| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <limits.h> |
| #include <assert.h> |
| |
| #include "math.h" |
| #include "vp8/common/common.h" |
| #include "ratectrl.h" |
| #include "vp8/common/entropymode.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp8/common/systemdependent.h" |
| #include "encodemv.h" |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_ports/system_state.h" |
| |
| #define MIN_BPB_FACTOR 0.01 |
| #define MAX_BPB_FACTOR 50 |
| |
| extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES]; |
| |
| #ifdef MODE_STATS |
| extern int y_modes[5]; |
| extern int uv_modes[4]; |
| extern int b_modes[10]; |
| |
| extern int inter_y_modes[10]; |
| extern int inter_uv_modes[4]; |
| extern int inter_b_modes[10]; |
| #endif |
| |
| /* Bits Per MB at different Q (Multiplied by 512) */ |
| #define BPER_MB_NORMBITS 9 |
| |
| /* Work in progress recalibration of baseline rate tables based on |
| * the assumption that bits per mb is inversely proportional to the |
| * quantizer value. |
| */ |
| const int vp8_bits_per_mb[2][QINDEX_RANGE] = { |
| /* Intra case 450000/Qintra */ |
| { |
| 1125000, 900000, 750000, 642857, 562500, 500000, 450000, 450000, 409090, |
| 375000, 346153, 321428, 300000, 281250, 264705, 264705, 250000, 236842, |
| 225000, 225000, 214285, 214285, 204545, 204545, 195652, 195652, 187500, |
| 180000, 180000, 173076, 166666, 160714, 155172, 150000, 145161, 140625, |
| 136363, 132352, 128571, 125000, 121621, 121621, 118421, 115384, 112500, |
| 109756, 107142, 104651, 102272, 100000, 97826, 97826, 95744, 93750, |
| 91836, 90000, 88235, 86538, 84905, 83333, 81818, 80357, 78947, |
| 77586, 76271, 75000, 73770, 72580, 71428, 70312, 69230, 68181, |
| 67164, 66176, 65217, 64285, 63380, 62500, 61643, 60810, 60000, |
| 59210, 59210, 58441, 57692, 56962, 56250, 55555, 54878, 54216, |
| 53571, 52941, 52325, 51724, 51136, 50561, 49450, 48387, 47368, |
| 46875, 45918, 45000, 44554, 44117, 43269, 42452, 41666, 40909, |
| 40178, 39473, 38793, 38135, 36885, 36290, 35714, 35156, 34615, |
| 34090, 33582, 33088, 32608, 32142, 31468, 31034, 30405, 29801, |
| 29220, 28662, |
| }, |
| /* Inter case 285000/Qinter */ |
| { |
| 712500, 570000, 475000, 407142, 356250, 316666, 285000, 259090, 237500, |
| 219230, 203571, 190000, 178125, 167647, 158333, 150000, 142500, 135714, |
| 129545, 123913, 118750, 114000, 109615, 105555, 101785, 98275, 95000, |
| 91935, 89062, 86363, 83823, 81428, 79166, 77027, 75000, 73076, |
| 71250, 69512, 67857, 66279, 64772, 63333, 61956, 60638, 59375, |
| 58163, 57000, 55882, 54807, 53773, 52777, 51818, 50892, 50000, |
| 49137, 47500, 45967, 44531, 43181, 41911, 40714, 39583, 38513, |
| 37500, 36538, 35625, 34756, 33928, 33139, 32386, 31666, 30978, |
| 30319, 29687, 29081, 28500, 27941, 27403, 26886, 26388, 25909, |
| 25446, 25000, 24568, 23949, 23360, 22800, 22265, 21755, 21268, |
| 20802, 20357, 19930, 19520, 19127, 18750, 18387, 18037, 17701, |
| 17378, 17065, 16764, 16473, 16101, 15745, 15405, 15079, 14766, |
| 14467, 14179, 13902, 13636, 13380, 13133, 12895, 12666, 12445, |
| 12179, 11924, 11632, 11445, 11220, 11003, 10795, 10594, 10401, |
| 10215, 10035, |
| } |
| }; |
| |
| static const int kf_boost_qadjustment[QINDEX_RANGE] = { |
| 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, |
| 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, |
| 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, |
| 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, |
| 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 200, 201, |
| 201, 202, 203, 203, 203, 204, 204, 205, 205, 206, 206, 207, 207, 208, 208, |
| 209, 209, 210, 210, 211, 211, 212, 212, 213, 213, 214, 214, 215, 215, 216, |
| 216, 217, 217, 218, 218, 219, 219, 220, 220, 220, 220, 220, 220, 220, 220, |
| 220, 220, 220, 220, 220, 220, 220, 220, |
| }; |
| |
| /* #define GFQ_ADJUSTMENT (Q+100) */ |
| #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] |
| const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = { |
| 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, |
| 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, |
| 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, |
| 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, |
| 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, |
| 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, |
| 178, 179, 180, 181, 182, 183, 184, 184, 185, 185, 186, 186, 187, 187, 188, |
| 188, 189, 189, 190, 190, 191, 191, 192, 192, 193, 193, 194, 194, 194, 194, |
| 195, 195, 196, 196, 197, 197, 198, 198 |
| }; |
| |
| /* |
| const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = |
| { |
| 100,101,102,103,104,105,105,106, |
| 106,107,107,108,109,109,110,111, |
| 112,113,114,115,116,117,118,119, |
| 120,121,122,123,124,125,126,127, |
| 128,129,130,131,132,133,134,135, |
| 136,137,138,139,140,141,142,143, |
| 144,145,146,147,148,149,150,151, |
| 152,153,154,155,156,157,158,159, |
| 160,161,162,163,164,165,166,167, |
| 168,169,170,170,171,171,172,172, |
| 173,173,173,174,174,174,175,175, |
| 175,176,176,176,177,177,177,177, |
| 178,178,179,179,180,180,181,181, |
| 182,182,183,183,184,184,185,185, |
| 186,186,187,187,188,188,189,189, |
| 190,190,191,191,192,192,193,193, |
| }; |
| */ |
| |
| static const int kf_gf_boost_qlimits[QINDEX_RANGE] = { |
| 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, |
| 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, |
| 300, 305, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, |
| 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, |
| 590, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, |
| 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, |
| 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, |
| 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, |
| 600, 600, 600, 600, 600, 600, 600, 600, |
| }; |
| |
| static const int gf_adjust_table[101] = { |
| 100, 115, 130, 145, 160, 175, 190, 200, 210, 220, 230, 240, 260, 270, 280, |
| 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| }; |
| |
| static const int gf_intra_usage_adjustment[20] = { |
| 125, 120, 115, 110, 105, 100, 95, 85, 80, 75, |
| 70, 65, 60, 55, 50, 50, 50, 50, 50, 50, |
| }; |
| |
| static const int gf_interval_table[101] = { |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
| 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, |
| }; |
| |
| static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, |
| 4, 5 }; |
| |
| void vp8_save_coding_context(VP8_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| |
| /* Stores a snapshot of key state variables which can subsequently be |
| * restored with a call to vp8_restore_coding_context. These functions are |
| * intended for use in a re-code loop in vp8_compress_frame where the |
| * quantizer value is adjusted between loop iterations. |
| */ |
| |
| cc->frames_since_key = cpi->frames_since_key; |
| cc->filter_level = cpi->common.filter_level; |
| cc->frames_till_gf_update_due = cpi->frames_till_gf_update_due; |
| cc->frames_since_golden = cpi->frames_since_golden; |
| |
| vp8_copy(cc->mvc, cpi->common.fc.mvc); |
| vp8_copy(cc->mvcosts, cpi->rd_costs.mvcosts); |
| |
| vp8_copy(cc->ymode_prob, cpi->common.fc.ymode_prob); |
| vp8_copy(cc->uv_mode_prob, cpi->common.fc.uv_mode_prob); |
| |
| vp8_copy(cc->ymode_count, cpi->mb.ymode_count); |
| vp8_copy(cc->uv_mode_count, cpi->mb.uv_mode_count); |
| |
| /* Stats */ |
| #ifdef MODE_STATS |
| vp8_copy(cc->y_modes, y_modes); |
| vp8_copy(cc->uv_modes, uv_modes); |
| vp8_copy(cc->b_modes, b_modes); |
| vp8_copy(cc->inter_y_modes, inter_y_modes); |
| vp8_copy(cc->inter_uv_modes, inter_uv_modes); |
| vp8_copy(cc->inter_b_modes, inter_b_modes); |
| #endif |
| |
| cc->this_frame_percent_intra = cpi->this_frame_percent_intra; |
| } |
| |
| void vp8_restore_coding_context(VP8_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| |
| /* Restore key state variables to the snapshot state stored in the |
| * previous call to vp8_save_coding_context. |
| */ |
| |
| cpi->frames_since_key = cc->frames_since_key; |
| cpi->common.filter_level = cc->filter_level; |
| cpi->frames_till_gf_update_due = cc->frames_till_gf_update_due; |
| cpi->frames_since_golden = cc->frames_since_golden; |
| |
| vp8_copy(cpi->common.fc.mvc, cc->mvc); |
| |
| vp8_copy(cpi->rd_costs.mvcosts, cc->mvcosts); |
| |
| vp8_copy(cpi->common.fc.ymode_prob, cc->ymode_prob); |
| vp8_copy(cpi->common.fc.uv_mode_prob, cc->uv_mode_prob); |
| |
| vp8_copy(cpi->mb.ymode_count, cc->ymode_count); |
| vp8_copy(cpi->mb.uv_mode_count, cc->uv_mode_count); |
| |
| /* Stats */ |
| #ifdef MODE_STATS |
| vp8_copy(y_modes, cc->y_modes); |
| vp8_copy(uv_modes, cc->uv_modes); |
| vp8_copy(b_modes, cc->b_modes); |
| vp8_copy(inter_y_modes, cc->inter_y_modes); |
| vp8_copy(inter_uv_modes, cc->inter_uv_modes); |
| vp8_copy(inter_b_modes, cc->inter_b_modes); |
| #endif |
| |
| cpi->this_frame_percent_intra = cc->this_frame_percent_intra; |
| } |
| |
| void vp8_setup_key_frame(VP8_COMP *cpi) { |
| /* Setup for Key frame: */ |
| |
| vp8_default_coef_probs(&cpi->common); |
| |
| memcpy(cpi->common.fc.mvc, vp8_default_mv_context, |
| sizeof(vp8_default_mv_context)); |
| { |
| int flag[2] = { 1, 1 }; |
| vp8_build_component_cost_table( |
| cpi->mb.mvcost, (const MV_CONTEXT *)cpi->common.fc.mvc, flag); |
| } |
| |
| /* Make sure we initialize separate contexts for altref,gold, and normal. |
| * TODO shouldn't need 3 different copies of structure to do this! |
| */ |
| memcpy(&cpi->lfc_a, &cpi->common.fc, sizeof(cpi->common.fc)); |
| memcpy(&cpi->lfc_g, &cpi->common.fc, sizeof(cpi->common.fc)); |
| memcpy(&cpi->lfc_n, &cpi->common.fc, sizeof(cpi->common.fc)); |
| |
| cpi->common.filter_level = cpi->common.base_qindex * 3 / 8; |
| |
| /* Provisional interval before next GF */ |
| if (cpi->auto_gold) { |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| } else { |
| cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL; |
| } |
| |
| cpi->common.refresh_golden_frame = 1; |
| cpi->common.refresh_alt_ref_frame = 1; |
| } |
| |
| static int estimate_bits_at_q(int frame_kind, int Q, int MBs, |
| double correction_factor) { |
| int Bpm = (int)(.5 + correction_factor * vp8_bits_per_mb[frame_kind][Q]); |
| |
| /* Attempt to retain reasonable accuracy without overflow. The cutoff is |
| * chosen such that the maximum product of Bpm and MBs fits 31 bits. The |
| * largest Bpm takes 20 bits. |
| */ |
| if (MBs > (1 << 11)) { |
| return (Bpm >> BPER_MB_NORMBITS) * MBs; |
| } else { |
| return (Bpm * MBs) >> BPER_MB_NORMBITS; |
| } |
| } |
| |
| static void calc_iframe_target_size(VP8_COMP *cpi) { |
| /* boost defaults to half second */ |
| int kf_boost; |
| uint64_t target; |
| |
| /* Clear down mmx registers to allow floating point in what follows */ |
| vpx_clear_system_state(); |
| |
| if (cpi->oxcf.fixed_q >= 0) { |
| int Q = cpi->oxcf.key_q; |
| |
| target = estimate_bits_at_q(INTRA_FRAME, Q, cpi->common.MBs, |
| cpi->key_frame_rate_correction_factor); |
| } else if (cpi->pass == 2) { |
| /* New Two pass RC */ |
| target = cpi->per_frame_bandwidth; |
| } |
| /* First Frame is a special case */ |
| else if (cpi->common.current_video_frame == 0) { |
| /* 1 Pass there is no information on which to base size so use |
| * bandwidth per second * fraction of the initial buffer |
| * level |
| */ |
| target = cpi->oxcf.starting_buffer_level / 2; |
| |
| if (target > cpi->oxcf.target_bandwidth * 3 / 2) { |
| target = cpi->oxcf.target_bandwidth * 3 / 2; |
| } |
| } else { |
| /* if this keyframe was forced, use a more recent Q estimate */ |
| int Q = (cpi->common.frame_flags & FRAMEFLAGS_KEY) ? cpi->avg_frame_qindex |
| : cpi->ni_av_qi; |
| |
| int initial_boost = 32; /* |3.0 * per_frame_bandwidth| */ |
| /* Boost depends somewhat on frame rate: only used for 1 layer case. */ |
| if (cpi->oxcf.number_of_layers == 1) { |
| kf_boost = VPXMAX(initial_boost, (int)(2 * cpi->output_framerate - 16)); |
| } else { |
| /* Initial factor: set target size to: |3.0 * per_frame_bandwidth|. */ |
| kf_boost = initial_boost; |
| } |
| |
| /* adjustment up based on q: this factor ranges from ~1.2 to 2.2. */ |
| kf_boost = kf_boost * kf_boost_qadjustment[Q] / 100; |
| |
| /* frame separation adjustment ( down) */ |
| if (cpi->frames_since_key < cpi->output_framerate / 2) { |
| kf_boost = |
| (int)(kf_boost * cpi->frames_since_key / (cpi->output_framerate / 2)); |
| } |
| |
| /* Minimal target size is |2* per_frame_bandwidth|. */ |
| if (kf_boost < 16) kf_boost = 16; |
| |
| target = ((16 + kf_boost) * cpi->per_frame_bandwidth) >> 4; |
| } |
| |
| if (cpi->oxcf.rc_max_intra_bitrate_pct) { |
| unsigned int max_rate = |
| cpi->per_frame_bandwidth * cpi->oxcf.rc_max_intra_bitrate_pct / 100; |
| |
| if (target > max_rate) target = max_rate; |
| } |
| |
| cpi->this_frame_target = (int)target; |
| |
| /* TODO: if we separate rate targeting from Q targeting, move this. |
| * Reset the active worst quality to the baseline value for key frames. |
| */ |
| if (cpi->pass != 2) cpi->active_worst_quality = cpi->worst_quality; |
| |
| #if 0 |
| { |
| FILE *f; |
| |
| f = fopen("kf_boost.stt", "a"); |
| fprintf(f, " %8u %10d %10d %10d\n", |
| cpi->common.current_video_frame, cpi->gfu_boost, cpi->baseline_gf_interval, cpi->source_alt_ref_pending); |
| |
| fclose(f); |
| } |
| #endif |
| } |
| |
| /* Do the best we can to define the parameters for the next GF based on what |
| * information we have available. |
| */ |
| static void calc_gf_params(VP8_COMP *cpi) { |
| int Q = |
| (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
| int Boost = 0; |
| |
| int gf_frame_useage = 0; /* Golden frame useage since last GF */ |
| int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] + |
| cpi->recent_ref_frame_usage[LAST_FRAME] + |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] + |
| cpi->recent_ref_frame_usage[ALTREF_FRAME]; |
| |
| int pct_gf_active = (100 * cpi->gf_active_count) / |
| (cpi->common.mb_rows * cpi->common.mb_cols); |
| |
| if (tot_mbs) { |
| gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + |
| cpi->recent_ref_frame_usage[ALTREF_FRAME]) * |
| 100 / tot_mbs; |
| } |
| |
| if (pct_gf_active > gf_frame_useage) gf_frame_useage = pct_gf_active; |
| |
| /* Not two pass */ |
| if (cpi->pass != 2) { |
| /* Single Pass lagged mode: TBD */ |
| if (0) { |
| } |
| |
| /* Single Pass compression: Has to use current and historical data */ |
| else { |
| #if 0 |
| /* Experimental code */ |
| int index = cpi->one_pass_frame_index; |
| int frames_to_scan = (cpi->max_gf_interval <= MAX_LAG_BUFFERS) ? cpi->max_gf_interval : MAX_LAG_BUFFERS; |
| |
| /* ************** Experimental code - incomplete */ |
| /* |
| double decay_val = 1.0; |
| double IIAccumulator = 0.0; |
| double last_iiaccumulator = 0.0; |
| double IIRatio; |
| |
| cpi->one_pass_frame_index = cpi->common.current_video_frame%MAX_LAG_BUFFERS; |
| |
| for ( i = 0; i < (frames_to_scan - 1); i++ ) |
| { |
| if ( index < 0 ) |
| index = MAX_LAG_BUFFERS; |
| index --; |
| |
| if ( cpi->one_pass_frame_stats[index].frame_coded_error > 0.0 ) |
| { |
| IIRatio = cpi->one_pass_frame_stats[index].frame_intra_error / cpi->one_pass_frame_stats[index].frame_coded_error; |
| |
| if ( IIRatio > 30.0 ) |
| IIRatio = 30.0; |
| } |
| else |
| IIRatio = 30.0; |
| |
| IIAccumulator += IIRatio * decay_val; |
| |
| decay_val = decay_val * cpi->one_pass_frame_stats[index].frame_pcnt_inter; |
| |
| if ( (i > MIN_GF_INTERVAL) && |
| ((IIAccumulator - last_iiaccumulator) < 2.0) ) |
| { |
| break; |
| } |
| last_iiaccumulator = IIAccumulator; |
| } |
| |
| Boost = IIAccumulator*100.0/16.0; |
| cpi->baseline_gf_interval = i; |
| |
| */ |
| #else |
| |
| /*************************************************************/ |
| /* OLD code */ |
| |
| /* Adjust boost based upon ambient Q */ |
| Boost = GFQ_ADJUSTMENT; |
| |
| /* Adjust based upon most recently measure intra useage */ |
| Boost = Boost * |
| gf_intra_usage_adjustment[(cpi->this_frame_percent_intra < 15) |
| ? cpi->this_frame_percent_intra |
| : 14] / |
| 100; |
| |
| /* Adjust gf boost based upon GF usage since last GF */ |
| Boost = Boost * gf_adjust_table[gf_frame_useage] / 100; |
| #endif |
| } |
| |
| /* golden frame boost without recode loop often goes awry. be |
| * safe by keeping numbers down. |
| */ |
| if (!cpi->sf.recode_loop) { |
| if (cpi->compressor_speed == 2) Boost = Boost / 2; |
| } |
| |
| /* Apply an upper limit based on Q for 1 pass encodes */ |
| if (Boost > kf_gf_boost_qlimits[Q] && (cpi->pass == 0)) { |
| Boost = kf_gf_boost_qlimits[Q]; |
| |
| /* Apply lower limits to boost. */ |
| } else if (Boost < 110) { |
| Boost = 110; |
| } |
| |
| /* Note the boost used */ |
| cpi->last_boost = Boost; |
| } |
| |
| /* Estimate next interval |
| * This is updated once the real frame size/boost is known. |
| */ |
| if (cpi->oxcf.fixed_q == -1) { |
| if (cpi->pass == 2) { /* 2 Pass */ |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| } else { /* 1 Pass */ |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| |
| if (cpi->last_boost > 750) cpi->frames_till_gf_update_due++; |
| |
| if (cpi->last_boost > 1000) cpi->frames_till_gf_update_due++; |
| |
| if (cpi->last_boost > 1250) cpi->frames_till_gf_update_due++; |
| |
| if (cpi->last_boost >= 1500) cpi->frames_till_gf_update_due++; |
| |
| if (gf_interval_table[gf_frame_useage] > cpi->frames_till_gf_update_due) { |
| cpi->frames_till_gf_update_due = gf_interval_table[gf_frame_useage]; |
| } |
| |
| if (cpi->frames_till_gf_update_due > cpi->max_gf_interval) { |
| cpi->frames_till_gf_update_due = cpi->max_gf_interval; |
| } |
| } |
| } else { |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| } |
| |
| /* ARF on or off */ |
| if (cpi->pass != 2) { |
| /* For now Alt ref is not allowed except in 2 pass modes. */ |
| cpi->source_alt_ref_pending = 0; |
| |
| /*if ( cpi->oxcf.fixed_q == -1) |
| { |
| if ( cpi->oxcf.play_alternate && (cpi->last_boost > (100 + |
| (AF_THRESH*cpi->frames_till_gf_update_due)) ) ) |
| cpi->source_alt_ref_pending = 1; |
| else |
| cpi->source_alt_ref_pending = 0; |
| }*/ |
| } |
| } |
| |
| static void calc_pframe_target_size(VP8_COMP *cpi) { |
| int min_frame_target; |
| int old_per_frame_bandwidth = cpi->per_frame_bandwidth; |
| |
| if (cpi->current_layer > 0) { |
| cpi->per_frame_bandwidth = |
| cpi->layer_context[cpi->current_layer].avg_frame_size_for_layer; |
| } |
| |
| min_frame_target = 0; |
| |
| if (cpi->pass == 2) { |
| min_frame_target = cpi->min_frame_bandwidth; |
| |
| if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5)) { |
| min_frame_target = cpi->av_per_frame_bandwidth >> 5; |
| } |
| } else if (min_frame_target < cpi->per_frame_bandwidth / 4) { |
| min_frame_target = cpi->per_frame_bandwidth / 4; |
| } |
| |
| /* Special alt reference frame case */ |
| if ((cpi->common.refresh_alt_ref_frame) && |
| (cpi->oxcf.number_of_layers == 1)) { |
| if (cpi->pass == 2) { |
| /* Per frame bit target for the alt ref frame */ |
| cpi->per_frame_bandwidth = cpi->twopass.gf_bits; |
| cpi->this_frame_target = cpi->per_frame_bandwidth; |
| } |
| |
| /* One Pass ??? TBD */ |
| } |
| |
| /* Normal frames (gf,and inter) */ |
| else { |
| /* 2 pass */ |
| if (cpi->pass == 2) { |
| cpi->this_frame_target = cpi->per_frame_bandwidth; |
| } |
| /* 1 pass */ |
| else { |
| int Adjustment; |
| /* Make rate adjustment to recover bits spent in key frame |
| * Test to see if the key frame inter data rate correction |
| * should still be in force |
| */ |
| if (cpi->kf_overspend_bits > 0) { |
| Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) |
| ? cpi->kf_bitrate_adjustment |
| : cpi->kf_overspend_bits; |
| |
| if (Adjustment > (cpi->per_frame_bandwidth - min_frame_target)) { |
| Adjustment = (cpi->per_frame_bandwidth - min_frame_target); |
| } |
| |
| cpi->kf_overspend_bits -= Adjustment; |
| |
| /* Calculate an inter frame bandwidth target for the next |
| * few frames designed to recover any extra bits spent on |
| * the key frame. |
| */ |
| cpi->this_frame_target = cpi->per_frame_bandwidth - Adjustment; |
| |
| if (cpi->this_frame_target < min_frame_target) { |
| cpi->this_frame_target = min_frame_target; |
| } |
| } else { |
| cpi->this_frame_target = cpi->per_frame_bandwidth; |
| } |
| |
| /* If appropriate make an adjustment to recover bits spent on a |
| * recent GF |
| */ |
| if ((cpi->gf_overspend_bits > 0) && |
| (cpi->this_frame_target > min_frame_target)) { |
| Adjustment = (cpi->non_gf_bitrate_adjustment <= cpi->gf_overspend_bits) |
| ? cpi->non_gf_bitrate_adjustment |
| : cpi->gf_overspend_bits; |
| |
| if (Adjustment > (cpi->this_frame_target - min_frame_target)) { |
| Adjustment = (cpi->this_frame_target - min_frame_target); |
| } |
| |
| cpi->gf_overspend_bits -= Adjustment; |
| cpi->this_frame_target -= Adjustment; |
| } |
| |
| /* Apply small + and - boosts for non gf frames */ |
| if ((cpi->last_boost > 150) && (cpi->frames_till_gf_update_due > 0) && |
| (cpi->current_gf_interval >= (MIN_GF_INTERVAL << 1))) { |
| /* % Adjustment limited to the range 1% to 10% */ |
| Adjustment = (cpi->last_boost - 100) >> 5; |
| |
| if (Adjustment < 1) { |
| Adjustment = 1; |
| } else if (Adjustment > 10) { |
| Adjustment = 10; |
| } |
| |
| /* Convert to bits */ |
| Adjustment = (cpi->this_frame_target * Adjustment) / 100; |
| |
| if (Adjustment > (cpi->this_frame_target - min_frame_target)) { |
| Adjustment = (cpi->this_frame_target - min_frame_target); |
| } |
| |
| if (cpi->frames_since_golden == (cpi->current_gf_interval >> 1)) { |
| Adjustment = (cpi->current_gf_interval - 1) * Adjustment; |
| // Limit adjustment to 10% of current target. |
| if (Adjustment > (10 * cpi->this_frame_target) / 100) { |
| Adjustment = (10 * cpi->this_frame_target) / 100; |
| } |
| cpi->this_frame_target += Adjustment; |
| } else { |
| cpi->this_frame_target -= Adjustment; |
| } |
| } |
| } |
| } |
| |
| /* Sanity check that the total sum of adjustments is not above the |
| * maximum allowed That is that having allowed for KF and GF penalties |
| * we have not pushed the current interframe target to low. If the |
| * adjustment we apply here is not capable of recovering all the extra |
| * bits we have spent in the KF or GF then the remainder will have to |
| * be recovered over a longer time span via other buffer / rate control |
| * mechanisms. |
| */ |
| if (cpi->this_frame_target < min_frame_target) { |
| cpi->this_frame_target = min_frame_target; |
| } |
| |
| if (!cpi->common.refresh_alt_ref_frame) { |
| /* Note the baseline target data rate for this inter frame. */ |
| cpi->inter_frame_target = cpi->this_frame_target; |
| } |
| |
| /* One Pass specific code */ |
| if (cpi->pass == 0) { |
| /* Adapt target frame size with respect to any buffering constraints: */ |
| if (cpi->buffered_mode) { |
| int one_percent_bits = (int)(1 + cpi->oxcf.optimal_buffer_level / 100); |
| |
| if ((cpi->buffer_level < cpi->oxcf.optimal_buffer_level) || |
| (cpi->bits_off_target < cpi->oxcf.optimal_buffer_level)) { |
| int percent_low = 0; |
| |
| /* Decide whether or not we need to adjust the frame data |
| * rate target. |
| * |
| * If we are are below the optimal buffer fullness level |
| * and adherence to buffering constraints is important to |
| * the end usage then adjust the per frame target. |
| */ |
| if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && |
| (cpi->buffer_level < cpi->oxcf.optimal_buffer_level)) { |
| percent_low = |
| (int)((cpi->oxcf.optimal_buffer_level - cpi->buffer_level) / |
| one_percent_bits); |
| } |
| /* Are we overshooting the long term clip data rate... */ |
| else if (cpi->bits_off_target < 0) { |
| /* Adjust per frame data target downwards to compensate. */ |
| percent_low = |
| (int)(100 * -cpi->bits_off_target / (cpi->total_byte_count * 8)); |
| } |
| |
| if (percent_low > cpi->oxcf.under_shoot_pct) { |
| percent_low = cpi->oxcf.under_shoot_pct; |
| } else if (percent_low < 0) { |
| percent_low = 0; |
| } |
| |
| /* lower the target bandwidth for this frame. */ |
| cpi->this_frame_target -= (cpi->this_frame_target * percent_low) / 200; |
| |
| /* Are we using allowing control of active_worst_allowed_q |
| * according to buffer level. |
| */ |
| if (cpi->auto_worst_q && cpi->ni_frames > 150) { |
| int64_t critical_buffer_level; |
| |
| /* For streaming applications the most important factor is |
| * cpi->buffer_level as this takes into account the |
| * specified short term buffering constraints. However, |
| * hitting the long term clip data rate target is also |
| * important. |
| */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
| /* Take the smaller of cpi->buffer_level and |
| * cpi->bits_off_target |
| */ |
| critical_buffer_level = (cpi->buffer_level < cpi->bits_off_target) |
| ? cpi->buffer_level |
| : cpi->bits_off_target; |
| } |
| /* For local file playback short term buffering constraints |
| * are less of an issue |
| */ |
| else { |
| /* Consider only how we are doing for the clip as a |
| * whole |
| */ |
| critical_buffer_level = cpi->bits_off_target; |
| } |
| |
| /* Set the active worst quality based upon the selected |
| * buffer fullness number. |
| */ |
| if (critical_buffer_level < cpi->oxcf.optimal_buffer_level) { |
| if (critical_buffer_level > (cpi->oxcf.optimal_buffer_level >> 2)) { |
| int64_t qadjustment_range = cpi->worst_quality - cpi->ni_av_qi; |
| int64_t above_base = (critical_buffer_level - |
| (cpi->oxcf.optimal_buffer_level >> 2)); |
| |
| /* Step active worst quality down from |
| * cpi->ni_av_qi when (critical_buffer_level == |
| * cpi->optimal_buffer_level) to |
| * cpi->worst_quality when |
| * (critical_buffer_level == |
| * cpi->optimal_buffer_level >> 2) |
| */ |
| cpi->active_worst_quality = |
| cpi->worst_quality - |
| (int)((qadjustment_range * above_base) / |
| (cpi->oxcf.optimal_buffer_level * 3 >> 2)); |
| } else { |
| cpi->active_worst_quality = cpi->worst_quality; |
| } |
| } else { |
| cpi->active_worst_quality = cpi->ni_av_qi; |
| } |
| } else { |
| cpi->active_worst_quality = cpi->worst_quality; |
| } |
| } else { |
| int percent_high = 0; |
| |
| if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && |
| (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)) { |
| percent_high = |
| (int)((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / |
| one_percent_bits); |
| } else if (cpi->bits_off_target > cpi->oxcf.optimal_buffer_level) { |
| percent_high = |
| (int)((100 * cpi->bits_off_target) / (cpi->total_byte_count * 8)); |
| } |
| |
| if (percent_high > cpi->oxcf.over_shoot_pct) { |
| percent_high = cpi->oxcf.over_shoot_pct; |
| } else if (percent_high < 0) { |
| percent_high = 0; |
| } |
| |
| cpi->this_frame_target += (cpi->this_frame_target * percent_high) / 200; |
| |
| /* Are we allowing control of active_worst_allowed_q according |
| * to buffer level. |
| */ |
| if (cpi->auto_worst_q && cpi->ni_frames > 150) { |
| /* When using the relaxed buffer model stick to the |
| * user specified value |
| */ |
| cpi->active_worst_quality = cpi->ni_av_qi; |
| } else { |
| cpi->active_worst_quality = cpi->worst_quality; |
| } |
| } |
| |
| /* Set active_best_quality to prevent quality rising too high */ |
| cpi->active_best_quality = cpi->best_quality; |
| |
| /* Worst quality obviously must not be better than best quality */ |
| if (cpi->active_worst_quality <= cpi->active_best_quality) { |
| cpi->active_worst_quality = cpi->active_best_quality + 1; |
| } |
| |
| if (cpi->active_worst_quality > 127) cpi->active_worst_quality = 127; |
| } |
| /* Unbuffered mode (eg. video conferencing) */ |
| else { |
| /* Set the active worst quality */ |
| cpi->active_worst_quality = cpi->worst_quality; |
| } |
| |
| /* Special trap for constrained quality mode |
| * "active_worst_quality" may never drop below cq level |
| * for any frame type. |
| */ |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && |
| cpi->active_worst_quality < cpi->cq_target_quality) { |
| cpi->active_worst_quality = cpi->cq_target_quality; |
| } |
| } |
| |
| /* Test to see if we have to drop a frame |
| * The auto-drop frame code is only used in buffered mode. |
| * In unbufferd mode (eg vide conferencing) the descision to |
| * code or drop a frame is made outside the codec in response to real |
| * world comms or buffer considerations. |
| */ |
| if (cpi->drop_frames_allowed && |
| (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && |
| ((cpi->common.frame_type != KEY_FRAME))) { |
| /* Check for a buffer underun-crisis in which case we have to drop |
| * a frame |
| */ |
| if ((cpi->buffer_level < 0)) { |
| #if 0 |
| FILE *f = fopen("dec.stt", "a"); |
| fprintf(f, "%10d %10d %10d %10d ***** BUFFER EMPTY\n", |
| (int) cpi->common.current_video_frame, |
| cpi->decimation_factor, cpi->common.horiz_scale, |
| (cpi->buffer_level * 100) / cpi->oxcf.optimal_buffer_level); |
| fclose(f); |
| #endif |
| cpi->drop_frame = 1; |
| |
| /* Update the buffer level variable. */ |
| cpi->bits_off_target += cpi->av_per_frame_bandwidth; |
| if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { |
| cpi->bits_off_target = (int)cpi->oxcf.maximum_buffer_size; |
| } |
| cpi->buffer_level = cpi->bits_off_target; |
| |
| if (cpi->oxcf.number_of_layers > 1) { |
| unsigned int i; |
| |
| // Propagate bits saved by dropping the frame to higher layers. |
| for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) { |
| LAYER_CONTEXT *lc = &cpi->layer_context[i]; |
| lc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate); |
| if (lc->bits_off_target > lc->maximum_buffer_size) { |
| lc->bits_off_target = lc->maximum_buffer_size; |
| } |
| lc->buffer_level = lc->bits_off_target; |
| } |
| } |
| } |
| } |
| |
| /* Adjust target frame size for Golden Frames: */ |
| if (cpi->oxcf.error_resilient_mode == 0 && |
| (cpi->frames_till_gf_update_due == 0) && !cpi->drop_frame) { |
| if (!cpi->gf_update_onepass_cbr) { |
| int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] |
| : cpi->oxcf.fixed_q; |
| |
| int gf_frame_useage = 0; /* Golden frame useage since last GF */ |
| int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] + |
| cpi->recent_ref_frame_usage[LAST_FRAME] + |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] + |
| cpi->recent_ref_frame_usage[ALTREF_FRAME]; |
| |
| int pct_gf_active = (100 * cpi->gf_active_count) / |
| (cpi->common.mb_rows * cpi->common.mb_cols); |
| |
| if (tot_mbs) { |
| gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + |
| cpi->recent_ref_frame_usage[ALTREF_FRAME]) * |
| 100 / tot_mbs; |
| } |
| |
| if (pct_gf_active > gf_frame_useage) gf_frame_useage = pct_gf_active; |
| |
| /* Is a fixed manual GF frequency being used */ |
| if (cpi->auto_gold) { |
| /* For one pass throw a GF if recent frame intra useage is |
| * low or the GF useage is high |
| */ |
| if ((cpi->pass == 0) && |
| (cpi->this_frame_percent_intra < 15 || gf_frame_useage >= 5)) { |
| cpi->common.refresh_golden_frame = 1; |
| |
| /* Two pass GF descision */ |
| } else if (cpi->pass == 2) { |
| cpi->common.refresh_golden_frame = 1; |
| } |
| } |
| |
| #if 0 |
| |
| /* Debug stats */ |
| if (0) { |
| FILE *f; |
| |
| f = fopen("gf_useaget.stt", "a"); |
| fprintf(f, " %8ld %10ld %10ld %10ld %10ld\n", |
| cpi->common.current_video_frame, cpi->gfu_boost, |
| GFQ_ADJUSTMENT, cpi->gfu_boost, gf_frame_useage); |
| fclose(f); |
| } |
| |
| #endif |
| |
| if (cpi->common.refresh_golden_frame == 1) { |
| #if 0 |
| |
| if (0) { |
| FILE *f; |
| |
| f = fopen("GFexit.stt", "a"); |
| fprintf(f, "%8ld GF coded\n", cpi->common.current_video_frame); |
| fclose(f); |
| } |
| |
| #endif |
| |
| if (cpi->auto_adjust_gold_quantizer) { |
| calc_gf_params(cpi); |
| } |
| |
| /* If we are using alternate ref instead of gf then do not apply the |
| * boost It will instead be applied to the altref update Jims |
| * modified boost |
| */ |
| if (!cpi->source_alt_ref_active) { |
| if (cpi->oxcf.fixed_q < 0) { |
| if (cpi->pass == 2) { |
| /* The spend on the GF is defined in the two pass |
| * code for two pass encodes |
| */ |
| cpi->this_frame_target = cpi->per_frame_bandwidth; |
| } else { |
| int Boost = cpi->last_boost; |
| int frames_in_section = cpi->frames_till_gf_update_due + 1; |
| int allocation_chunks = (frames_in_section * 100) + (Boost - 100); |
| int bits_in_section = cpi->inter_frame_target * frames_in_section; |
| |
| /* Normalize Altboost and allocations chunck down to |
| * prevent overflow |
| */ |
| while (Boost > 1000) { |
| Boost /= 2; |
| allocation_chunks /= 2; |
| } |
| |
| /* Avoid loss of precision but avoid overflow */ |
| if ((bits_in_section >> 7) > allocation_chunks) { |
| cpi->this_frame_target = |
| Boost * (bits_in_section / allocation_chunks); |
| } else { |
| cpi->this_frame_target = |
| (Boost * bits_in_section) / allocation_chunks; |
| } |
| } |
| } else { |
| cpi->this_frame_target = |
| (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0) * |
| cpi->last_boost) / |
| 100; |
| } |
| } else { |
| /* If there is an active ARF at this location use the minimum |
| * bits on this frame even if it is a contructed arf. |
| * The active maximum quantizer insures that an appropriate |
| * number of bits will be spent if needed for contstructed ARFs. |
| */ |
| cpi->this_frame_target = 0; |
| } |
| |
| cpi->current_gf_interval = cpi->frames_till_gf_update_due; |
| } |
| } else { |
| // Special case for 1 pass CBR: fixed gf period. |
| // TODO(marpan): Adjust this boost/interval logic. |
| // If gf_cbr_boost_pct is small (below threshold) set the flag |
| // gf_noboost_onepass_cbr = 1, which forces the gf to use the same |
| // rate correction factor as last. |
| cpi->gf_noboost_onepass_cbr = (cpi->oxcf.gf_cbr_boost_pct <= 100); |
| cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr; |
| // Skip this update if the zero_mvcount is low. |
| if (cpi->zeromv_count > (cpi->common.MBs >> 1)) { |
| cpi->common.refresh_golden_frame = 1; |
| cpi->this_frame_target = |
| (cpi->this_frame_target * (100 + cpi->oxcf.gf_cbr_boost_pct)) / 100; |
| } |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| cpi->current_gf_interval = cpi->frames_till_gf_update_due; |
| } |
| } |
| |
| cpi->per_frame_bandwidth = old_per_frame_bandwidth; |
| } |
| |
| void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var) { |
| int Q = cpi->common.base_qindex; |
| int correction_factor = 100; |
| double rate_correction_factor; |
| double adjustment_limit; |
| |
| int projected_size_based_on_q = 0; |
| |
| /* Clear down mmx registers to allow floating point in what follows */ |
| vpx_clear_system_state(); |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| rate_correction_factor = cpi->key_frame_rate_correction_factor; |
| } else { |
| if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr && |
| (cpi->common.refresh_alt_ref_frame || |
| cpi->common.refresh_golden_frame)) { |
| rate_correction_factor = cpi->gf_rate_correction_factor; |
| } else { |
| rate_correction_factor = cpi->rate_correction_factor; |
| } |
| } |
| |
| /* Work out how big we would have expected the frame to be at this Q |
| * given the current correction factor. Stay in double to avoid int |
| * overflow when values are large |
| */ |
| projected_size_based_on_q = |
| (int)(((.5 + rate_correction_factor * |
| vp8_bits_per_mb[cpi->common.frame_type][Q]) * |
| cpi->common.MBs) / |
| (1 << BPER_MB_NORMBITS)); |
| |
| /* Make some allowance for cpi->zbin_over_quant */ |
| if (cpi->mb.zbin_over_quant > 0) { |
| int Z = cpi->mb.zbin_over_quant; |
| double Factor = 0.99; |
| double factor_adjustment = 0.01 / 256.0; |
| |
| while (Z > 0) { |
| Z--; |
| projected_size_based_on_q = (int)(Factor * projected_size_based_on_q); |
| Factor += factor_adjustment; |
| |
| if (Factor >= 0.999) Factor = 0.999; |
| } |
| } |
| |
| /* Work out a size correction factor. */ |
| if (projected_size_based_on_q > 0) { |
| correction_factor = |
| (100 * cpi->projected_frame_size) / projected_size_based_on_q; |
| } |
| |
| /* More heavily damped adjustment used if we have been oscillating |
| * either side of target |
| */ |
| switch (damp_var) { |
| case 0: adjustment_limit = 0.75; break; |
| case 1: adjustment_limit = 0.375; break; |
| case 2: |
| default: adjustment_limit = 0.25; break; |
| } |
| |
| if (correction_factor > 102) { |
| /* We are not already at the worst allowable quality */ |
| correction_factor = |
| (int)(100.5 + ((correction_factor - 100) * adjustment_limit)); |
| rate_correction_factor = |
| ((rate_correction_factor * correction_factor) / 100); |
| |
| /* Keep rate_correction_factor within limits */ |
| if (rate_correction_factor > MAX_BPB_FACTOR) { |
| rate_correction_factor = MAX_BPB_FACTOR; |
| } |
| } else if (correction_factor < 99) { |
| /* We are not already at the best allowable quality */ |
| correction_factor = |
| (int)(100.5 - ((100 - correction_factor) * adjustment_limit)); |
| rate_correction_factor = |
| ((rate_correction_factor * correction_factor) / 100); |
| |
| /* Keep rate_correction_factor within limits */ |
| if (rate_correction_factor < MIN_BPB_FACTOR) { |
| rate_correction_factor = MIN_BPB_FACTOR; |
| } |
| } |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| cpi->key_frame_rate_correction_factor = rate_correction_factor; |
| } else { |
| if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr && |
| (cpi->common.refresh_alt_ref_frame || |
| cpi->common.refresh_golden_frame)) { |
| cpi->gf_rate_correction_factor = rate_correction_factor; |
| } else { |
| cpi->rate_correction_factor = rate_correction_factor; |
| } |
| } |
| } |
| |
| static int limit_q_cbr_inter(int last_q, int current_q) { |
| int limit_down = 12; |
| if (last_q - current_q > limit_down) |
| return (last_q - limit_down); |
| else |
| return current_q; |
| } |
| |
| int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame) { |
| int Q = cpi->active_worst_quality; |
| |
| if (cpi->force_maxqp == 1) { |
| cpi->active_worst_quality = cpi->worst_quality; |
| return cpi->worst_quality; |
| } |
| /* Reset Zbin OQ value */ |
| cpi->mb.zbin_over_quant = 0; |
| |
| if (cpi->oxcf.fixed_q >= 0) { |
| Q = cpi->oxcf.fixed_q; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| Q = cpi->oxcf.key_q; |
| } else if (cpi->oxcf.number_of_layers == 1 && |
| cpi->common.refresh_alt_ref_frame && |
| !cpi->gf_noboost_onepass_cbr) { |
| Q = cpi->oxcf.alt_q; |
| } else if (cpi->oxcf.number_of_layers == 1 && |
| cpi->common.refresh_golden_frame && |
| !cpi->gf_noboost_onepass_cbr) { |
| Q = cpi->oxcf.gold_q; |
| } |
| } else { |
| int i; |
| int last_error = INT_MAX; |
| int target_bits_per_mb; |
| int bits_per_mb_at_this_q; |
| double correction_factor; |
| |
| /* Select the appropriate correction factor based upon type of frame. */ |
| if (cpi->common.frame_type == KEY_FRAME) { |
| correction_factor = cpi->key_frame_rate_correction_factor; |
| } else { |
| if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr && |
| (cpi->common.refresh_alt_ref_frame || |
| cpi->common.refresh_golden_frame)) { |
| correction_factor = cpi->gf_rate_correction_factor; |
| } else { |
| correction_factor = cpi->rate_correction_factor; |
| } |
| } |
| |
| /* Calculate required scaling factor based on target frame size and |
| * size of frame produced using previous Q |
| */ |
| if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) { |
| /* Case where we would overflow int */ |
| target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) |
| << BPER_MB_NORMBITS; |
| } else { |
| target_bits_per_mb = |
| (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; |
| } |
| |
| i = cpi->active_best_quality; |
| |
| do { |
| bits_per_mb_at_this_q = |
| (int)(.5 + |
| correction_factor * vp8_bits_per_mb[cpi->common.frame_type][i]); |
| |
| if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
| if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) { |
| Q = i; |
| } else { |
| Q = i - 1; |
| } |
| |
| break; |
| } else { |
| last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
| } |
| } while (++i <= cpi->active_worst_quality); |
| |
| /* If we are at MAXQ then enable Q over-run which seeks to claw |
| * back additional bits through things like the RD multiplier |
| * and zero bin size. |
| */ |
| if (Q >= MAXQ) { |
| int zbin_oqmax; |
| |
| double Factor = 0.99; |
| double factor_adjustment = 0.01 / 256.0; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| zbin_oqmax = 0; |
| } else if (cpi->oxcf.number_of_layers == 1 && |
| !cpi->gf_noboost_onepass_cbr && |
| (cpi->common.refresh_alt_ref_frame || |
| (cpi->common.refresh_golden_frame && |
| !cpi->source_alt_ref_active))) { |
| zbin_oqmax = 16; |
| } else { |
| zbin_oqmax = ZBIN_OQ_MAX; |
| } |
| |
| /*{ |
| double Factor = |
| (double)target_bits_per_mb/(double)bits_per_mb_at_this_q; |
| double Oq; |
| |
| Factor = Factor/1.2683; |
| |
| Oq = pow( Factor, (1.0/-0.165) ); |
| |
| if ( Oq > zbin_oqmax ) |
| Oq = zbin_oqmax; |
| |
| cpi->zbin_over_quant = (int)Oq; |
| }*/ |
| |
| /* Each incrment in the zbin is assumed to have a fixed effect |
| * on bitrate. This is not of course true. The effect will be |
| * highly clip dependent and may well have sudden steps. The |
| * idea here is to acheive higher effective quantizers than the |
| * normal maximum by expanding the zero bin and hence |
| * decreasing the number of low magnitude non zero coefficients. |
| */ |
| while (cpi->mb.zbin_over_quant < zbin_oqmax) { |
| cpi->mb.zbin_over_quant++; |
| |
| if (cpi->mb.zbin_over_quant > zbin_oqmax) { |
| cpi->mb.zbin_over_quant = zbin_oqmax; |
| } |
| |
| /* Adjust bits_per_mb_at_this_q estimate */ |
| bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q); |
| Factor += factor_adjustment; |
| |
| if (Factor >= 0.999) Factor = 0.999; |
| |
| /* Break out if we get down to the target rate */ |
| if (bits_per_mb_at_this_q <= target_bits_per_mb) break; |
| } |
| } |
| } |
| |
| // Limit decrease in Q for 1 pass CBR screen content mode. |
| if (cpi->common.frame_type != KEY_FRAME && cpi->pass == 0 && |
| cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && |
| cpi->oxcf.screen_content_mode) |
| Q = limit_q_cbr_inter(cpi->last_q[1], Q); |
| |
| return Q; |
| } |
| |
| static int estimate_keyframe_frequency(VP8_COMP *cpi) { |
| int i; |
| |
| /* Average key frame frequency */ |
| int av_key_frame_frequency = 0; |
| |
| /* First key frame at start of sequence is a special case. We have no |
| * frequency data. |
| */ |
| if (cpi->key_frame_count == 1) { |
| /* Assume a default of 1 kf every 2 seconds, or the max kf interval, |
| * whichever is smaller. |
| */ |
| int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; |
| av_key_frame_frequency = 1 + (int)cpi->output_framerate * 2; |
| |
| if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) { |
| av_key_frame_frequency = key_freq; |
| } |
| |
| cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] = |
| av_key_frame_frequency; |
| } else { |
| unsigned int total_weight = 0; |
| int last_kf_interval = |
| (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; |
| |
| /* reset keyframe context and calculate weighted average of last |
| * KEY_FRAME_CONTEXT keyframes |
| */ |
| for (i = 0; i < KEY_FRAME_CONTEXT; ++i) { |
| if (i < KEY_FRAME_CONTEXT - 1) { |
| cpi->prior_key_frame_distance[i] = cpi->prior_key_frame_distance[i + 1]; |
| } else { |
| cpi->prior_key_frame_distance[i] = last_kf_interval; |
| } |
| |
| av_key_frame_frequency += |
| prior_key_frame_weight[i] * cpi->prior_key_frame_distance[i]; |
| total_weight += prior_key_frame_weight[i]; |
| } |
| |
| av_key_frame_frequency /= total_weight; |
| } |
| // TODO (marpan): Given the checks above, |av_key_frame_frequency| |
| // should always be above 0. But for now we keep the sanity check in. |
| if (av_key_frame_frequency == 0) av_key_frame_frequency = 1; |
| return av_key_frame_frequency; |
| } |
| |
| void vp8_adjust_key_frame_context(VP8_COMP *cpi) { |
| /* Clear down mmx registers to allow floating point in what follows */ |
| vpx_clear_system_state(); |
| |
| /* Do we have any key frame overspend to recover? */ |
| /* Two-pass overspend handled elsewhere. */ |
| if ((cpi->pass != 2) && |
| (cpi->projected_frame_size > cpi->per_frame_bandwidth)) { |
| int overspend; |
| |
| /* Update the count of key frame overspend to be recovered in |
| * subsequent frames. A portion of the KF overspend is treated as gf |
| * overspend (and hence recovered more quickly) as the kf is also a |
| * gf. Otherwise the few frames following each kf tend to get more |
| * bits allocated than those following other gfs. |
| */ |
| overspend = (cpi->projected_frame_size - cpi->per_frame_bandwidth); |
| |
| if (cpi->oxcf.number_of_layers > 1) { |
| cpi->kf_overspend_bits += overspend; |
| } else { |
| cpi->kf_overspend_bits += overspend * 7 / 8; |
| cpi->gf_overspend_bits += overspend * 1 / 8; |
| } |
| |
| /* Work out how much to try and recover per frame. */ |
| cpi->kf_bitrate_adjustment = |
| cpi->kf_overspend_bits / estimate_keyframe_frequency(cpi); |
| } |
| |
| cpi->frames_since_key = 0; |
| cpi->key_frame_count++; |
| } |
| |
| void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit, |
| int *frame_over_shoot_limit) { |
| /* Set-up bounds on acceptable frame size: */ |
| if (cpi->oxcf.fixed_q >= 0) { |
| /* Fixed Q scenario: frame size never outranges target |
| * (there is no target!) |
| */ |
| *frame_under_shoot_limit = 0; |
| *frame_over_shoot_limit = INT_MAX; |
| } else { |
| const int64_t this_frame_target = cpi->this_frame_target; |
| int64_t over_shoot_limit, under_shoot_limit; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| over_shoot_limit = this_frame_target * 9 / 8; |
| under_shoot_limit = this_frame_target * 7 / 8; |
| } else { |
| if (cpi->oxcf.number_of_layers > 1 || cpi->common.refresh_alt_ref_frame || |
| cpi->common.refresh_golden_frame) { |
| over_shoot_limit = this_frame_target * 9 / 8; |
| under_shoot_limit = this_frame_target * 7 / 8; |
| } else { |
| /* For CBR take buffer fullness into account */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
| if (cpi->buffer_level >= ((cpi->oxcf.optimal_buffer_level + |
| cpi->oxcf.maximum_buffer_size) >> |
| 1)) { |
| /* Buffer is too full so relax overshoot and tighten |
| * undershoot |
| */ |
| over_shoot_limit = this_frame_target * 12 / 8; |
| under_shoot_limit = this_frame_target * 6 / 8; |
| } else if (cpi->buffer_level <= |
| (cpi->oxcf.optimal_buffer_level >> 1)) { |
| /* Buffer is too low so relax undershoot and tighten |
| * overshoot |
| */ |
| over_shoot_limit = this_frame_target * 10 / 8; |
| under_shoot_limit = this_frame_target * 4 / 8; |
| } else { |
| over_shoot_limit = this_frame_target * 11 / 8; |
| under_shoot_limit = this_frame_target * 5 / 8; |
| } |
| } |
| /* VBR and CQ mode */ |
| /* Note that tighter restrictions here can help quality |
| * but hurt encode speed |
| */ |
| else { |
| /* Stron overshoot limit for constrained quality */ |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
| over_shoot_limit = this_frame_target * 11 / 8; |
| under_shoot_limit = this_frame_target * 2 / 8; |
| } else { |
| over_shoot_limit = this_frame_target * 11 / 8; |
| under_shoot_limit = this_frame_target * 5 / 8; |
| } |
| } |
| } |
| } |
| |
| /* For very small rate targets where the fractional adjustment |
| * (eg * 7/8) may be tiny make sure there is at least a minimum |
| * range. |
| */ |
| over_shoot_limit += 200; |
| under_shoot_limit -= 200; |
| if (under_shoot_limit < 0) under_shoot_limit = 0; |
| if (under_shoot_limit > INT_MAX) under_shoot_limit = INT_MAX; |
| if (over_shoot_limit > INT_MAX) over_shoot_limit = INT_MAX; |
| *frame_under_shoot_limit = (int)under_shoot_limit; |
| *frame_over_shoot_limit = (int)over_shoot_limit; |
| } |
| } |
| |
| /* return of 0 means drop frame */ |
| int vp8_pick_frame_size(VP8_COMP *cpi) { |
| VP8_COMMON *cm = &cpi->common; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| calc_iframe_target_size(cpi); |
| } else { |
| calc_pframe_target_size(cpi); |
| |
| /* Check if we're dropping the frame: */ |
| if (cpi->drop_frame) { |
| cpi->drop_frame = 0; |
| return 0; |
| } |
| } |
| return 1; |
| } |
| // If this just encoded frame (mcomp/transform/quant, but before loopfilter and |
| // pack_bitstream) has large overshoot, and was not being encoded close to the |
| // max QP, then drop this frame and force next frame to be encoded at max QP. |
| // Allow this for screen_content_mode = 2, or if drop frames is allowed. |
| // TODO(marpan): Should do this exit condition during the encode_frame |
| // (i.e., halfway during the encoding of the frame) to save cycles. |
| int vp8_drop_encodedframe_overshoot(VP8_COMP *cpi, int Q) { |
| int force_drop_overshoot = 0; |
| #if CONFIG_MULTI_RES_ENCODING |
| // Only check for dropping due to overshoot on the lowest stream. |
| // If the lowest stream of the multi-res encoding was dropped due to |
| // overshoot, then force dropping on all upper layer streams |
| // (mr_encoder_id > 0). |
| LOWER_RES_FRAME_INFO *low_res_frame_info = |
| (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info; |
| if (cpi->oxcf.mr_total_resolutions > 1 && cpi->oxcf.mr_encoder_id > 0) { |
| force_drop_overshoot = low_res_frame_info->is_frame_dropped_overshoot_maxqp; |
| if (!force_drop_overshoot) { |
| cpi->force_maxqp = 0; |
| cpi->frames_since_last_drop_overshoot++; |
| return 0; |
| } |
| } |
| #endif |
| if (cpi->common.frame_type != KEY_FRAME && |
| (cpi->oxcf.screen_content_mode == 2 || |
| (cpi->drop_frames_allowed && |
| (force_drop_overshoot || |
| (cpi->rate_correction_factor < (8.0f * MIN_BPB_FACTOR) && |
| cpi->frames_since_last_drop_overshoot > (int)cpi->framerate))))) { |
| // Note: the "projected_frame_size" from encode_frame() only gives estimate |
| // of mode/motion vector rate (in non-rd mode): so below we only require |
| // that projected_frame_size is somewhat greater than per-frame-bandwidth, |
| // but add additional condition with high threshold on prediction residual. |
| |
| // QP threshold: only allow dropping if we are not close to qp_max. |
| int thresh_qp = 3 * cpi->worst_quality >> 2; |
| // Rate threshold, in bytes. |
| int thresh_rate = 2 * (cpi->av_per_frame_bandwidth >> 3); |
| // Threshold for the average (over all macroblocks) of the pixel-sum |
| // residual error over 16x16 block. |
| int thresh_pred_err_mb = (200 << 4); |
| int pred_err_mb = (int)(cpi->mb.prediction_error / cpi->common.MBs); |
| // Reduce/ignore thresh_rate if pred_err_mb much larger than its threshold, |
| // give more weight to pred_err metric for overshoot detection. |
| if (cpi->drop_frames_allowed && pred_err_mb > (thresh_pred_err_mb << 4)) |
| thresh_rate = thresh_rate >> 3; |
| if ((Q < thresh_qp && cpi->projected_frame_size > thresh_rate && |
| pred_err_mb > thresh_pred_err_mb && |
| pred_err_mb > 2 * cpi->last_pred_err_mb) || |
| force_drop_overshoot) { |
| unsigned int i; |
| double new_correction_factor; |
| int target_bits_per_mb; |
| const int target_size = cpi->av_per_frame_bandwidth; |
| // Flag to indicate we will force next frame to be encoded at max QP. |
| cpi->force_maxqp = 1; |
| // Reset the buffer levels. |
| cpi->buffer_level = cpi->oxcf.optimal_buffer_level; |
| cpi->bits_off_target = cpi->oxcf.optimal_buffer_level; |
| // Compute a new rate correction factor, corresponding to the current |
| // target frame size and max_QP, and adjust the rate correction factor |
| // upwards, if needed. |
| // This is to prevent a bad state where the re-encoded frame at max_QP |
| // undershoots significantly, and then we end up dropping every other |
| // frame because the QP/rate_correction_factor may have been too low |
| // before the drop and then takes too long to come up. |
| if (target_size >= (INT_MAX >> BPER_MB_NORMBITS)) { |
| target_bits_per_mb = (target_size / cpi->common.MBs) |
| << BPER_MB_NORMBITS; |
| } else { |
| target_bits_per_mb = |
| (target_size << BPER_MB_NORMBITS) / cpi->common.MBs; |
| } |
| // Rate correction factor based on target_size_per_mb and max_QP. |
| new_correction_factor = |
| (double)target_bits_per_mb / |
| (double)vp8_bits_per_mb[INTER_FRAME][cpi->worst_quality]; |
| if (new_correction_factor > cpi->rate_correction_factor) { |
| cpi->rate_correction_factor = |
| VPXMIN(2.0 * cpi->rate_correction_factor, new_correction_factor); |
| } |
| if (cpi->rate_correction_factor > MAX_BPB_FACTOR) { |
| cpi->rate_correction_factor = MAX_BPB_FACTOR; |
| } |
| // Drop this frame: update frame counters. |
| cpi->common.current_video_frame++; |
| cpi->frames_since_key++; |
| cpi->temporal_pattern_counter++; |
| cpi->frames_since_last_drop_overshoot = 0; |
| if (cpi->oxcf.number_of_layers > 1) { |
| // Set max_qp and rate correction for all temporal layers if overshoot |
| // is detected. |
| for (i = 0; i < cpi->oxcf.number_of_layers; ++i) { |
| LAYER_CONTEXT *lc = &cpi->layer_context[i]; |
| lc->force_maxqp = 1; |
| lc->frames_since_last_drop_overshoot = 0; |
| lc->rate_correction_factor = cpi->rate_correction_factor; |
| } |
| } |
| #if CONFIG_MULTI_RES_ENCODING |
| if (cpi->oxcf.mr_total_resolutions > 1) |
| low_res_frame_info->is_frame_dropped_overshoot_maxqp = 1; |
| #endif |
| return 1; |
| } |
| cpi->force_maxqp = 0; |
| cpi->frames_since_last_drop_overshoot++; |
| #if CONFIG_MULTI_RES_ENCODING |
| if (cpi->oxcf.mr_total_resolutions > 1) |
| low_res_frame_info->is_frame_dropped_overshoot_maxqp = 0; |
| #endif |
| return 0; |
| } |
| cpi->force_maxqp = 0; |
| cpi->frames_since_last_drop_overshoot++; |
| #if CONFIG_MULTI_RES_ENCODING |
| if (cpi->oxcf.mr_total_resolutions > 1) |
| low_res_frame_info->is_frame_dropped_overshoot_maxqp = 0; |
| #endif |
| return 0; |
| } |