MallocF, Name); | 
|  | } | 
|  | Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, | 
|  | Type *IntPtrTy, Type *AllocTy, | 
|  | Value *AllocSize, Value *ArraySize, | 
|  | ArrayRef<OperandBundleDef> OpB, | 
|  | Function *MallocF, const Twine &Name) { | 
|  | return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, | 
|  | ArraySize, OpB, MallocF, Name); | 
|  | } | 
|  |  | 
|  | static Instruction *createFree(Value *Source, | 
|  | ArrayRef<OperandBundleDef> Bundles, | 
|  | Instruction *InsertBefore, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && | 
|  | "createFree needs either InsertBefore or InsertAtEnd"); | 
|  | assert(Source->getType()->isPointerTy() && | 
|  | "Can not free something of nonpointer type!"); | 
|  |  | 
|  | BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; | 
|  | Module *M = BB->getParent()->getParent(); | 
|  |  | 
|  | Type *VoidTy = Type::getVoidTy(M->getContext()); | 
|  | Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); | 
|  | // prototype free as "void free(void*)" | 
|  | Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); | 
|  | CallInst *Result = nullptr; | 
|  | Value *PtrCast = Source; | 
|  | if (InsertBefore) { | 
|  | if (Source->getType() != IntPtrTy) | 
|  | PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); | 
|  | Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); | 
|  | } else { | 
|  | if (Source->getType() != IntPtrTy) | 
|  | PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); | 
|  | Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); | 
|  | } | 
|  | Result->setTailCall(); | 
|  | if (Function *F = dyn_cast<Function>(FreeFunc)) | 
|  | Result->setCallingConv(F->getCallingConv()); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// CreateFree - Generate the IR for a call to the builtin free function. | 
|  | Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { | 
|  | return createFree(Source, None, InsertBefore, nullptr); | 
|  | } | 
|  | Instruction *CallInst::CreateFree(Value *Source, | 
|  | ArrayRef<OperandBundleDef> Bundles, | 
|  | Instruction *InsertBefore) { | 
|  | return createFree(Source, Bundles, InsertBefore, nullptr); | 
|  | } | 
|  |  | 
|  | /// CreateFree - Generate the IR for a call to the builtin free function. | 
|  | /// Note: This function does not add the call to the basic block, that is the | 
|  | /// responsibility of the caller. | 
|  | Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { | 
|  | Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); | 
|  | assert(FreeCall && "CreateFree did not create a CallInst"); | 
|  | return FreeCall; | 
|  | } | 
|  | Instruction *CallInst::CreateFree(Value *Source, | 
|  | ArrayRef<OperandBundleDef> Bundles, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); | 
|  | assert(FreeCall && "CreateFree did not create a CallInst"); | 
|  | return FreeCall; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        InvokeInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, | 
|  | BasicBlock *IfException, ArrayRef<Value *> Args, | 
|  | ArrayRef<OperandBundleDef> Bundles, | 
|  | const Twine &NameStr) { | 
|  | this->FTy = FTy; | 
|  |  | 
|  | assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) && | 
|  | "NumOperands not set up?"); | 
|  | Op<-3>() = Fn; | 
|  | Op<-2>() = IfNormal; | 
|  | Op<-1>() = IfException; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | assert(((Args.size() == FTy->getNumParams()) || | 
|  | (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && | 
|  | "Invoking a function with bad signature"); | 
|  |  | 
|  | for (unsigned i = 0, e = Args.size(); i != e; i++) | 
|  | assert((i >= FTy->getNumParams() || | 
|  | FTy->getParamType(i) == Args[i]->getType()) && | 
|  | "Invoking a function with a bad signature!"); | 
|  | #endif | 
|  |  | 
|  | std::copy(Args.begin(), Args.end(), op_begin()); | 
|  |  | 
|  | auto It = populateBundleOperandInfos(Bundles, Args.size()); | 
|  | (void)It; | 
|  | assert(It + 3 == op_end() && "Should add up!"); | 
|  |  | 
|  | setName(NameStr); | 
|  | } | 
|  |  | 
|  | InvokeInst::InvokeInst(const InvokeInst &II) | 
|  | : CallBase<InvokeInst>(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, | 
|  | OperandTraits<CallBase<InvokeInst>>::op_end(this) - | 
|  | II.getNumOperands(), | 
|  | II.getNumOperands()) { | 
|  | setCallingConv(II.getCallingConv()); | 
|  | std::copy(II.op_begin(), II.op_end(), op_begin()); | 
|  | std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), | 
|  | bundle_op_info_begin()); | 
|  | SubclassOptionalData = II.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, | 
|  | Instruction *InsertPt) { | 
|  | std::vector<Value *> Args(II->arg_begin(), II->arg_end()); | 
|  |  | 
|  | auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(), | 
|  | II->getUnwindDest(), Args, OpB, | 
|  | II->getName(), InsertPt); | 
|  | NewII->setCallingConv(II->getCallingConv()); | 
|  | NewII->SubclassOptionalData = II->SubclassOptionalData; | 
|  | NewII->setAttributes(II->getAttributes()); | 
|  | NewII->setDebugLoc(II->getDebugLoc()); | 
|  | return NewII; | 
|  | } | 
|  |  | 
|  |  | 
|  | LandingPadInst *InvokeInst::getLandingPadInst() const { | 
|  | return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        ReturnInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ReturnInst::ReturnInst(const ReturnInst &RI) | 
|  | : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, | 
|  | OperandTraits<ReturnInst>::op_end(this) - | 
|  | RI.getNumOperands(), | 
|  | RI.getNumOperands()) { | 
|  | if (RI.getNumOperands()) | 
|  | Op<0>() = RI.Op<0>(); | 
|  | SubclassOptionalData = RI.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, | 
|  | OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, | 
|  | InsertBefore) { | 
|  | if (retVal) | 
|  | Op<0>() = retVal; | 
|  | } | 
|  |  | 
|  | ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, | 
|  | OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, | 
|  | InsertAtEnd) { | 
|  | if (retVal) | 
|  | Op<0>() = retVal; | 
|  | } | 
|  |  | 
|  | ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, | 
|  | OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        ResumeInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ResumeInst::ResumeInst(const ResumeInst &RI) | 
|  | : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, | 
|  | OperandTraits<ResumeInst>::op_begin(this), 1) { | 
|  | Op<0>() = RI.Op<0>(); | 
|  | } | 
|  |  | 
|  | ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, | 
|  | OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { | 
|  | Op<0>() = Exn; | 
|  | } | 
|  |  | 
|  | ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, | 
|  | OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { | 
|  | Op<0>() = Exn; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        CleanupReturnInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) | 
|  | : TerminatorInst(CRI.getType(), Instruction::CleanupRet, | 
|  | OperandTraits<CleanupReturnInst>::op_end(this) - | 
|  | CRI.getNumOperands(), | 
|  | CRI.getNumOperands()) { | 
|  | setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); | 
|  | Op<0>() = CRI.Op<0>(); | 
|  | if (CRI.hasUnwindDest()) | 
|  | Op<1>() = CRI.Op<1>(); | 
|  | } | 
|  |  | 
|  | void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { | 
|  | if (UnwindBB) | 
|  | setInstructionSubclassData(getSubclassDataFromInstruction() | 1); | 
|  |  | 
|  | Op<0>() = CleanupPad; | 
|  | if (UnwindBB) | 
|  | Op<1>() = UnwindBB; | 
|  | } | 
|  |  | 
|  | CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, | 
|  | unsigned Values, Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), | 
|  | Instruction::CleanupRet, | 
|  | OperandTraits<CleanupReturnInst>::op_end(this) - Values, | 
|  | Values, InsertBefore) { | 
|  | init(CleanupPad, UnwindBB); | 
|  | } | 
|  |  | 
|  | CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, | 
|  | unsigned Values, BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), | 
|  | Instruction::CleanupRet, | 
|  | OperandTraits<CleanupReturnInst>::op_end(this) - Values, | 
|  | Values, InsertAtEnd) { | 
|  | init(CleanupPad, UnwindBB); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        CatchReturnInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { | 
|  | Op<0>() = CatchPad; | 
|  | Op<1>() = BB; | 
|  | } | 
|  |  | 
|  | CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) | 
|  | : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, | 
|  | OperandTraits<CatchReturnInst>::op_begin(this), 2) { | 
|  | Op<0>() = CRI.Op<0>(); | 
|  | Op<1>() = CRI.Op<1>(); | 
|  | } | 
|  |  | 
|  | CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, | 
|  | Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, | 
|  | OperandTraits<CatchReturnInst>::op_begin(this), 2, | 
|  | InsertBefore) { | 
|  | init(CatchPad, BB); | 
|  | } | 
|  |  | 
|  | CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, | 
|  | OperandTraits<CatchReturnInst>::op_begin(this), 2, | 
|  | InsertAtEnd) { | 
|  | init(CatchPad, BB); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       CatchSwitchInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, | 
|  | unsigned NumReservedValues, | 
|  | const Twine &NameStr, | 
|  | Instruction *InsertBefore) | 
|  | : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, | 
|  | InsertBefore) { | 
|  | if (UnwindDest) | 
|  | ++NumReservedValues; | 
|  | init(ParentPad, UnwindDest, NumReservedValues + 1); | 
|  | setName(NameStr); | 
|  | } | 
|  |  | 
|  | CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, | 
|  | unsigned NumReservedValues, | 
|  | const Twine &NameStr, BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, | 
|  | InsertAtEnd) { | 
|  | if (UnwindDest) | 
|  | ++NumReservedValues; | 
|  | init(ParentPad, UnwindDest, NumReservedValues + 1); | 
|  | setName(NameStr); | 
|  | } | 
|  |  | 
|  | CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) | 
|  | : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr, | 
|  | CSI.getNumOperands()) { | 
|  | init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); | 
|  | setNumHungOffUseOperands(ReservedSpace); | 
|  | Use *OL = getOperandList(); | 
|  | const Use *InOL = CSI.getOperandList(); | 
|  | for (unsigned I = 1, E = ReservedSpace; I != E; ++I) | 
|  | OL[I] = InOL[I]; | 
|  | } | 
|  |  | 
|  | void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, | 
|  | unsigned NumReservedValues) { | 
|  | assert(ParentPad && NumReservedValues); | 
|  |  | 
|  | ReservedSpace = NumReservedValues; | 
|  | setNumHungOffUseOperands(UnwindDest ? 2 : 1); | 
|  | allocHungoffUses(ReservedSpace); | 
|  |  | 
|  | Op<0>() = ParentPad; | 
|  | if (UnwindDest) { | 
|  | setInstructionSubclassData(getSubclassDataFromInstruction() | 1); | 
|  | setUnwindDest(UnwindDest); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// growOperands - grow operands - This grows the operand list in response to a | 
|  | /// push_back style of operation. This grows the number of ops by 2 times. | 
|  | void CatchSwitchInst::growOperands(unsigned Size) { | 
|  | unsigned NumOperands = getNumOperands(); | 
|  | assert(NumOperands >= 1); | 
|  | if (ReservedSpace >= NumOperands + Size) | 
|  | return; | 
|  | ReservedSpace = (NumOperands + Size / 2) * 2; | 
|  | growHungoffUses(ReservedSpace); | 
|  | } | 
|  |  | 
|  | void CatchSwitchInst::addHandler(BasicBlock *Handler) { | 
|  | unsigned OpNo = getNumOperands(); | 
|  | growOperands(1); | 
|  | assert(OpNo < ReservedSpace && "Growing didn't work!"); | 
|  | setNumHungOffUseOperands(getNumOperands() + 1); | 
|  | getOperandList()[OpNo] = Handler; | 
|  | } | 
|  |  | 
|  | void CatchSwitchInst::removeHandler(handler_iterator HI) { | 
|  | // Move all subsequent handlers up one. | 
|  | Use *EndDst = op_end() - 1; | 
|  | for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) | 
|  | *CurDst = *(CurDst + 1); | 
|  | // Null out the last handler use. | 
|  | *EndDst = nullptr; | 
|  |  | 
|  | setNumHungOffUseOperands(getNumOperands() - 1); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        FuncletPadInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, | 
|  | const Twine &NameStr) { | 
|  | assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); | 
|  | std::copy(Args.begin(), Args.end(), op_begin()); | 
|  | setParentPad(ParentPad); | 
|  | setName(NameStr); | 
|  | } | 
|  |  | 
|  | FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) | 
|  | : Instruction(FPI.getType(), FPI.getOpcode(), | 
|  | OperandTraits<FuncletPadInst>::op_end(this) - | 
|  | FPI.getNumOperands(), | 
|  | FPI.getNumOperands()) { | 
|  | std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); | 
|  | setParentPad(FPI.getParentPad()); | 
|  | } | 
|  |  | 
|  | FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, | 
|  | ArrayRef<Value *> Args, unsigned Values, | 
|  | const Twine &NameStr, Instruction *InsertBefore) | 
|  | : Instruction(ParentPad->getType(), Op, | 
|  | OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, | 
|  | InsertBefore) { | 
|  | init(ParentPad, Args, NameStr); | 
|  | } | 
|  |  | 
|  | FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, | 
|  | ArrayRef<Value *> Args, unsigned Values, | 
|  | const Twine &NameStr, BasicBlock *InsertAtEnd) | 
|  | : Instruction(ParentPad->getType(), Op, | 
|  | OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, | 
|  | InsertAtEnd) { | 
|  | init(ParentPad, Args, NameStr); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      UnreachableInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | UnreachableInst::UnreachableInst(LLVMContext &Context, | 
|  | Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, | 
|  | nullptr, 0, InsertBefore) { | 
|  | } | 
|  | UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, | 
|  | nullptr, 0, InsertAtEnd) { | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        BranchInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void BranchInst::AssertOK() { | 
|  | if (isConditional()) | 
|  | assert(getCondition()->getType()->isIntegerTy(1) && | 
|  | "May only branch on boolean predicates!"); | 
|  | } | 
|  |  | 
|  | BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, | 
|  | OperandTraits<BranchInst>::op_end(this) - 1, | 
|  | 1, InsertBefore) { | 
|  | assert(IfTrue && "Branch destination may not be null!"); | 
|  | Op<-1>() = IfTrue; | 
|  | } | 
|  |  | 
|  | BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, | 
|  | Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, | 
|  | OperandTraits<BranchInst>::op_end(this) - 3, | 
|  | 3, InsertBefore) { | 
|  | Op<-1>() = IfTrue; | 
|  | Op<-2>() = IfFalse; | 
|  | Op<-3>() = Cond; | 
|  | #ifndef NDEBUG | 
|  | AssertOK(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, | 
|  | OperandTraits<BranchInst>::op_end(this) - 1, | 
|  | 1, InsertAtEnd) { | 
|  | assert(IfTrue && "Branch destination may not be null!"); | 
|  | Op<-1>() = IfTrue; | 
|  | } | 
|  |  | 
|  | BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, | 
|  | OperandTraits<BranchInst>::op_end(this) - 3, | 
|  | 3, InsertAtEnd) { | 
|  | Op<-1>() = IfTrue; | 
|  | Op<-2>() = IfFalse; | 
|  | Op<-3>() = Cond; | 
|  | #ifndef NDEBUG | 
|  | AssertOK(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | BranchInst::BranchInst(const BranchInst &BI) : | 
|  | TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, | 
|  | OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), | 
|  | BI.getNumOperands()) { | 
|  | Op<-1>() = BI.Op<-1>(); | 
|  | if (BI.getNumOperands() != 1) { | 
|  | assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); | 
|  | Op<-3>() = BI.Op<-3>(); | 
|  | Op<-2>() = BI.Op<-2>(); | 
|  | } | 
|  | SubclassOptionalData = BI.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | void BranchInst::swapSuccessors() { | 
|  | assert(isConditional() && | 
|  | "Cannot swap successors of an unconditional branch"); | 
|  | Op<-1>().swap(Op<-2>()); | 
|  |  | 
|  | // Update profile metadata if present and it matches our structural | 
|  | // expectations. | 
|  | swapProfMetadata(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        AllocaInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static Value *getAISize(LLVMContext &Context, Value *Amt) { | 
|  | if (!Amt) | 
|  | Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); | 
|  | else { | 
|  | assert(!isa<BasicBlock>(Amt) && | 
|  | "Passed basic block into allocation size parameter! Use other ctor"); | 
|  | assert(Amt->getType()->isIntegerTy() && | 
|  | "Allocation array size is not an integer!"); | 
|  | } | 
|  | return Amt; | 
|  | } | 
|  |  | 
|  | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, | 
|  | Instruction *InsertBefore) | 
|  | : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} | 
|  |  | 
|  | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} | 
|  |  | 
|  | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, | 
|  | const Twine &Name, Instruction *InsertBefore) | 
|  | : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {} | 
|  |  | 
|  | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, | 
|  | const Twine &Name, BasicBlock *InsertAtEnd) | 
|  | : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} | 
|  |  | 
|  | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, | 
|  | unsigned Align, const Twine &Name, | 
|  | Instruction *InsertBefore) | 
|  | : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, | 
|  | getAISize(Ty->getContext(), ArraySize), InsertBefore), | 
|  | AllocatedType(Ty) { | 
|  | setAlignment(Align); | 
|  | assert(!Ty->isVoidTy() && "Cannot allocate void!"); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, | 
|  | unsigned Align, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, | 
|  | getAISize(Ty->getContext(), ArraySize), InsertAtEnd), | 
|  | AllocatedType(Ty) { | 
|  | setAlignment(Align); | 
|  | assert(!Ty->isVoidTy() && "Cannot allocate void!"); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | void AllocaInst::setAlignment(unsigned Align) { | 
|  | assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); | 
|  | assert(Align <= MaximumAlignment && | 
|  | "Alignment is greater than MaximumAlignment!"); | 
|  | setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | | 
|  | (Log2_32(Align) + 1)); | 
|  | assert(getAlignment() == Align && "Alignment representation error!"); | 
|  | } | 
|  |  | 
|  | bool AllocaInst::isArrayAllocation() const { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) | 
|  | return !CI->isOne(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isStaticAlloca - Return true if this alloca is in the entry block of the | 
|  | /// function and is a constant size.  If so, the code generator will fold it | 
|  | /// into the prolog/epilog code, so it is basically free. | 
|  | bool AllocaInst::isStaticAlloca() const { | 
|  | // Must be constant size. | 
|  | if (!isa<ConstantInt>(getArraySize())) return false; | 
|  |  | 
|  | // Must be in the entry block. | 
|  | const BasicBlock *Parent = getParent(); | 
|  | return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           LoadInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void LoadInst::AssertOK() { | 
|  | assert(getOperand(0)->getType()->isPointerTy() && | 
|  | "Ptr must have pointer type."); | 
|  | assert(!(isAtomic() && getAlignment() == 0) && | 
|  | "Alignment required for atomic load"); | 
|  | } | 
|  |  | 
|  | LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) | 
|  | : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {} | 
|  |  | 
|  | LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) | 
|  | : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {} | 
|  |  | 
|  | LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, | 
|  | Instruction *InsertBef) | 
|  | : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} | 
|  |  | 
|  | LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, | 
|  | BasicBlock *InsertAE) | 
|  | : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} | 
|  |  | 
|  | LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, | 
|  | unsigned Align, Instruction *InsertBef) | 
|  | : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, | 
|  | SyncScope::System, InsertBef) {} | 
|  |  | 
|  | LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, | 
|  | unsigned Align, BasicBlock *InsertAE) | 
|  | : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, | 
|  | SyncScope::System, InsertAE) {} | 
|  |  | 
|  | LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, | 
|  | unsigned Align, AtomicOrdering Order, | 
|  | SyncScope::ID SSID, Instruction *InsertBef) | 
|  | : UnaryInstruction(Ty, Load, Ptr, InsertBef) { | 
|  | assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); | 
|  | setVolatile(isVolatile); | 
|  | setAlignment(Align); | 
|  | setAtomic(Order, SSID); | 
|  | AssertOK(); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, | 
|  | unsigned Align, AtomicOrdering Order, | 
|  | SyncScope::ID SSID, | 
|  | BasicBlock *InsertAE) | 
|  | : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), | 
|  | Load, Ptr, InsertAE) { | 
|  | setVolatile(isVolatile); | 
|  | setAlignment(Align); | 
|  | setAtomic(Order, SSID); | 
|  | AssertOK(); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) | 
|  | : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), | 
|  | Load, Ptr, InsertBef) { | 
|  | setVolatile(false); | 
|  | setAlignment(0); | 
|  | setAtomic(AtomicOrdering::NotAtomic); | 
|  | AssertOK(); | 
|  | if (Name && Name[0]) setName(Name); | 
|  | } | 
|  |  | 
|  | LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) | 
|  | : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), | 
|  | Load, Ptr, InsertAE) { | 
|  | setVolatile(false); | 
|  | setAlignment(0); | 
|  | setAtomic(AtomicOrdering::NotAtomic); | 
|  | AssertOK(); | 
|  | if (Name && Name[0]) setName(Name); | 
|  | } | 
|  |  | 
|  | LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile, | 
|  | Instruction *InsertBef) | 
|  | : UnaryInstruction(Ty, Load, Ptr, InsertBef) { | 
|  | assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); | 
|  | setVolatile(isVolatile); | 
|  | setAlignment(0); | 
|  | setAtomic(AtomicOrdering::NotAtomic); | 
|  | AssertOK(); | 
|  | if (Name && Name[0]) setName(Name); | 
|  | } | 
|  |  | 
|  | LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, | 
|  | BasicBlock *InsertAE) | 
|  | : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), | 
|  | Load, Ptr, InsertAE) { | 
|  | setVolatile(isVolatile); | 
|  | setAlignment(0); | 
|  | setAtomic(AtomicOrdering::NotAtomic); | 
|  | AssertOK(); | 
|  | if (Name && Name[0]) setName(Name); | 
|  | } | 
|  |  | 
|  | void LoadInst::setAlignment(unsigned Align) { | 
|  | assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); | 
|  | assert(Align <= MaximumAlignment && | 
|  | "Alignment is greater than MaximumAlignment!"); | 
|  | setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | | 
|  | ((Log2_32(Align)+1)<<1)); | 
|  | assert(getAlignment() == Align && "Alignment representation error!"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           StoreInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void StoreInst::AssertOK() { | 
|  | assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); | 
|  | assert(getOperand(1)->getType()->isPointerTy() && | 
|  | "Ptr must have pointer type!"); | 
|  | assert(getOperand(0)->getType() == | 
|  | cast<PointerType>(getOperand(1)->getType())->getElementType() | 
|  | && "Ptr must be a pointer to Val type!"); | 
|  | assert(!(isAtomic() && getAlignment() == 0) && | 
|  | "Alignment required for atomic store"); | 
|  | } | 
|  |  | 
|  | StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) | 
|  | : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} | 
|  |  | 
|  | StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) | 
|  | : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} | 
|  |  | 
|  | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, | 
|  | Instruction *InsertBefore) | 
|  | : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} | 
|  |  | 
|  | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} | 
|  |  | 
|  | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, | 
|  | Instruction *InsertBefore) | 
|  | : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, | 
|  | SyncScope::System, InsertBefore) {} | 
|  |  | 
|  | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, | 
|  | SyncScope::System, InsertAtEnd) {} | 
|  |  | 
|  | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, | 
|  | unsigned Align, AtomicOrdering Order, | 
|  | SyncScope::ID SSID, | 
|  | Instruction *InsertBefore) | 
|  | : Instruction(Type::getVoidTy(val->getContext()), Store, | 
|  | OperandTraits<StoreInst>::op_begin(this), | 
|  | OperandTraits<StoreInst>::operands(this), | 
|  | InsertBefore) { | 
|  | Op<0>() = val; | 
|  | Op<1>() = addr; | 
|  | setVolatile(isVolatile); | 
|  | setAlignment(Align); | 
|  | setAtomic(Order, SSID); | 
|  | AssertOK(); | 
|  | } | 
|  |  | 
|  | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, | 
|  | unsigned Align, AtomicOrdering Order, | 
|  | SyncScope::ID SSID, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : Instruction(Type::getVoidTy(val->getContext()), Store, | 
|  | OperandTraits<StoreInst>::op_begin(this), | 
|  | OperandTraits<StoreInst>::operands(this), | 
|  | InsertAtEnd) { | 
|  | Op<0>() = val; | 
|  | Op<1>() = addr; | 
|  | setVolatile(isVolatile); | 
|  | setAlignment(Align); | 
|  | setAtomic(Order, SSID); | 
|  | AssertOK(); | 
|  | } | 
|  |  | 
|  | void StoreInst::setAlignment(unsigned Align) { | 
|  | assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); | 
|  | assert(Align <= MaximumAlignment && | 
|  | "Alignment is greater than MaximumAlignment!"); | 
|  | setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | | 
|  | ((Log2_32(Align)+1) << 1)); | 
|  | assert(getAlignment() == Align && "Alignment representation error!"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       AtomicCmpXchgInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, | 
|  | AtomicOrdering SuccessOrdering, | 
|  | AtomicOrdering FailureOrdering, | 
|  | SyncScope::ID SSID) { | 
|  | Op<0>() = Ptr; | 
|  | Op<1>() = Cmp; | 
|  | Op<2>() = NewVal; | 
|  | setSuccessOrdering(SuccessOrdering); | 
|  | setFailureOrdering(FailureOrdering); | 
|  | setSyncScopeID(SSID); | 
|  |  | 
|  | assert(getOperand(0) && getOperand(1) && getOperand(2) && | 
|  | "All operands must be non-null!"); | 
|  | assert(getOperand(0)->getType()->isPointerTy() && | 
|  | "Ptr must have pointer type!"); | 
|  | assert(getOperand(1)->getType() == | 
|  | cast<PointerType>(getOperand(0)->getType())->getElementType() | 
|  | && "Ptr must be a pointer to Cmp type!"); | 
|  | assert(getOperand(2)->getType() == | 
|  | cast<PointerType>(getOperand(0)->getType())->getElementType() | 
|  | && "Ptr must be a pointer to NewVal type!"); | 
|  | assert(SuccessOrdering != AtomicOrdering::NotAtomic && | 
|  | "AtomicCmpXchg instructions must be atomic!"); | 
|  | assert(FailureOrdering != AtomicOrdering::NotAtomic && | 
|  | "AtomicCmpXchg instructions must be atomic!"); | 
|  | assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && | 
|  | "AtomicCmpXchg failure argument shall be no stronger than the success " | 
|  | "argument"); | 
|  | assert(FailureOrdering != AtomicOrdering::Release && | 
|  | FailureOrdering != AtomicOrdering::AcquireRelease && | 
|  | "AtomicCmpXchg failure ordering cannot include release semantics"); | 
|  | } | 
|  |  | 
|  | AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, | 
|  | AtomicOrdering SuccessOrdering, | 
|  | AtomicOrdering FailureOrdering, | 
|  | SyncScope::ID SSID, | 
|  | Instruction *InsertBefore) | 
|  | : Instruction( | 
|  | StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), | 
|  | AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), | 
|  | OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { | 
|  | Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); | 
|  | } | 
|  |  | 
|  | AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, | 
|  | AtomicOrdering SuccessOrdering, | 
|  | AtomicOrdering FailureOrdering, | 
|  | SyncScope::ID SSID, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : Instruction( | 
|  | StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), | 
|  | AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), | 
|  | OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { | 
|  | Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       AtomicRMWInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, | 
|  | AtomicOrdering Ordering, | 
|  | SyncScope::ID SSID) { | 
|  | Op<0>() = Ptr; | 
|  | Op<1>() = Val; | 
|  | setOperation(Operation); | 
|  | setOrdering(Ordering); | 
|  | setSyncScopeID(SSID); | 
|  |  | 
|  | assert(getOperand(0) && getOperand(1) && | 
|  | "All operands must be non-null!"); | 
|  | assert(getOperand(0)->getType()->isPointerTy() && | 
|  | "Ptr must have pointer type!"); | 
|  | assert(getOperand(1)->getType() == | 
|  | cast<PointerType>(getOperand(0)->getType())->getElementType() | 
|  | && "Ptr must be a pointer to Val type!"); | 
|  | assert(Ordering != AtomicOrdering::NotAtomic && | 
|  | "AtomicRMW instructions must be atomic!"); | 
|  | } | 
|  |  | 
|  | AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, | 
|  | AtomicOrdering Ordering, | 
|  | SyncScope::ID SSID, | 
|  | Instruction *InsertBefore) | 
|  | : Instruction(Val->getType(), AtomicRMW, | 
|  | OperandTraits<AtomicRMWInst>::op_begin(this), | 
|  | OperandTraits<AtomicRMWInst>::operands(this), | 
|  | InsertBefore) { | 
|  | Init(Operation, Ptr, Val, Ordering, SSID); | 
|  | } | 
|  |  | 
|  | AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, | 
|  | AtomicOrdering Ordering, | 
|  | SyncScope::ID SSID, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : Instruction(Val->getType(), AtomicRMW, | 
|  | OperandTraits<AtomicRMWInst>::op_begin(this), | 
|  | OperandTraits<AtomicRMWInst>::operands(this), | 
|  | InsertAtEnd) { | 
|  | Init(Operation, Ptr, Val, Ordering, SSID); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       FenceInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, | 
|  | SyncScope::ID SSID, | 
|  | Instruction *InsertBefore) | 
|  | : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { | 
|  | setOrdering(Ordering); | 
|  | setSyncScopeID(SSID); | 
|  | } | 
|  |  | 
|  | FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, | 
|  | SyncScope::ID SSID, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { | 
|  | setOrdering(Ordering); | 
|  | setSyncScopeID(SSID); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       GetElementPtrInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, | 
|  | const Twine &Name) { | 
|  | assert(getNumOperands() == 1 + IdxList.size() && | 
|  | "NumOperands not initialized?"); | 
|  | Op<0>() = Ptr; | 
|  | std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) | 
|  | : Instruction(GEPI.getType(), GetElementPtr, | 
|  | OperandTraits<GetElementPtrInst>::op_end(this) - | 
|  | GEPI.getNumOperands(), | 
|  | GEPI.getNumOperands()), | 
|  | SourceElementType(GEPI.SourceElementType), | 
|  | ResultElementType(GEPI.ResultElementType) { | 
|  | std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); | 
|  | SubclassOptionalData = GEPI.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | /// getIndexedType - Returns the type of the element that would be accessed with | 
|  | /// a gep instruction with the specified parameters. | 
|  | /// | 
|  | /// The Idxs pointer should point to a continuous piece of memory containing the | 
|  | /// indices, either as Value* or uint64_t. | 
|  | /// | 
|  | /// A null type is returned if the indices are invalid for the specified | 
|  | /// pointer type. | 
|  | /// | 
|  | template <typename IndexTy> | 
|  | static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { | 
|  | // Handle the special case of the empty set index set, which is always valid. | 
|  | if (IdxList.empty()) | 
|  | return Agg; | 
|  |  | 
|  | // If there is at least one index, the top level type must be sized, otherwise | 
|  | // it cannot be 'stepped over'. | 
|  | if (!Agg->isSized()) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned CurIdx = 1; | 
|  | for (; CurIdx != IdxList.size(); ++CurIdx) { | 
|  | CompositeType *CT = dyn_cast<CompositeType>(Agg); | 
|  | if (!CT || CT->isPointerTy()) return nullptr; | 
|  | IndexTy Index = IdxList[CurIdx]; | 
|  | if (!CT->indexValid(Index)) return nullptr; | 
|  | Agg = CT->getTypeAtIndex(Index); | 
|  | } | 
|  | return CurIdx == IdxList.size() ? Agg : nullptr; | 
|  | } | 
|  |  | 
|  | Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { | 
|  | return getIndexedTypeInternal(Ty, IdxList); | 
|  | } | 
|  |  | 
|  | Type *GetElementPtrInst::getIndexedType(Type *Ty, | 
|  | ArrayRef<Constant *> IdxList) { | 
|  | return getIndexedTypeInternal(Ty, IdxList); | 
|  | } | 
|  |  | 
|  | Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { | 
|  | return getIndexedTypeInternal(Ty, IdxList); | 
|  | } | 
|  |  | 
|  | /// hasAllZeroIndices - Return true if all of the indices of this GEP are | 
|  | /// zeros.  If so, the result pointer and the first operand have the same | 
|  | /// value, just potentially different types. | 
|  | bool GetElementPtrInst::hasAllZeroIndices() const { | 
|  | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { | 
|  | if (!CI->isZero()) return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// hasAllConstantIndices - Return true if all of the indices of this GEP are | 
|  | /// constant integers.  If so, the result pointer and the first operand have | 
|  | /// a constant offset between them. | 
|  | bool GetElementPtrInst::hasAllConstantIndices() const { | 
|  | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { | 
|  | if (!isa<ConstantInt>(getOperand(i))) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void GetElementPtrInst::setIsInBounds(bool B) { | 
|  | cast<GEPOperator>(this)->setIsInBounds(B); | 
|  | } | 
|  |  | 
|  | bool GetElementPtrInst::isInBounds() const { | 
|  | return cast<GEPOperator>(this)->isInBounds(); | 
|  | } | 
|  |  | 
|  | bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, | 
|  | APInt &Offset) const { | 
|  | // Delegate to the generic GEPOperator implementation. | 
|  | return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           ExtractElementInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBef) | 
|  | : Instruction(cast<VectorType>(Val->getType())->getElementType(), | 
|  | ExtractElement, | 
|  | OperandTraits<ExtractElementInst>::op_begin(this), | 
|  | 2, InsertBef) { | 
|  | assert(isValidOperands(Val, Index) && | 
|  | "Invalid extractelement instruction operands!"); | 
|  | Op<0>() = Val; | 
|  | Op<1>() = Index; | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAE) | 
|  | : Instruction(cast<VectorType>(Val->getType())->getElementType(), | 
|  | ExtractElement, | 
|  | OperandTraits<ExtractElementInst>::op_begin(this), | 
|  | 2, InsertAE) { | 
|  | assert(isValidOperands(Val, Index) && | 
|  | "Invalid extractelement instruction operands!"); | 
|  |  | 
|  | Op<0>() = Val; | 
|  | Op<1>() = Index; | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { | 
|  | if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           InsertElementInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBef) | 
|  | : Instruction(Vec->getType(), InsertElement, | 
|  | OperandTraits<InsertElementInst>::op_begin(this), | 
|  | 3, InsertBef) { | 
|  | assert(isValidOperands(Vec, Elt, Index) && | 
|  | "Invalid insertelement instruction operands!"); | 
|  | Op<0>() = Vec; | 
|  | Op<1>() = Elt; | 
|  | Op<2>() = Index; | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAE) | 
|  | : Instruction(Vec->getType(), InsertElement, | 
|  | OperandTraits<InsertElementInst>::op_begin(this), | 
|  | 3, InsertAE) { | 
|  | assert(isValidOperands(Vec, Elt, Index) && | 
|  | "Invalid insertelement instruction operands!"); | 
|  |  | 
|  | Op<0>() = Vec; | 
|  | Op<1>() = Elt; | 
|  | Op<2>() = Index; | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, | 
|  | const Value *Index) { | 
|  | if (!Vec->getType()->isVectorTy()) | 
|  | return false;   // First operand of insertelement must be vector type. | 
|  |  | 
|  | if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) | 
|  | return false;// Second operand of insertelement must be vector element type. | 
|  |  | 
|  | if (!Index->getType()->isIntegerTy()) | 
|  | return false;  // Third operand of insertelement must be i32. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      ShuffleVectorInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) | 
|  | : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), | 
|  | cast<VectorType>(Mask->getType())->getNumElements()), | 
|  | ShuffleVector, | 
|  | OperandTraits<ShuffleVectorInst>::op_begin(this), | 
|  | OperandTraits<ShuffleVectorInst>::operands(this), | 
|  | InsertBefore) { | 
|  | assert(isValidOperands(V1, V2, Mask) && | 
|  | "Invalid shuffle vector instruction operands!"); | 
|  | Op<0>() = V1; | 
|  | Op<1>() = V2; | 
|  | Op<2>() = Mask; | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), | 
|  | cast<VectorType>(Mask->getType())->getNumElements()), | 
|  | ShuffleVector, | 
|  | OperandTraits<ShuffleVectorInst>::op_begin(this), | 
|  | OperandTraits<ShuffleVectorInst>::operands(this), | 
|  | InsertAtEnd) { | 
|  | assert(isValidOperands(V1, V2, Mask) && | 
|  | "Invalid shuffle vector instruction operands!"); | 
|  |  | 
|  | Op<0>() = V1; | 
|  | Op<1>() = V2; | 
|  | Op<2>() = Mask; | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, | 
|  | const Value *Mask) { | 
|  | // V1 and V2 must be vectors of the same type. | 
|  | if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) | 
|  | return false; | 
|  |  | 
|  | // Mask must be vector of i32. | 
|  | auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); | 
|  | if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) | 
|  | return false; | 
|  |  | 
|  | // Check to see if Mask is valid. | 
|  | if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) | 
|  | return true; | 
|  |  | 
|  | if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { | 
|  | unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); | 
|  | for (Value *Op : MV->operands()) { | 
|  | if (auto *CI = dyn_cast<ConstantInt>(Op)) { | 
|  | if (CI->uge(V1Size*2)) | 
|  | return false; | 
|  | } else if (!isa<UndefValue>(Op)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { | 
|  | unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); | 
|  | for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) | 
|  | if (CDS->getElementAsInteger(i) >= V1Size*2) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The bitcode reader can create a place holder for a forward reference | 
|  | // used as the shuffle mask. When this occurs, the shuffle mask will | 
|  | // fall into this case and fail. To avoid this error, do this bit of | 
|  | // ugliness to allow such a mask pass. | 
|  | if (const auto *CE = dyn_cast<ConstantExpr>(Mask)) | 
|  | if (CE->getOpcode() == Instruction::UserOp1) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) { | 
|  | assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); | 
|  | if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) | 
|  | return CDS->getElementAsInteger(i); | 
|  | Constant *C = Mask->getAggregateElement(i); | 
|  | if (isa<UndefValue>(C)) | 
|  | return -1; | 
|  | return cast<ConstantInt>(C)->getZExtValue(); | 
|  | } | 
|  |  | 
|  | void ShuffleVectorInst::getShuffleMask(const Constant *Mask, | 
|  | SmallVectorImpl<int> &Result) { | 
|  | unsigned NumElts = Mask->getType()->getVectorNumElements(); | 
|  |  | 
|  | if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | Result.push_back(CDS->getElementAsInteger(i)); | 
|  | return; | 
|  | } | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *C = Mask->getAggregateElement(i); | 
|  | Result.push_back(isa<UndefValue>(C) ? -1 : | 
|  | cast<ConstantInt>(C)->getZExtValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { | 
|  | assert(!Mask.empty() && "Shuffle mask must contain elements"); | 
|  | bool UsesLHS = false; | 
|  | bool UsesRHS = false; | 
|  | for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  | assert(Mask[i] >= 0 && Mask[i] < (NumElts * 2) && | 
|  | "Out-of-bounds shuffle mask element"); | 
|  | UsesLHS |= (Mask[i] < NumElts); | 
|  | UsesRHS |= (Mask[i] >= NumElts); | 
|  | if (UsesLHS && UsesRHS) | 
|  | return false; | 
|  | } | 
|  | assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { | 
|  | if (!isSingleSourceMask(Mask)) | 
|  | return false; | 
|  | for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  | if (Mask[i] != i && Mask[i] != (NumElts + i)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { | 
|  | if (!isSingleSourceMask(Mask)) | 
|  | return false; | 
|  | for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  | if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { | 
|  | if (!isSingleSourceMask(Mask)) | 
|  | return false; | 
|  | for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  | if (Mask[i] != 0 && Mask[i] != NumElts) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { | 
|  | // Select is differentiated from identity. It requires using both sources. | 
|  | if (isSingleSourceMask(Mask)) | 
|  | return false; | 
|  | for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { | 
|  | if (Mask[i] == -1) | 
|  | continue; | 
|  | if (Mask[i] != i && Mask[i] != (NumElts + i)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { | 
|  | // Example masks that will return true: | 
|  | // v1 = <a, b, c, d> | 
|  | // v2 = <e, f, g, h> | 
|  | // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> | 
|  | // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> | 
|  |  | 
|  | // 1. The number of elements in the mask must be a power-of-2 and at least 2. | 
|  | int NumElts = Mask.size(); | 
|  | if (NumElts < 2 || !isPowerOf2_32(NumElts)) | 
|  | return false; | 
|  |  | 
|  | // 2. The first element of the mask must be either a 0 or a 1. | 
|  | if (Mask[0] != 0 && Mask[0] != 1) | 
|  | return false; | 
|  |  | 
|  | // 3. The difference between the first 2 elements must be equal to the | 
|  | // number of elements in the mask. | 
|  | if ((Mask[1] - Mask[0]) != NumElts) | 
|  | return false; | 
|  |  | 
|  | // 4. The difference between consecutive even-numbered and odd-numbered | 
|  | // elements must be equal to 2. | 
|  | for (int i = 2; i < NumElts; ++i) { | 
|  | int MaskEltVal = Mask[i]; | 
|  | if (MaskEltVal == -1) | 
|  | return false; | 
|  | int MaskEltPrevVal = Mask[i - 2]; | 
|  | if (MaskEltVal - MaskEltPrevVal != 2) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             InsertValueInst Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, | 
|  | const Twine &Name) { | 
|  | assert(getNumOperands() == 2 && "NumOperands not initialized?"); | 
|  |  | 
|  | // There's no fundamental reason why we require at least one index | 
|  | // (other than weirdness with &*IdxBegin being invalid; see | 
|  | // getelementptr's init routine for example). But there's no | 
|  | // present need to support it. | 
|  | assert(!Idxs.empty() && "InsertValueInst must have at least one index"); | 
|  |  | 
|  | assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == | 
|  | Val->getType() && "Inserted value must match indexed type!"); | 
|  | Op<0>() = Agg; | 
|  | Op<1>() = Val; | 
|  |  | 
|  | Indices.append(Idxs.begin(), Idxs.end()); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | InsertValueInst::InsertValueInst(const InsertValueInst &IVI) | 
|  | : Instruction(IVI.getType(), InsertValue, | 
|  | OperandTraits<InsertValueInst>::op_begin(this), 2), | 
|  | Indices(IVI.Indices) { | 
|  | Op<0>() = IVI.getOperand(0); | 
|  | Op<1>() = IVI.getOperand(1); | 
|  | SubclassOptionalData = IVI.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             ExtractValueInst Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { | 
|  | assert(getNumOperands() == 1 && "NumOperands not initialized?"); | 
|  |  | 
|  | // There's no fundamental reason why we require at least one index. | 
|  | // But there's no present need to support it. | 
|  | assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); | 
|  |  | 
|  | Indices.append(Idxs.begin(), Idxs.end()); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) | 
|  | : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), | 
|  | Indices(EVI.Indices) { | 
|  | SubclassOptionalData = EVI.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | // getIndexedType - Returns the type of the element that would be extracted | 
|  | // with an extractvalue instruction with the specified parameters. | 
|  | // | 
|  | // A null type is returned if the indices are invalid for the specified | 
|  | // pointer type. | 
|  | // | 
|  | Type *ExtractValueInst::getIndexedType(Type *Agg, | 
|  | ArrayRef<unsigned> Idxs) { | 
|  | for (unsigned Index : Idxs) { | 
|  | // We can't use CompositeType::indexValid(Index) here. | 
|  | // indexValid() always returns true for arrays because getelementptr allows | 
|  | // out-of-bounds indices. Since we don't allow those for extractvalue and | 
|  | // insertvalue we need to check array indexing manually. | 
|  | // Since the only other types we can index into are struct types it's just | 
|  | // as easy to check those manually as well. | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { | 
|  | if (Index >= AT->getNumElements()) | 
|  | return nullptr; | 
|  | } else if (StructType *ST = dyn_cast<StructType>(Agg)) { | 
|  | if (Index >= ST->getNumElements()) | 
|  | return nullptr; | 
|  | } else { | 
|  | // Not a valid type to index into. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); | 
|  | } | 
|  | return const_cast<Type*>(Agg); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             BinaryOperator Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, | 
|  | Type *Ty, const Twine &Name, | 
|  | Instruction *InsertBefore) | 
|  | : Instruction(Ty, iType, | 
|  | OperandTraits<BinaryOperator>::op_begin(this), | 
|  | OperandTraits<BinaryOperator>::operands(this), | 
|  | InsertBefore) { | 
|  | Op<0>() = S1; | 
|  | Op<1>() = S2; | 
|  | setName(Name); | 
|  | AssertOK(); | 
|  | } | 
|  |  | 
|  | BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, | 
|  | Type *Ty, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : Instruction(Ty, iType, | 
|  | OperandTraits<BinaryOperator>::op_begin(this), | 
|  | OperandTraits<BinaryOperator>::operands(this), | 
|  | InsertAtEnd) { | 
|  | Op<0>() = S1; | 
|  | Op<1>() = S2; | 
|  | setName(Name); | 
|  | AssertOK(); | 
|  | } | 
|  |  | 
|  | void BinaryOperator::AssertOK() { | 
|  | Value *LHS = getOperand(0), *RHS = getOperand(1); | 
|  | (void)LHS; (void)RHS; // Silence warnings. | 
|  | assert(LHS->getType() == RHS->getType() && | 
|  | "Binary operator operand types must match!"); | 
|  | #ifndef NDEBUG | 
|  | switch (getOpcode()) { | 
|  | case Add: case Sub: | 
|  | case Mul: | 
|  | assert(getType() == LHS->getType() && | 
|  | "Arithmetic operation should return same type as operands!"); | 
|  | assert(getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create an integer operation on a non-integer type!"); | 
|  | break; | 
|  | case FAdd: case FSub: | 
|  | case FMul: | 
|  | assert(getType() == LHS->getType() && | 
|  | "Arithmetic operation should return same type as operands!"); | 
|  | assert(getType()->isFPOrFPVectorTy() && | 
|  | "Tried to create a floating-point operation on a " | 
|  | "non-floating-point type!"); | 
|  | break; | 
|  | case UDiv: | 
|  | case SDiv: | 
|  | assert(getType() == LHS->getType() && | 
|  | "Arithmetic operation should return same type as operands!"); | 
|  | assert(getType()->isIntOrIntVectorTy() && | 
|  | "Incorrect operand type (not integer) for S/UDIV"); | 
|  | break; | 
|  | case FDiv: | 
|  | assert(getType() == LHS->getType() && | 
|  | "Arithmetic operation should return same type as operands!"); | 
|  | assert(getType()->isFPOrFPVectorTy() && | 
|  | "Incorrect operand type (not floating point) for FDIV"); | 
|  | break; | 
|  | case URem: | 
|  | case SRem: | 
|  | assert(getType() == LHS->getType() && | 
|  | "Arithmetic operation should return same type as operands!"); | 
|  | assert(getType()->isIntOrIntVectorTy() && | 
|  | "Incorrect operand type (not integer) for S/UREM"); | 
|  | break; | 
|  | case FRem: | 
|  | assert(getType() == LHS->getType() && | 
|  | "Arithmetic operation should return same type as operands!"); | 
|  | assert(getType()->isFPOrFPVectorTy() && | 
|  | "Incorrect operand type (not floating point) for FREM"); | 
|  | break; | 
|  | case Shl: | 
|  | case LShr: | 
|  | case AShr: | 
|  | assert(getType() == LHS->getType() && | 
|  | "Shift operation should return same type as operands!"); | 
|  | assert(getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create a shift operation on a non-integral type!"); | 
|  | break; | 
|  | case And: case Or: | 
|  | case Xor: | 
|  | assert(getType() == LHS->getType() && | 
|  | "Logical operation should return same type as operands!"); | 
|  | assert(getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create a logical operation on a non-integral type!"); | 
|  | break; | 
|  | default: llvm_unreachable("Invalid opcode provided"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | assert(S1->getType() == S2->getType() && | 
|  | "Cannot create binary operator with two operands of differing type!"); | 
|  | return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | BinaryOperator *Res = Create(Op, S1, S2, Name); | 
|  | InsertAtEnd->getInstList().push_back(Res); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); | 
|  | return new BinaryOperator(Instruction::Sub, | 
|  | zero, Op, | 
|  | Op->getType(), Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); | 
|  | return new BinaryOperator(Instruction::Sub, | 
|  | zero, Op, | 
|  | Op->getType(), Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); | 
|  | return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); | 
|  | return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); | 
|  | return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); | 
|  | return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); | 
|  | return new BinaryOperator(Instruction::FSub, zero, Op, | 
|  | Op->getType(), Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); | 
|  | return new BinaryOperator(Instruction::FSub, zero, Op, | 
|  | Op->getType(), Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | Constant *C = Constant::getAllOnesValue(Op->getType()); | 
|  | return new BinaryOperator(Instruction::Xor, Op, C, | 
|  | Op->getType(), Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); | 
|  | return new BinaryOperator(Instruction::Xor, Op, AllOnes, | 
|  | Op->getType(), Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | // isConstantAllOnes - Helper function for several functions below | 
|  | static inline bool isConstantAllOnes(const Value *V) { | 
|  | if (const Constant *C = dyn_cast<Constant>(V)) | 
|  | return C->isAllOnesValue(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool BinaryOperator::isNeg(const Value *V) { | 
|  | if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) | 
|  | if (Bop->getOpcode() == Instruction::Sub) | 
|  | if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) | 
|  | return C->isNegativeZeroValue(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { | 
|  | if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) | 
|  | if (Bop->getOpcode() == Instruction::FSub) | 
|  | if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) { | 
|  | if (!IgnoreZeroSign) | 
|  | IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); | 
|  | return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool BinaryOperator::isNot(const Value *V) { | 
|  | if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) | 
|  | return (Bop->getOpcode() == Instruction::Xor && | 
|  | (isConstantAllOnes(Bop->getOperand(1)) || | 
|  | isConstantAllOnes(Bop->getOperand(0)))); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *BinaryOperator::getNegArgument(Value *BinOp) { | 
|  | return cast<BinaryOperator>(BinOp)->getOperand(1); | 
|  | } | 
|  |  | 
|  | const Value *BinaryOperator::getNegArgument(const Value *BinOp) { | 
|  | return getNegArgument(const_cast<Value*>(BinOp)); | 
|  | } | 
|  |  | 
|  | Value *BinaryOperator::getFNegArgument(Value *BinOp) { | 
|  | return cast<BinaryOperator>(BinOp)->getOperand(1); | 
|  | } | 
|  |  | 
|  | const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { | 
|  | return getFNegArgument(const_cast<Value*>(BinOp)); | 
|  | } | 
|  |  | 
|  | Value *BinaryOperator::getNotArgument(Value *BinOp) { | 
|  | assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); | 
|  | BinaryOperator *BO = cast<BinaryOperator>(BinOp); | 
|  | Value *Op0 = BO->getOperand(0); | 
|  | Value *Op1 = BO->getOperand(1); | 
|  | if (isConstantAllOnes(Op0)) return Op1; | 
|  |  | 
|  | assert(isConstantAllOnes(Op1)); | 
|  | return Op0; | 
|  | } | 
|  |  | 
|  | const Value *BinaryOperator::getNotArgument(const Value *BinOp) { | 
|  | return getNotArgument(const_cast<Value*>(BinOp)); | 
|  | } | 
|  |  | 
|  | // Exchange the two operands to this instruction. This instruction is safe to | 
|  | // use on any binary instruction and does not modify the semantics of the | 
|  | // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode | 
|  | // is changed. | 
|  | bool BinaryOperator::swapOperands() { | 
|  | if (!isCommutative()) | 
|  | return true; // Can't commute operands | 
|  | Op<0>().swap(Op<1>()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             FPMathOperator Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | float FPMathOperator::getFPAccuracy() const { | 
|  | const MDNode *MD = | 
|  | cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); | 
|  | if (!MD) | 
|  | return 0.0; | 
|  | ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); | 
|  | return Accuracy->getValueAPF().convertToFloat(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                CastInst Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Just determine if this cast only deals with integral->integral conversion. | 
|  | bool CastInst::isIntegerCast() const { | 
|  | switch (getOpcode()) { | 
|  | default: return false; | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::Trunc: | 
|  | return true; | 
|  | case Instruction::BitCast: | 
|  | return getOperand(0)->getType()->isIntegerTy() && | 
|  | getType()->isIntegerTy(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CastInst::isLosslessCast() const { | 
|  | // Only BitCast can be lossless, exit fast if we're not BitCast | 
|  | if (getOpcode() != Instruction::BitCast) | 
|  | return false; | 
|  |  | 
|  | // Identity cast is always lossless | 
|  | Type *SrcTy = getOperand(0)->getType(); | 
|  | Type *DstTy = getType(); | 
|  | if (SrcTy == DstTy) | 
|  | return true; | 
|  |  | 
|  | // Pointer to pointer is always lossless. | 
|  | if (SrcTy->isPointerTy()) | 
|  | return DstTy->isPointerTy(); | 
|  | return false;  // Other types have no identity values | 
|  | } | 
|  |  | 
|  | /// This function determines if the CastInst does not require any bits to be | 
|  | /// changed in order to effect the cast. Essentially, it identifies cases where | 
|  | /// no code gen is necessary for the cast, hence the name no-op cast.  For | 
|  | /// example, the following are all no-op casts: | 
|  | /// # bitcast i32* %x to i8* | 
|  | /// # bitcast <2 x i32> %x to <4 x i16> | 
|  | /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only | 
|  | /// Determine if the described cast is a no-op. | 
|  | bool CastInst::isNoopCast(Instruction::CastOps Opcode, | 
|  | Type *SrcTy, | 
|  | Type *DestTy, | 
|  | const DataLayout &DL) { | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Invalid CastOp"); | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::AddrSpaceCast: | 
|  | // TODO: Target informations may give a more accurate answer here. | 
|  | return false; | 
|  | case Instruction::BitCast: | 
|  | return true;  // BitCast never modifies bits. | 
|  | case Instruction::PtrToInt: | 
|  | return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == | 
|  | DestTy->getScalarSizeInBits(); | 
|  | case Instruction::IntToPtr: | 
|  | return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == | 
|  | SrcTy->getScalarSizeInBits(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CastInst::isNoopCast(const DataLayout &DL) const { | 
|  | return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); | 
|  | } | 
|  |  | 
|  | /// This function determines if a pair of casts can be eliminated and what | 
|  | /// opcode should be used in the elimination. This assumes that there are two | 
|  | /// instructions like this: | 
|  | /// *  %F = firstOpcode SrcTy %x to MidTy | 
|  | /// *  %S = secondOpcode MidTy %F to DstTy | 
|  | /// The function returns a resultOpcode so these two casts can be replaced with: | 
|  | /// *  %Replacement = resultOpcode %SrcTy %x to DstTy | 
|  | /// If no such cast is permitted, the function returns 0. | 
|  | unsigned CastInst::isEliminableCastPair( | 
|  | Instruction::CastOps firstOp, Instruction::CastOps secondOp, | 
|  | Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, | 
|  | Type *DstIntPtrTy) { | 
|  | // Define the 144 possibilities for these two cast instructions. The values | 
|  | // in this matrix determine what to do in a given situation and select the | 
|  | // case in the switch below.  The rows correspond to firstOp, the columns | 
|  | // correspond to secondOp.  In looking at the table below, keep in mind | 
|  | // the following cast properties: | 
|  | // | 
|  | //          Size Compare       Source               Destination | 
|  | // Operator  Src ? Size   Type       Sign         Type       Sign | 
|  | // -------- ------------ -------------------   --------------------- | 
|  | // TRUNC         >       Integer      Any        Integral     Any | 
|  | // ZEXT          <       Integral   Unsigned     Integer      Any | 
|  | // SEXT          <       Integral    Signed      Integer      Any | 
|  | // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned | 
|  | // FPTOSI       n/a      FloatPt      n/a        Integral    Signed | 
|  | // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a | 
|  | // SITOFP       n/a      Integral    Signed      FloatPt      n/a | 
|  | // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a | 
|  | // FPEXT         <       FloatPt      n/a        FloatPt      n/a | 
|  | // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned | 
|  | // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a | 
|  | // BITCAST       =       FirstClass   n/a       FirstClass    n/a | 
|  | // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a | 
|  | // | 
|  | // NOTE: some transforms are safe, but we consider them to be non-profitable. | 
|  | // For example, we could merge "fptoui double to i32" + "zext i32 to i64", | 
|  | // into "fptoui double to i64", but this loses information about the range | 
|  | // of the produced value (we no longer know the top-part is all zeros). | 
|  | // Further this conversion is often much more expensive for typical hardware, | 
|  | // and causes issues when building libgcc.  We disallow fptosi+sext for the | 
|  | // same reason. | 
|  | const unsigned numCastOps = | 
|  | Instruction::CastOpsEnd - Instruction::CastOpsBegin; | 
|  | static const uint8_t CastResults[numCastOps][numCastOps] = { | 
|  | // T        F  F  U  S  F  F  P  I  B  A  -+ | 
|  | // R  Z  S  P  P  I  I  T  P  2  N  T  S   | | 
|  | // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp | 
|  | // N  X  X  U  S  F  F  N  X  N  2  V  V   | | 
|  | // C  T  T  I  I  P  P  C  T  T  P  T  T  -+ | 
|  | {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+ | 
|  | {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           | | 
|  | {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           | | 
|  | {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         | | 
|  | {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         | | 
|  | { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp | 
|  | { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         | | 
|  | { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        | | 
|  | { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          | | 
|  | {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       | | 
|  | { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       | | 
|  | {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        | | 
|  | {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ | 
|  | }; | 
|  |  | 
|  | // TODO: This logic could be encoded into the table above and handled in the | 
|  | // switch below. | 
|  | // If either of the casts are a bitcast from scalar to vector, disallow the | 
|  | // merging. However, any pair of bitcasts are allowed. | 
|  | bool IsFirstBitcast  = (firstOp == Instruction::BitCast); | 
|  | bool IsSecondBitcast = (secondOp == Instruction::BitCast); | 
|  | bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; | 
|  |  | 
|  | // Check if any of the casts convert scalars <-> vectors. | 
|  | if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || | 
|  | (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) | 
|  | if (!AreBothBitcasts) | 
|  | return 0; | 
|  |  | 
|  | int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] | 
|  | [secondOp-Instruction::CastOpsBegin]; | 
|  | switch (ElimCase) { | 
|  | case 0: | 
|  | // Categorically disallowed. | 
|  | return 0; | 
|  | case 1: | 
|  | // Allowed, use first cast's opcode. | 
|  | return firstOp; | 
|  | case 2: | 
|  | // Allowed, use second cast's opcode. | 
|  | return secondOp; | 
|  | case 3: | 
|  | // No-op cast in second op implies firstOp as long as the DestTy | 
|  | // is integer and we are not converting between a vector and a | 
|  | // non-vector type. | 
|  | if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) | 
|  | return firstOp; | 
|  | return 0; | 
|  | case 4: | 
|  | // No-op cast in second op implies firstOp as long as the DestTy | 
|  | // is floating point. | 
|  | if (DstTy->isFloatingPointTy()) | 
|  | return firstOp; | 
|  | return 0; | 
|  | case 5: | 
|  | // No-op cast in first op implies secondOp as long as the SrcTy | 
|  | // is an integer. | 
|  | if (SrcTy->isIntegerTy()) | 
|  | return secondOp; | 
|  | return 0; | 
|  | case 6: | 
|  | // No-op cast in first op implies secondOp as long as the SrcTy | 
|  | // is a floating point. | 
|  | if (SrcTy->isFloatingPointTy()) | 
|  | return secondOp; | 
|  | return 0; | 
|  | case 7: { | 
|  | // Cannot simplify if address spaces are different! | 
|  | if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) | 
|  | return 0; | 
|  |  | 
|  | unsigned MidSize = MidTy->getScalarSizeInBits(); | 
|  | // We can still fold this without knowing the actual sizes as long we | 
|  | // know that the intermediate pointer is the largest possible | 
|  | // pointer size. | 
|  | // FIXME: Is this always true? | 
|  | if (MidSize == 64) | 
|  | return Instruction::BitCast; | 
|  |  | 
|  | // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. | 
|  | if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) | 
|  | return 0; | 
|  | unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); | 
|  | if (MidSize >= PtrSize) | 
|  | return Instruction::BitCast; | 
|  | return 0; | 
|  | } | 
|  | case 8: { | 
|  | // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size | 
|  | // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy) | 
|  | // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy) | 
|  | unsigned SrcSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DstSize = DstTy->getScalarSizeInBits(); | 
|  | if (SrcSize == DstSize) | 
|  | return Instruction::BitCast; | 
|  | else if (SrcSize < DstSize) | 
|  | return firstOp; | 
|  | return secondOp; | 
|  | } | 
|  | case 9: | 
|  | // zext, sext -> zext, because sext can't sign extend after zext | 
|  | return Instruction::ZExt; | 
|  | case 11: { | 
|  | // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize | 
|  | if (!MidIntPtrTy) | 
|  | return 0; | 
|  | unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); | 
|  | unsigned SrcSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DstSize = DstTy->getScalarSizeInBits(); | 
|  | if (SrcSize <= PtrSize && SrcSize == DstSize) | 
|  | return Instruction::BitCast; | 
|  | return 0; | 
|  | } | 
|  | case 12: | 
|  | // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS | 
|  | // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS | 
|  | if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) | 
|  | return Instruction::AddrSpaceCast; | 
|  | return Instruction::BitCast; | 
|  | case 13: | 
|  | // FIXME: this state can be merged with (1), but the following assert | 
|  | // is useful to check the correcteness of the sequence due to semantic | 
|  | // change of bitcast. | 
|  | assert( | 
|  | SrcTy->isPtrOrPtrVectorTy() && | 
|  | MidTy->isPtrOrPtrVectorTy() && | 
|  | DstTy->isPtrOrPtrVectorTy() && | 
|  | SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && | 
|  | MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && | 
|  | "Illegal addrspacecast, bitcast sequence!"); | 
|  | // Allowed, use first cast's opcode | 
|  | return firstOp; | 
|  | case 14: | 
|  | // bitcast, addrspacecast -> addrspacecast if the element type of | 
|  | // bitcast's source is the same as that of addrspacecast's destination. | 
|  | if (SrcTy->getScalarType()->getPointerElementType() == | 
|  | DstTy->getScalarType()->getPointerElementType()) | 
|  | return Instruction::AddrSpaceCast; | 
|  | return 0; | 
|  | case 15: | 
|  | // FIXME: this state can be merged with (1), but the following assert | 
|  | // is useful to check the correcteness of the sequence due to semantic | 
|  | // change of bitcast. | 
|  | assert( | 
|  | SrcTy->isIntOrIntVectorTy() && | 
|  | MidTy->isPtrOrPtrVectorTy() && | 
|  | DstTy->isPtrOrPtrVectorTy() && | 
|  | MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && | 
|  | "Illegal inttoptr, bitcast sequence!"); | 
|  | // Allowed, use first cast's opcode | 
|  | return firstOp; | 
|  | case 16: | 
|  | // FIXME: this state can be merged with (2), but the following assert | 
|  | // is useful to check the correcteness of the sequence due to semantic | 
|  | // change of bitcast. | 
|  | assert( | 
|  | SrcTy->isPtrOrPtrVectorTy() && | 
|  | MidTy->isPtrOrPtrVectorTy() && | 
|  | DstTy->isIntOrIntVectorTy() && | 
|  | SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && | 
|  | "Illegal bitcast, ptrtoint sequence!"); | 
|  | // Allowed, use second cast's opcode | 
|  | return secondOp; | 
|  | case 17: | 
|  | // (sitofp (zext x)) -> (uitofp x) | 
|  | return Instruction::UIToFP; | 
|  | case 99: | 
|  | // Cast combination can't happen (error in input). This is for all cases | 
|  | // where the MidTy is not the same for the two cast instructions. | 
|  | llvm_unreachable("Invalid Cast Combination"); | 
|  | default: | 
|  | llvm_unreachable("Error in CastResults table!!!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, | 
|  | const Twine &Name, Instruction *InsertBefore) { | 
|  | assert(castIsValid(op, S, Ty) && "Invalid cast!"); | 
|  | // Construct and return the appropriate CastInst subclass | 
|  | switch (op) { | 
|  | case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore); | 
|  | case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore); | 
|  | case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore); | 
|  | case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore); | 
|  | case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore); | 
|  | case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore); | 
|  | case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore); | 
|  | case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore); | 
|  | case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore); | 
|  | case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore); | 
|  | case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore); | 
|  | case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore); | 
|  | case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); | 
|  | default: llvm_unreachable("Invalid opcode provided"); | 
|  | } | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, | 
|  | const Twine &Name, BasicBlock *InsertAtEnd) { | 
|  | assert(castIsValid(op, S, Ty) && "Invalid cast!"); | 
|  | // Construct and return the appropriate CastInst subclass | 
|  | switch (op) { | 
|  | case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd); | 
|  | case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd); | 
|  | case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd); | 
|  | case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd); | 
|  | case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd); | 
|  | case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd); | 
|  | case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd); | 
|  | case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd); | 
|  | case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd); | 
|  | case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd); | 
|  | case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd); | 
|  | case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd); | 
|  | case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); | 
|  | default: llvm_unreachable("Invalid opcode provided"); | 
|  | } | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); | 
|  | return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); | 
|  | return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); | 
|  | return Create(Instruction::SExt, S, Ty, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); | 
|  | return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); | 
|  | return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); | 
|  | return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  | assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && | 
|  | "Invalid cast"); | 
|  | assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); | 
|  | assert((!Ty->isVectorTy() || | 
|  | Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && | 
|  | "Invalid cast"); | 
|  |  | 
|  | if (Ty->isIntOrIntVectorTy()) | 
|  | return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); | 
|  |  | 
|  | return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | /// Create a BitCast or a PtrToInt cast instruction | 
|  | CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  | assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && | 
|  | "Invalid cast"); | 
|  | assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); | 
|  | assert((!Ty->isVectorTy() || | 
|  | Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && | 
|  | "Invalid cast"); | 
|  |  | 
|  | if (Ty->isIntOrIntVectorTy()) | 
|  | return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); | 
|  |  | 
|  | return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( | 
|  | Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  | assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  |  | 
|  | if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) | 
|  | return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); | 
|  |  | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( | 
|  | Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  | assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); | 
|  |  | 
|  | if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) | 
|  | return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); | 
|  |  | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | if (S->getType()->isPointerTy() && Ty->isIntegerTy()) | 
|  | return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); | 
|  | if (S->getType()->isIntegerTy() && Ty->isPointerTy()) | 
|  | return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); | 
|  |  | 
|  | return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, | 
|  | bool isSigned, const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && | 
|  | "Invalid integer cast"); | 
|  | unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Ty->getScalarSizeInBits(); | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits == DstBits ? Instruction::BitCast : | 
|  | (SrcBits > DstBits ? Instruction::Trunc : | 
|  | (isSigned ? Instruction::SExt : Instruction::ZExt))); | 
|  | return Create(opcode, C, Ty, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, | 
|  | bool isSigned, const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && | 
|  | "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Ty->getScalarSizeInBits(); | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits == DstBits ? Instruction::BitCast : | 
|  | (SrcBits > DstBits ? Instruction::Trunc : | 
|  | (isSigned ? Instruction::SExt : Instruction::ZExt))); | 
|  | return Create(opcode, C, Ty, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, | 
|  | const Twine &Name, | 
|  | Instruction *InsertBefore) { | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Ty->getScalarSizeInBits(); | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits == DstBits ? Instruction::BitCast : | 
|  | (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); | 
|  | return Create(opcode, C, Ty, Name, InsertBefore); | 
|  | } | 
|  |  | 
|  | CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, | 
|  | const Twine &Name, | 
|  | BasicBlock *InsertAtEnd) { | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Ty->getScalarSizeInBits(); | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits == DstBits ? Instruction::BitCast : | 
|  | (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); | 
|  | return Create(opcode, C, Ty, Name, InsertAtEnd); | 
|  | } | 
|  |  | 
|  | // Check whether it is valid to call getCastOpcode for these types. | 
|  | // This routine must be kept in sync with getCastOpcode. | 
|  | bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { | 
|  | if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) | 
|  | return false; | 
|  |  | 
|  | if (SrcTy == DestTy) | 
|  | return true; | 
|  |  | 
|  | if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) | 
|  | if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) | 
|  | if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { | 
|  | // An element by element cast.  Valid if casting the elements is valid. | 
|  | SrcTy = SrcVecTy->getElementType(); | 
|  | DestTy = DestVecTy->getElementType(); | 
|  | } | 
|  |  | 
|  | // Get the bit sizes, we'll need these | 
|  | unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr | 
|  | unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr | 
|  |  | 
|  | // Run through the possibilities ... | 
|  | if (DestTy->isIntegerTy()) {               // Casting to integral | 
|  | if (SrcTy->isIntegerTy())                // Casting from integral | 
|  | return true; | 
|  | if (SrcTy->isFloatingPointTy())   // Casting from floating pt | 
|  | return true; | 
|  | if (SrcTy->isVectorTy())          // Casting from vector | 
|  | return DestBits == SrcBits; | 
|  | // Casting from something else | 
|  | return SrcTy->isPointerTy(); | 
|  | } | 
|  | if (DestTy->isFloatingPointTy()) {  // Casting to floating pt | 
|  | if (SrcTy->isIntegerTy())                // Casting from integral | 
|  | return true; | 
|  | if (SrcTy->isFloatingPointTy())   // Casting from floating pt | 
|  | return true; | 
|  | if (SrcTy->isVectorTy())          // Casting from vector | 
|  | return DestBits == SrcBits; | 
|  | // Casting from something else | 
|  | return false; | 
|  | } | 
|  | if (DestTy->isVectorTy())         // Casting to vector | 
|  | return DestBits == SrcBits; | 
|  | if (DestTy->isPointerTy()) {        // Casting to pointer | 
|  | if (SrcTy->isPointerTy())                // Casting from pointer | 
|  | return true; | 
|  | return SrcTy->isIntegerTy();             // Casting from integral | 
|  | } | 
|  | if (DestTy->isX86_MMXTy()) { | 
|  | if (SrcTy->isVectorTy()) | 
|  | return DestBits == SrcBits;       // 64-bit vector to MMX | 
|  | return false; | 
|  | }                                    // Casting to something else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { | 
|  | if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) | 
|  | return false; | 
|  |  | 
|  | if (SrcTy == DestTy) | 
|  | return true; | 
|  |  | 
|  | if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { | 
|  | if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { | 
|  | if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { | 
|  | // An element by element cast. Valid if casting the elements is valid. | 
|  | SrcTy = SrcVecTy->getElementType(); | 
|  | DestTy = DestVecTy->getElementType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { | 
|  | if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { | 
|  | return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr | 
|  | unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr | 
|  |  | 
|  | // Could still have vectors of pointers if the number of elements doesn't | 
|  | // match | 
|  | if (SrcBits == 0 || DestBits == 0) | 
|  | return false; | 
|  |  | 
|  | if (SrcBits != DestBits) | 
|  | return false; | 
|  |  | 
|  | if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, | 
|  | const DataLayout &DL) { | 
|  | // ptrtoint and inttoptr are not allowed on non-integral pointers | 
|  | if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) | 
|  | if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) | 
|  | return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && | 
|  | !DL.isNonIntegralPointerType(PtrTy)); | 
|  | if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) | 
|  | if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) | 
|  | return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && | 
|  | !DL.isNonIntegralPointerType(PtrTy)); | 
|  |  | 
|  | return isBitCastable(SrcTy, DestTy); | 
|  | } | 
|  |  | 
|  | // Provide a way to get a "cast" where the cast opcode is inferred from the | 
|  | // types and size of the operand. This, basically, is a parallel of the | 
|  | // logic in the castIsValid function below.  This axiom should hold: | 
|  | //   castIsValid( getCastOpcode(Val, Ty), Val, Ty) | 
|  | // should not assert in castIsValid. In other words, this produces a "correct" | 
|  | // casting opcode for the arguments passed to it. | 
|  | // This routine must be kept in sync with isCastable. | 
|  | Instruction::CastOps | 
|  | CastInst::getCastOpcode( | 
|  | const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { | 
|  | Type *SrcTy = Src->getType(); | 
|  |  | 
|  | assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && | 
|  | "Only first class types are castable!"); | 
|  |  | 
|  | if (SrcTy == DestTy) | 
|  | return BitCast; | 
|  |  | 
|  | // FIXME: Check address space sizes here | 
|  | if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) | 
|  | if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) | 
|  | if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { | 
|  | // An element by element cast.  Find the appropriate opcode based on the | 
|  | // element types. | 
|  | SrcTy = SrcVecTy->getElementType(); | 
|  | DestTy = DestVecTy->getElementType(); | 
|  | } | 
|  |  | 
|  | // Get the bit sizes, we'll need these | 
|  | unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr | 
|  | unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr | 
|  |  | 
|  | // Run through the possibilities ... | 
|  | if (DestTy->isIntegerTy()) {                      // Casting to integral | 
|  | if (SrcTy->isIntegerTy()) {                     // Casting from integral | 
|  | if (DestBits < SrcBits) | 
|  | return Trunc;                               // int -> smaller int | 
|  | else if (DestBits > SrcBits) {                // its an extension | 
|  | if (SrcIsSigned) | 
|  | return SExt;                              // signed -> SEXT | 
|  | else | 
|  | return ZExt;                              // unsigned -> ZEXT | 
|  | } else { | 
|  | return BitCast;                             // Same size, No-op cast | 
|  | } | 
|  | } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt | 
|  | if (DestIsSigned) | 
|  | return FPToSI;                              // FP -> sint | 
|  | else | 
|  | return FPToUI;                              // FP -> uint | 
|  | } else if (SrcTy->isVectorTy()) { | 
|  | assert(DestBits == SrcBits && | 
|  | "Casting vector to integer of different width"); | 
|  | return BitCast;                             // Same size, no-op cast | 
|  | } else { | 
|  | assert(SrcTy->isPointerTy() && | 
|  | "Casting from a value that is not first-class type"); | 
|  | return PtrToInt;                              // ptr -> int | 
|  | } | 
|  | } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt | 
|  | if (SrcTy->isIntegerTy()) {                     // Casting from integral | 
|  | if (SrcIsSigned) | 
|  | return SIToFP;                              // sint -> FP | 
|  | else | 
|  | return UIToFP;                              // uint -> FP | 
|  | } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt | 
|  | if (DestBits < SrcBits) { | 
|  | return FPTrunc;                             // FP -> smaller FP | 
|  | } else if (DestBits > SrcBits) { | 
|  | return FPExt;                               // FP -> larger FP | 
|  | } else  { | 
|  | return BitCast;                             // same size, no-op cast | 
|  | } | 
|  | } else if (SrcTy->isVectorTy()) { | 
|  | assert(DestBits == SrcBits && | 
|  | "Casting vector to floating point of different width"); | 
|  | return BitCast;                             // same size, no-op cast | 
|  | } | 
|  | llvm_unreachable("Casting pointer or non-first class to float"); | 
|  | } else if (DestTy->isVectorTy()) { | 
|  | assert(DestBits == SrcBits && | 
|  | "Illegal cast to vector (wrong type or size)"); | 
|  | return BitCast; | 
|  | } else if (DestTy->isPointerTy()) { | 
|  | if (SrcTy->isPointerTy()) { | 
|  | if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) | 
|  | return AddrSpaceCast; | 
|  | return BitCast;                               // ptr -> ptr | 
|  | } else if (SrcTy->isIntegerTy()) { | 
|  | return IntToPtr;                              // int -> ptr | 
|  | } | 
|  | llvm_unreachable("Casting pointer to other than pointer or int"); | 
|  | } else if (DestTy->isX86_MMXTy()) { | 
|  | if (SrcTy->isVectorTy()) { | 
|  | assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); | 
|  | return BitCast;                               // 64-bit vector to MMX | 
|  | } | 
|  | llvm_unreachable("Illegal cast to X86_MMX"); | 
|  | } | 
|  | llvm_unreachable("Casting to type that is not first-class"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    CastInst SubClass Constructors | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Check that the construction parameters for a CastInst are correct. This | 
|  | /// could be broken out into the separate constructors but it is useful to have | 
|  | /// it in one place and to eliminate the redundant code for getting the sizes | 
|  | /// of the types involved. | 
|  | bool | 
|  | CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { | 
|  | // Check for type sanity on the arguments | 
|  | Type *SrcTy = S->getType(); | 
|  |  | 
|  | if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || | 
|  | SrcTy->isAggregateType() || DstTy->isAggregateType()) | 
|  | return false; | 
|  |  | 
|  | // Get the size of the types in bits, we'll need this later | 
|  | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DstBitSize = DstTy->getScalarSizeInBits(); | 
|  |  | 
|  | // If these are vector types, get the lengths of the vectors (using zero for | 
|  | // scalar types means that checking that vector lengths match also checks that | 
|  | // scalars are not being converted to vectors or vectors to scalars). | 
|  | unsigned SrcLength = SrcTy->isVectorTy() ? | 
|  | cast<VectorType>(SrcTy)->getNumElements() : 0; | 
|  | unsigned DstLength = DstTy->isVectorTy() ? | 
|  | cast<VectorType>(DstTy)->getNumElements() : 0; | 
|  |  | 
|  | // Switch on the opcode provided | 
|  | switch (op) { | 
|  | default: return false; // This is an input error | 
|  | case Instruction::Trunc: | 
|  | return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && | 
|  | SrcLength == DstLength && SrcBitSize > DstBitSize; | 
|  | case Instruction::ZExt: | 
|  | return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && | 
|  | SrcLength == DstLength && SrcBitSize < DstBitSize; | 
|  | case Instruction::SExt: | 
|  | return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && | 
|  | SrcLength == DstLength && SrcBitSize < DstBitSize; | 
|  | case Instruction::FPTrunc: | 
|  | return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && | 
|  | SrcLength == DstLength && SrcBitSize > DstBitSize; | 
|  | case Instruction::FPExt: | 
|  | return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && | 
|  | SrcLength == DstLength && SrcBitSize < DstBitSize; | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && | 
|  | SrcLength == DstLength; | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && | 
|  | SrcLength == DstLength; | 
|  | case Instruction::PtrToInt: | 
|  | if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) | 
|  | return false; | 
|  | if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) | 
|  | if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) | 
|  | return false; | 
|  | return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); | 
|  | case Instruction::IntToPtr: | 
|  | if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) | 
|  | return false; | 
|  | if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) | 
|  | if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) | 
|  | return false; | 
|  | return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); | 
|  | case Instruction::BitCast: { | 
|  | PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); | 
|  | PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); | 
|  |  | 
|  | // BitCast implies a no-op cast of type only. No bits change. | 
|  | // However, you can't cast pointers to anything but pointers. | 
|  | if (!SrcPtrTy != !DstPtrTy) | 
|  | return false; | 
|  |  | 
|  | // For non-pointer cases, the cast is okay if the source and destination bit | 
|  | // widths are identical. | 
|  | if (!SrcPtrTy) | 
|  | return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // If both are pointers then the address spaces must match. | 
|  | if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) | 
|  | return false; | 
|  |  | 
|  | // A vector of pointers must have the same number of elements. | 
|  | if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { | 
|  | if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) | 
|  | return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | case Instruction::AddrSpaceCast: { | 
|  | PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); | 
|  | if (!SrcPtrTy) | 
|  | return false; | 
|  |  | 
|  | PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); | 
|  | if (!DstPtrTy) | 
|  | return false; | 
|  |  | 
|  | if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) | 
|  | return false; | 
|  |  | 
|  | if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { | 
|  | if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) | 
|  | return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TruncInst::TruncInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); | 
|  | } | 
|  |  | 
|  | TruncInst::TruncInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); | 
|  | } | 
|  |  | 
|  | ZExtInst::ZExtInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | )  : CastInst(Ty, ZExt, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); | 
|  | } | 
|  |  | 
|  | ZExtInst::ZExtInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); | 
|  | } | 
|  | SExtInst::SExtInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, SExt, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); | 
|  | } | 
|  |  | 
|  | SExtInst::SExtInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); | 
|  | } | 
|  |  | 
|  | FPTruncInst::FPTruncInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); | 
|  | } | 
|  |  | 
|  | FPTruncInst::FPTruncInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); | 
|  | } | 
|  |  | 
|  | FPExtInst::FPExtInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); | 
|  | } | 
|  |  | 
|  | FPExtInst::FPExtInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); | 
|  | } | 
|  |  | 
|  | UIToFPInst::UIToFPInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); | 
|  | } | 
|  |  | 
|  | UIToFPInst::UIToFPInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); | 
|  | } | 
|  |  | 
|  | SIToFPInst::SIToFPInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); | 
|  | } | 
|  |  | 
|  | SIToFPInst::SIToFPInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); | 
|  | } | 
|  |  | 
|  | FPToUIInst::FPToUIInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); | 
|  | } | 
|  |  | 
|  | FPToUIInst::FPToUIInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); | 
|  | } | 
|  |  | 
|  | FPToSIInst::FPToSIInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); | 
|  | } | 
|  |  | 
|  | FPToSIInst::FPToSIInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); | 
|  | } | 
|  |  | 
|  | PtrToIntInst::PtrToIntInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); | 
|  | } | 
|  |  | 
|  | PtrToIntInst::PtrToIntInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); | 
|  | } | 
|  |  | 
|  | IntToPtrInst::IntToPtrInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); | 
|  | } | 
|  |  | 
|  | IntToPtrInst::IntToPtrInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); | 
|  | } | 
|  |  | 
|  | BitCastInst::BitCastInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); | 
|  | } | 
|  |  | 
|  | BitCastInst::BitCastInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); | 
|  | } | 
|  |  | 
|  | AddrSpaceCastInst::AddrSpaceCastInst( | 
|  | Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore | 
|  | ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); | 
|  | } | 
|  |  | 
|  | AddrSpaceCastInst::AddrSpaceCastInst( | 
|  | Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd | 
|  | ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { | 
|  | assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                               CmpInst Classes | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, | 
|  | Value *RHS, const Twine &Name, Instruction *InsertBefore) | 
|  | : Instruction(ty, op, | 
|  | OperandTraits<CmpInst>::op_begin(this), | 
|  | OperandTraits<CmpInst>::operands(this), | 
|  | InsertBefore) { | 
|  | Op<0>() = LHS; | 
|  | Op<1>() = RHS; | 
|  | setPredicate((Predicate)predicate); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, | 
|  | Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) | 
|  | : Instruction(ty, op, | 
|  | OperandTraits<CmpInst>::op_begin(this), | 
|  | OperandTraits<CmpInst>::operands(this), | 
|  | InsertAtEnd) { | 
|  | Op<0>() = LHS; | 
|  | Op<1>() = RHS; | 
|  | setPredicate((Predicate)predicate); | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | CmpInst * | 
|  | CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, | 
|  | const Twine &Name, Instruction *InsertBefore) { | 
|  | if (Op == Instruction::ICmp) { | 
|  | if (InsertBefore) | 
|  | return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), | 
|  | S1, S2, Name); | 
|  | else | 
|  | return new ICmpInst(CmpInst::Predicate(predicate), | 
|  | S1, S2, Name); | 
|  | } | 
|  |  | 
|  | if (InsertBefore) | 
|  | return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), | 
|  | S1, S2, Name); | 
|  | else | 
|  | return new FCmpInst(CmpInst::Predicate(predicate), | 
|  | S1, S2, Name); | 
|  | } | 
|  |  | 
|  | CmpInst * | 
|  | CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, | 
|  | const Twine &Name, BasicBlock *InsertAtEnd) { | 
|  | if (Op == Instruction::ICmp) { | 
|  | return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), | 
|  | S1, S2, Name); | 
|  | } | 
|  | return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), | 
|  | S1, S2, Name); | 
|  | } | 
|  |  | 
|  | void CmpInst::swapOperands() { | 
|  | if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) | 
|  | IC->swapOperands(); | 
|  | else | 
|  | cast<FCmpInst>(this)->swapOperands(); | 
|  | } | 
|  |  | 
|  | bool CmpInst::isCommutative() const { | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) | 
|  | return IC->isCommutative(); | 
|  | return cast<FCmpInst>(this)->isCommutative(); | 
|  | } | 
|  |  | 
|  | bool CmpInst::isEquality() const { | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) | 
|  | return IC->isEquality(); | 
|  | return cast<FCmpInst>(this)->isEquality(); | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { | 
|  | switch (pred) { | 
|  | default: llvm_unreachable("Unknown cmp predicate!"); | 
|  | case ICMP_EQ: return ICMP_NE; | 
|  | case ICMP_NE: return ICMP_EQ; | 
|  | case ICMP_UGT: return ICMP_ULE; | 
|  | case ICMP_ULT: return ICMP_UGE; | 
|  | case ICMP_UGE: return ICMP_ULT; | 
|  | case ICMP_ULE: return ICMP_UGT; | 
|  | case ICMP_SGT: return ICMP_SLE; | 
|  | case ICMP_SLT: return ICMP_SGE; | 
|  | case ICMP_SGE: return ICMP_SLT; | 
|  | case ICMP_SLE: return ICMP_SGT; | 
|  |  | 
|  | case FCMP_OEQ: return FCMP_UNE; | 
|  | case FCMP_ONE: return FCMP_UEQ; | 
|  | case FCMP_OGT: return FCMP_ULE; | 
|  | case FCMP_OLT: return FCMP_UGE; | 
|  | case FCMP_OGE: return FCMP_ULT; | 
|  | case FCMP_OLE: return FCMP_UGT; | 
|  | case FCMP_UEQ: return FCMP_ONE; | 
|  | case FCMP_UNE: return FCMP_OEQ; | 
|  | case FCMP_UGT: return FCMP_OLE; | 
|  | case FCMP_ULT: return FCMP_OGE; | 
|  | case FCMP_UGE: return FCMP_OLT; | 
|  | case FCMP_ULE: return FCMP_OGT; | 
|  | case FCMP_ORD: return FCMP_UNO; | 
|  | case FCMP_UNO: return FCMP_ORD; | 
|  | case FCMP_TRUE: return FCMP_FALSE; | 
|  | case FCMP_FALSE: return FCMP_TRUE; | 
|  | } | 
|  | } | 
|  |  | 
|  | StringRef CmpInst::getPredicateName(Predicate Pred) { | 
|  | switch (Pred) { | 
|  | default:                   return "unknown"; | 
|  | case FCmpInst::FCMP_FALSE: return "false"; | 
|  | case FCmpInst::FCMP_OEQ:   return "oeq"; | 
|  | case FCmpInst::FCMP_OGT:   return "ogt"; | 
|  | case FCmpInst::FCMP_OGE:   return "oge"; | 
|  | case FCmpInst::FCMP_OLT:   return "olt"; | 
|  | case FCmpInst::FCMP_OLE:   return "ole"; | 
|  | case FCmpInst::FCMP_ONE:   return "one"; | 
|  | case FCmpInst::FCMP_ORD:   return "ord"; | 
|  | case FCmpInst::FCMP_UNO:   return "uno"; | 
|  | case FCmpInst::FCMP_UEQ:   return "ueq"; | 
|  | case FCmpInst::FCMP_UGT:   return "ugt"; | 
|  | case FCmpInst::FCMP_UGE:   return "uge"; | 
|  | case FCmpInst::FCMP_ULT:   return "ult"; | 
|  | case FCmpInst::FCMP_ULE:   return "ule"; | 
|  | case FCmpInst::FCMP_UNE:   return "une"; | 
|  | case FCmpInst::FCMP_TRUE:  return "true"; | 
|  | case ICmpInst::ICMP_EQ:    return "eq"; | 
|  | case ICmpInst::ICMP_NE:    return "ne"; | 
|  | case ICmpInst::ICMP_SGT:   return "sgt"; | 
|  | case ICmpInst::ICMP_SGE:   return "sge"; | 
|  | case ICmpInst::ICMP_SLT:   return "slt"; | 
|  | case ICmpInst::ICMP_SLE:   return "sle"; | 
|  | case ICmpInst::ICMP_UGT:   return "ugt"; | 
|  | case ICmpInst::ICMP_UGE:   return "uge"; | 
|  | case ICmpInst::ICMP_ULT:   return "ult"; | 
|  | case ICmpInst::ICMP_ULE:   return "ule"; | 
|  | } | 
|  | } | 
|  |  | 
|  | ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { | 
|  | switch (pred) { | 
|  | default: llvm_unreachable("Unknown icmp predicate!"); | 
|  | case ICMP_EQ: case ICMP_NE: | 
|  | case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: | 
|  | return pred; | 
|  | case ICMP_UGT: return ICMP_SGT; | 
|  | case ICMP_ULT: return ICMP_SLT; | 
|  | case ICMP_UGE: return ICMP_SGE; | 
|  | case ICMP_ULE: return ICMP_SLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { | 
|  | switch (pred) { | 
|  | default: llvm_unreachable("Unknown icmp predicate!"); | 
|  | case ICMP_EQ: case ICMP_NE: | 
|  | case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: | 
|  | return pred; | 
|  | case ICMP_SGT: return ICMP_UGT; | 
|  | case ICMP_SLT: return ICMP_ULT; | 
|  | case ICMP_SGE: return ICMP_UGE; | 
|  | case ICMP_SLE: return ICMP_ULE; | 
|  | } | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { | 
|  | switch (pred) { | 
|  | default: llvm_unreachable("Unknown or unsupported cmp predicate!"); | 
|  | case ICMP_SGT: return ICMP_SGE; | 
|  | case ICMP_SLT: return ICMP_SLE; | 
|  | case ICMP_SGE: return ICMP_SGT; | 
|  | case ICMP_SLE: return ICMP_SLT; | 
|  | case ICMP_UGT: return ICMP_UGE; | 
|  | case ICMP_ULT: return ICMP_ULE; | 
|  | case ICMP_UGE: return ICMP_UGT; | 
|  | case ICMP_ULE: return ICMP_ULT; | 
|  |  | 
|  | case FCMP_OGT: return FCMP_OGE; | 
|  | case FCMP_OLT: return FCMP_OLE; | 
|  | case FCMP_OGE: return FCMP_OGT; | 
|  | case FCMP_OLE: return FCMP_OLT; | 
|  | case FCMP_UGT: return FCMP_UGE; | 
|  | case FCMP_ULT: return FCMP_ULE; | 
|  | case FCMP_UGE: return FCMP_UGT; | 
|  | case FCMP_ULE: return FCMP_ULT; | 
|  | } | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { | 
|  | switch (pred) { | 
|  | default: llvm_unreachable("Unknown cmp predicate!"); | 
|  | case ICMP_EQ: case ICMP_NE: | 
|  | return pred; | 
|  | case ICMP_SGT: return ICMP_SLT; | 
|  | case ICMP_SLT: return ICMP_SGT; | 
|  | case ICMP_SGE: return ICMP_SLE; | 
|  | case ICMP_SLE: return ICMP_SGE; | 
|  | case ICMP_UGT: return ICMP_ULT; | 
|  | case ICMP_ULT: return ICMP_UGT; | 
|  | case ICMP_UGE: return ICMP_ULE; | 
|  | case ICMP_ULE: return ICMP_UGE; | 
|  |  | 
|  | case FCMP_FALSE: case FCMP_TRUE: | 
|  | case FCMP_OEQ: case FCMP_ONE: | 
|  | case FCMP_UEQ: case FCMP_UNE: | 
|  | case FCMP_ORD: case FCMP_UNO: | 
|  | return pred; | 
|  | case FCMP_OGT: return FCMP_OLT; | 
|  | case FCMP_OLT: return FCMP_OGT; | 
|  | case FCMP_OGE: return FCMP_OLE; | 
|  | case FCMP_OLE: return FCMP_OGE; | 
|  | case FCMP_UGT: return FCMP_ULT; | 
|  | case FCMP_ULT: return FCMP_UGT; | 
|  | case FCMP_UGE: return FCMP_ULE; | 
|  | case FCMP_ULE: return FCMP_UGE; | 
|  | } | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { | 
|  | switch (pred) { | 
|  | case ICMP_SGT: return ICMP_SGE; | 
|  | case ICMP_SLT: return ICMP_SLE; | 
|  | case ICMP_UGT: return ICMP_UGE; | 
|  | case ICMP_ULT: return ICMP_ULE; | 
|  | case FCMP_OGT: return FCMP_OGE; | 
|  | case FCMP_OLT: return FCMP_OLE; | 
|  | case FCMP_UGT: return FCMP_UGE; | 
|  | case FCMP_ULT: return FCMP_ULE; | 
|  | default: return pred; | 
|  | } | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { | 
|  | assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); | 
|  |  | 
|  | switch (pred) { | 
|  | default: | 
|  | llvm_unreachable("Unknown predicate!"); | 
|  | case CmpInst::ICMP_ULT: | 
|  | return CmpInst::ICMP_SLT; | 
|  | case CmpInst::ICMP_ULE: | 
|  | return CmpInst::ICMP_SLE; | 
|  | case CmpInst::ICMP_UGT: | 
|  | return CmpInst::ICMP_SGT; | 
|  | case CmpInst::ICMP_UGE: | 
|  | return CmpInst::ICMP_SGE; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CmpInst::isUnsigned(Predicate predicate) { | 
|  | switch (predicate) { | 
|  | default: return false; | 
|  | case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CmpInst::isSigned(Predicate predicate) { | 
|  | switch (predicate) { | 
|  | default: return false; | 
|  | case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CmpInst::isOrdered(Predicate predicate) { | 
|  | switch (predicate) { | 
|  | default: return false; | 
|  | case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: | 
|  | case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: | 
|  | case FCmpInst::FCMP_ORD: return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CmpInst::isUnordered(Predicate predicate) { | 
|  | switch (predicate) { | 
|  | default: return false; | 
|  | case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: | 
|  | case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: | 
|  | case FCmpInst::FCMP_UNO: return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CmpInst::isTrueWhenEqual(Predicate predicate) { | 
|  | switch(predicate) { | 
|  | default: return false; | 
|  | case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: | 
|  | case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CmpInst::isFalseWhenEqual(Predicate predicate) { | 
|  | switch(predicate) { | 
|  | case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: | 
|  | case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; | 
|  | default: return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { | 
|  | // If the predicates match, then we know the first condition implies the | 
|  | // second is true. | 
|  | if (Pred1 == Pred2) | 
|  | return true; | 
|  |  | 
|  | switch (Pred1) { | 
|  | default: | 
|  | break; | 
|  | case ICMP_EQ: | 
|  | // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. | 
|  | return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || | 
|  | Pred2 == ICMP_SLE; | 
|  | case ICMP_UGT: // A >u B implies A != B and A >=u B are true. | 
|  | return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; | 
|  | case ICMP_ULT: // A <u B implies A != B and A <=u B are true. | 
|  | return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; | 
|  | case ICMP_SGT: // A >s B implies A != B and A >=s B are true. | 
|  | return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; | 
|  | case ICMP_SLT: // A <s B implies A != B and A <=s B are true. | 
|  | return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { | 
|  | return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        SwitchInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { | 
|  | assert(Value && Default && NumReserved); | 
|  | ReservedSpace = NumReserved; | 
|  | setNumHungOffUseOperands(2); | 
|  | allocHungoffUses(ReservedSpace); | 
|  |  | 
|  | Op<0>() = Value; | 
|  | Op<1>() = Default; | 
|  | } | 
|  |  | 
|  | /// SwitchInst ctor - Create a new switch instruction, specifying a value to | 
|  | /// switch on and a default destination.  The number of additional cases can | 
|  | /// be specified here to make memory allocation more efficient.  This | 
|  | /// constructor can also autoinsert before another instruction. | 
|  | SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, | 
|  | Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, | 
|  | nullptr, 0, InsertBefore) { | 
|  | init(Value, Default, 2+NumCases*2); | 
|  | } | 
|  |  | 
|  | /// SwitchInst ctor - Create a new switch instruction, specifying a value to | 
|  | /// switch on and a default destination.  The number of additional cases can | 
|  | /// be specified here to make memory allocation more efficient.  This | 
|  | /// constructor also autoinserts at the end of the specified BasicBlock. | 
|  | SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, | 
|  | nullptr, 0, InsertAtEnd) { | 
|  | init(Value, Default, 2+NumCases*2); | 
|  | } | 
|  |  | 
|  | SwitchInst::SwitchInst(const SwitchInst &SI) | 
|  | : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) { | 
|  | init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); | 
|  | setNumHungOffUseOperands(SI.getNumOperands()); | 
|  | Use *OL = getOperandList(); | 
|  | const Use *InOL = SI.getOperandList(); | 
|  | for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { | 
|  | OL[i] = InOL[i]; | 
|  | OL[i+1] = InOL[i+1]; | 
|  | } | 
|  | SubclassOptionalData = SI.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// addCase - Add an entry to the switch instruction... | 
|  | /// | 
|  | void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { | 
|  | unsigned NewCaseIdx = getNumCases(); | 
|  | unsigned OpNo = getNumOperands(); | 
|  | if (OpNo+2 > ReservedSpace) | 
|  | growOperands();  // Get more space! | 
|  | // Initialize some new operands. | 
|  | assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); | 
|  | setNumHungOffUseOperands(OpNo+2); | 
|  | CaseHandle Case(this, NewCaseIdx); | 
|  | Case.setValue(OnVal); | 
|  | Case.setSuccessor(Dest); | 
|  | } | 
|  |  | 
|  | /// removeCase - This method removes the specified case and its successor | 
|  | /// from the switch instruction. | 
|  | SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { | 
|  | unsigned idx = I->getCaseIndex(); | 
|  |  | 
|  | assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); | 
|  |  | 
|  | unsigned NumOps = getNumOperands(); | 
|  | Use *OL = getOperandList(); | 
|  |  | 
|  | // Overwrite this case with the end of the list. | 
|  | if (2 + (idx + 1) * 2 != NumOps) { | 
|  | OL[2 + idx * 2] = OL[NumOps - 2]; | 
|  | OL[2 + idx * 2 + 1] = OL[NumOps - 1]; | 
|  | } | 
|  |  | 
|  | // Nuke the last value. | 
|  | OL[NumOps-2].set(nullptr); | 
|  | OL[NumOps-2+1].set(nullptr); | 
|  | setNumHungOffUseOperands(NumOps-2); | 
|  |  | 
|  | return CaseIt(this, idx); | 
|  | } | 
|  |  | 
|  | /// growOperands - grow operands - This grows the operand list in response | 
|  | /// to a push_back style of operation.  This grows the number of ops by 3 times. | 
|  | /// | 
|  | void SwitchInst::growOperands() { | 
|  | unsigned e = getNumOperands(); | 
|  | unsigned NumOps = e*3; | 
|  |  | 
|  | ReservedSpace = NumOps; | 
|  | growHungoffUses(ReservedSpace); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        IndirectBrInst Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void IndirectBrInst::init(Value *Address, unsigned NumDests) { | 
|  | assert(Address && Address->getType()->isPointerTy() && | 
|  | "Address of indirectbr must be a pointer"); | 
|  | ReservedSpace = 1+NumDests; | 
|  | setNumHungOffUseOperands(1); | 
|  | allocHungoffUses(ReservedSpace); | 
|  |  | 
|  | Op<0>() = Address; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// growOperands - grow operands - This grows the operand list in response | 
|  | /// to a push_back style of operation.  This grows the number of ops by 2 times. | 
|  | /// | 
|  | void IndirectBrInst::growOperands() { | 
|  | unsigned e = getNumOperands(); | 
|  | unsigned NumOps = e*2; | 
|  |  | 
|  | ReservedSpace = NumOps; | 
|  | growHungoffUses(ReservedSpace); | 
|  | } | 
|  |  | 
|  | IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, | 
|  | Instruction *InsertBefore) | 
|  | : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, | 
|  | nullptr, 0, InsertBefore) { | 
|  | init(Address, NumCases); | 
|  | } | 
|  |  | 
|  | IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, | 
|  | BasicBlock *InsertAtEnd) | 
|  | : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, | 
|  | nullptr, 0, InsertAtEnd) { | 
|  | init(Address, NumCases); | 
|  | } | 
|  |  | 
|  | IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) | 
|  | : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, | 
|  | nullptr, IBI.getNumOperands()) { | 
|  | allocHungoffUses(IBI.getNumOperands()); | 
|  | Use *OL = getOperandList(); | 
|  | const Use *InOL = IBI.getOperandList(); | 
|  | for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) | 
|  | OL[i] = InOL[i]; | 
|  | SubclassOptionalData = IBI.SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | /// addDestination - Add a destination. | 
|  | /// | 
|  | void IndirectBrInst::addDestination(BasicBlock *DestBB) { | 
|  | unsigned OpNo = getNumOperands(); | 
|  | if (OpNo+1 > ReservedSpace) | 
|  | growOperands();  // Get more space! | 
|  | // Initialize some new operands. | 
|  | assert(OpNo < ReservedSpace && "Growing didn't work!"); | 
|  | setNumHungOffUseOperands(OpNo+1); | 
|  | getOperandList()[OpNo] = DestBB; | 
|  | } | 
|  |  | 
|  | /// removeDestination - This method removes the specified successor from the | 
|  | /// indirectbr instruction. | 
|  | void IndirectBrInst::removeDestination(unsigned idx) { | 
|  | assert(idx < getNumOperands()-1 && "Successor index out of range!"); | 
|  |  | 
|  | unsigned NumOps = getNumOperands(); | 
|  | Use *OL = getOperandList(); | 
|  |  | 
|  | // Replace this value with the last one. | 
|  | OL[idx+1] = OL[NumOps-1]; | 
|  |  | 
|  | // Nuke the last value. | 
|  | OL[NumOps-1].set(nullptr); | 
|  | setNumHungOffUseOperands(NumOps-1); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           cloneImpl() implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Define these methods here so vtables don't get emitted into every translation | 
|  | // unit that uses these classes. | 
|  |  | 
|  | GetElementPtrInst *GetElementPtrInst::cloneImpl() const { | 
|  | return new (getNumOperands()) GetElementPtrInst(*this); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::cloneImpl() const { | 
|  | return Create(getOpcode(), Op<0>(), Op<1>()); | 
|  | } | 
|  |  | 
|  | FCmpInst *FCmpInst::cloneImpl() const { | 
|  | return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); | 
|  | } | 
|  |  | 
|  | ICmpInst *ICmpInst::cloneImpl() const { | 
|  | return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); | 
|  | } | 
|  |  | 
|  | ExtractValueInst *ExtractValueInst::cloneImpl() const { | 
|  | return new ExtractValueInst(*this); | 
|  | } | 
|  |  | 
|  | InsertValueInst *InsertValueInst::cloneImpl() const { | 
|  | return new InsertValueInst(*this); | 
|  | } | 
|  |  | 
|  | AllocaInst *AllocaInst::cloneImpl() const { | 
|  | AllocaInst *Result = new AllocaInst(getAllocatedType(), | 
|  | getType()->getAddressSpace(), | 
|  | (Value *)getOperand(0), getAlignment()); | 
|  | Result->setUsedWithInAlloca(isUsedWithInAlloca()); | 
|  | Result->setSwiftError(isSwiftError()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | LoadInst *LoadInst::cloneImpl() const { | 
|  | return new LoadInst(getOperand(0), Twine(), isVolatile(), | 
|  | getAlignment(), getOrdering(), getSyncScopeID()); | 
|  | } | 
|  |  | 
|  | StoreInst *StoreInst::cloneImpl() const { | 
|  | return new StoreInst(getOperand(0), getOperand(1), isVolatile(), | 
|  | getAlignment(), getOrdering(), getSyncScopeID()); | 
|  |  | 
|  | } | 
|  |  | 
|  | AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { | 
|  | AtomicCmpXchgInst *Result = | 
|  | new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), | 
|  | getSuccessOrdering(), getFailureOrdering(), | 
|  | getSyncScopeID()); | 
|  | Result->setVolatile(isVolatile()); | 
|  | Result->setWeak(isWeak()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | AtomicRMWInst *AtomicRMWInst::cloneImpl() const { | 
|  | AtomicRMWInst *Result = | 
|  | new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), | 
|  | getOrdering(), getSyncScopeID()); | 
|  | Result->setVolatile(isVolatile()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | FenceInst *FenceInst::cloneImpl() const { | 
|  | return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); | 
|  | } | 
|  |  | 
|  | TruncInst *TruncInst::cloneImpl() const { | 
|  | return new TruncInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | ZExtInst *ZExtInst::cloneImpl() const { | 
|  | return new ZExtInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | SExtInst *SExtInst::cloneImpl() const { | 
|  | return new SExtInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | FPTruncInst *FPTruncInst::cloneImpl() const { | 
|  | return new FPTruncInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | FPExtInst *FPExtInst::cloneImpl() const { | 
|  | return new FPExtInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | UIToFPInst *UIToFPInst::cloneImpl() const { | 
|  | return new UIToFPInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | SIToFPInst *SIToFPInst::cloneImpl() const { | 
|  | return new SIToFPInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | FPToUIInst *FPToUIInst::cloneImpl() const { | 
|  | return new FPToUIInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | FPToSIInst *FPToSIInst::cloneImpl() const { | 
|  | return new FPToSIInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | PtrToIntInst *PtrToIntInst::cloneImpl() const { | 
|  | return new PtrToIntInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | IntToPtrInst *IntToPtrInst::cloneImpl() const { | 
|  | return new IntToPtrInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | BitCastInst *BitCastInst::cloneImpl() const { | 
|  | return new BitCastInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { | 
|  | return new AddrSpaceCastInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | CallInst *CallInst::cloneImpl() const { | 
|  | if (hasOperandBundles()) { | 
|  | unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); | 
|  | return new(getNumOperands(), DescriptorBytes) CallInst(*this); | 
|  | } | 
|  | return  new(getNumOperands()) CallInst(*this); | 
|  | } | 
|  |  | 
|  | SelectInst *SelectInst::cloneImpl() const { | 
|  | return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); | 
|  | } | 
|  |  | 
|  | VAArgInst *VAArgInst::cloneImpl() const { | 
|  | return new VAArgInst(getOperand(0), getType()); | 
|  | } | 
|  |  | 
|  | ExtractElementInst *ExtractElementInst::cloneImpl() const { | 
|  | return ExtractElementInst::Create(getOperand(0), getOperand(1)); | 
|  | } | 
|  |  | 
|  | InsertElementInst *InsertElementInst::cloneImpl() const { | 
|  | return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); | 
|  | } | 
|  |  | 
|  | ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { | 
|  | return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); | 
|  | } | 
|  |  | 
|  | PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } | 
|  |  | 
|  | LandingPadInst *LandingPadInst::cloneImpl() const { | 
|  | return new LandingPadInst(*this); | 
|  | } | 
|  |  | 
|  | ReturnInst *ReturnInst::cloneImpl() const { | 
|  | return new(getNumOperands()) ReturnInst(*this); | 
|  | } | 
|  |  | 
|  | BranchInst *BranchInst::cloneImpl() const { | 
|  | return new(getNumOperands()) BranchInst(*this); | 
|  | } | 
|  |  | 
|  | SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } | 
|  |  | 
|  | IndirectBrInst *IndirectBrInst::cloneImpl() const { | 
|  | return new IndirectBrInst(*this); | 
|  | } | 
|  |  | 
|  | InvokeInst *InvokeInst::cloneImpl() const { | 
|  | if (hasOperandBundles()) { | 
|  | unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); | 
|  | return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); | 
|  | } | 
|  | return new(getNumOperands()) InvokeInst(*this); | 
|  | } | 
|  |  | 
|  | ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } | 
|  |  | 
|  | CleanupReturnInst *CleanupReturnInst::cloneImpl() const { | 
|  | return new (getNumOperands()) CleanupReturnInst(*this); | 
|  | } | 
|  |  | 
|  | CatchReturnInst *CatchReturnInst::cloneImpl() const { | 
|  | return new (getNumOperands()) CatchReturnInst(*this); | 
|  | } | 
|  |  | 
|  | CatchSwitchInst *CatchSwitchInst::cloneImpl() const { | 
|  | return new CatchSwitchInst(*this); | 
|  | } | 
|  |  | 
|  | FuncletPadInst *FuncletPadInst::cloneImpl() const { | 
|  | return new (getNumOperands()) FuncletPadInst(*this); | 
|  | } | 
|  |  | 
|  | UnreachableInst *UnreachableInst::cloneImpl() const { | 
|  | LLVMContext &Context = getContext(); | 
|  | return new UnreachableInst(Context); | 
|  | } |