| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
| * vim: set ts=8 sts=4 et sw=4 tw=99: |
| * This Source Code Form is subject to the terms of the Mozilla Public |
| * License, v. 2.0. If a copy of the MPL was not distributed with this |
| * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
| #ifndef js_HashTable_h |
| #define js_HashTable_h |
| |
| #include "mozilla/Alignment.h" |
| #include "mozilla/Assertions.h" |
| #include "mozilla/Attributes.h" |
| #include "mozilla/Casting.h" |
| #include "mozilla/MemoryReporting.h" |
| #include "mozilla/Move.h" |
| #include "mozilla/Opaque.h" |
| #include "mozilla/PodOperations.h" |
| #include "mozilla/ReentrancyGuard.h" |
| #include "mozilla/TemplateLib.h" |
| #include "mozilla/TypeTraits.h" |
| #include "mozilla/UniquePtr.h" |
| |
| #include "js/Utility.h" |
| |
| namespace js { |
| |
| class TempAllocPolicy; |
| template <class> struct DefaultHasher; |
| template <class, class> class HashMapEntry; |
| namespace detail { |
| template <class T> class HashTableEntry; |
| template <class T, class HashPolicy, class AllocPolicy> class HashTable; |
| } // namespace detail |
| |
| /*****************************************************************************/ |
| |
| using Generation = mozilla::Opaque<uint64_t>; |
| |
| // A JS-friendly, STL-like container providing a hash-based map from keys to |
| // values. In particular, HashMap calls constructors and destructors of all |
| // objects added so non-PODs may be used safely. |
| // |
| // Key/Value requirements: |
| // - movable, destructible, assignable |
| // HashPolicy requirements: |
| // - see Hash Policy section below |
| // AllocPolicy: |
| // - see jsalloc.h |
| // |
| // Note: |
| // - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members |
| // called by HashMap must not call back into the same HashMap object. |
| // - Due to the lack of exception handling, the user must call |init()|. |
| template <class Key, |
| class Value, |
| class HashPolicy = DefaultHasher<Key>, |
| class AllocPolicy = TempAllocPolicy> |
| class HashMap |
| { |
| typedef HashMapEntry<Key, Value> TableEntry; |
| |
| struct MapHashPolicy : HashPolicy |
| { |
| typedef Key KeyType; |
| static const Key& getKey(TableEntry& e) { return e.key(); } |
| static void setKey(TableEntry& e, Key& k) { HashPolicy::rekey(e.mutableKey(), k); } |
| }; |
| |
| typedef detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy> Impl; |
| Impl impl; |
| |
| public: |
| typedef typename HashPolicy::Lookup Lookup; |
| typedef TableEntry Entry; |
| |
| // HashMap construction is fallible (due to OOM); thus the user must call |
| // init after constructing a HashMap and check the return value. |
| explicit HashMap(AllocPolicy a = AllocPolicy()) : impl(a) {} |
| bool init(uint32_t len = 16) { return impl.init(len); } |
| bool initialized() const { return impl.initialized(); } |
| |
| // Return whether the given lookup value is present in the map. E.g.: |
| // |
| // typedef HashMap<int,char> HM; |
| // HM h; |
| // if (HM::Ptr p = h.lookup(3)) { |
| // const HM::Entry& e = *p; // p acts like a pointer to Entry |
| // assert(p->key == 3); // Entry contains the key |
| // char val = p->value; // and value |
| // } |
| // |
| // Also see the definition of Ptr in HashTable above (with T = Entry). |
| typedef typename Impl::Ptr Ptr; |
| Ptr lookup(const Lookup& l) const { return impl.lookup(l); } |
| |
| // Like lookup, but does not assert if two threads call lookup at the same |
| // time. Only use this method when none of the threads will modify the map. |
| Ptr readonlyThreadsafeLookup(const Lookup& l) const { return impl.readonlyThreadsafeLookup(l); } |
| |
| // Assuming |p.found()|, remove |*p|. |
| void remove(Ptr p) { impl.remove(p); } |
| |
| // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient |
| // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using |
| // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new Entry. E.g.: |
| // |
| // typedef HashMap<int,char> HM; |
| // HM h; |
| // HM::AddPtr p = h.lookupForAdd(3); |
| // if (!p) { |
| // if (!h.add(p, 3, 'a')) |
| // return false; |
| // } |
| // const HM::Entry& e = *p; // p acts like a pointer to Entry |
| // assert(p->key == 3); // Entry contains the key |
| // char val = p->value; // and value |
| // |
| // Also see the definition of AddPtr in HashTable above (with T = Entry). |
| // |
| // N.B. The caller must ensure that no mutating hash table operations |
| // occur between a pair of |lookupForAdd| and |add| calls. To avoid |
| // looking up the key a second time, the caller may use the more efficient |
| // relookupOrAdd method. This method reuses part of the hashing computation |
| // to more efficiently insert the key if it has not been added. For |
| // example, a mutation-handling version of the previous example: |
| // |
| // HM::AddPtr p = h.lookupForAdd(3); |
| // if (!p) { |
| // call_that_may_mutate_h(); |
| // if (!h.relookupOrAdd(p, 3, 'a')) |
| // return false; |
| // } |
| // const HM::Entry& e = *p; |
| // assert(p->key == 3); |
| // char val = p->value; |
| typedef typename Impl::AddPtr AddPtr; |
| AddPtr lookupForAdd(const Lookup& l) const { |
| return impl.lookupForAdd(l); |
| } |
| |
| template<typename KeyInput, typename ValueInput> |
| bool add(AddPtr& p, KeyInput&& k, ValueInput&& v) { |
| return impl.add(p, |
| mozilla::Forward<KeyInput>(k), |
| mozilla::Forward<ValueInput>(v)); |
| } |
| |
| template<typename KeyInput> |
| bool add(AddPtr& p, KeyInput&& k) { |
| return impl.add(p, mozilla::Forward<KeyInput>(k), Value()); |
| } |
| |
| template<typename KeyInput, typename ValueInput> |
| bool relookupOrAdd(AddPtr& p, KeyInput&& k, ValueInput&& v) { |
| return impl.relookupOrAdd(p, k, |
| mozilla::Forward<KeyInput>(k), |
| mozilla::Forward<ValueInput>(v)); |
| } |
| |
| // |all()| returns a Range containing |count()| elements. E.g.: |
| // |
| // typedef HashMap<int,char> HM; |
| // HM h; |
| // for (HM::Range r = h.all(); !r.empty(); r.popFront()) |
| // char c = r.front().value(); |
| // |
| // Also see the definition of Range in HashTable above (with T = Entry). |
| typedef typename Impl::Range Range; |
| Range all() const { return impl.all(); } |
| |
| // Typedef for the enumeration class. An Enum may be used to examine and |
| // remove table entries: |
| // |
| // typedef HashMap<int,char> HM; |
| // HM s; |
| // for (HM::Enum e(s); !e.empty(); e.popFront()) |
| // if (e.front().value() == 'l') |
| // e.removeFront(); |
| // |
| // Table resize may occur in Enum's destructor. Also see the definition of |
| // Enum in HashTable above (with T = Entry). |
| typedef typename Impl::Enum Enum; |
| |
| // Remove all entries. This does not shrink the table. For that consider |
| // using the finish() method. |
| void clear() { impl.clear(); } |
| |
| // Remove all the entries and release all internal buffers. The map must |
| // be initialized again before any use. |
| void finish() { impl.finish(); } |
| |
| // Does the table contain any entries? |
| bool empty() const { return impl.empty(); } |
| |
| // Number of live elements in the map. |
| uint32_t count() const { return impl.count(); } |
| |
| // Total number of allocation in the dynamic table. Note: resize will |
| // happen well before count() == capacity(). |
| size_t capacity() const { return impl.capacity(); } |
| |
| // Don't just call |impl.sizeOfExcludingThis()| because there's no |
| // guarantee that |impl| is the first field in HashMap. |
| size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const { |
| return impl.sizeOfExcludingThis(mallocSizeOf); |
| } |
| size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const { |
| return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf); |
| } |
| |
| // If |generation()| is the same before and after a HashMap operation, |
| // pointers into the table remain valid. |
| Generation generation() const { |
| return impl.generation(); |
| } |
| |
| /************************************************** Shorthand operations */ |
| |
| bool has(const Lookup& l) const { |
| return impl.lookup(l).found(); |
| } |
| |
| // Overwrite existing value with v. Return false on oom. |
| template<typename KeyInput, typename ValueInput> |
| bool put(KeyInput&& k, ValueInput&& v) { |
| AddPtr p = lookupForAdd(k); |
| if (p) { |
| p->value() = mozilla::Forward<ValueInput>(v); |
| return true; |
| } |
| return add(p, mozilla::Forward<KeyInput>(k), mozilla::Forward<ValueInput>(v)); |
| } |
| |
| // Like put, but assert that the given key is not already present. |
| template<typename KeyInput, typename ValueInput> |
| bool putNew(KeyInput&& k, ValueInput&& v) { |
| return impl.putNew(k, mozilla::Forward<KeyInput>(k), mozilla::Forward<ValueInput>(v)); |
| } |
| |
| // Only call this to populate an empty map after reserving space with init(). |
| template<typename KeyInput, typename ValueInput> |
| void putNewInfallible(KeyInput&& k, ValueInput&& v) { |
| impl.putNewInfallible(k, mozilla::Forward<KeyInput>(k), mozilla::Forward<ValueInput>(v)); |
| } |
| |
| // Add (k,defaultValue) if |k| is not found. Return a false-y Ptr on oom. |
| Ptr lookupWithDefault(const Key& k, const Value& defaultValue) { |
| AddPtr p = lookupForAdd(k); |
| if (p) |
| return p; |
| (void)add(p, k, defaultValue); // p is left false-y on oom. |
| return p; |
| } |
| |
| // Remove if present. |
| void remove(const Lookup& l) { |
| if (Ptr p = lookup(l)) |
| remove(p); |
| } |
| |
| // Infallibly rekey one entry, if necessary. |
| // Requires template parameters Key and HashPolicy::Lookup to be the same type. |
| void rekeyIfMoved(const Key& old_key, const Key& new_key) { |
| if (old_key != new_key) |
| rekeyAs(old_key, new_key, new_key); |
| } |
| |
| // Infallibly rekey one entry if present, and return whether that happened. |
| bool rekeyAs(const Lookup& old_lookup, const Lookup& new_lookup, const Key& new_key) { |
| if (Ptr p = lookup(old_lookup)) { |
| impl.rekeyAndMaybeRehash(p, new_lookup, new_key); |
| return true; |
| } |
| return false; |
| } |
| |
| // HashMap is movable |
| HashMap(HashMap&& rhs) : impl(mozilla::Move(rhs.impl)) {} |
| void operator=(HashMap&& rhs) { |
| MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited"); |
| impl = mozilla::Move(rhs.impl); |
| } |
| |
| private: |
| // HashMap is not copyable or assignable |
| HashMap(const HashMap& hm) = delete; |
| HashMap& operator=(const HashMap& hm) = delete; |
| |
| friend class Impl::Enum; |
| }; |
| |
| /*****************************************************************************/ |
| |
| // A JS-friendly, STL-like container providing a hash-based set of values. In |
| // particular, HashSet calls constructors and destructors of all objects added |
| // so non-PODs may be used safely. |
| // |
| // T requirements: |
| // - movable, destructible, assignable |
| // HashPolicy requirements: |
| // - see Hash Policy section below |
| // AllocPolicy: |
| // - see jsalloc.h |
| // |
| // Note: |
| // - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by |
| // HashSet must not call back into the same HashSet object. |
| // - Due to the lack of exception handling, the user must call |init()|. |
| template <class T, |
| class HashPolicy = DefaultHasher<T>, |
| class AllocPolicy = TempAllocPolicy> |
| class HashSet |
| { |
| struct SetOps : HashPolicy |
| { |
| typedef T KeyType; |
| static const KeyType& getKey(const T& t) { return t; } |
| static void setKey(T& t, KeyType& k) { HashPolicy::rekey(t, k); } |
| }; |
| |
| typedef detail::HashTable<const T, SetOps, AllocPolicy> Impl; |
| Impl impl; |
| |
| public: |
| typedef typename HashPolicy::Lookup Lookup; |
| typedef T Entry; |
| |
| // HashSet construction is fallible (due to OOM); thus the user must call |
| // init after constructing a HashSet and check the return value. |
| explicit HashSet(AllocPolicy a = AllocPolicy()) : impl(a) {} |
| bool init(uint32_t len = 16) { return impl.init(len); } |
| bool initialized() const { return impl.initialized(); } |
| |
| // Return whether the given lookup value is present in the map. E.g.: |
| // |
| // typedef HashSet<int> HS; |
| // HS h; |
| // if (HS::Ptr p = h.lookup(3)) { |
| // assert(*p == 3); // p acts like a pointer to int |
| // } |
| // |
| // Also see the definition of Ptr in HashTable above. |
| typedef typename Impl::Ptr Ptr; |
| Ptr lookup(const Lookup& l) const { return impl.lookup(l); } |
| |
| // Like lookup, but does not assert if two threads call lookup at the same |
| // time. Only use this method when none of the threads will modify the map. |
| Ptr readonlyThreadsafeLookup(const Lookup& l) const { return impl.readonlyThreadsafeLookup(l); } |
| |
| // Assuming |p.found()|, remove |*p|. |
| void remove(Ptr p) { impl.remove(p); } |
| |
| // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient |
| // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using |
| // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.: |
| // |
| // typedef HashSet<int> HS; |
| // HS h; |
| // HS::AddPtr p = h.lookupForAdd(3); |
| // if (!p) { |
| // if (!h.add(p, 3)) |
| // return false; |
| // } |
| // assert(*p == 3); // p acts like a pointer to int |
| // |
| // Also see the definition of AddPtr in HashTable above. |
| // |
| // N.B. The caller must ensure that no mutating hash table operations |
| // occur between a pair of |lookupForAdd| and |add| calls. To avoid |
| // looking up the key a second time, the caller may use the more efficient |
| // relookupOrAdd method. This method reuses part of the hashing computation |
| // to more efficiently insert the key if it has not been added. For |
| // example, a mutation-handling version of the previous example: |
| // |
| // HS::AddPtr p = h.lookupForAdd(3); |
| // if (!p) { |
| // call_that_may_mutate_h(); |
| // if (!h.relookupOrAdd(p, 3, 3)) |
| // return false; |
| // } |
| // assert(*p == 3); |
| // |
| // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the |
| // entry |t|, where the caller ensures match(l,t). |
| typedef typename Impl::AddPtr AddPtr; |
| AddPtr lookupForAdd(const Lookup& l) const { return impl.lookupForAdd(l); } |
| |
| template <typename U> |
| bool add(AddPtr& p, U&& u) { |
| return impl.add(p, mozilla::Forward<U>(u)); |
| } |
| |
| template <typename U> |
| bool relookupOrAdd(AddPtr& p, const Lookup& l, U&& u) { |
| return impl.relookupOrAdd(p, l, mozilla::Forward<U>(u)); |
| } |
| |
| // |all()| returns a Range containing |count()| elements: |
| // |
| // typedef HashSet<int> HS; |
| // HS h; |
| // for (HS::Range r = h.all(); !r.empty(); r.popFront()) |
| // int i = r.front(); |
| // |
| // Also see the definition of Range in HashTable above. |
| typedef typename Impl::Range Range; |
| Range all() const { return impl.all(); } |
| |
| // Typedef for the enumeration class. An Enum may be used to examine and |
| // remove table entries: |
| // |
| // typedef HashSet<int> HS; |
| // HS s; |
| // for (HS::Enum e(s); !e.empty(); e.popFront()) |
| // if (e.front() == 42) |
| // e.removeFront(); |
| // |
| // Table resize may occur in Enum's destructor. Also see the definition of |
| // Enum in HashTable above. |
| typedef typename Impl::Enum Enum; |
| |
| // Remove all entries. This does not shrink the table. For that consider |
| // using the finish() method. |
| void clear() { impl.clear(); } |
| |
| // Remove all the entries and release all internal buffers. The set must |
| // be initialized again before any use. |
| void finish() { impl.finish(); } |
| |
| // Does the table contain any entries? |
| bool empty() const { return impl.empty(); } |
| |
| // Number of live elements in the map. |
| uint32_t count() const { return impl.count(); } |
| |
| // Total number of allocation in the dynamic table. Note: resize will |
| // happen well before count() == capacity(). |
| size_t capacity() const { return impl.capacity(); } |
| |
| // Don't just call |impl.sizeOfExcludingThis()| because there's no |
| // guarantee that |impl| is the first field in HashSet. |
| size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const { |
| return impl.sizeOfExcludingThis(mallocSizeOf); |
| } |
| size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const { |
| return mallocSizeOf(this) + impl.sizeOfExcludingThis(mallocSizeOf); |
| } |
| |
| // If |generation()| is the same before and after a HashSet operation, |
| // pointers into the table remain valid. |
| Generation generation() const { |
| return impl.generation(); |
| } |
| |
| /************************************************** Shorthand operations */ |
| |
| bool has(const Lookup& l) const { |
| return impl.lookup(l).found(); |
| } |
| |
| // Add |u| if it is not present already. Return false on oom. |
| template <typename U> |
| bool put(U&& u) { |
| AddPtr p = lookupForAdd(u); |
| return p ? true : add(p, mozilla::Forward<U>(u)); |
| } |
| |
| // Like put, but assert that the given key is not already present. |
| template <typename U> |
| bool putNew(U&& u) { |
| return impl.putNew(u, mozilla::Forward<U>(u)); |
| } |
| |
| template <typename U> |
| bool putNew(const Lookup& l, U&& u) { |
| return impl.putNew(l, mozilla::Forward<U>(u)); |
| } |
| |
| // Only call this to populate an empty set after reserving space with init(). |
| template <typename U> |
| void putNewInfallible(const Lookup& l, U&& u) { |
| impl.putNewInfallible(l, mozilla::Forward<U>(u)); |
| } |
| |
| void remove(const Lookup& l) { |
| if (Ptr p = lookup(l)) |
| remove(p); |
| } |
| |
| // Infallibly rekey one entry, if present. |
| // Requires template parameters T and HashPolicy::Lookup to be the same type. |
| void rekeyIfMoved(const Lookup& old_value, const T& new_value) { |
| if (old_value != new_value) |
| rekeyAs(old_value, new_value, new_value); |
| } |
| |
| // Infallibly rekey one entry if present, and return whether that happened. |
| bool rekeyAs(const Lookup& old_lookup, const Lookup& new_lookup, const T& new_value) { |
| if (Ptr p = lookup(old_lookup)) { |
| impl.rekeyAndMaybeRehash(p, new_lookup, new_value); |
| return true; |
| } |
| return false; |
| } |
| |
| // Infallibly rekey one entry with a new key that is equivalent. |
| void rekeyInPlace(Ptr p, const T& new_value) |
| { |
| MOZ_ASSERT(HashPolicy::match(*p, new_value)); |
| impl.rekeyInPlace(p, new_value); |
| } |
| |
| // HashSet is movable |
| HashSet(HashSet&& rhs) : impl(mozilla::Move(rhs.impl)) {} |
| void operator=(HashSet&& rhs) { |
| MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited"); |
| impl = mozilla::Move(rhs.impl); |
| } |
| |
| private: |
| // HashSet is not copyable or assignable |
| HashSet(const HashSet& hs) = delete; |
| HashSet& operator=(const HashSet& hs) = delete; |
| |
| friend class Impl::Enum; |
| }; |
| |
| /*****************************************************************************/ |
| |
| // Hash Policy |
| // |
| // A hash policy P for a hash table with key-type Key must provide: |
| // - a type |P::Lookup| to use to lookup table entries; |
| // - a static member function |P::hash| with signature |
| // |
| // static js::HashNumber hash(Lookup) |
| // |
| // to use to hash the lookup type; and |
| // - a static member function |P::match| with signature |
| // |
| // static bool match(Key, Lookup) |
| // |
| // to use to test equality of key and lookup values. |
| // |
| // Normally, Lookup = Key. In general, though, different values and types of |
| // values can be used to lookup and store. If a Lookup value |l| is != to the |
| // added Key value |k|, the user must ensure that |P::match(k,l)|. E.g.: |
| // |
| // js::HashSet<Key, P>::AddPtr p = h.lookup(l); |
| // if (!p) { |
| // assert(P::match(k, l)); // must hold |
| // h.add(p, k); |
| // } |
| |
| // Pointer hashing policy that strips the lowest zeroBits when calculating the |
| // hash to improve key distribution. |
| template <typename Key, size_t zeroBits> |
| struct PointerHasher |
| { |
| typedef Key Lookup; |
| static HashNumber hash(const Lookup& l) { |
| size_t word = reinterpret_cast<size_t>(l) >> zeroBits; |
| static_assert(sizeof(HashNumber) == 4, |
| "subsequent code assumes a four-byte hash"); |
| #if JS_BITS_PER_WORD == 32 |
| return HashNumber(word); |
| #else |
| static_assert(sizeof(word) == 8, |
| "unexpected word size, new hashing strategy required to " |
| "properly incorporate all bits"); |
| return HashNumber((word >> 32) ^ word); |
| #endif |
| } |
| static bool match(const Key& k, const Lookup& l) { |
| return k == l; |
| } |
| static void rekey(Key& k, const Key& newKey) { |
| k = newKey; |
| } |
| }; |
| |
| // Default hash policy: just use the 'lookup' value. This of course only |
| // works if the lookup value is integral. HashTable applies ScrambleHashCode to |
| // the result of the 'hash' which means that it is 'ok' if the lookup value is |
| // not well distributed over the HashNumber domain. |
| template <class Key> |
| struct DefaultHasher |
| { |
| typedef Key Lookup; |
| static HashNumber hash(const Lookup& l) { |
| // Hash if can implicitly cast to hash number type. |
| return l; |
| } |
| static bool match(const Key& k, const Lookup& l) { |
| // Use builtin or overloaded operator==. |
| return k == l; |
| } |
| static void rekey(Key& k, const Key& newKey) { |
| k = newKey; |
| } |
| }; |
| |
| // Specialize hashing policy for pointer types. It assumes that the type is |
| // at least word-aligned. For types with smaller size use PointerHasher. |
| template <class T> |
| struct DefaultHasher<T*> : PointerHasher<T*, mozilla::tl::FloorLog2<sizeof(void*)>::value> |
| {}; |
| |
| // Specialize hashing policy for mozilla::UniquePtr<T> to proxy the UniquePtr's |
| // raw pointer to PointerHasher. |
| template <class T> |
| struct DefaultHasher<mozilla::UniquePtr<T>> |
| { |
| using Lookup = mozilla::UniquePtr<T>; |
| using PtrHasher = PointerHasher<T*, mozilla::tl::FloorLog2<sizeof(void*)>::value>; |
| |
| static HashNumber hash(const Lookup& l) { |
| return PtrHasher::hash(l.get()); |
| } |
| static bool match(const mozilla::UniquePtr<T>& k, const Lookup& l) { |
| return PtrHasher::match(k.get(), l.get()); |
| } |
| static void rekey(mozilla::UniquePtr<T>& k, mozilla::UniquePtr<T>&& newKey) { |
| k = mozilla::Move(newKey); |
| } |
| }; |
| |
| // For doubles, we can xor the two uint32s. |
| template <> |
| struct DefaultHasher<double> |
| { |
| typedef double Lookup; |
| static HashNumber hash(double d) { |
| static_assert(sizeof(HashNumber) == 4, |
| "subsequent code assumes a four-byte hash"); |
| uint64_t u = mozilla::BitwiseCast<uint64_t>(d); |
| return HashNumber(u ^ (u >> 32)); |
| } |
| static bool match(double lhs, double rhs) { |
| return mozilla::BitwiseCast<uint64_t>(lhs) == mozilla::BitwiseCast<uint64_t>(rhs); |
| } |
| }; |
| |
| template <> |
| struct DefaultHasher<float> |
| { |
| typedef float Lookup; |
| static HashNumber hash(float f) { |
| static_assert(sizeof(HashNumber) == 4, |
| "subsequent code assumes a four-byte hash"); |
| return HashNumber(mozilla::BitwiseCast<uint32_t>(f)); |
| } |
| static bool match(float lhs, float rhs) { |
| return mozilla::BitwiseCast<uint32_t>(lhs) == mozilla::BitwiseCast<uint32_t>(rhs); |
| } |
| }; |
| |
| /*****************************************************************************/ |
| |
| // Both HashMap and HashSet are implemented by a single HashTable that is even |
| // more heavily parameterized than the other two. This leaves HashTable gnarly |
| // and extremely coupled to HashMap and HashSet; thus code should not use |
| // HashTable directly. |
| |
| template <class Key, class Value> |
| class HashMapEntry |
| { |
| Key key_; |
| Value value_; |
| |
| template <class, class, class> friend class detail::HashTable; |
| template <class> friend class detail::HashTableEntry; |
| template <class, class, class, class> friend class HashMap; |
| |
| public: |
| template<typename KeyInput, typename ValueInput> |
| HashMapEntry(KeyInput&& k, ValueInput&& v) |
| : key_(mozilla::Forward<KeyInput>(k)), |
| value_(mozilla::Forward<ValueInput>(v)) |
| {} |
| |
| HashMapEntry(HashMapEntry&& rhs) |
| : key_(mozilla::Move(rhs.key_)), |
| value_(mozilla::Move(rhs.value_)) |
| {} |
| |
| typedef Key KeyType; |
| typedef Value ValueType; |
| |
| const Key& key() const { return key_; } |
| Key& mutableKey() { return key_; } |
| const Value& value() const { return value_; } |
| Value& value() { return value_; } |
| |
| private: |
| HashMapEntry(const HashMapEntry&) = delete; |
| void operator=(const HashMapEntry&) = delete; |
| }; |
| |
| } // namespace js |
| |
| namespace mozilla { |
| |
| template <typename T> |
| struct IsPod<js::detail::HashTableEntry<T> > : IsPod<T> {}; |
| |
| template <typename K, typename V> |
| struct IsPod<js::HashMapEntry<K, V> > |
| : IntegralConstant<bool, IsPod<K>::value && IsPod<V>::value> |
| {}; |
| |
| } // namespace mozilla |
| |
| namespace js { |
| |
| namespace detail { |
| |
| template <class T, class HashPolicy, class AllocPolicy> |
| class HashTable; |
| |
| template <class T> |
| class HashTableEntry |
| { |
| template <class, class, class> friend class HashTable; |
| typedef typename mozilla::RemoveConst<T>::Type NonConstT; |
| |
| HashNumber keyHash; |
| mozilla::AlignedStorage2<NonConstT> mem; |
| |
| static const HashNumber sFreeKey = 0; |
| static const HashNumber sRemovedKey = 1; |
| static const HashNumber sCollisionBit = 1; |
| |
| static bool isLiveHash(HashNumber hash) |
| { |
| return hash > sRemovedKey; |
| } |
| |
| HashTableEntry(const HashTableEntry&) = delete; |
| void operator=(const HashTableEntry&) = delete; |
| ~HashTableEntry() = delete; |
| |
| public: |
| // NB: HashTableEntry is treated as a POD: no constructor or destructor calls. |
| |
| void destroyIfLive() { |
| if (isLive()) |
| mem.addr()->~T(); |
| } |
| |
| void destroy() { |
| MOZ_ASSERT(isLive()); |
| mem.addr()->~T(); |
| } |
| |
| void swap(HashTableEntry* other) { |
| mozilla::Swap(keyHash, other->keyHash); |
| mozilla::Swap(mem, other->mem); |
| } |
| |
| T& get() { MOZ_ASSERT(isLive()); return *mem.addr(); } |
| NonConstT& getMutable() { MOZ_ASSERT(isLive()); return *mem.addr(); } |
| |
| bool isFree() const { return keyHash == sFreeKey; } |
| void clearLive() { MOZ_ASSERT(isLive()); keyHash = sFreeKey; mem.addr()->~T(); } |
| void clear() { if (isLive()) mem.addr()->~T(); keyHash = sFreeKey; } |
| bool isRemoved() const { return keyHash == sRemovedKey; } |
| void removeLive() { MOZ_ASSERT(isLive()); keyHash = sRemovedKey; mem.addr()->~T(); } |
| bool isLive() const { return isLiveHash(keyHash); } |
| void setCollision() { MOZ_ASSERT(isLive()); keyHash |= sCollisionBit; } |
| void unsetCollision() { keyHash &= ~sCollisionBit; } |
| bool hasCollision() const { return keyHash & sCollisionBit; } |
| bool matchHash(HashNumber hn) { return (keyHash & ~sCollisionBit) == hn; } |
| HashNumber getKeyHash() const { return keyHash & ~sCollisionBit; } |
| |
| template <typename... Args> |
| void setLive(HashNumber hn, Args&&... args) |
| { |
| MOZ_ASSERT(!isLive()); |
| keyHash = hn; |
| new(mem.addr()) T(mozilla::Forward<Args>(args)...); |
| MOZ_ASSERT(isLive()); |
| } |
| }; |
| |
| template <class T, class HashPolicy, class AllocPolicy> |
| class HashTable : private AllocPolicy |
| { |
| friend class mozilla::ReentrancyGuard; |
| |
| typedef typename mozilla::RemoveConst<T>::Type NonConstT; |
| typedef typename HashPolicy::KeyType Key; |
| typedef typename HashPolicy::Lookup Lookup; |
| |
| public: |
| typedef HashTableEntry<T> Entry; |
| |
| // A nullable pointer to a hash table element. A Ptr |p| can be tested |
| // either explicitly |if (p.found()) p->...| or using boolean conversion |
| // |if (p) p->...|. Ptr objects must not be used after any mutating hash |
| // table operations unless |generation()| is tested. |
| class Ptr |
| { |
| friend class HashTable; |
| |
| Entry* entry_; |
| #ifdef JS_DEBUG |
| const HashTable* table_; |
| Generation generation; |
| #endif |
| |
| protected: |
| Ptr(Entry& entry, const HashTable& tableArg) |
| : entry_(&entry) |
| #ifdef JS_DEBUG |
| , table_(&tableArg) |
| , generation(tableArg.generation()) |
| #endif |
| {} |
| |
| public: |
| // Leaves Ptr uninitialized. |
| Ptr() { |
| #ifdef JS_DEBUG |
| entry_ = (Entry*)0xbad; |
| #endif |
| } |
| |
| bool found() const { |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(generation == table_->generation()); |
| #endif |
| return entry_->isLive(); |
| } |
| |
| explicit operator bool() const { |
| return found(); |
| } |
| |
| bool operator==(const Ptr& rhs) const { |
| MOZ_ASSERT(found() && rhs.found()); |
| return entry_ == rhs.entry_; |
| } |
| |
| bool operator!=(const Ptr& rhs) const { |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(generation == table_->generation()); |
| #endif |
| return !(*this == rhs); |
| } |
| |
| T& operator*() const { |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(generation == table_->generation()); |
| #endif |
| return entry_->get(); |
| } |
| |
| T* operator->() const { |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(generation == table_->generation()); |
| #endif |
| return &entry_->get(); |
| } |
| }; |
| |
| // A Ptr that can be used to add a key after a failed lookup. |
| class AddPtr : public Ptr |
| { |
| friend class HashTable; |
| HashNumber keyHash; |
| #ifdef JS_DEBUG |
| uint64_t mutationCount; |
| #endif |
| |
| AddPtr(Entry& entry, const HashTable& tableArg, HashNumber hn) |
| : Ptr(entry, tableArg) |
| , keyHash(hn) |
| #ifdef JS_DEBUG |
| , mutationCount(tableArg.mutationCount) |
| #endif |
| {} |
| |
| public: |
| // Leaves AddPtr uninitialized. |
| AddPtr() {} |
| }; |
| |
| // A collection of hash table entries. The collection is enumerated by |
| // calling |front()| followed by |popFront()| as long as |!empty()|. As |
| // with Ptr/AddPtr, Range objects must not be used after any mutating hash |
| // table operation unless the |generation()| is tested. |
| class Range |
| { |
| protected: |
| friend class HashTable; |
| |
| Range(const HashTable& tableArg, Entry* c, Entry* e) |
| : cur(c) |
| , end(e) |
| #ifdef JS_DEBUG |
| , table_(&tableArg) |
| , mutationCount(tableArg.mutationCount) |
| , generation(tableArg.generation()) |
| , validEntry(true) |
| #endif |
| { |
| while (cur < end && !cur->isLive()) |
| ++cur; |
| } |
| |
| Entry* cur; |
| Entry* end; |
| #ifdef JS_DEBUG |
| const HashTable* table_; |
| uint64_t mutationCount; |
| Generation generation; |
| bool validEntry; |
| #endif |
| |
| public: |
| Range() |
| : cur(nullptr) |
| , end(nullptr) |
| #ifdef JS_DEBUG |
| , table_(nullptr) |
| , mutationCount(0) |
| , generation(0) |
| , validEntry(false) |
| #endif |
| {} |
| |
| bool empty() const { |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(generation == table_->generation()); |
| MOZ_ASSERT(mutationCount == table_->mutationCount); |
| #endif |
| return cur == end; |
| } |
| |
| T& front() const { |
| MOZ_ASSERT(!empty()); |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(validEntry); |
| MOZ_ASSERT(generation == table_->generation()); |
| MOZ_ASSERT(mutationCount == table_->mutationCount); |
| #endif |
| return cur->get(); |
| } |
| |
| void popFront() { |
| MOZ_ASSERT(!empty()); |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(generation == table_->generation()); |
| MOZ_ASSERT(mutationCount == table_->mutationCount); |
| #endif |
| while (++cur < end && !cur->isLive()) |
| continue; |
| #ifdef JS_DEBUG |
| validEntry = true; |
| #endif |
| } |
| }; |
| |
| // A Range whose lifetime delimits a mutating enumeration of a hash table. |
| // Since rehashing when elements were removed during enumeration would be |
| // bad, it is postponed until the Enum is destructed. Since the Enum's |
| // destructor touches the hash table, the user must ensure that the hash |
| // table is still alive when the destructor runs. |
| class Enum : public Range |
| { |
| friend class HashTable; |
| |
| HashTable& table_; |
| bool rekeyed; |
| bool removed; |
| |
| /* Not copyable. */ |
| Enum(const Enum&) = delete; |
| void operator=(const Enum&) = delete; |
| |
| public: |
| template<class Map> explicit |
| Enum(Map& map) : Range(map.all()), table_(map.impl), rekeyed(false), removed(false) {} |
| |
| // Removes the |front()| element from the table, leaving |front()| |
| // invalid until the next call to |popFront()|. For example: |
| // |
| // HashSet<int> s; |
| // for (HashSet<int>::Enum e(s); !e.empty(); e.popFront()) |
| // if (e.front() == 42) |
| // e.removeFront(); |
| void removeFront() { |
| table_.remove(*this->cur); |
| removed = true; |
| #ifdef JS_DEBUG |
| this->validEntry = false; |
| this->mutationCount = table_.mutationCount; |
| #endif |
| } |
| |
| NonConstT& mutableFront() { |
| MOZ_ASSERT(!this->empty()); |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(this->validEntry); |
| MOZ_ASSERT(this->generation == this->Range::table_->generation()); |
| MOZ_ASSERT(this->mutationCount == this->Range::table_->mutationCount); |
| #endif |
| return this->cur->getMutable(); |
| } |
| |
| // Removes the |front()| element and re-inserts it into the table with |
| // a new key at the new Lookup position. |front()| is invalid after |
| // this operation until the next call to |popFront()|. |
| void rekeyFront(const Lookup& l, const Key& k) { |
| MOZ_ASSERT(&k != &HashPolicy::getKey(this->cur->get())); |
| Ptr p(*this->cur, table_); |
| table_.rekeyWithoutRehash(p, l, k); |
| rekeyed = true; |
| #ifdef JS_DEBUG |
| this->validEntry = false; |
| this->mutationCount = table_.mutationCount; |
| #endif |
| } |
| |
| void rekeyFront(const Key& k) { |
| rekeyFront(k, k); |
| } |
| |
| // Potentially rehashes the table. |
| ~Enum() { |
| if (rekeyed) { |
| table_.gen++; |
| table_.checkOverRemoved(); |
| } |
| |
| if (removed) |
| table_.compactIfUnderloaded(); |
| } |
| }; |
| |
| // HashTable is movable |
| HashTable(HashTable&& rhs) |
| : AllocPolicy(rhs) |
| { |
| mozilla::PodAssign(this, &rhs); |
| rhs.table = nullptr; |
| } |
| void operator=(HashTable&& rhs) { |
| MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited"); |
| if (table) |
| destroyTable(*this, table, capacity()); |
| mozilla::PodAssign(this, &rhs); |
| rhs.table = nullptr; |
| } |
| |
| private: |
| // HashTable is not copyable or assignable |
| HashTable(const HashTable&) = delete; |
| void operator=(const HashTable&) = delete; |
| |
| private: |
| static const size_t CAP_BITS = 30; |
| |
| public: |
| uint64_t gen:56; // entry storage generation number |
| uint64_t hashShift:8; // multiplicative hash shift |
| Entry* table; // entry storage |
| uint32_t entryCount; // number of entries in table |
| uint32_t removedCount; // removed entry sentinels in table |
| |
| #ifdef JS_DEBUG |
| uint64_t mutationCount; |
| mutable bool mEntered; |
| // Note that some updates to these stats are not thread-safe. See the |
| // comment on the three-argument overloading of HashTable::lookup(). |
| mutable struct Stats |
| { |
| uint32_t searches; // total number of table searches |
| uint32_t steps; // hash chain links traversed |
| uint32_t hits; // searches that found key |
| uint32_t misses; // searches that didn't find key |
| uint32_t addOverRemoved; // adds that recycled a removed entry |
| uint32_t removes; // calls to remove |
| uint32_t removeFrees; // calls to remove that freed the entry |
| uint32_t grows; // table expansions |
| uint32_t shrinks; // table contractions |
| uint32_t compresses; // table compressions |
| uint32_t rehashes; // tombstone decontaminations |
| } stats; |
| # define METER(x) x |
| #else |
| # define METER(x) |
| #endif |
| |
| // The default initial capacity is 32 (enough to hold 16 elements), but it |
| // can be as low as 4. |
| static const unsigned sMinCapacityLog2 = 2; |
| static const unsigned sMinCapacity = 1 << sMinCapacityLog2; |
| static const unsigned sMaxInit = JS_BIT(CAP_BITS - 1); |
| static const unsigned sMaxCapacity = JS_BIT(CAP_BITS); |
| static const unsigned sHashBits = mozilla::tl::BitSize<HashNumber>::value; |
| |
| // Hash-table alpha is conceptually a fraction, but to avoid floating-point |
| // math we implement it as a ratio of integers. |
| static const uint8_t sAlphaDenominator = 4; |
| static const uint8_t sMinAlphaNumerator = 1; // min alpha: 1/4 |
| static const uint8_t sMaxAlphaNumerator = 3; // max alpha: 3/4 |
| |
| static const HashNumber sFreeKey = Entry::sFreeKey; |
| static const HashNumber sRemovedKey = Entry::sRemovedKey; |
| static const HashNumber sCollisionBit = Entry::sCollisionBit; |
| |
| void setTableSizeLog2(unsigned sizeLog2) |
| { |
| hashShift = sHashBits - sizeLog2; |
| } |
| |
| static bool isLiveHash(HashNumber hash) |
| { |
| return Entry::isLiveHash(hash); |
| } |
| |
| static HashNumber prepareHash(const Lookup& l) |
| { |
| HashNumber keyHash = ScrambleHashCode(HashPolicy::hash(l)); |
| |
| // Avoid reserved hash codes. |
| if (!isLiveHash(keyHash)) |
| keyHash -= (sRemovedKey + 1); |
| return keyHash & ~sCollisionBit; |
| } |
| |
| enum FailureBehavior { DontReportFailure = false, ReportFailure = true }; |
| |
| static Entry* createTable(AllocPolicy& alloc, uint32_t capacity, |
| FailureBehavior reportFailure = ReportFailure) |
| { |
| static_assert(sFreeKey == 0, |
| "newly-calloc'd tables have to be considered empty"); |
| if (reportFailure) |
| return alloc.template pod_calloc<Entry>(capacity); |
| |
| return alloc.template maybe_pod_calloc<Entry>(capacity); |
| } |
| |
| static Entry* maybeCreateTable(AllocPolicy& alloc, uint32_t capacity) |
| { |
| static_assert(sFreeKey == 0, |
| "newly-calloc'd tables have to be considered empty"); |
| return alloc.template maybe_pod_calloc<Entry>(capacity); |
| } |
| |
| static void destroyTable(AllocPolicy& alloc, Entry* oldTable, uint32_t capacity) |
| { |
| Entry* end = oldTable + capacity; |
| for (Entry* e = oldTable; e < end; ++e) |
| e->destroyIfLive(); |
| alloc.free_(oldTable); |
| } |
| |
| public: |
| explicit HashTable(AllocPolicy ap) |
| : AllocPolicy(ap) |
| , gen(0) |
| , hashShift(sHashBits) |
| , table(nullptr) |
| , entryCount(0) |
| , removedCount(0) |
| #ifdef JS_DEBUG |
| , mutationCount(0) |
| , mEntered(false) |
| #endif |
| {} |
| |
| MOZ_WARN_UNUSED_RESULT bool init(uint32_t length) |
| { |
| MOZ_ASSERT(!initialized()); |
| |
| // Reject all lengths whose initial computed capacity would exceed |
| // sMaxCapacity. Round that maximum length down to the nearest power |
| // of two for speedier code. |
| if (MOZ_UNLIKELY(length > sMaxInit)) { |
| this->reportAllocOverflow(); |
| return false; |
| } |
| |
| static_assert((sMaxInit * sAlphaDenominator) / sAlphaDenominator == sMaxInit, |
| "multiplication in numerator below could overflow"); |
| static_assert(sMaxInit * sAlphaDenominator <= UINT32_MAX - sMaxAlphaNumerator, |
| "numerator calculation below could potentially overflow"); |
| |
| // Compute the smallest capacity allowing |length| elements to be |
| // inserted without rehashing: ceil(length / max-alpha). (Ceiling |
| // integral division: <http://stackoverflow.com/a/2745086>.) |
| uint32_t newCapacity = |
| (length * sAlphaDenominator + sMaxAlphaNumerator - 1) / sMaxAlphaNumerator; |
| if (newCapacity < sMinCapacity) |
| newCapacity = sMinCapacity; |
| |
| // FIXME: use JS_CEILING_LOG2 when PGO stops crashing (bug 543034). |
| uint32_t roundUp = sMinCapacity, roundUpLog2 = sMinCapacityLog2; |
| while (roundUp < newCapacity) { |
| roundUp <<= 1; |
| ++roundUpLog2; |
| } |
| |
| newCapacity = roundUp; |
| MOZ_ASSERT(newCapacity >= length); |
| MOZ_ASSERT(newCapacity <= sMaxCapacity); |
| |
| table = createTable(*this, newCapacity); |
| if (!table) |
| return false; |
| |
| setTableSizeLog2(roundUpLog2); |
| METER(memset(&stats, 0, sizeof(stats))); |
| return true; |
| } |
| |
| bool initialized() const |
| { |
| return !!table; |
| } |
| |
| ~HashTable() |
| { |
| if (table) |
| destroyTable(*this, table, capacity()); |
| } |
| |
| private: |
| HashNumber hash1(HashNumber hash0) const |
| { |
| return hash0 >> hashShift; |
| } |
| |
| struct DoubleHash |
| { |
| HashNumber h2; |
| HashNumber sizeMask; |
| }; |
| |
| DoubleHash hash2(HashNumber curKeyHash) const |
| { |
| unsigned sizeLog2 = sHashBits - hashShift; |
| DoubleHash dh = { |
| ((curKeyHash << sizeLog2) >> hashShift) | 1, |
| (HashNumber(1) << sizeLog2) - 1 |
| }; |
| return dh; |
| } |
| |
| static HashNumber applyDoubleHash(HashNumber h1, const DoubleHash& dh) |
| { |
| return (h1 - dh.h2) & dh.sizeMask; |
| } |
| |
| bool overloaded() |
| { |
| static_assert(sMaxCapacity <= UINT32_MAX / sMaxAlphaNumerator, |
| "multiplication below could overflow"); |
| return entryCount + removedCount >= |
| capacity() * sMaxAlphaNumerator / sAlphaDenominator; |
| } |
| |
| // Would the table be underloaded if it had the given capacity and entryCount? |
| static bool wouldBeUnderloaded(uint32_t capacity, uint32_t entryCount) |
| { |
| static_assert(sMaxCapacity <= UINT32_MAX / sMinAlphaNumerator, |
| "multiplication below could overflow"); |
| return capacity > sMinCapacity && |
| entryCount <= capacity * sMinAlphaNumerator / sAlphaDenominator; |
| } |
| |
| bool underloaded() |
| { |
| return wouldBeUnderloaded(capacity(), entryCount); |
| } |
| |
| static bool match(Entry& e, const Lookup& l) |
| { |
| return HashPolicy::match(HashPolicy::getKey(e.get()), l); |
| } |
| |
| // Warning: in order for readonlyThreadsafeLookup() to be safe this |
| // function must not modify the table in any way when |collisionBit| is 0. |
| // (The use of the METER() macro to increment stats violates this |
| // restriction but we will live with that for now because it's enabled so |
| // rarely.) |
| Entry& lookup(const Lookup& l, HashNumber keyHash, unsigned collisionBit) const |
| { |
| MOZ_ASSERT(isLiveHash(keyHash)); |
| MOZ_ASSERT(!(keyHash & sCollisionBit)); |
| MOZ_ASSERT(collisionBit == 0 || collisionBit == sCollisionBit); |
| MOZ_ASSERT(table); |
| METER(stats.searches++); |
| |
| // Compute the primary hash address. |
| HashNumber h1 = hash1(keyHash); |
| Entry* entry = &table[h1]; |
| |
| // Miss: return space for a new entry. |
| if (entry->isFree()) { |
| METER(stats.misses++); |
| return *entry; |
| } |
| |
| // Hit: return entry. |
| if (entry->matchHash(keyHash) && match(*entry, l)) { |
| METER(stats.hits++); |
| return *entry; |
| } |
| |
| // Collision: double hash. |
| DoubleHash dh = hash2(keyHash); |
| |
| // Save the first removed entry pointer so we can recycle later. |
| Entry* firstRemoved = nullptr; |
| |
| while (true) { |
| if (MOZ_UNLIKELY(entry->isRemoved())) { |
| if (!firstRemoved) |
| firstRemoved = entry; |
| } else { |
| if (collisionBit == sCollisionBit) |
| entry->setCollision(); |
| } |
| |
| METER(stats.steps++); |
| h1 = applyDoubleHash(h1, dh); |
| |
| entry = &table[h1]; |
| if (entry->isFree()) { |
| METER(stats.misses++); |
| return firstRemoved ? *firstRemoved : *entry; |
| } |
| |
| if (entry->matchHash(keyHash) && match(*entry, l)) { |
| METER(stats.hits++); |
| return *entry; |
| } |
| } |
| } |
| |
| // This is a copy of lookup hardcoded to the assumptions: |
| // 1. the lookup is a lookupForAdd |
| // 2. the key, whose |keyHash| has been passed is not in the table, |
| // 3. no entries have been removed from the table. |
| // This specialized search avoids the need for recovering lookup values |
| // from entries, which allows more flexible Lookup/Key types. |
| Entry& findFreeEntry(HashNumber keyHash) |
| { |
| MOZ_ASSERT(!(keyHash & sCollisionBit)); |
| MOZ_ASSERT(table); |
| METER(stats.searches++); |
| |
| // We assume 'keyHash' has already been distributed. |
| |
| // Compute the primary hash address. |
| HashNumber h1 = hash1(keyHash); |
| Entry* entry = &table[h1]; |
| |
| // Miss: return space for a new entry. |
| if (!entry->isLive()) { |
| METER(stats.misses++); |
| return *entry; |
| } |
| |
| // Collision: double hash. |
| DoubleHash dh = hash2(keyHash); |
| |
| while (true) { |
| MOZ_ASSERT(!entry->isRemoved()); |
| entry->setCollision(); |
| |
| METER(stats.steps++); |
| h1 = applyDoubleHash(h1, dh); |
| |
| entry = &table[h1]; |
| if (!entry->isLive()) { |
| METER(stats.misses++); |
| return *entry; |
| } |
| } |
| } |
| |
| enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed }; |
| |
| RebuildStatus changeTableSize(int deltaLog2, FailureBehavior reportFailure = ReportFailure) |
| { |
| // Look, but don't touch, until we succeed in getting new entry store. |
| Entry* oldTable = table; |
| uint32_t oldCap = capacity(); |
| uint32_t newLog2 = sHashBits - hashShift + deltaLog2; |
| uint32_t newCapacity = JS_BIT(newLog2); |
| if (MOZ_UNLIKELY(newCapacity > sMaxCapacity)) { |
| if (reportFailure) |
| this->reportAllocOverflow(); |
| return RehashFailed; |
| } |
| |
| Entry* newTable = createTable(*this, newCapacity, reportFailure); |
| if (!newTable) |
| return RehashFailed; |
| |
| // We can't fail from here on, so update table parameters. |
| setTableSizeLog2(newLog2); |
| removedCount = 0; |
| gen++; |
| table = newTable; |
| |
| // Copy only live entries, leaving removed ones behind. |
| Entry* end = oldTable + oldCap; |
| for (Entry* src = oldTable; src < end; ++src) { |
| if (src->isLive()) { |
| HashNumber hn = src->getKeyHash(); |
| findFreeEntry(hn).setLive( |
| hn, mozilla::Move(const_cast<typename Entry::NonConstT&>(src->get()))); |
| src->destroy(); |
| } |
| } |
| |
| // All entries have been destroyed, no need to destroyTable. |
| this->free_(oldTable); |
| return Rehashed; |
| } |
| |
| bool shouldCompressTable() |
| { |
| // Compress if a quarter or more of all entries are removed. |
| return removedCount >= (capacity() >> 2); |
| } |
| |
| RebuildStatus checkOverloaded(FailureBehavior reportFailure = ReportFailure) |
| { |
| if (!overloaded()) |
| return NotOverloaded; |
| |
| int deltaLog2; |
| if (shouldCompressTable()) { |
| METER(stats.compresses++); |
| deltaLog2 = 0; |
| } else { |
| METER(stats.grows++); |
| deltaLog2 = 1; |
| } |
| |
| return changeTableSize(deltaLog2, reportFailure); |
| } |
| |
| // Infallibly rehash the table if we are overloaded with removals. |
| void checkOverRemoved() |
| { |
| if (overloaded()) { |
| if (checkOverloaded(DontReportFailure) == RehashFailed) |
| rehashTableInPlace(); |
| } |
| } |
| |
| void remove(Entry& e) |
| { |
| MOZ_ASSERT(table); |
| METER(stats.removes++); |
| |
| if (e.hasCollision()) { |
| e.removeLive(); |
| removedCount++; |
| } else { |
| METER(stats.removeFrees++); |
| e.clearLive(); |
| } |
| entryCount--; |
| #ifdef JS_DEBUG |
| mutationCount++; |
| #endif |
| } |
| |
| void checkUnderloaded() |
| { |
| if (underloaded()) { |
| METER(stats.shrinks++); |
| (void) changeTableSize(-1, DontReportFailure); |
| } |
| } |
| |
| // Resize the table down to the largest capacity which doesn't underload the |
| // table. Since we call checkUnderloaded() on every remove, you only need |
| // to call this after a bulk removal of items done without calling remove(). |
| void compactIfUnderloaded() |
| { |
| int32_t resizeLog2 = 0; |
| uint32_t newCapacity = capacity(); |
| while (wouldBeUnderloaded(newCapacity, entryCount)) { |
| newCapacity = newCapacity >> 1; |
| resizeLog2--; |
| } |
| |
| if (resizeLog2 != 0) |
| (void) changeTableSize(resizeLog2, DontReportFailure); |
| } |
| |
| // This is identical to changeTableSize(currentSize), but without requiring |
| // a second table. We do this by recycling the collision bits to tell us if |
| // the element is already inserted or still waiting to be inserted. Since |
| // already-inserted elements win any conflicts, we get the same table as we |
| // would have gotten through random insertion order. |
| void rehashTableInPlace() |
| { |
| METER(stats.rehashes++); |
| removedCount = 0; |
| for (size_t i = 0; i < capacity(); ++i) |
| table[i].unsetCollision(); |
| |
| for (size_t i = 0; i < capacity();) { |
| Entry* src = &table[i]; |
| |
| if (!src->isLive() || src->hasCollision()) { |
| ++i; |
| continue; |
| } |
| |
| HashNumber keyHash = src->getKeyHash(); |
| HashNumber h1 = hash1(keyHash); |
| DoubleHash dh = hash2(keyHash); |
| Entry* tgt = &table[h1]; |
| while (true) { |
| if (!tgt->hasCollision()) { |
| src->swap(tgt); |
| tgt->setCollision(); |
| break; |
| } |
| |
| h1 = applyDoubleHash(h1, dh); |
| tgt = &table[h1]; |
| } |
| } |
| |
| // TODO: this algorithm leaves collision bits on *all* elements, even if |
| // they are on no collision path. We have the option of setting the |
| // collision bits correctly on a subsequent pass or skipping the rehash |
| // unless we are totally filled with tombstones: benchmark to find out |
| // which approach is best. |
| } |
| |
| public: |
| void clear() |
| { |
| if (mozilla::IsPod<Entry>::value) { |
| memset(table, 0, sizeof(*table) * capacity()); |
| } else { |
| uint32_t tableCapacity = capacity(); |
| Entry* end = table + tableCapacity; |
| for (Entry* e = table; e < end; ++e) |
| e->clear(); |
| } |
| removedCount = 0; |
| entryCount = 0; |
| #ifdef JS_DEBUG |
| mutationCount++; |
| #endif |
| } |
| |
| void finish() |
| { |
| #ifdef JS_DEBUG |
| MOZ_ASSERT(!mEntered); |
| #endif |
| if (!table) |
| return; |
| |
| destroyTable(*this, table, capacity()); |
| table = nullptr; |
| gen++; |
| entryCount = 0; |
| removedCount = 0; |
| #ifdef JS_DEBUG |
| mutationCount++; |
| #endif |
| } |
| |
| Range all() const |
| { |
| MOZ_ASSERT(table); |
| return Range(*this, table, table + capacity()); |
| } |
| |
| bool empty() const |
| { |
| MOZ_ASSERT(table); |
| return !entryCount; |
| } |
| |
| uint32_t count() const |
| { |
| MOZ_ASSERT(table); |
| return entryCount; |
| } |
| |
| uint32_t capacity() const |
| { |
| MOZ_ASSERT(table); |
| return JS_BIT(sHashBits - hashShift); |
| } |
| |
| Generation generation() const |
| { |
| MOZ_ASSERT(table); |
| return Generation(gen); |
| } |
| |
| size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const |
| { |
| return mallocSizeOf(table); |
| } |
| |
| size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const |
| { |
| return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf); |
| } |
| |
| Ptr lookup(const Lookup& l) const |
| { |
| mozilla::ReentrancyGuard g(*this); |
| HashNumber keyHash = prepareHash(l); |
| return Ptr(lookup(l, keyHash, 0), *this); |
| } |
| |
| Ptr readonlyThreadsafeLookup(const Lookup& l) const |
| { |
| HashNumber keyHash = prepareHash(l); |
| return Ptr(lookup(l, keyHash, 0), *this); |
| } |
| |
| AddPtr lookupForAdd(const Lookup& l) const |
| { |
| mozilla::ReentrancyGuard g(*this); |
| HashNumber keyHash = prepareHash(l); |
| Entry& entry = lookup(l, keyHash, sCollisionBit); |
| AddPtr p(entry, *this, keyHash); |
| return p; |
| } |
| |
| template <typename... Args> |
| bool add(AddPtr& p, Args&&... args) |
| { |
| mozilla::ReentrancyGuard g(*this); |
| MOZ_ASSERT(table); |
| MOZ_ASSERT(!p.found()); |
| MOZ_ASSERT(!(p.keyHash & sCollisionBit)); |
| |
| // Changing an entry from removed to live does not affect whether we |
| // are overloaded and can be handled separately. |
| if (p.entry_->isRemoved()) { |
| if (!this->checkSimulatedOOM()) |
| return false; |
| METER(stats.addOverRemoved++); |
| removedCount--; |
| p.keyHash |= sCollisionBit; |
| } else { |
| // Preserve the validity of |p.entry_|. |
| RebuildStatus status = checkOverloaded(); |
| if (status == RehashFailed) |
| return false; |
| if (!this->checkSimulatedOOM()) |
| return false; |
| if (status == Rehashed) |
| p.entry_ = &findFreeEntry(p.keyHash); |
| } |
| |
| p.entry_->setLive(p.keyHash, mozilla::Forward<Args>(args)...); |
| entryCount++; |
| #ifdef JS_DEBUG |
| mutationCount++; |
| p.generation = generation(); |
| p.mutationCount = mutationCount; |
| #endif |
| return true; |
| } |
| |
| // Note: |l| may be a reference to a piece of |u|, so this function |
| // must take care not to use |l| after moving |u|. |
| template <typename... Args> |
| void putNewInfallible(const Lookup& l, Args&&... args) |
| { |
| MOZ_ASSERT(table); |
| |
| HashNumber keyHash = prepareHash(l); |
| Entry* entry = &findFreeEntry(keyHash); |
| MOZ_ASSERT(entry); |
| |
| if (entry->isRemoved()) { |
| METER(stats.addOverRemoved++); |
| removedCount--; |
| keyHash |= sCollisionBit; |
| } |
| |
| entry->setLive(keyHash, mozilla::Forward<Args>(args)...); |
| entryCount++; |
| #ifdef JS_DEBUG |
| mutationCount++; |
| #endif |
| } |
| |
| // Note: |l| may be alias arguments in |args|, so this function must take |
| // care not to use |l| after moving |args|. |
| template <typename... Args> |
| bool putNew(const Lookup& l, Args&&... args) |
| { |
| if (!this->checkSimulatedOOM()) |
| return false; |
| |
| if (checkOverloaded() == RehashFailed) |
| return false; |
| |
| putNewInfallible(l, mozilla::Forward<Args>(args)...); |
| return true; |
| } |
| |
| // Note: |l| may be a reference to a piece of |u|, so this function |
| // must take care not to use |l| after moving |u|. |
| template <typename... Args> |
| bool relookupOrAdd(AddPtr& p, const Lookup& l, Args&&... args) |
| { |
| #ifdef JS_DEBUG |
| p.generation = generation(); |
| p.mutationCount = mutationCount; |
| #endif |
| { |
| mozilla::ReentrancyGuard g(*this); |
| MOZ_ASSERT(prepareHash(l) == p.keyHash); // l has not been destroyed |
| p.entry_ = &lookup(l, p.keyHash, sCollisionBit); |
| } |
| return p.found() || add(p, mozilla::Forward<Args>(args)...); |
| } |
| |
| void remove(Ptr p) |
| { |
| MOZ_ASSERT(table); |
| mozilla::ReentrancyGuard g(*this); |
| MOZ_ASSERT(p.found()); |
| remove(*p.entry_); |
| checkUnderloaded(); |
| } |
| |
| void rekeyWithoutRehash(Ptr p, const Lookup& l, const Key& k) |
| { |
| MOZ_ASSERT(table); |
| mozilla::ReentrancyGuard g(*this); |
| MOZ_ASSERT(p.found()); |
| typename HashTableEntry<T>::NonConstT t(mozilla::Move(*p)); |
| HashPolicy::setKey(t, const_cast<Key&>(k)); |
| remove(*p.entry_); |
| putNewInfallible(l, mozilla::Move(t)); |
| } |
| |
| void rekeyAndMaybeRehash(Ptr p, const Lookup& l, const Key& k) |
| { |
| rekeyWithoutRehash(p, l, k); |
| checkOverRemoved(); |
| } |
| |
| void rekeyInPlace(Ptr p, const Key& k) |
| { |
| MOZ_ASSERT(table); |
| mozilla::ReentrancyGuard g(*this); |
| MOZ_ASSERT(p.found()); |
| HashPolicy::rekey(const_cast<Key&>(*p), const_cast<Key&>(k)); |
| } |
| |
| #undef METER |
| }; |
| |
| } // namespace detail |
| } // namespace js |
| |
| #endif /* js_HashTable_h */ |