| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <limits.h> |
| |
| #include "denoising.h" |
| |
| #include "vp8/common/reconinter.h" |
| #include "vpx/vpx_integer.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp8_rtcd.h" |
| |
| static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25; |
| /* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming |
| * var(noise) ~= 100. |
| */ |
| static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20; |
| static const unsigned int SSE_THRESHOLD = 16 * 16 * 40; |
| static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 80; |
| |
| /* |
| * The filter function was modified to reduce the computational complexity. |
| * Step 1: |
| * Instead of applying tap coefficients for each pixel, we calculated the |
| * pixel adjustments vs. pixel diff value ahead of time. |
| * adjustment = filtered_value - current_raw |
| * = (filter_coefficient * diff + 128) >> 8 |
| * where |
| * filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3)); |
| * filter_coefficient += filter_coefficient / |
| * (3 + motion_magnitude_adjustment); |
| * filter_coefficient is clamped to 0 ~ 255. |
| * |
| * Step 2: |
| * The adjustment vs. diff curve becomes flat very quick when diff increases. |
| * This allowed us to use only several levels to approximate the curve without |
| * changing the filtering algorithm too much. |
| * The adjustments were further corrected by checking the motion magnitude. |
| * The levels used are: |
| * diff adjustment w/o motion correction adjustment w/ motion correction |
| * [-255, -16] -6 -7 |
| * [-15, -8] -4 -5 |
| * [-7, -4] -3 -4 |
| * [-3, 3] diff diff |
| * [4, 7] 3 4 |
| * [8, 15] 4 5 |
| * [16, 255] 6 7 |
| */ |
| |
| int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride, |
| unsigned char *running_avg_y, int avg_y_stride, |
| unsigned char *sig, int sig_stride, |
| unsigned int motion_magnitude, |
| int increase_denoising) { |
| unsigned char *running_avg_y_start = running_avg_y; |
| unsigned char *sig_start = sig; |
| int sum_diff_thresh; |
| int r, c; |
| int sum_diff = 0; |
| int adj_val[3] = { 3, 4, 6 }; |
| int shift_inc1 = 0; |
| int shift_inc2 = 1; |
| int col_sum[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| /* If motion_magnitude is small, making the denoiser more aggressive by |
| * increasing the adjustment for each level. Add another increment for |
| * blocks that are labeled for increase denoising. */ |
| if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) { |
| if (increase_denoising) { |
| shift_inc1 = 1; |
| shift_inc2 = 2; |
| } |
| adj_val[0] += shift_inc2; |
| adj_val[1] += shift_inc2; |
| adj_val[2] += shift_inc2; |
| } |
| |
| for (r = 0; r < 16; ++r) { |
| for (c = 0; c < 16; ++c) { |
| int diff = 0; |
| int adjustment = 0; |
| int absdiff = 0; |
| |
| diff = mc_running_avg_y[c] - sig[c]; |
| absdiff = abs(diff); |
| |
| // When |diff| <= |3 + shift_inc1|, use pixel value from |
| // last denoised raw. |
| if (absdiff <= 3 + shift_inc1) { |
| running_avg_y[c] = mc_running_avg_y[c]; |
| col_sum[c] += diff; |
| } else { |
| if (absdiff >= 4 + shift_inc1 && absdiff <= 7) { |
| adjustment = adj_val[0]; |
| } else if (absdiff >= 8 && absdiff <= 15) { |
| adjustment = adj_val[1]; |
| } else { |
| adjustment = adj_val[2]; |
| } |
| |
| if (diff > 0) { |
| if ((sig[c] + adjustment) > 255) { |
| running_avg_y[c] = 255; |
| } else { |
| running_avg_y[c] = sig[c] + adjustment; |
| } |
| |
| col_sum[c] += adjustment; |
| } else { |
| if ((sig[c] - adjustment) < 0) { |
| running_avg_y[c] = 0; |
| } else { |
| running_avg_y[c] = sig[c] - adjustment; |
| } |
| |
| col_sum[c] -= adjustment; |
| } |
| } |
| } |
| |
| /* Update pointers for next iteration. */ |
| sig += sig_stride; |
| mc_running_avg_y += mc_avg_y_stride; |
| running_avg_y += avg_y_stride; |
| } |
| |
| for (c = 0; c < 16; ++c) { |
| // Below we clip the value in the same way which SSE code use. |
| // When adopting aggressive denoiser, the adj_val for each pixel |
| // could be at most 8 (this is current max adjustment of the map). |
| // In SSE code, we calculate the sum of adj_val for |
| // the columns, so the sum could be upto 128(16 rows). However, |
| // the range of the value is -128 ~ 127 in SSE code, that's why |
| // we do this change in C code. |
| // We don't do this for UV denoiser, since there are only 8 rows, |
| // and max adjustments <= 8, so the sum of the columns will not |
| // exceed 64. |
| if (col_sum[c] >= 128) { |
| col_sum[c] = 127; |
| } |
| sum_diff += col_sum[c]; |
| } |
| |
| sum_diff_thresh = SUM_DIFF_THRESHOLD; |
| if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH; |
| if (abs(sum_diff) > sum_diff_thresh) { |
| // Before returning to copy the block (i.e., apply no denoising), check |
| // if we can still apply some (weaker) temporal filtering to this block, |
| // that would otherwise not be denoised at all. Simplest is to apply |
| // an additional adjustment to running_avg_y to bring it closer to sig. |
| // The adjustment is capped by a maximum delta, and chosen such that |
| // in most cases the resulting sum_diff will be within the |
| // accceptable range given by sum_diff_thresh. |
| |
| // The delta is set by the excess of absolute pixel diff over threshold. |
| int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1; |
| // Only apply the adjustment for max delta up to 3. |
| if (delta < 4) { |
| sig -= sig_stride * 16; |
| mc_running_avg_y -= mc_avg_y_stride * 16; |
| running_avg_y -= avg_y_stride * 16; |
| for (r = 0; r < 16; ++r) { |
| for (c = 0; c < 16; ++c) { |
| int diff = mc_running_avg_y[c] - sig[c]; |
| int adjustment = abs(diff); |
| if (adjustment > delta) adjustment = delta; |
| if (diff > 0) { |
| // Bring denoised signal down. |
| if (running_avg_y[c] - adjustment < 0) { |
| running_avg_y[c] = 0; |
| } else { |
| running_avg_y[c] = running_avg_y[c] - adjustment; |
| } |
| col_sum[c] -= adjustment; |
| } else if (diff < 0) { |
| // Bring denoised signal up. |
| if (running_avg_y[c] + adjustment > 255) { |
| running_avg_y[c] = 255; |
| } else { |
| running_avg_y[c] = running_avg_y[c] + adjustment; |
| } |
| col_sum[c] += adjustment; |
| } |
| } |
| // TODO(marpan): Check here if abs(sum_diff) has gone below the |
| // threshold sum_diff_thresh, and if so, we can exit the row loop. |
| sig += sig_stride; |
| mc_running_avg_y += mc_avg_y_stride; |
| running_avg_y += avg_y_stride; |
| } |
| |
| sum_diff = 0; |
| for (c = 0; c < 16; ++c) { |
| if (col_sum[c] >= 128) { |
| col_sum[c] = 127; |
| } |
| sum_diff += col_sum[c]; |
| } |
| |
| if (abs(sum_diff) > sum_diff_thresh) return COPY_BLOCK; |
| } else { |
| return COPY_BLOCK; |
| } |
| } |
| |
| vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride); |
| return FILTER_BLOCK; |
| } |
| |
| int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg, int mc_avg_stride, |
| unsigned char *running_avg, int avg_stride, |
| unsigned char *sig, int sig_stride, |
| unsigned int motion_magnitude, |
| int increase_denoising) { |
| unsigned char *running_avg_start = running_avg; |
| unsigned char *sig_start = sig; |
| int sum_diff_thresh; |
| int r, c; |
| int sum_diff = 0; |
| int sum_block = 0; |
| int adj_val[3] = { 3, 4, 6 }; |
| int shift_inc1 = 0; |
| int shift_inc2 = 1; |
| /* If motion_magnitude is small, making the denoiser more aggressive by |
| * increasing the adjustment for each level. Add another increment for |
| * blocks that are labeled for increase denoising. */ |
| if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) { |
| if (increase_denoising) { |
| shift_inc1 = 1; |
| shift_inc2 = 2; |
| } |
| adj_val[0] += shift_inc2; |
| adj_val[1] += shift_inc2; |
| adj_val[2] += shift_inc2; |
| } |
| |
| // Avoid denoising color signal if its close to average level. |
| for (r = 0; r < 8; ++r) { |
| for (c = 0; c < 8; ++c) { |
| sum_block += sig[c]; |
| } |
| sig += sig_stride; |
| } |
| if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) { |
| return COPY_BLOCK; |
| } |
| |
| sig -= sig_stride * 8; |
| for (r = 0; r < 8; ++r) { |
| for (c = 0; c < 8; ++c) { |
| int diff = 0; |
| int adjustment = 0; |
| int absdiff = 0; |
| |
| diff = mc_running_avg[c] - sig[c]; |
| absdiff = abs(diff); |
| |
| // When |diff| <= |3 + shift_inc1|, use pixel value from |
| // last denoised raw. |
| if (absdiff <= 3 + shift_inc1) { |
| running_avg[c] = mc_running_avg[c]; |
| sum_diff += diff; |
| } else { |
| if (absdiff >= 4 && absdiff <= 7) { |
| adjustment = adj_val[0]; |
| } else if (absdiff >= 8 && absdiff <= 15) { |
| adjustment = adj_val[1]; |
| } else { |
| adjustment = adj_val[2]; |
| } |
| if (diff > 0) { |
| if ((sig[c] + adjustment) > 255) { |
| running_avg[c] = 255; |
| } else { |
| running_avg[c] = sig[c] + adjustment; |
| } |
| sum_diff += adjustment; |
| } else { |
| if ((sig[c] - adjustment) < 0) { |
| running_avg[c] = 0; |
| } else { |
| running_avg[c] = sig[c] - adjustment; |
| } |
| sum_diff -= adjustment; |
| } |
| } |
| } |
| /* Update pointers for next iteration. */ |
| sig += sig_stride; |
| mc_running_avg += mc_avg_stride; |
| running_avg += avg_stride; |
| } |
| |
| sum_diff_thresh = SUM_DIFF_THRESHOLD_UV; |
| if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV; |
| if (abs(sum_diff) > sum_diff_thresh) { |
| // Before returning to copy the block (i.e., apply no denoising), check |
| // if we can still apply some (weaker) temporal filtering to this block, |
| // that would otherwise not be denoised at all. Simplest is to apply |
| // an additional adjustment to running_avg_y to bring it closer to sig. |
| // The adjustment is capped by a maximum delta, and chosen such that |
| // in most cases the resulting sum_diff will be within the |
| // accceptable range given by sum_diff_thresh. |
| |
| // The delta is set by the excess of absolute pixel diff over threshold. |
| int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1; |
| // Only apply the adjustment for max delta up to 3. |
| if (delta < 4) { |
| sig -= sig_stride * 8; |
| mc_running_avg -= mc_avg_stride * 8; |
| running_avg -= avg_stride * 8; |
| for (r = 0; r < 8; ++r) { |
| for (c = 0; c < 8; ++c) { |
| int diff = mc_running_avg[c] - sig[c]; |
| int adjustment = abs(diff); |
| if (adjustment > delta) adjustment = delta; |
| if (diff > 0) { |
| // Bring denoised signal down. |
| if (running_avg[c] - adjustment < 0) { |
| running_avg[c] = 0; |
| } else { |
| running_avg[c] = running_avg[c] - adjustment; |
| } |
| sum_diff -= adjustment; |
| } else if (diff < 0) { |
| // Bring denoised signal up. |
| if (running_avg[c] + adjustment > 255) { |
| running_avg[c] = 255; |
| } else { |
| running_avg[c] = running_avg[c] + adjustment; |
| } |
| sum_diff += adjustment; |
| } |
| } |
| // TODO(marpan): Check here if abs(sum_diff) has gone below the |
| // threshold sum_diff_thresh, and if so, we can exit the row loop. |
| sig += sig_stride; |
| mc_running_avg += mc_avg_stride; |
| running_avg += avg_stride; |
| } |
| if (abs(sum_diff) > sum_diff_thresh) return COPY_BLOCK; |
| } else { |
| return COPY_BLOCK; |
| } |
| } |
| |
| vp8_copy_mem8x8(running_avg_start, avg_stride, sig_start, sig_stride); |
| return FILTER_BLOCK; |
| } |
| |
| void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) { |
| assert(mode > 0); // Denoiser is allocated only if mode > 0. |
| if (mode == 1) { |
| denoiser->denoiser_mode = kDenoiserOnYOnly; |
| } else if (mode == 2) { |
| denoiser->denoiser_mode = kDenoiserOnYUV; |
| } else if (mode == 3) { |
| denoiser->denoiser_mode = kDenoiserOnYUVAggressive; |
| } else { |
| denoiser->denoiser_mode = kDenoiserOnYUV; |
| } |
| if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) { |
| denoiser->denoise_pars.scale_sse_thresh = 1; |
| denoiser->denoise_pars.scale_motion_thresh = 8; |
| denoiser->denoise_pars.scale_increase_filter = 0; |
| denoiser->denoise_pars.denoise_mv_bias = 95; |
| denoiser->denoise_pars.pickmode_mv_bias = 100; |
| denoiser->denoise_pars.qp_thresh = 0; |
| denoiser->denoise_pars.consec_zerolast = UINT_MAX; |
| denoiser->denoise_pars.spatial_blur = 0; |
| } else { |
| denoiser->denoise_pars.scale_sse_thresh = 2; |
| denoiser->denoise_pars.scale_motion_thresh = 16; |
| denoiser->denoise_pars.scale_increase_filter = 1; |
| denoiser->denoise_pars.denoise_mv_bias = 60; |
| denoiser->denoise_pars.pickmode_mv_bias = 75; |
| denoiser->denoise_pars.qp_thresh = 80; |
| denoiser->denoise_pars.consec_zerolast = 15; |
| denoiser->denoise_pars.spatial_blur = 0; |
| } |
| } |
| |
| int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height, |
| int num_mb_rows, int num_mb_cols, int mode) { |
| int i; |
| assert(denoiser); |
| denoiser->num_mb_cols = num_mb_cols; |
| |
| for (i = 0; i < MAX_REF_FRAMES; ++i) { |
| denoiser->yv12_running_avg[i].flags = 0; |
| |
| if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width, |
| height, VP8BORDERINPIXELS) < 0) { |
| vp8_denoiser_free(denoiser); |
| return 1; |
| } |
| memset(denoiser->yv12_running_avg[i].buffer_alloc, 0, |
| denoiser->yv12_running_avg[i].frame_size); |
| } |
| denoiser->yv12_mc_running_avg.flags = 0; |
| |
| if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width, |
| height, VP8BORDERINPIXELS) < 0) { |
| vp8_denoiser_free(denoiser); |
| return 1; |
| } |
| |
| memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0, |
| denoiser->yv12_mc_running_avg.frame_size); |
| |
| if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width, height, |
| VP8BORDERINPIXELS) < 0) { |
| vp8_denoiser_free(denoiser); |
| return 1; |
| } |
| memset(denoiser->yv12_last_source.buffer_alloc, 0, |
| denoiser->yv12_last_source.frame_size); |
| |
| denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1); |
| if (!denoiser->denoise_state) { |
| vp8_denoiser_free(denoiser); |
| return 1; |
| } |
| memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols)); |
| vp8_denoiser_set_parameters(denoiser, mode); |
| denoiser->nmse_source_diff = 0; |
| denoiser->nmse_source_diff_count = 0; |
| denoiser->qp_avg = 0; |
| // QP threshold below which we can go up to aggressive mode. |
| denoiser->qp_threshold_up = 80; |
| // QP threshold above which we can go back down to normal mode. |
| // For now keep this second threshold high, so not used currently. |
| denoiser->qp_threshold_down = 128; |
| // Bitrate thresholds and noise metric (nmse) thresholds for switching to |
| // aggressive mode. |
| // TODO(marpan): Adjust thresholds, including effect on resolution. |
| denoiser->bitrate_threshold = 400000; // (bits/sec). |
| denoiser->threshold_aggressive_mode = 80; |
| if (width * height > 1280 * 720) { |
| denoiser->bitrate_threshold = 3000000; |
| denoiser->threshold_aggressive_mode = 200; |
| } else if (width * height > 960 * 540) { |
| denoiser->bitrate_threshold = 1200000; |
| denoiser->threshold_aggressive_mode = 120; |
| } else if (width * height > 640 * 480) { |
| denoiser->bitrate_threshold = 600000; |
| denoiser->threshold_aggressive_mode = 100; |
| } |
| return 0; |
| } |
| |
| void vp8_denoiser_free(VP8_DENOISER *denoiser) { |
| int i; |
| assert(denoiser); |
| |
| for (i = 0; i < MAX_REF_FRAMES; ++i) { |
| vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]); |
| } |
| vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg); |
| vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source); |
| vpx_free(denoiser->denoise_state); |
| } |
| |
| void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser, MACROBLOCK *x, |
| unsigned int best_sse, unsigned int zero_mv_sse, |
| int recon_yoffset, int recon_uvoffset, |
| loop_filter_info_n *lfi_n, int mb_row, int mb_col, |
| int block_index, int consec_zero_last) |
| |
| { |
| int mv_row; |
| int mv_col; |
| unsigned int motion_threshold; |
| unsigned int motion_magnitude2; |
| unsigned int sse_thresh; |
| int sse_diff_thresh = 0; |
| // Spatial loop filter: only applied selectively based on |
| // temporal filter state of block relative to top/left neighbors. |
| int apply_spatial_loop_filter = 1; |
| MV_REFERENCE_FRAME frame = x->best_reference_frame; |
| MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame; |
| |
| enum vp8_denoiser_decision decision = FILTER_BLOCK; |
| enum vp8_denoiser_decision decision_u = COPY_BLOCK; |
| enum vp8_denoiser_decision decision_v = COPY_BLOCK; |
| |
| if (zero_frame) { |
| YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame]; |
| YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg; |
| YV12_BUFFER_CONFIG saved_pre, saved_dst; |
| MB_MODE_INFO saved_mbmi; |
| MACROBLOCKD *filter_xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi; |
| int sse_diff = 0; |
| // Bias on zero motion vector sse. |
| const int zero_bias = denoiser->denoise_pars.denoise_mv_bias; |
| zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100); |
| sse_diff = (int)zero_mv_sse - (int)best_sse; |
| |
| saved_mbmi = *mbmi; |
| |
| /* Use the best MV for the compensation. */ |
| mbmi->ref_frame = x->best_reference_frame; |
| mbmi->mode = x->best_sse_inter_mode; |
| mbmi->mv = x->best_sse_mv; |
| mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs; |
| mv_col = x->best_sse_mv.as_mv.col; |
| mv_row = x->best_sse_mv.as_mv.row; |
| // Bias to zero_mv if small amount of motion. |
| // Note sse_diff_thresh is intialized to zero, so this ensures |
| // we will always choose zero_mv for denoising if |
| // zero_mv_see <= best_sse (i.e., sse_diff <= 0). |
| if ((unsigned int)(mv_row * mv_row + mv_col * mv_col) <= |
| NOISE_MOTION_THRESHOLD) { |
| sse_diff_thresh = (int)SSE_DIFF_THRESHOLD; |
| } |
| |
| if (frame == INTRA_FRAME || sse_diff <= sse_diff_thresh) { |
| /* |
| * Handle intra blocks as referring to last frame with zero motion |
| * and let the absolute pixel difference affect the filter factor. |
| * Also consider small amount of motion as being random walk due |
| * to noise, if it doesn't mean that we get a much bigger error. |
| * Note that any changes to the mode info only affects the |
| * denoising. |
| */ |
| x->denoise_zeromv = 1; |
| mbmi->ref_frame = x->best_zeromv_reference_frame; |
| |
| src = &denoiser->yv12_running_avg[zero_frame]; |
| |
| mbmi->mode = ZEROMV; |
| mbmi->mv.as_int = 0; |
| x->best_sse_inter_mode = ZEROMV; |
| x->best_sse_mv.as_int = 0; |
| best_sse = zero_mv_sse; |
| } |
| |
| mv_row = x->best_sse_mv.as_mv.row; |
| mv_col = x->best_sse_mv.as_mv.col; |
| motion_magnitude2 = mv_row * mv_row + mv_col * mv_col; |
| motion_threshold = |
| denoiser->denoise_pars.scale_motion_thresh * NOISE_MOTION_THRESHOLD; |
| |
| if (motion_magnitude2 < |
| denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD) { |
| x->increase_denoising = 1; |
| } |
| |
| sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD; |
| if (x->increase_denoising) { |
| sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH; |
| } |
| |
| if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold) { |
| decision = COPY_BLOCK; |
| } |
| |
| // If block is considered skin, don't denoise if the block |
| // (1) is selected as non-zero motion for current frame, or |
| // (2) has not been selected as ZERO_LAST mode at least x past frames |
| // in a row. |
| // TODO(marpan): Parameter "x" should be varied with framerate. |
| // In particualar, should be reduced for layers (base layer/LAST). |
| if (x->is_skin && (consec_zero_last < 2 || motion_magnitude2 > 0)) { |
| decision = COPY_BLOCK; |
| } |
| |
| if (decision == FILTER_BLOCK) { |
| saved_pre = filter_xd->pre; |
| saved_dst = filter_xd->dst; |
| |
| /* Compensate the running average. */ |
| filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset; |
| filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset; |
| filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset; |
| /* Write the compensated running average to the destination buffer. */ |
| filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset; |
| filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset; |
| filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset; |
| |
| if (!x->skip) { |
| vp8_build_inter_predictors_mb(filter_xd); |
| } else { |
| vp8_build_inter16x16_predictors_mb( |
| filter_xd, filter_xd->dst.y_buffer, filter_xd->dst.u_buffer, |
| filter_xd->dst.v_buffer, filter_xd->dst.y_stride, |
| filter_xd->dst.uv_stride); |
| } |
| filter_xd->pre = saved_pre; |
| filter_xd->dst = saved_dst; |
| *mbmi = saved_mbmi; |
| } |
| } else { |
| // zero_frame should always be 1 for real-time mode, as the |
| // ZEROMV mode is always checked, so we should never go into this branch. |
| // If case ZEROMV is not checked, then we will force no denoise (COPY). |
| decision = COPY_BLOCK; |
| } |
| |
| if (decision == FILTER_BLOCK) { |
| unsigned char *mc_running_avg_y = |
| denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset; |
| int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride; |
| unsigned char *running_avg_y = |
| denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset; |
| int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride; |
| |
| /* Filter. */ |
| decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride, |
| running_avg_y, avg_y_stride, x->thismb, 16, |
| motion_magnitude2, x->increase_denoising); |
| denoiser->denoise_state[block_index] = |
| motion_magnitude2 > 0 ? kFilterNonZeroMV : kFilterZeroMV; |
| // Only denoise UV for zero motion, and if y channel was denoised. |
| if (denoiser->denoiser_mode != kDenoiserOnYOnly && motion_magnitude2 == 0 && |
| decision == FILTER_BLOCK) { |
| unsigned char *mc_running_avg_u = |
| denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset; |
| unsigned char *running_avg_u = |
| denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset; |
| unsigned char *mc_running_avg_v = |
| denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset; |
| unsigned char *running_avg_v = |
| denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset; |
| int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride; |
| int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride; |
| int signal_stride = x->block[16].src_stride; |
| decision_u = vp8_denoiser_filter_uv( |
| mc_running_avg_u, mc_avg_uv_stride, running_avg_u, avg_uv_stride, |
| x->block[16].src + *x->block[16].base_src, signal_stride, |
| motion_magnitude2, 0); |
| decision_v = vp8_denoiser_filter_uv( |
| mc_running_avg_v, mc_avg_uv_stride, running_avg_v, avg_uv_stride, |
| x->block[20].src + *x->block[20].base_src, signal_stride, |
| motion_magnitude2, 0); |
| } |
| } |
| if (decision == COPY_BLOCK) { |
| /* No filtering of this block; it differs too much from the predictor, |
| * or the motion vector magnitude is considered too big. |
| */ |
| x->denoise_zeromv = 0; |
| vp8_copy_mem16x16( |
| x->thismb, 16, |
| denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, |
| denoiser->yv12_running_avg[INTRA_FRAME].y_stride); |
| denoiser->denoise_state[block_index] = kNoFilter; |
| } |
| if (denoiser->denoiser_mode != kDenoiserOnYOnly) { |
| if (decision_u == COPY_BLOCK) { |
| vp8_copy_mem8x8( |
| x->block[16].src + *x->block[16].base_src, x->block[16].src_stride, |
| denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset, |
| denoiser->yv12_running_avg[INTRA_FRAME].uv_stride); |
| } |
| if (decision_v == COPY_BLOCK) { |
| vp8_copy_mem8x8( |
| x->block[20].src + *x->block[20].base_src, x->block[16].src_stride, |
| denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset, |
| denoiser->yv12_running_avg[INTRA_FRAME].uv_stride); |
| } |
| } |
| // Option to selectively deblock the denoised signal, for y channel only. |
| if (apply_spatial_loop_filter) { |
| loop_filter_info lfi; |
| int apply_filter_col = 0; |
| int apply_filter_row = 0; |
| int apply_filter = 0; |
| int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride; |
| int uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride; |
| |
| // Fix filter level to some nominal value for now. |
| int filter_level = 48; |
| |
| int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level]; |
| lfi.mblim = lfi_n->mblim[filter_level]; |
| lfi.blim = lfi_n->blim[filter_level]; |
| lfi.lim = lfi_n->lim[filter_level]; |
| lfi.hev_thr = lfi_n->hev_thr[hev_index]; |
| |
| // Apply filter if there is a difference in the denoiser filter state |
| // between the current and left/top block, or if non-zero motion vector |
| // is used for the motion-compensated filtering. |
| if (mb_col > 0) { |
| apply_filter_col = |
| !((denoiser->denoise_state[block_index] == |
| denoiser->denoise_state[block_index - 1]) && |
| denoiser->denoise_state[block_index] != kFilterNonZeroMV); |
| if (apply_filter_col) { |
| // Filter left vertical edge. |
| apply_filter = 1; |
| vp8_loop_filter_mbv( |
| denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, |
| NULL, NULL, y_stride, uv_stride, &lfi); |
| } |
| } |
| if (mb_row > 0) { |
| apply_filter_row = |
| !((denoiser->denoise_state[block_index] == |
| denoiser->denoise_state[block_index - denoiser->num_mb_cols]) && |
| denoiser->denoise_state[block_index] != kFilterNonZeroMV); |
| if (apply_filter_row) { |
| // Filter top horizontal edge. |
| apply_filter = 1; |
| vp8_loop_filter_mbh( |
| denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, |
| NULL, NULL, y_stride, uv_stride, &lfi); |
| } |
| } |
| if (apply_filter) { |
| // Update the signal block |x|. Pixel changes are only to top and/or |
| // left boundary pixels: can we avoid full block copy here. |
| vp8_copy_mem16x16( |
| denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, |
| y_stride, x->thismb, 16); |
| } |
| } |
| } |