| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/disk_cache/blockfile/sparse_control.h" |
| |
| #include "base/bind.h" |
| #include "base/format_macros.h" |
| #include "base/location.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "base/single_thread_task_runner.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/stringprintf.h" |
| #include "base/threading/thread_task_runner_handle.h" |
| #include "base/time/time.h" |
| #include "net/base/interval.h" |
| #include "net/base/io_buffer.h" |
| #include "net/base/net_errors.h" |
| #include "net/disk_cache/blockfile/backend_impl.h" |
| #include "net/disk_cache/blockfile/entry_impl.h" |
| #include "net/disk_cache/blockfile/file.h" |
| #include "net/disk_cache/net_log_parameters.h" |
| #include "net/log/net_log.h" |
| #include "net/log/net_log_event_type.h" |
| #include "net/log/net_log_with_source.h" |
| #include "starboard/memory.h" |
| #include "starboard/types.h" |
| |
| using base::Time; |
| |
| namespace { |
| |
| // Stream of the sparse data index. |
| const int kSparseIndex = 2; |
| |
| // Stream of the sparse data. |
| const int kSparseData = 1; |
| |
| // We can have up to 64k children. |
| const int kMaxMapSize = 8 * 1024; |
| |
| // The maximum number of bytes that a child can store. |
| const int kMaxEntrySize = 0x100000; |
| |
| // The size of each data block (tracked by the child allocation bitmap). |
| const int kBlockSize = 1024; |
| |
| // Returns the name of a child entry given the base_name and signature of the |
| // parent and the child_id. |
| // If the entry is called entry_name, child entries will be named something |
| // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the |
| // number of the particular child. |
| std::string GenerateChildName(const std::string& base_name, |
| int64_t signature, |
| int64_t child_id) { |
| return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(), |
| signature, child_id); |
| } |
| |
| // This class deletes the children of a sparse entry. |
| class ChildrenDeleter |
| : public base::RefCounted<ChildrenDeleter>, |
| public disk_cache::FileIOCallback { |
| public: |
| ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name) |
| : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {} |
| |
| void OnFileIOComplete(int bytes_copied) override; |
| |
| // Two ways of deleting the children: if we have the children map, use Start() |
| // directly, otherwise pass the data address to ReadData(). |
| void Start(char* buffer, int len); |
| void ReadData(disk_cache::Addr address, int len); |
| |
| private: |
| friend class base::RefCounted<ChildrenDeleter>; |
| ~ChildrenDeleter() override = default; |
| |
| void DeleteChildren(); |
| |
| base::WeakPtr<disk_cache::BackendImpl> backend_; |
| std::string name_; |
| disk_cache::Bitmap children_map_; |
| int64_t signature_; |
| std::unique_ptr<char[]> buffer_; |
| DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter); |
| }; |
| |
| // This is the callback of the file operation. |
| void ChildrenDeleter::OnFileIOComplete(int bytes_copied) { |
| char* buffer = buffer_.release(); |
| Start(buffer, bytes_copied); |
| } |
| |
| void ChildrenDeleter::Start(char* buffer, int len) { |
| buffer_.reset(buffer); |
| if (len < static_cast<int>(sizeof(disk_cache::SparseData))) |
| return Release(); |
| |
| // Just copy the information from |buffer|, delete |buffer| and start deleting |
| // the child entries. |
| disk_cache::SparseData* data = |
| reinterpret_cast<disk_cache::SparseData*>(buffer); |
| signature_ = data->header.signature; |
| |
| int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8; |
| children_map_.Resize(num_bits, false); |
| children_map_.SetMap(data->bitmap, num_bits / 32); |
| buffer_.reset(); |
| |
| DeleteChildren(); |
| } |
| |
| void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) { |
| DCHECK(address.is_block_file()); |
| if (!backend_.get()) |
| return Release(); |
| |
| disk_cache::File* file(backend_->File(address)); |
| if (!file) |
| return Release(); |
| |
| size_t file_offset = address.start_block() * address.BlockSize() + |
| disk_cache::kBlockHeaderSize; |
| |
| buffer_.reset(new char[len]); |
| bool completed; |
| if (!file->Read(buffer_.get(), len, file_offset, this, &completed)) |
| return Release(); |
| |
| if (completed) |
| OnFileIOComplete(len); |
| |
| // And wait until OnFileIOComplete gets called. |
| } |
| |
| void ChildrenDeleter::DeleteChildren() { |
| int child_id = 0; |
| if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) { |
| // We are done. Just delete this object. |
| return Release(); |
| } |
| std::string child_name = GenerateChildName(name_, signature_, child_id); |
| backend_->SyncDoomEntry(child_name); |
| children_map_.Set(child_id, false); |
| |
| // Post a task to delete the next child. |
| base::ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this)); |
| } |
| |
| // Returns the NetLog event type corresponding to a SparseOperation. |
| net::NetLogEventType GetSparseEventType( |
| disk_cache::SparseControl::SparseOperation operation) { |
| switch (operation) { |
| case disk_cache::SparseControl::kReadOperation: |
| return net::NetLogEventType::SPARSE_READ; |
| case disk_cache::SparseControl::kWriteOperation: |
| return net::NetLogEventType::SPARSE_WRITE; |
| case disk_cache::SparseControl::kGetRangeOperation: |
| return net::NetLogEventType::SPARSE_GET_RANGE; |
| default: |
| NOTREACHED(); |
| return net::NetLogEventType::CANCELLED; |
| } |
| } |
| |
| // Logs the end event for |operation| on a child entry. Range operations log |
| // no events for each child they search through. |
| void LogChildOperationEnd(const net::NetLogWithSource& net_log, |
| disk_cache::SparseControl::SparseOperation operation, |
| int result) { |
| if (net_log.IsCapturing()) { |
| net::NetLogEventType event_type; |
| switch (operation) { |
| case disk_cache::SparseControl::kReadOperation: |
| event_type = net::NetLogEventType::SPARSE_READ_CHILD_DATA; |
| break; |
| case disk_cache::SparseControl::kWriteOperation: |
| event_type = net::NetLogEventType::SPARSE_WRITE_CHILD_DATA; |
| break; |
| case disk_cache::SparseControl::kGetRangeOperation: |
| return; |
| default: |
| NOTREACHED(); |
| return; |
| } |
| net_log.EndEventWithNetErrorCode(event_type, result); |
| } |
| } |
| |
| } // namespace. |
| |
| namespace disk_cache { |
| |
| SparseControl::SparseControl(EntryImpl* entry) |
| : entry_(entry), |
| child_(NULL), |
| operation_(kNoOperation), |
| pending_(false), |
| finished_(false), |
| init_(false), |
| range_found_(false), |
| abort_(false), |
| child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32), |
| offset_(0), |
| buf_len_(0), |
| child_offset_(0), |
| child_len_(0), |
| result_(0) { |
| memset(&sparse_header_, 0, sizeof(sparse_header_)); |
| memset(&child_data_, 0, sizeof(child_data_)); |
| } |
| |
| SparseControl::~SparseControl() { |
| if (child_) |
| CloseChild(); |
| if (init_) |
| WriteSparseData(); |
| } |
| |
| int SparseControl::Init() { |
| DCHECK(!init_); |
| |
| // We should not have sparse data for the exposed entry. |
| if (entry_->GetDataSize(kSparseData)) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| // Now see if there is something where we store our data. |
| int rv = net::OK; |
| int data_len = entry_->GetDataSize(kSparseIndex); |
| if (!data_len) { |
| rv = CreateSparseEntry(); |
| } else { |
| rv = OpenSparseEntry(data_len); |
| } |
| |
| if (rv == net::OK) |
| init_ = true; |
| return rv; |
| } |
| |
| bool SparseControl::CouldBeSparse() const { |
| DCHECK(!init_); |
| |
| if (entry_->GetDataSize(kSparseData)) |
| return false; |
| |
| // We don't verify the data, just see if it could be there. |
| return (entry_->GetDataSize(kSparseIndex) != 0); |
| } |
| |
| int SparseControl::StartIO(SparseOperation op, |
| int64_t offset, |
| net::IOBuffer* buf, |
| int buf_len, |
| CompletionOnceCallback callback) { |
| DCHECK(init_); |
| // We don't support simultaneous IO for sparse data. |
| if (operation_ != kNoOperation) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| if (offset < 0 || buf_len < 0) |
| return net::ERR_INVALID_ARGUMENT; |
| |
| // We only support up to 64 GB. |
| if (static_cast<uint64_t>(offset) + static_cast<unsigned int>(buf_len) >= |
| UINT64_C(0x1000000000)) { |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| } |
| |
| DCHECK(!user_buf_.get()); |
| DCHECK(user_callback_.is_null()); |
| |
| if (!buf && (op == kReadOperation || op == kWriteOperation)) |
| return 0; |
| |
| // Copy the operation parameters. |
| operation_ = op; |
| offset_ = offset; |
| user_buf_ = |
| buf ? base::MakeRefCounted<net::DrainableIOBuffer>(buf, buf_len) : NULL; |
| buf_len_ = buf_len; |
| user_callback_ = std::move(callback); |
| |
| result_ = 0; |
| pending_ = false; |
| finished_ = false; |
| abort_ = false; |
| |
| if (entry_->net_log().IsCapturing()) { |
| entry_->net_log().BeginEvent( |
| GetSparseEventType(operation_), |
| CreateNetLogSparseOperationCallback(offset_, buf_len_)); |
| } |
| DoChildrenIO(); |
| |
| if (!pending_) { |
| // Everything was done synchronously. |
| operation_ = kNoOperation; |
| user_buf_ = NULL; |
| user_callback_.Reset(); |
| return result_; |
| } |
| |
| return net::ERR_IO_PENDING; |
| } |
| |
| int SparseControl::GetAvailableRange(int64_t offset, int len, int64_t* start) { |
| DCHECK(init_); |
| // We don't support simultaneous IO for sparse data. |
| if (operation_ != kNoOperation) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| DCHECK(start); |
| |
| range_found_ = false; |
| int result = |
| StartIO(kGetRangeOperation, offset, NULL, len, CompletionOnceCallback()); |
| if (range_found_) { |
| *start = offset_; |
| return result; |
| } |
| |
| // This is a failure. We want to return a valid start value in any case. |
| *start = offset; |
| return result < 0 ? result : 0; // Don't mask error codes to the caller. |
| } |
| |
| void SparseControl::CancelIO() { |
| if (operation_ == kNoOperation) |
| return; |
| abort_ = true; |
| } |
| |
| int SparseControl::ReadyToUse(CompletionOnceCallback callback) { |
| if (!abort_) |
| return net::OK; |
| |
| // We'll grab another reference to keep this object alive because we just have |
| // one extra reference due to the pending IO operation itself, but we'll |
| // release that one before invoking user_callback_. |
| entry_->AddRef(); // Balanced in DoAbortCallbacks. |
| abort_callbacks_.push_back(std::move(callback)); |
| return net::ERR_IO_PENDING; |
| } |
| |
| // Static |
| void SparseControl::DeleteChildren(EntryImpl* entry) { |
| DCHECK(entry->GetEntryFlags() & PARENT_ENTRY); |
| int data_len = entry->GetDataSize(kSparseIndex); |
| if (data_len < static_cast<int>(sizeof(SparseData)) || |
| entry->GetDataSize(kSparseData)) |
| return; |
| |
| int map_len = data_len - sizeof(SparseHeader); |
| if (map_len > kMaxMapSize || map_len % 4) |
| return; |
| |
| char* buffer; |
| Addr address; |
| entry->GetData(kSparseIndex, &buffer, &address); |
| if (!buffer && !address.is_initialized()) |
| return; |
| |
| entry->net_log().AddEvent(net::NetLogEventType::SPARSE_DELETE_CHILDREN); |
| |
| DCHECK(entry->backend_.get()); |
| ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(), |
| entry->GetKey()); |
| // The object will self destruct when finished. |
| deleter->AddRef(); |
| |
| if (buffer) { |
| base::ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, |
| base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len)); |
| } else { |
| base::ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, |
| base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len)); |
| } |
| } |
| |
| // We are going to start using this entry to store sparse data, so we have to |
| // initialize our control info. |
| int SparseControl::CreateSparseEntry() { |
| if (CHILD_ENTRY & entry_->GetEntryFlags()) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| memset(&sparse_header_, 0, sizeof(sparse_header_)); |
| sparse_header_.signature = Time::Now().ToInternalValue(); |
| sparse_header_.magic = kIndexMagic; |
| sparse_header_.parent_key_len = entry_->GetKey().size(); |
| children_map_.Resize(kNumSparseBits, true); |
| |
| // Save the header. The bitmap is saved in the destructor. |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::WrappedIOBuffer>( |
| reinterpret_cast<char*>(&sparse_header_)); |
| |
| int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_), |
| CompletionOnceCallback(), false); |
| if (rv != sizeof(sparse_header_)) { |
| DLOG(ERROR) << "Unable to save sparse_header_"; |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| } |
| |
| entry_->SetEntryFlags(PARENT_ENTRY); |
| return net::OK; |
| } |
| |
| // We are opening an entry from disk. Make sure that our control data is there. |
| int SparseControl::OpenSparseEntry(int data_len) { |
| if (data_len < static_cast<int>(sizeof(SparseData))) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| if (entry_->GetDataSize(kSparseData)) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| if (!(PARENT_ENTRY & entry_->GetEntryFlags())) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB. |
| int map_len = data_len - sizeof(sparse_header_); |
| if (map_len > kMaxMapSize || map_len % 4) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::WrappedIOBuffer>( |
| reinterpret_cast<char*>(&sparse_header_)); |
| |
| // Read header. |
| int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_), |
| CompletionOnceCallback()); |
| if (rv != static_cast<int>(sizeof(sparse_header_))) |
| return net::ERR_CACHE_READ_FAILURE; |
| |
| // The real validation should be performed by the caller. This is just to |
| // double check. |
| if (sparse_header_.magic != kIndexMagic || |
| sparse_header_.parent_key_len != |
| static_cast<int>(entry_->GetKey().size())) |
| return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| |
| // Read the actual bitmap. |
| buf = base::MakeRefCounted<net::IOBuffer>(map_len); |
| rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(), |
| map_len, CompletionOnceCallback()); |
| if (rv != map_len) |
| return net::ERR_CACHE_READ_FAILURE; |
| |
| // Grow the bitmap to the current size and copy the bits. |
| children_map_.Resize(map_len * 8, false); |
| children_map_.SetMap(reinterpret_cast<uint32_t*>(buf->data()), map_len); |
| return net::OK; |
| } |
| |
| bool SparseControl::OpenChild() { |
| DCHECK_GE(result_, 0); |
| |
| std::string key = GenerateChildKey(); |
| if (child_) { |
| // Keep using the same child or open another one?. |
| if (key == child_->GetKey()) |
| return true; |
| CloseChild(); |
| } |
| |
| // See if we are tracking this child. |
| if (!ChildPresent()) |
| return ContinueWithoutChild(key); |
| |
| if (!entry_->backend_.get()) |
| return false; |
| |
| child_ = entry_->backend_->OpenEntryImpl(key); |
| if (!child_) |
| return ContinueWithoutChild(key); |
| |
| if (!(CHILD_ENTRY & child_->GetEntryFlags()) || |
| child_->GetDataSize(kSparseIndex) < static_cast<int>(sizeof(child_data_))) |
| return KillChildAndContinue(key, false); |
| |
| scoped_refptr<net::WrappedIOBuffer> buf = |
| base::MakeRefCounted<net::WrappedIOBuffer>( |
| reinterpret_cast<char*>(&child_data_)); |
| |
| // Read signature. |
| int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_), |
| CompletionOnceCallback()); |
| if (rv != sizeof(child_data_)) |
| return KillChildAndContinue(key, true); // This is a fatal failure. |
| |
| if (child_data_.header.signature != sparse_header_.signature || |
| child_data_.header.magic != kIndexMagic) |
| return KillChildAndContinue(key, false); |
| |
| if (child_data_.header.last_block_len < 0 || |
| child_data_.header.last_block_len >= kBlockSize) { |
| // Make sure these values are always within range. |
| child_data_.header.last_block_len = 0; |
| child_data_.header.last_block = -1; |
| } |
| |
| return true; |
| } |
| |
| void SparseControl::CloseChild() { |
| scoped_refptr<net::WrappedIOBuffer> buf = |
| base::MakeRefCounted<net::WrappedIOBuffer>( |
| reinterpret_cast<char*>(&child_data_)); |
| |
| // Save the allocation bitmap before closing the child entry. |
| int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_), |
| CompletionOnceCallback(), false); |
| if (rv != sizeof(child_data_)) |
| DLOG(ERROR) << "Failed to save child data"; |
| child_ = NULL; |
| } |
| |
| std::string SparseControl::GenerateChildKey() { |
| return GenerateChildName(entry_->GetKey(), sparse_header_.signature, |
| offset_ >> 20); |
| } |
| |
| // We are deleting the child because something went wrong. |
| bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) { |
| SetChildBit(false); |
| child_->DoomImpl(); |
| child_ = NULL; |
| if (fatal) { |
| result_ = net::ERR_CACHE_READ_FAILURE; |
| return false; |
| } |
| return ContinueWithoutChild(key); |
| } |
| |
| // We were not able to open this child; see what we can do. |
| bool SparseControl::ContinueWithoutChild(const std::string& key) { |
| if (kReadOperation == operation_) |
| return false; |
| if (kGetRangeOperation == operation_) |
| return true; |
| |
| if (!entry_->backend_.get()) |
| return false; |
| |
| child_ = entry_->backend_->CreateEntryImpl(key); |
| if (!child_) { |
| child_ = NULL; |
| result_ = net::ERR_CACHE_READ_FAILURE; |
| return false; |
| } |
| // Write signature. |
| InitChildData(); |
| return true; |
| } |
| |
| bool SparseControl::ChildPresent() { |
| int child_bit = static_cast<int>(offset_ >> 20); |
| if (children_map_.Size() <= child_bit) |
| return false; |
| |
| return children_map_.Get(child_bit); |
| } |
| |
| void SparseControl::SetChildBit(bool value) { |
| int child_bit = static_cast<int>(offset_ >> 20); |
| |
| // We may have to increase the bitmap of child entries. |
| if (children_map_.Size() <= child_bit) |
| children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true); |
| |
| children_map_.Set(child_bit, value); |
| } |
| |
| void SparseControl::WriteSparseData() { |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::WrappedIOBuffer>( |
| reinterpret_cast<const char*>(children_map_.GetMap())); |
| |
| int len = children_map_.ArraySize() * 4; |
| int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(), |
| len, CompletionOnceCallback(), false); |
| if (rv != len) { |
| DLOG(ERROR) << "Unable to save sparse map"; |
| } |
| } |
| |
| bool SparseControl::VerifyRange() { |
| DCHECK_GE(result_, 0); |
| |
| child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1); |
| child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_); |
| |
| // We can write to (or get info from) anywhere in this child. |
| if (operation_ != kReadOperation) |
| return true; |
| |
| // Check that there are no holes in this range. |
| int last_bit = (child_offset_ + child_len_ + 1023) >> 10; |
| int start = child_offset_ >> 10; |
| if (child_map_.FindNextBit(&start, last_bit, false)) { |
| // Something is not here. |
| DCHECK_GE(child_data_.header.last_block_len, 0); |
| DCHECK_LT(child_data_.header.last_block_len, kBlockSize); |
| int partial_block_len = PartialBlockLength(start); |
| if (start == child_offset_ >> 10) { |
| // It looks like we don't have anything. |
| if (partial_block_len <= (child_offset_ & (kBlockSize - 1))) |
| return false; |
| } |
| |
| // We have the first part. |
| child_len_ = (start << 10) - child_offset_; |
| if (partial_block_len) { |
| // We may have a few extra bytes. |
| child_len_ = std::min(child_len_ + partial_block_len, buf_len_); |
| } |
| // There is no need to read more after this one. |
| buf_len_ = child_len_; |
| } |
| return true; |
| } |
| |
| void SparseControl::UpdateRange(int result) { |
| if (result <= 0 || operation_ != kWriteOperation) |
| return; |
| |
| DCHECK_GE(child_data_.header.last_block_len, 0); |
| DCHECK_LT(child_data_.header.last_block_len, kBlockSize); |
| |
| // Write the bitmap. |
| int first_bit = child_offset_ >> 10; |
| int block_offset = child_offset_ & (kBlockSize - 1); |
| if (block_offset && (child_data_.header.last_block != first_bit || |
| child_data_.header.last_block_len < block_offset)) { |
| // The first block is not completely filled; ignore it. |
| first_bit++; |
| } |
| |
| int last_bit = (child_offset_ + result) >> 10; |
| block_offset = (child_offset_ + result) & (kBlockSize - 1); |
| |
| // This condition will hit with the following criteria: |
| // 1. The first byte doesn't follow the last write. |
| // 2. The first byte is in the middle of a block. |
| // 3. The first byte and the last byte are in the same block. |
| if (first_bit > last_bit) |
| return; |
| |
| if (block_offset && !child_map_.Get(last_bit)) { |
| // The last block is not completely filled; save it for later. |
| child_data_.header.last_block = last_bit; |
| child_data_.header.last_block_len = block_offset; |
| } else { |
| child_data_.header.last_block = -1; |
| } |
| |
| child_map_.SetRange(first_bit, last_bit, true); |
| } |
| |
| int SparseControl::PartialBlockLength(int block_index) const { |
| if (block_index == child_data_.header.last_block) |
| return child_data_.header.last_block_len; |
| |
| // This is really empty. |
| return 0; |
| } |
| |
| void SparseControl::InitChildData() { |
| child_->SetEntryFlags(CHILD_ENTRY); |
| |
| memset(&child_data_, 0, sizeof(child_data_)); |
| child_data_.header = sparse_header_; |
| |
| scoped_refptr<net::WrappedIOBuffer> buf = |
| base::MakeRefCounted<net::WrappedIOBuffer>( |
| reinterpret_cast<char*>(&child_data_)); |
| |
| int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_), |
| CompletionOnceCallback(), false); |
| if (rv != sizeof(child_data_)) |
| DLOG(ERROR) << "Failed to save child data"; |
| SetChildBit(true); |
| } |
| |
| void SparseControl::DoChildrenIO() { |
| while (DoChildIO()) continue; |
| |
| // Range operations are finished synchronously, often without setting |
| // |finished_| to true. |
| if (kGetRangeOperation == operation_ && entry_->net_log().IsCapturing()) { |
| entry_->net_log().EndEvent( |
| net::NetLogEventType::SPARSE_GET_RANGE, |
| CreateNetLogGetAvailableRangeResultCallback(offset_, result_)); |
| } |
| if (finished_) { |
| if (kGetRangeOperation != operation_ && entry_->net_log().IsCapturing()) { |
| entry_->net_log().EndEvent(GetSparseEventType(operation_)); |
| } |
| if (pending_) |
| DoUserCallback(); // Don't touch this object after this point. |
| } |
| } |
| |
| bool SparseControl::DoChildIO() { |
| finished_ = true; |
| if (!buf_len_ || result_ < 0) |
| return false; |
| |
| if (!OpenChild()) |
| return false; |
| |
| if (!VerifyRange()) |
| return false; |
| |
| // We have more work to do. Let's not trigger a callback to the caller. |
| finished_ = false; |
| CompletionOnceCallback callback; |
| if (!user_callback_.is_null()) { |
| callback = base::BindOnce(&SparseControl::OnChildIOCompleted, |
| base::Unretained(this)); |
| } |
| |
| int rv = 0; |
| switch (operation_) { |
| case kReadOperation: |
| if (entry_->net_log().IsCapturing()) { |
| entry_->net_log().BeginEvent( |
| net::NetLogEventType::SPARSE_READ_CHILD_DATA, |
| CreateNetLogSparseReadWriteCallback(child_->net_log().source(), |
| child_len_)); |
| } |
| rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(), |
| child_len_, std::move(callback)); |
| break; |
| case kWriteOperation: |
| if (entry_->net_log().IsCapturing()) { |
| entry_->net_log().BeginEvent( |
| net::NetLogEventType::SPARSE_WRITE_CHILD_DATA, |
| CreateNetLogSparseReadWriteCallback(child_->net_log().source(), |
| child_len_)); |
| } |
| rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(), |
| child_len_, std::move(callback), false); |
| break; |
| case kGetRangeOperation: |
| rv = DoGetAvailableRange(); |
| break; |
| default: |
| NOTREACHED(); |
| } |
| |
| if (rv == net::ERR_IO_PENDING) { |
| if (!pending_) { |
| pending_ = true; |
| // The child will protect himself against closing the entry while IO is in |
| // progress. However, this entry can still be closed, and that would not |
| // be a good thing for us, so we increase the refcount until we're |
| // finished doing sparse stuff. |
| entry_->AddRef(); // Balanced in DoUserCallback. |
| } |
| return false; |
| } |
| if (!rv) |
| return false; |
| |
| DoChildIOCompleted(rv); |
| return true; |
| } |
| |
| int SparseControl::DoGetAvailableRange() { |
| if (!child_) |
| return child_len_; // Move on to the next child. |
| |
| // Blockfile splits sparse files into multiple child entries, each responsible |
| // for managing 1MiB of address space. This method is responsible for |
| // implementing GetAvailableRange within a single child. |
| // |
| // Input: |
| // |child_offset_|, |child_len_|: |
| // describe range in current child's address space the client requested. |
| // |offset_| is equivalent to |child_offset_| but in global address space. |
| // |
| // For example if this were child [2] and the original call was for |
| // [0x200005, 0x200007) then |offset_| would be 0x200005, |child_offset_| |
| // would be 5, and |child_len| would be 2. |
| // |
| // Output: |
| // If nothing found: |
| // return |child_len_| |
| // |
| // If something found: |
| // |result_| gets the length of the available range. |
| // |offset_| gets the global address of beginning of the available range. |
| // |range_found_| get true to signal SparseControl::GetAvailableRange(). |
| // return 0 to exit loop. |
| net::Interval<int> to_find(child_offset_, child_offset_ + child_len_); |
| |
| // Within each child, valid portions are mostly tracked via the |child_map_| |
| // bitmap which marks which 1KiB 'blocks' have valid data. Scan the bitmap |
| // for the first contiguous range of set bits that's relevant to the range |
| // [child_offset_, child_offset_ + len) |
| int first_bit = child_offset_ >> 10; |
| int last_bit = (child_offset_ + child_len_ + kBlockSize - 1) >> 10; |
| int found = first_bit; |
| int bits_found = child_map_.FindBits(&found, last_bit, true); |
| net::Interval<int> bitmap_range(found * kBlockSize, |
| found * kBlockSize + bits_found * kBlockSize); |
| |
| // Bits on the bitmap should only be set when the corresponding block was |
| // fully written (it's really being used). If a block is partially used, it |
| // has to start with valid data, the length of the valid data is saved in |
| // |header.last_block_len| and the block number saved in |header.last_block|. |
| // This is updated after every write; with |header.last_block| set to -1 |
| // if no sub-KiB range is being tracked. |
| net::Interval<int> last_write_range; |
| if (child_data_.header.last_block >= 0) { |
| last_write_range = |
| net::Interval<int>(child_data_.header.last_block * kBlockSize, |
| child_data_.header.last_block * kBlockSize + |
| child_data_.header.last_block_len); |
| } |
| |
| // Often |last_write_range| is contiguously after |bitmap_range|, but not |
| // always. See if they can be combined. |
| if (!last_write_range.Empty() && !bitmap_range.Empty() && |
| bitmap_range.max() == last_write_range.min()) { |
| bitmap_range.SetMax(last_write_range.max()); |
| last_write_range.Clear(); |
| } |
| |
| // Do any of them have anything relevant? |
| bitmap_range.IntersectWith(to_find); |
| last_write_range.IntersectWith(to_find); |
| |
| // Now return the earliest non-empty interval, if any. |
| net::Interval<int> result_range = bitmap_range; |
| if (bitmap_range.Empty() || (!last_write_range.Empty() && |
| last_write_range.min() < bitmap_range.min())) |
| result_range = last_write_range; |
| |
| if (result_range.Empty()) { |
| // Nothing found, so we just skip over this child. |
| return child_len_; |
| } |
| |
| // Package up our results. |
| range_found_ = true; |
| offset_ += result_range.min() - child_offset_; |
| result_ = result_range.max() - result_range.min(); |
| return 0; |
| } |
| |
| void SparseControl::DoChildIOCompleted(int result) { |
| LogChildOperationEnd(entry_->net_log(), operation_, result); |
| if (result < 0) { |
| // We fail the whole operation if we encounter an error. |
| result_ = result; |
| return; |
| } |
| |
| UpdateRange(result); |
| |
| result_ += result; |
| offset_ += result; |
| buf_len_ -= result; |
| |
| // We'll be reusing the user provided buffer for the next chunk. |
| if (buf_len_ && user_buf_.get()) |
| user_buf_->DidConsume(result); |
| } |
| |
| void SparseControl::OnChildIOCompleted(int result) { |
| DCHECK_NE(net::ERR_IO_PENDING, result); |
| DoChildIOCompleted(result); |
| |
| if (abort_) { |
| // We'll return the current result of the operation, which may be less than |
| // the bytes to read or write, but the user cancelled the operation. |
| abort_ = false; |
| if (entry_->net_log().IsCapturing()) { |
| entry_->net_log().AddEvent(net::NetLogEventType::CANCELLED); |
| entry_->net_log().EndEvent(GetSparseEventType(operation_)); |
| } |
| // We have an indirect reference to this object for every callback so if |
| // there is only one callback, we may delete this object before reaching |
| // DoAbortCallbacks. |
| bool has_abort_callbacks = !abort_callbacks_.empty(); |
| DoUserCallback(); |
| if (has_abort_callbacks) |
| DoAbortCallbacks(); |
| return; |
| } |
| |
| // We are running a callback from the message loop. It's time to restart what |
| // we were doing before. |
| DoChildrenIO(); |
| } |
| |
| void SparseControl::DoUserCallback() { |
| DCHECK(!user_callback_.is_null()); |
| CompletionOnceCallback cb = std::move(user_callback_); |
| user_buf_ = NULL; |
| pending_ = false; |
| operation_ = kNoOperation; |
| int rv = result_; |
| entry_->Release(); // Don't touch object after this line. |
| std::move(cb).Run(rv); |
| } |
| |
| void SparseControl::DoAbortCallbacks() { |
| std::vector<CompletionOnceCallback> abort_callbacks; |
| abort_callbacks.swap(abort_callbacks_); |
| |
| for (CompletionOnceCallback& callback : abort_callbacks) { |
| // Releasing all references to entry_ may result in the destruction of this |
| // object so we should not be touching it after the last Release(). |
| entry_->Release(); |
| std::move(callback).Run(net::OK); |
| } |
| } |
| |
| } // namespace disk_cache |