| //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ASTContext interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "CXXABI.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/ASTTypeTraits.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/AttrIterator.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/Comment.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclContextInternals.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DeclarationName.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExternalASTSource.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/MangleNumberingContext.h" |
| #include "clang/AST/NestedNameSpecifier.h" |
| #include "clang/AST/RawCommentList.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/TemplateBase.h" |
| #include "clang/AST/TemplateName.h" |
| #include "clang/AST/Type.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/UnresolvedSet.h" |
| #include "clang/AST/VTableBuilder.h" |
| #include "clang/Basic/AddressSpaces.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/CommentOptions.h" |
| #include "clang/Basic/ExceptionSpecificationType.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/Linkage.h" |
| #include "clang/Basic/ObjCRuntime.h" |
| #include "clang/Basic/SanitizerBlacklist.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Basic/TargetCXXABI.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/XRayLists.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/PointerUnion.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Support/Capacity.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace clang; |
| |
| unsigned ASTContext::NumImplicitDefaultConstructors; |
| unsigned ASTContext::NumImplicitDefaultConstructorsDeclared; |
| unsigned ASTContext::NumImplicitCopyConstructors; |
| unsigned ASTContext::NumImplicitCopyConstructorsDeclared; |
| unsigned ASTContext::NumImplicitMoveConstructors; |
| unsigned ASTContext::NumImplicitMoveConstructorsDeclared; |
| unsigned ASTContext::NumImplicitCopyAssignmentOperators; |
| unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; |
| unsigned ASTContext::NumImplicitMoveAssignmentOperators; |
| unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; |
| unsigned ASTContext::NumImplicitDestructors; |
| unsigned ASTContext::NumImplicitDestructorsDeclared; |
| |
| enum FloatingRank { |
| Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank |
| }; |
| |
| RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { |
| if (!CommentsLoaded && ExternalSource) { |
| ExternalSource->ReadComments(); |
| |
| #ifndef NDEBUG |
| ArrayRef<RawComment *> RawComments = Comments.getComments(); |
| assert(std::is_sorted(RawComments.begin(), RawComments.end(), |
| BeforeThanCompare<RawComment>(SourceMgr))); |
| #endif |
| |
| CommentsLoaded = true; |
| } |
| |
| assert(D); |
| |
| // User can not attach documentation to implicit declarations. |
| if (D->isImplicit()) |
| return nullptr; |
| |
| // User can not attach documentation to implicit instantiations. |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return nullptr; |
| } |
| |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->isStaticDataMember() && |
| VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return nullptr; |
| } |
| |
| if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) { |
| if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return nullptr; |
| } |
| |
| if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) { |
| TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); |
| if (TSK == TSK_ImplicitInstantiation || |
| TSK == TSK_Undeclared) |
| return nullptr; |
| } |
| |
| if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
| if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return nullptr; |
| } |
| if (const auto *TD = dyn_cast<TagDecl>(D)) { |
| // When tag declaration (but not definition!) is part of the |
| // decl-specifier-seq of some other declaration, it doesn't get comment |
| if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) |
| return nullptr; |
| } |
| // TODO: handle comments for function parameters properly. |
| if (isa<ParmVarDecl>(D)) |
| return nullptr; |
| |
| // TODO: we could look up template parameter documentation in the template |
| // documentation. |
| if (isa<TemplateTypeParmDecl>(D) || |
| isa<NonTypeTemplateParmDecl>(D) || |
| isa<TemplateTemplateParmDecl>(D)) |
| return nullptr; |
| |
| ArrayRef<RawComment *> RawComments = Comments.getComments(); |
| |
| // If there are no comments anywhere, we won't find anything. |
| if (RawComments.empty()) |
| return nullptr; |
| |
| // Find declaration location. |
| // For Objective-C declarations we generally don't expect to have multiple |
| // declarators, thus use declaration starting location as the "declaration |
| // location". |
| // For all other declarations multiple declarators are used quite frequently, |
| // so we use the location of the identifier as the "declaration location". |
| SourceLocation DeclLoc; |
| if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || |
| isa<ObjCPropertyDecl>(D) || |
| isa<RedeclarableTemplateDecl>(D) || |
| isa<ClassTemplateSpecializationDecl>(D)) |
| DeclLoc = D->getLocStart(); |
| else { |
| DeclLoc = D->getLocation(); |
| if (DeclLoc.isMacroID()) { |
| if (isa<TypedefDecl>(D)) { |
| // If location of the typedef name is in a macro, it is because being |
| // declared via a macro. Try using declaration's starting location as |
| // the "declaration location". |
| DeclLoc = D->getLocStart(); |
| } else if (const auto *TD = dyn_cast<TagDecl>(D)) { |
| // If location of the tag decl is inside a macro, but the spelling of |
| // the tag name comes from a macro argument, it looks like a special |
| // macro like NS_ENUM is being used to define the tag decl. In that |
| // case, adjust the source location to the expansion loc so that we can |
| // attach the comment to the tag decl. |
| if (SourceMgr.isMacroArgExpansion(DeclLoc) && |
| TD->isCompleteDefinition()) |
| DeclLoc = SourceMgr.getExpansionLoc(DeclLoc); |
| } |
| } |
| } |
| |
| // If the declaration doesn't map directly to a location in a file, we |
| // can't find the comment. |
| if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
| return nullptr; |
| |
| // Find the comment that occurs just after this declaration. |
| ArrayRef<RawComment *>::iterator Comment; |
| { |
| // When searching for comments during parsing, the comment we are looking |
| // for is usually among the last two comments we parsed -- check them |
| // first. |
| RawComment CommentAtDeclLoc( |
| SourceMgr, SourceRange(DeclLoc), LangOpts.CommentOpts, false); |
| BeforeThanCompare<RawComment> Compare(SourceMgr); |
| ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1; |
| bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); |
| if (!Found && RawComments.size() >= 2) { |
| MaybeBeforeDecl--; |
| Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); |
| } |
| |
| if (Found) { |
| Comment = MaybeBeforeDecl + 1; |
| assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(), |
| &CommentAtDeclLoc, Compare)); |
| } else { |
| // Slow path. |
| Comment = std::lower_bound(RawComments.begin(), RawComments.end(), |
| &CommentAtDeclLoc, Compare); |
| } |
| } |
| |
| // Decompose the location for the declaration and find the beginning of the |
| // file buffer. |
| std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc); |
| |
| // First check whether we have a trailing comment. |
| if (Comment != RawComments.end() && |
| ((*Comment)->isDocumentation() || LangOpts.CommentOpts.ParseAllComments) |
| && (*Comment)->isTrailingComment() && |
| (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || |
| isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { |
| std::pair<FileID, unsigned> CommentBeginDecomp |
| = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin()); |
| // Check that Doxygen trailing comment comes after the declaration, starts |
| // on the same line and in the same file as the declaration. |
| if (DeclLocDecomp.first == CommentBeginDecomp.first && |
| SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) |
| == SourceMgr.getLineNumber(CommentBeginDecomp.first, |
| CommentBeginDecomp.second)) { |
| return *Comment; |
| } |
| } |
| |
| // The comment just after the declaration was not a trailing comment. |
| // Let's look at the previous comment. |
| if (Comment == RawComments.begin()) |
| return nullptr; |
| --Comment; |
| |
| // Check that we actually have a non-member Doxygen comment. |
| if (!((*Comment)->isDocumentation() || |
| LangOpts.CommentOpts.ParseAllComments) || |
| (*Comment)->isTrailingComment()) |
| return nullptr; |
| |
| // Decompose the end of the comment. |
| std::pair<FileID, unsigned> CommentEndDecomp |
| = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd()); |
| |
| // If the comment and the declaration aren't in the same file, then they |
| // aren't related. |
| if (DeclLocDecomp.first != CommentEndDecomp.first) |
| return nullptr; |
| |
| // Get the corresponding buffer. |
| bool Invalid = false; |
| const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, |
| &Invalid).data(); |
| if (Invalid) |
| return nullptr; |
| |
| // Extract text between the comment and declaration. |
| StringRef Text(Buffer + CommentEndDecomp.second, |
| DeclLocDecomp.second - CommentEndDecomp.second); |
| |
| // There should be no other declarations or preprocessor directives between |
| // comment and declaration. |
| if (Text.find_first_of(";{}#@") != StringRef::npos) |
| return nullptr; |
| |
| return *Comment; |
| } |
| |
| /// If we have a 'templated' declaration for a template, adjust 'D' to |
| /// refer to the actual template. |
| /// If we have an implicit instantiation, adjust 'D' to refer to template. |
| static const Decl *adjustDeclToTemplate(const Decl *D) { |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| // Is this function declaration part of a function template? |
| if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) |
| return FTD; |
| |
| // Nothing to do if function is not an implicit instantiation. |
| if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
| return D; |
| |
| // Function is an implicit instantiation of a function template? |
| if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) |
| return FTD; |
| |
| // Function is instantiated from a member definition of a class template? |
| if (const FunctionDecl *MemberDecl = |
| FD->getInstantiatedFromMemberFunction()) |
| return MemberDecl; |
| |
| return D; |
| } |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| // Static data member is instantiated from a member definition of a class |
| // template? |
| if (VD->isStaticDataMember()) |
| if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) |
| return MemberDecl; |
| |
| return D; |
| } |
| if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) { |
| // Is this class declaration part of a class template? |
| if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) |
| return CTD; |
| |
| // Class is an implicit instantiation of a class template or partial |
| // specialization? |
| if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { |
| if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) |
| return D; |
| llvm::PointerUnion<ClassTemplateDecl *, |
| ClassTemplatePartialSpecializationDecl *> |
| PU = CTSD->getSpecializedTemplateOrPartial(); |
| return PU.is<ClassTemplateDecl*>() ? |
| static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) : |
| static_cast<const Decl*>( |
| PU.get<ClassTemplatePartialSpecializationDecl *>()); |
| } |
| |
| // Class is instantiated from a member definition of a class template? |
| if (const MemberSpecializationInfo *Info = |
| CRD->getMemberSpecializationInfo()) |
| return Info->getInstantiatedFrom(); |
| |
| return D; |
| } |
| if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
| // Enum is instantiated from a member definition of a class template? |
| if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) |
| return MemberDecl; |
| |
| return D; |
| } |
| // FIXME: Adjust alias templates? |
| return D; |
| } |
| |
| const RawComment *ASTContext::getRawCommentForAnyRedecl( |
| const Decl *D, |
| const Decl **OriginalDecl) const { |
| D = adjustDeclToTemplate(D); |
| |
| // Check whether we have cached a comment for this declaration already. |
| { |
| llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = |
| RedeclComments.find(D); |
| if (Pos != RedeclComments.end()) { |
| const RawCommentAndCacheFlags &Raw = Pos->second; |
| if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { |
| if (OriginalDecl) |
| *OriginalDecl = Raw.getOriginalDecl(); |
| return Raw.getRaw(); |
| } |
| } |
| } |
| |
| // Search for comments attached to declarations in the redeclaration chain. |
| const RawComment *RC = nullptr; |
| const Decl *OriginalDeclForRC = nullptr; |
| for (auto I : D->redecls()) { |
| llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = |
| RedeclComments.find(I); |
| if (Pos != RedeclComments.end()) { |
| const RawCommentAndCacheFlags &Raw = Pos->second; |
| if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { |
| RC = Raw.getRaw(); |
| OriginalDeclForRC = Raw.getOriginalDecl(); |
| break; |
| } |
| } else { |
| RC = getRawCommentForDeclNoCache(I); |
| OriginalDeclForRC = I; |
| RawCommentAndCacheFlags Raw; |
| if (RC) { |
| // Call order swapped to work around ICE in VS2015 RTM (Release Win32) |
| // https://connect.microsoft.com/VisualStudio/feedback/details/1741530 |
| Raw.setKind(RawCommentAndCacheFlags::FromDecl); |
| Raw.setRaw(RC); |
| } else |
| Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl); |
| Raw.setOriginalDecl(I); |
| RedeclComments[I] = Raw; |
| if (RC) |
| break; |
| } |
| } |
| |
| // If we found a comment, it should be a documentation comment. |
| assert(!RC || RC->isDocumentation() || LangOpts.CommentOpts.ParseAllComments); |
| |
| if (OriginalDecl) |
| *OriginalDecl = OriginalDeclForRC; |
| |
| // Update cache for every declaration in the redeclaration chain. |
| RawCommentAndCacheFlags Raw; |
| Raw.setRaw(RC); |
| Raw.setKind(RawCommentAndCacheFlags::FromRedecl); |
| Raw.setOriginalDecl(OriginalDeclForRC); |
| |
| for (auto I : D->redecls()) { |
| RawCommentAndCacheFlags &R = RedeclComments[I]; |
| if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl) |
| R = Raw; |
| } |
| |
| return RC; |
| } |
| |
| static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, |
| SmallVectorImpl<const NamedDecl *> &Redeclared) { |
| const DeclContext *DC = ObjCMethod->getDeclContext(); |
| if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) { |
| const ObjCInterfaceDecl *ID = IMD->getClassInterface(); |
| if (!ID) |
| return; |
| // Add redeclared method here. |
| for (const auto *Ext : ID->known_extensions()) { |
| if (ObjCMethodDecl *RedeclaredMethod = |
| Ext->getMethod(ObjCMethod->getSelector(), |
| ObjCMethod->isInstanceMethod())) |
| Redeclared.push_back(RedeclaredMethod); |
| } |
| } |
| } |
| |
| comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, |
| const Decl *D) const { |
| auto *ThisDeclInfo = new (*this) comments::DeclInfo; |
| ThisDeclInfo->CommentDecl = D; |
| ThisDeclInfo->IsFilled = false; |
| ThisDeclInfo->fill(); |
| ThisDeclInfo->CommentDecl = FC->getDecl(); |
| if (!ThisDeclInfo->TemplateParameters) |
| ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; |
| comments::FullComment *CFC = |
| new (*this) comments::FullComment(FC->getBlocks(), |
| ThisDeclInfo); |
| return CFC; |
| } |
| |
| comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { |
| const RawComment *RC = getRawCommentForDeclNoCache(D); |
| return RC ? RC->parse(*this, nullptr, D) : nullptr; |
| } |
| |
| comments::FullComment *ASTContext::getCommentForDecl( |
| const Decl *D, |
| const Preprocessor *PP) const { |
| if (D->isInvalidDecl()) |
| return nullptr; |
| D = adjustDeclToTemplate(D); |
| |
| const Decl *Canonical = D->getCanonicalDecl(); |
| llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = |
| ParsedComments.find(Canonical); |
| |
| if (Pos != ParsedComments.end()) { |
| if (Canonical != D) { |
| comments::FullComment *FC = Pos->second; |
| comments::FullComment *CFC = cloneFullComment(FC, D); |
| return CFC; |
| } |
| return Pos->second; |
| } |
| |
| const Decl *OriginalDecl; |
| |
| const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); |
| if (!RC) { |
| if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { |
| SmallVector<const NamedDecl*, 8> Overridden; |
| const auto *OMD = dyn_cast<ObjCMethodDecl>(D); |
| if (OMD && OMD->isPropertyAccessor()) |
| if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) |
| if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) |
| return cloneFullComment(FC, D); |
| if (OMD) |
| addRedeclaredMethods(OMD, Overridden); |
| getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); |
| for (unsigned i = 0, e = Overridden.size(); i < e; i++) |
| if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) |
| return cloneFullComment(FC, D); |
| } |
| else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
| // Attach any tag type's documentation to its typedef if latter |
| // does not have one of its own. |
| QualType QT = TD->getUnderlyingType(); |
| if (const auto *TT = QT->getAs<TagType>()) |
| if (const Decl *TD = TT->getDecl()) |
| if (comments::FullComment *FC = getCommentForDecl(TD, PP)) |
| return cloneFullComment(FC, D); |
| } |
| else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) { |
| while (IC->getSuperClass()) { |
| IC = IC->getSuperClass(); |
| if (comments::FullComment *FC = getCommentForDecl(IC, PP)) |
| return cloneFullComment(FC, D); |
| } |
| } |
| else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) { |
| if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) |
| if (comments::FullComment *FC = getCommentForDecl(IC, PP)) |
| return cloneFullComment(FC, D); |
| } |
| else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { |
| if (!(RD = RD->getDefinition())) |
| return nullptr; |
| // Check non-virtual bases. |
| for (const auto &I : RD->bases()) { |
| if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) |
| continue; |
| QualType Ty = I.getType(); |
| if (Ty.isNull()) |
| continue; |
| if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { |
| if (!(NonVirtualBase= NonVirtualBase->getDefinition())) |
| continue; |
| |
| if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) |
| return cloneFullComment(FC, D); |
| } |
| } |
| // Check virtual bases. |
| for (const auto &I : RD->vbases()) { |
| if (I.getAccessSpecifier() != AS_public) |
| continue; |
| QualType Ty = I.getType(); |
| if (Ty.isNull()) |
| continue; |
| if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { |
| if (!(VirtualBase= VirtualBase->getDefinition())) |
| continue; |
| if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) |
| return cloneFullComment(FC, D); |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| // If the RawComment was attached to other redeclaration of this Decl, we |
| // should parse the comment in context of that other Decl. This is important |
| // because comments can contain references to parameter names which can be |
| // different across redeclarations. |
| if (D != OriginalDecl) |
| return getCommentForDecl(OriginalDecl, PP); |
| |
| comments::FullComment *FC = RC->parse(*this, PP, D); |
| ParsedComments[Canonical] = FC; |
| return FC; |
| } |
| |
| void |
| ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, |
| TemplateTemplateParmDecl *Parm) { |
| ID.AddInteger(Parm->getDepth()); |
| ID.AddInteger(Parm->getPosition()); |
| ID.AddBoolean(Parm->isParameterPack()); |
| |
| TemplateParameterList *Params = Parm->getTemplateParameters(); |
| ID.AddInteger(Params->size()); |
| for (TemplateParameterList::const_iterator P = Params->begin(), |
| PEnd = Params->end(); |
| P != PEnd; ++P) { |
| if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
| ID.AddInteger(0); |
| ID.AddBoolean(TTP->isParameterPack()); |
| continue; |
| } |
| |
| if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| ID.AddInteger(1); |
| ID.AddBoolean(NTTP->isParameterPack()); |
| ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); |
| if (NTTP->isExpandedParameterPack()) { |
| ID.AddBoolean(true); |
| ID.AddInteger(NTTP->getNumExpansionTypes()); |
| for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
| QualType T = NTTP->getExpansionType(I); |
| ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); |
| } |
| } else |
| ID.AddBoolean(false); |
| continue; |
| } |
| |
| auto *TTP = cast<TemplateTemplateParmDecl>(*P); |
| ID.AddInteger(2); |
| Profile(ID, TTP); |
| } |
| } |
| |
| TemplateTemplateParmDecl * |
| ASTContext::getCanonicalTemplateTemplateParmDecl( |
| TemplateTemplateParmDecl *TTP) const { |
| // Check if we already have a canonical template template parameter. |
| llvm::FoldingSetNodeID ID; |
| CanonicalTemplateTemplateParm::Profile(ID, TTP); |
| void *InsertPos = nullptr; |
| CanonicalTemplateTemplateParm *Canonical |
| = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| if (Canonical) |
| return Canonical->getParam(); |
| |
| // Build a canonical template parameter list. |
| TemplateParameterList *Params = TTP->getTemplateParameters(); |
| SmallVector<NamedDecl *, 4> CanonParams; |
| CanonParams.reserve(Params->size()); |
| for (TemplateParameterList::const_iterator P = Params->begin(), |
| PEnd = Params->end(); |
| P != PEnd; ++P) { |
| if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) |
| CanonParams.push_back( |
| TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| TTP->getDepth(), |
| TTP->getIndex(), nullptr, false, |
| TTP->isParameterPack())); |
| else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| QualType T = getCanonicalType(NTTP->getType()); |
| TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
| NonTypeTemplateParmDecl *Param; |
| if (NTTP->isExpandedParameterPack()) { |
| SmallVector<QualType, 2> ExpandedTypes; |
| SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; |
| for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
| ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); |
| ExpandedTInfos.push_back( |
| getTrivialTypeSourceInfo(ExpandedTypes.back())); |
| } |
| |
| Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| NTTP->getDepth(), |
| NTTP->getPosition(), nullptr, |
| T, |
| TInfo, |
| ExpandedTypes, |
| ExpandedTInfos); |
| } else { |
| Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| NTTP->getDepth(), |
| NTTP->getPosition(), nullptr, |
| T, |
| NTTP->isParameterPack(), |
| TInfo); |
| } |
| CanonParams.push_back(Param); |
| |
| } else |
| CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( |
| cast<TemplateTemplateParmDecl>(*P))); |
| } |
| |
| assert(!TTP->getRequiresClause() && |
| "Unexpected requires-clause on template template-parameter"); |
| Expr *const CanonRequiresClause = nullptr; |
| |
| TemplateTemplateParmDecl *CanonTTP |
| = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), TTP->getDepth(), |
| TTP->getPosition(), |
| TTP->isParameterPack(), |
| nullptr, |
| TemplateParameterList::Create(*this, SourceLocation(), |
| SourceLocation(), |
| CanonParams, |
| SourceLocation(), |
| CanonRequiresClause)); |
| |
| // Get the new insert position for the node we care about. |
| Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!Canonical && "Shouldn't be in the map!"); |
| (void)Canonical; |
| |
| // Create the canonical template template parameter entry. |
| Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); |
| CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); |
| return CanonTTP; |
| } |
| |
| CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { |
| if (!LangOpts.CPlusPlus) return nullptr; |
| |
| switch (T.getCXXABI().getKind()) { |
| case TargetCXXABI::GenericARM: // Same as Itanium at this level |
| case TargetCXXABI::iOS: |
| case TargetCXXABI::iOS64: |
| case TargetCXXABI::WatchOS: |
| case TargetCXXABI::GenericAArch64: |
| case TargetCXXABI::GenericMIPS: |
| case TargetCXXABI::GenericItanium: |
| case TargetCXXABI::WebAssembly: |
| return CreateItaniumCXXABI(*this); |
| case TargetCXXABI::Microsoft: |
| return CreateMicrosoftCXXABI(*this); |
| } |
| llvm_unreachable("Invalid CXXABI type!"); |
| } |
| |
| static const LangASMap *getAddressSpaceMap(const TargetInfo &T, |
| const LangOptions &LOpts) { |
| if (LOpts.FakeAddressSpaceMap) { |
| // The fake address space map must have a distinct entry for each |
| // language-specific address space. |
| static const unsigned FakeAddrSpaceMap[] = { |
| 0, // Default |
| 1, // opencl_global |
| 3, // opencl_local |
| 2, // opencl_constant |
| 0, // opencl_private |
| 4, // opencl_generic |
| 5, // cuda_device |
| 6, // cuda_constant |
| 7 // cuda_shared |
| }; |
| return &FakeAddrSpaceMap; |
| } else { |
| return &T.getAddressSpaceMap(); |
| } |
| } |
| |
| static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, |
| const LangOptions &LangOpts) { |
| switch (LangOpts.getAddressSpaceMapMangling()) { |
| case LangOptions::ASMM_Target: |
| return TI.useAddressSpaceMapMangling(); |
| case LangOptions::ASMM_On: |
| return true; |
| case LangOptions::ASMM_Off: |
| return false; |
| } |
| llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); |
| } |
| |
| ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, |
| IdentifierTable &idents, SelectorTable &sels, |
| Builtin::Context &builtins) |
| : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()), |
| DependentTemplateSpecializationTypes(this_()), |
| SubstTemplateTemplateParmPacks(this_()), SourceMgr(SM), LangOpts(LOpts), |
| SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)), |
| XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, |
| LangOpts.XRayNeverInstrumentFiles, |
| LangOpts.XRayAttrListFiles, SM)), |
| PrintingPolicy(LOpts), Idents(idents), Selectors(sels), |
| BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM), |
| CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), |
| CompCategories(this_()), LastSDM(nullptr, 0) { |
| TUDecl = TranslationUnitDecl::Create(*this); |
| } |
| |
| ASTContext::~ASTContext() { |
| ReleaseParentMapEntries(); |
| |
| // Release the DenseMaps associated with DeclContext objects. |
| // FIXME: Is this the ideal solution? |
| ReleaseDeclContextMaps(); |
| |
| // Call all of the deallocation functions on all of their targets. |
| for (auto &Pair : Deallocations) |
| (Pair.first)(Pair.second); |
| |
| // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed |
| // because they can contain DenseMaps. |
| for (llvm::DenseMap<const ObjCContainerDecl*, |
| const ASTRecordLayout*>::iterator |
| I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) |
| // Increment in loop to prevent using deallocated memory. |
| if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
| R->Destroy(*this); |
| |
| for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator |
| I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { |
| // Increment in loop to prevent using deallocated memory. |
| if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
| R->Destroy(*this); |
| } |
| |
| for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), |
| AEnd = DeclAttrs.end(); |
| A != AEnd; ++A) |
| A->second->~AttrVec(); |
| |
| for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair : |
| MaterializedTemporaryValues) |
| MTVPair.second->~APValue(); |
| |
| for (const auto &Value : ModuleInitializers) |
| Value.second->~PerModuleInitializers(); |
| } |
| |
| void ASTContext::ReleaseParentMapEntries() { |
| if (!PointerParents) return; |
| for (const auto &Entry : *PointerParents) { |
| if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { |
| delete Entry.second.get<ast_type_traits::DynTypedNode *>(); |
| } else if (Entry.second.is<ParentVector *>()) { |
| delete Entry.second.get<ParentVector *>(); |
| } |
| } |
| for (const auto &Entry : *OtherParents) { |
| if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { |
| delete Entry.second.get<ast_type_traits::DynTypedNode *>(); |
| } else if (Entry.second.is<ParentVector *>()) { |
| delete Entry.second.get<ParentVector *>(); |
| } |
| } |
| } |
| |
| void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) { |
| Deallocations.push_back({Callback, Data}); |
| } |
| |
| void |
| ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { |
| ExternalSource = std::move(Source); |
| } |
| |
| void ASTContext::PrintStats() const { |
| llvm::errs() << "\n*** AST Context Stats:\n"; |
| llvm::errs() << " " << Types.size() << " types total.\n"; |
| |
| unsigned counts[] = { |
| #define TYPE(Name, Parent) 0, |
| #define ABSTRACT_TYPE(Name, Parent) |
| #include "clang/AST/TypeNodes.def" |
| 0 // Extra |
| }; |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| Type *T = Types[i]; |
| counts[(unsigned)T->getTypeClass()]++; |
| } |
| |
| unsigned Idx = 0; |
| unsigned TotalBytes = 0; |
| #define TYPE(Name, Parent) \ |
| if (counts[Idx]) \ |
| llvm::errs() << " " << counts[Idx] << " " << #Name \ |
| << " types\n"; \ |
| TotalBytes += counts[Idx] * sizeof(Name##Type); \ |
| ++Idx; |
| #define ABSTRACT_TYPE(Name, Parent) |
| #include "clang/AST/TypeNodes.def" |
| |
| llvm::errs() << "Total bytes = " << TotalBytes << "\n"; |
| |
| // Implicit special member functions. |
| llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" |
| << NumImplicitDefaultConstructors |
| << " implicit default constructors created\n"; |
| llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" |
| << NumImplicitCopyConstructors |
| << " implicit copy constructors created\n"; |
| if (getLangOpts().CPlusPlus) |
| llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" |
| << NumImplicitMoveConstructors |
| << " implicit move constructors created\n"; |
| llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" |
| << NumImplicitCopyAssignmentOperators |
| << " implicit copy assignment operators created\n"; |
| if (getLangOpts().CPlusPlus) |
| llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" |
| << NumImplicitMoveAssignmentOperators |
| << " implicit move assignment operators created\n"; |
| llvm::errs() << NumImplicitDestructorsDeclared << "/" |
| << NumImplicitDestructors |
| << " implicit destructors created\n"; |
| |
| if (ExternalSource) { |
| llvm::errs() << "\n"; |
| ExternalSource->PrintStats(); |
| } |
| |
| BumpAlloc.PrintStats(); |
| } |
| |
| void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, |
| bool NotifyListeners) { |
| if (NotifyListeners) |
| if (auto *Listener = getASTMutationListener()) |
| Listener->RedefinedHiddenDefinition(ND, M); |
| |
| if (getLangOpts().ModulesLocalVisibility) |
| MergedDefModules[ND].push_back(M); |
| else |
| ND->setVisibleDespiteOwningModule(); |
| } |
| |
| void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { |
| auto It = MergedDefModules.find(ND); |
| if (It == MergedDefModules.end()) |
| return; |
| |
| auto &Merged = It->second; |
| llvm::DenseSet<Module*> Found; |
| for (Module *&M : Merged) |
| if (!Found.insert(M).second) |
| M = nullptr; |
| Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end()); |
| } |
| |
| void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { |
| if (LazyInitializers.empty()) |
| return; |
| |
| auto *Source = Ctx.getExternalSource(); |
| assert(Source && "lazy initializers but no external source"); |
| |
| auto LazyInits = std::move(LazyInitializers); |
| LazyInitializers.clear(); |
| |
| for (auto ID : LazyInits) |
| Initializers.push_back(Source->GetExternalDecl(ID)); |
| |
| assert(LazyInitializers.empty() && |
| "GetExternalDecl for lazy module initializer added more inits"); |
| } |
| |
| void ASTContext::addModuleInitializer(Module *M, Decl *D) { |
| // One special case: if we add a module initializer that imports another |
| // module, and that module's only initializer is an ImportDecl, simplify. |
| if (const auto *ID = dyn_cast<ImportDecl>(D)) { |
| auto It = ModuleInitializers.find(ID->getImportedModule()); |
| |
| // Maybe the ImportDecl does nothing at all. (Common case.) |
| if (It == ModuleInitializers.end()) |
| return; |
| |
| // Maybe the ImportDecl only imports another ImportDecl. |
| auto &Imported = *It->second; |
| if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { |
| Imported.resolve(*this); |
| auto *OnlyDecl = Imported.Initializers.front(); |
| if (isa<ImportDecl>(OnlyDecl)) |
| D = OnlyDecl; |
| } |
| } |
| |
| auto *&Inits = ModuleInitializers[M]; |
| if (!Inits) |
| Inits = new (*this) PerModuleInitializers; |
| Inits->Initializers.push_back(D); |
| } |
| |
| void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) { |
| auto *&Inits = ModuleInitializers[M]; |
| if (!Inits) |
| Inits = new (*this) PerModuleInitializers; |
| Inits->LazyInitializers.insert(Inits->LazyInitializers.end(), |
| IDs.begin(), IDs.end()); |
| } |
| |
| ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { |
| auto It = ModuleInitializers.find(M); |
| if (It == ModuleInitializers.end()) |
| return None; |
| |
| auto *Inits = It->second; |
| Inits->resolve(*this); |
| return Inits->Initializers; |
| } |
| |
| ExternCContextDecl *ASTContext::getExternCContextDecl() const { |
| if (!ExternCContext) |
| ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); |
| |
| return ExternCContext; |
| } |
| |
| BuiltinTemplateDecl * |
| ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, |
| const IdentifierInfo *II) const { |
| auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK); |
| BuiltinTemplate->setImplicit(); |
| TUDecl->addDecl(BuiltinTemplate); |
| |
| return BuiltinTemplate; |
| } |
| |
| BuiltinTemplateDecl * |
| ASTContext::getMakeIntegerSeqDecl() const { |
| if (!MakeIntegerSeqDecl) |
| MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq, |
| getMakeIntegerSeqName()); |
| return MakeIntegerSeqDecl; |
| } |
| |
| BuiltinTemplateDecl * |
| ASTContext::getTypePackElementDecl() const { |
| if (!TypePackElementDecl) |
| TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element, |
| getTypePackElementName()); |
| return TypePackElementDecl; |
| } |
| |
| RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, |
| RecordDecl::TagKind TK) const { |
| SourceLocation Loc; |
| RecordDecl *NewDecl; |
| if (getLangOpts().CPlusPlus) |
| NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, |
| Loc, &Idents.get(Name)); |
| else |
| NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, |
| &Idents.get(Name)); |
| NewDecl->setImplicit(); |
| NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( |
| const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); |
| return NewDecl; |
| } |
| |
| TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, |
| StringRef Name) const { |
| TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
| TypedefDecl *NewDecl = TypedefDecl::Create( |
| const_cast<ASTContext &>(*this), getTranslationUnitDecl(), |
| SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); |
| NewDecl->setImplicit(); |
| return NewDecl; |
| } |
| |
| TypedefDecl *ASTContext::getInt128Decl() const { |
| if (!Int128Decl) |
| Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); |
| return Int128Decl; |
| } |
| |
| TypedefDecl *ASTContext::getUInt128Decl() const { |
| if (!UInt128Decl) |
| UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); |
| return UInt128Decl; |
| } |
| |
| void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { |
| auto *Ty = new (*this, TypeAlignment) BuiltinType(K); |
| R = CanQualType::CreateUnsafe(QualType(Ty, 0)); |
| Types.push_back(Ty); |
| } |
| |
| void ASTContext::InitBuiltinTypes(const TargetInfo &Target, |
| const TargetInfo *AuxTarget) { |
| assert((!this->Target || this->Target == &Target) && |
| "Incorrect target reinitialization"); |
| assert(VoidTy.isNull() && "Context reinitialized?"); |
| |
| this->Target = &Target; |
| this->AuxTarget = AuxTarget; |
| |
| ABI.reset(createCXXABI(Target)); |
| AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); |
| AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); |
| |
| // C99 6.2.5p19. |
| InitBuiltinType(VoidTy, BuiltinType::Void); |
| |
| // C99 6.2.5p2. |
| InitBuiltinType(BoolTy, BuiltinType::Bool); |
| // C99 6.2.5p3. |
| if (LangOpts.CharIsSigned) |
| InitBuiltinType(CharTy, BuiltinType::Char_S); |
| else |
| InitBuiltinType(CharTy, BuiltinType::Char_U); |
| // C99 6.2.5p4. |
| InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| InitBuiltinType(ShortTy, BuiltinType::Short); |
| InitBuiltinType(IntTy, BuiltinType::Int); |
| InitBuiltinType(LongTy, BuiltinType::Long); |
| InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| |
| // C99 6.2.5p6. |
| InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| |
| // C99 6.2.5p10. |
| InitBuiltinType(FloatTy, BuiltinType::Float); |
| InitBuiltinType(DoubleTy, BuiltinType::Double); |
| InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| |
| // GNU extension, __float128 for IEEE quadruple precision |
| InitBuiltinType(Float128Ty, BuiltinType::Float128); |
| |
| // C11 extension ISO/IEC TS 18661-3 |
| InitBuiltinType(Float16Ty, BuiltinType::Float16); |
| |
| // ISO/IEC JTC1 SC22 WG14 N1169 Extension |
| InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum); |
| InitBuiltinType(AccumTy, BuiltinType::Accum); |
| InitBuiltinType(LongAccumTy, BuiltinType::LongAccum); |
| InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum); |
| InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum); |
| InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum); |
| InitBuiltinType(ShortFractTy, BuiltinType::ShortFract); |
| InitBuiltinType(FractTy, BuiltinType::Fract); |
| InitBuiltinType(LongFractTy, BuiltinType::LongFract); |
| InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract); |
| InitBuiltinType(UnsignedFractTy, BuiltinType::UFract); |
| InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract); |
| InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum); |
| InitBuiltinType(SatAccumTy, BuiltinType::SatAccum); |
| InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum); |
| InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum); |
| InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum); |
| InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum); |
| InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract); |
| InitBuiltinType(SatFractTy, BuiltinType::SatFract); |
| InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract); |
| InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract); |
| InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract); |
| InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract); |
| |
| // GNU extension, 128-bit integers. |
| InitBuiltinType(Int128Ty, BuiltinType::Int128); |
| InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); |
| |
| // C++ 3.9.1p5 |
| if (TargetInfo::isTypeSigned(Target.getWCharType())) |
| InitBuiltinType(WCharTy, BuiltinType::WChar_S); |
| else // -fshort-wchar makes wchar_t be unsigned. |
| InitBuiltinType(WCharTy, BuiltinType::WChar_U); |
| if (LangOpts.CPlusPlus && LangOpts.WChar) |
| WideCharTy = WCharTy; |
| else { |
| // C99 (or C++ using -fno-wchar). |
| WideCharTy = getFromTargetType(Target.getWCharType()); |
| } |
| |
| WIntTy = getFromTargetType(Target.getWIntType()); |
| |
| // C++20 (proposed) |
| InitBuiltinType(Char8Ty, BuiltinType::Char8); |
| |
| if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
| InitBuiltinType(Char16Ty, BuiltinType::Char16); |
| else // C99 |
| Char16Ty = getFromTargetType(Target.getChar16Type()); |
| |
| if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
| InitBuiltinType(Char32Ty, BuiltinType::Char32); |
| else // C99 |
| Char32Ty = getFromTargetType(Target.getChar32Type()); |
| |
| // Placeholder type for type-dependent expressions whose type is |
| // completely unknown. No code should ever check a type against |
| // DependentTy and users should never see it; however, it is here to |
| // help diagnose failures to properly check for type-dependent |
| // expressions. |
| InitBuiltinType(DependentTy, BuiltinType::Dependent); |
| |
| // Placeholder type for functions. |
| InitBuiltinType(OverloadTy, BuiltinType::Overload); |
| |
| // Placeholder type for bound members. |
| InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); |
| |
| // Placeholder type for pseudo-objects. |
| InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); |
| |
| // "any" type; useful for debugger-like clients. |
| InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); |
| |
| // Placeholder type for unbridged ARC casts. |
| InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); |
| |
| // Placeholder type for builtin functions. |
| InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); |
| |
| // Placeholder type for OMP array sections. |
| if (LangOpts.OpenMP) |
| InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); |
| |
| // C99 6.2.5p11. |
| FloatComplexTy = getComplexType(FloatTy); |
| DoubleComplexTy = getComplexType(DoubleTy); |
| LongDoubleComplexTy = getComplexType(LongDoubleTy); |
| Float128ComplexTy = getComplexType(Float128Ty); |
| |
| // Builtin types for 'id', 'Class', and 'SEL'. |
| InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); |
| InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); |
| InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); |
| |
| if (LangOpts.OpenCL) { |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| InitBuiltinType(SingletonId, BuiltinType::Id); |
| #include "clang/Basic/OpenCLImageTypes.def" |
| |
| InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); |
| InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); |
| InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); |
| InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); |
| InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); |
| } |
| |
| // Builtin type for __objc_yes and __objc_no |
| ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? |
| SignedCharTy : BoolTy); |
| |
| ObjCConstantStringType = QualType(); |
| |
| ObjCSuperType = QualType(); |
| |
| // void * type |
| if (LangOpts.OpenCLVersion >= 200) { |
| auto Q = VoidTy.getQualifiers(); |
| Q.setAddressSpace(LangAS::opencl_generic); |
| VoidPtrTy = getPointerType(getCanonicalType( |
| getQualifiedType(VoidTy.getUnqualifiedType(), Q))); |
| } else { |
| VoidPtrTy = getPointerType(VoidTy); |
| } |
| |
| // nullptr type (C++0x 2.14.7) |
| InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); |
| |
| // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 |
| InitBuiltinType(HalfTy, BuiltinType::Half); |
| |
| // Builtin type used to help define __builtin_va_list. |
| VaListTagDecl = nullptr; |
| } |
| |
| DiagnosticsEngine &ASTContext::getDiagnostics() const { |
| return SourceMgr.getDiagnostics(); |
| } |
| |
| AttrVec& ASTContext::getDeclAttrs(const Decl *D) { |
| AttrVec *&Result = DeclAttrs[D]; |
| if (!Result) { |
| void *Mem = Allocate(sizeof(AttrVec)); |
| Result = new (Mem) AttrVec; |
| } |
| |
| return *Result; |
| } |
| |
| /// Erase the attributes corresponding to the given declaration. |
| void ASTContext::eraseDeclAttrs(const Decl *D) { |
| llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); |
| if (Pos != DeclAttrs.end()) { |
| Pos->second->~AttrVec(); |
| DeclAttrs.erase(Pos); |
| } |
| } |
| |
| // FIXME: Remove ? |
| MemberSpecializationInfo * |
| ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { |
| assert(Var->isStaticDataMember() && "Not a static data member"); |
| return getTemplateOrSpecializationInfo(Var) |
| .dyn_cast<MemberSpecializationInfo *>(); |
| } |
| |
| ASTContext::TemplateOrSpecializationInfo |
| ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { |
| llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = |
| TemplateOrInstantiation.find(Var); |
| if (Pos == TemplateOrInstantiation.end()) |
| return {}; |
| |
| return Pos->second; |
| } |
| |
| void |
| ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, |
| TemplateSpecializationKind TSK, |
| SourceLocation PointOfInstantiation) { |
| assert(Inst->isStaticDataMember() && "Not a static data member"); |
| assert(Tmpl->isStaticDataMember() && "Not a static data member"); |
| setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( |
| Tmpl, TSK, PointOfInstantiation)); |
| } |
| |
| void |
| ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, |
| TemplateOrSpecializationInfo TSI) { |
| assert(!TemplateOrInstantiation[Inst] && |
| "Already noted what the variable was instantiated from"); |
| TemplateOrInstantiation[Inst] = TSI; |
| } |
| |
| FunctionDecl *ASTContext::getClassScopeSpecializationPattern( |
| const FunctionDecl *FD){ |
| assert(FD && "Specialization is 0"); |
| llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos |
| = ClassScopeSpecializationPattern.find(FD); |
| if (Pos == ClassScopeSpecializationPattern.end()) |
| return nullptr; |
| |
| return Pos->second; |
| } |
| |
| void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD, |
| FunctionDecl *Pattern) { |
| assert(FD && "Specialization is 0"); |
| assert(Pattern && "Class scope specialization pattern is 0"); |
| ClassScopeSpecializationPattern[FD] = Pattern; |
| } |
| |
| NamedDecl * |
| ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { |
| auto Pos = InstantiatedFromUsingDecl.find(UUD); |
| if (Pos == InstantiatedFromUsingDecl.end()) |
| return nullptr; |
| |
| return Pos->second; |
| } |
| |
| void |
| ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { |
| assert((isa<UsingDecl>(Pattern) || |
| isa<UnresolvedUsingValueDecl>(Pattern) || |
| isa<UnresolvedUsingTypenameDecl>(Pattern)) && |
| "pattern decl is not a using decl"); |
| assert((isa<UsingDecl>(Inst) || |
| isa<UnresolvedUsingValueDecl>(Inst) || |
| isa<UnresolvedUsingTypenameDecl>(Inst)) && |
| "instantiation did not produce a using decl"); |
| assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); |
| InstantiatedFromUsingDecl[Inst] = Pattern; |
| } |
| |
| UsingShadowDecl * |
| ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { |
| llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos |
| = InstantiatedFromUsingShadowDecl.find(Inst); |
| if (Pos == InstantiatedFromUsingShadowDecl.end()) |
| return nullptr; |
| |
| return Pos->second; |
| } |
| |
| void |
| ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, |
| UsingShadowDecl *Pattern) { |
| assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); |
| InstantiatedFromUsingShadowDecl[Inst] = Pattern; |
| } |
| |
| FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { |
| llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos |
| = InstantiatedFromUnnamedFieldDecl.find(Field); |
| if (Pos == InstantiatedFromUnnamedFieldDecl.end()) |
| return nullptr; |
| |
| return Pos->second; |
| } |
| |
| void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, |
| FieldDecl *Tmpl) { |
| assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); |
| assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); |
| assert(!InstantiatedFromUnnamedFieldDecl[Inst] && |
| "Already noted what unnamed field was instantiated from"); |
| |
| InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; |
| } |
| |
| ASTContext::overridden_cxx_method_iterator |
| ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { |
| return overridden_methods(Method).begin(); |
| } |
| |
| ASTContext::overridden_cxx_method_iterator |
| ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { |
| return overridden_methods(Method).end(); |
| } |
| |
| unsigned |
| ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { |
| auto Range = overridden_methods(Method); |
| return Range.end() - Range.begin(); |
| } |
| |
| ASTContext::overridden_method_range |
| ASTContext::overridden_methods(const CXXMethodDecl *Method) const { |
| llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = |
| OverriddenMethods.find(Method->getCanonicalDecl()); |
| if (Pos == OverriddenMethods.end()) |
| return overridden_method_range(nullptr, nullptr); |
| return overridden_method_range(Pos->second.begin(), Pos->second.end()); |
| } |
| |
| void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, |
| const CXXMethodDecl *Overridden) { |
| assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); |
| OverriddenMethods[Method].push_back(Overridden); |
| } |
| |
| void ASTContext::getOverriddenMethods( |
| const NamedDecl *D, |
| SmallVectorImpl<const NamedDecl *> &Overridden) const { |
| assert(D); |
| |
| if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { |
| Overridden.append(overridden_methods_begin(CXXMethod), |
| overridden_methods_end(CXXMethod)); |
| return; |
| } |
| |
| const auto *Method = dyn_cast<ObjCMethodDecl>(D); |
| if (!Method) |
| return; |
| |
| SmallVector<const ObjCMethodDecl *, 8> OverDecls; |
| Method->getOverriddenMethods(OverDecls); |
| Overridden.append(OverDecls.begin(), OverDecls.end()); |
| } |
| |
| void ASTContext::addedLocalImportDecl(ImportDecl *Import) { |
| assert(!Import->NextLocalImport && "Import declaration already in the chain"); |
| assert(!Import->isFromASTFile() && "Non-local import declaration"); |
| if (!FirstLocalImport) { |
| FirstLocalImport = Import; |
| LastLocalImport = Import; |
| return; |
| } |
| |
| LastLocalImport->NextLocalImport = Import; |
| LastLocalImport = Import; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Sizing and Analysis |
| //===----------------------------------------------------------------------===// |
| |
| /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
| /// scalar floating point type. |
| const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
| const auto *BT = T->getAs<BuiltinType>(); |
| assert(BT && "Not a floating point type!"); |
| switch (BT->getKind()) { |
| default: llvm_unreachable("Not a floating point type!"); |
| case BuiltinType::Float16: |
| case BuiltinType::Half: |
| return Target->getHalfFormat(); |
| case BuiltinType::Float: return Target->getFloatFormat(); |
| case BuiltinType::Double: return Target->getDoubleFormat(); |
| case BuiltinType::LongDouble: return Target->getLongDoubleFormat(); |
| case BuiltinType::Float128: return Target->getFloat128Format(); |
| } |
| } |
| |
| CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { |
| unsigned Align = Target->getCharWidth(); |
| |
| bool UseAlignAttrOnly = false; |
| if (unsigned AlignFromAttr = D->getMaxAlignment()) { |
| Align = AlignFromAttr; |
| |
| // __attribute__((aligned)) can increase or decrease alignment |
| // *except* on a struct or struct member, where it only increases |
| // alignment unless 'packed' is also specified. |
| // |
| // It is an error for alignas to decrease alignment, so we can |
| // ignore that possibility; Sema should diagnose it. |
| if (isa<FieldDecl>(D)) { |
| UseAlignAttrOnly = D->hasAttr<PackedAttr>() || |
| cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); |
| } else { |
| UseAlignAttrOnly = true; |
| } |
| } |
| else if (isa<FieldDecl>(D)) |
| UseAlignAttrOnly = |
| D->hasAttr<PackedAttr>() || |
| cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); |
| |
| // If we're using the align attribute only, just ignore everything |
| // else about the declaration and its type. |
| if (UseAlignAttrOnly) { |
| // do nothing |
| } else if (const auto *VD = dyn_cast<ValueDecl>(D)) { |
| QualType T = VD->getType(); |
| if (const auto *RT = T->getAs<ReferenceType>()) { |
| if (ForAlignof) |
| T = RT->getPointeeType(); |
| else |
| T = getPointerType(RT->getPointeeType()); |
| } |
| QualType BaseT = getBaseElementType(T); |
| if (T->isFunctionType()) |
| Align = getTypeInfoImpl(T.getTypePtr()).Align; |
| else if (!BaseT->isIncompleteType()) { |
| // Adjust alignments of declarations with array type by the |
| // large-array alignment on the target. |
| if (const ArrayType *arrayType = getAsArrayType(T)) { |
| unsigned MinWidth = Target->getLargeArrayMinWidth(); |
| if (!ForAlignof && MinWidth) { |
| if (isa<VariableArrayType>(arrayType)) |
| Align = std::max(Align, Target->getLargeArrayAlign()); |
| else if (isa<ConstantArrayType>(arrayType) && |
| MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) |
| Align = std::max(Align, Target->getLargeArrayAlign()); |
| } |
| } |
| Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); |
| if (BaseT.getQualifiers().hasUnaligned()) |
| Align = Target->getCharWidth(); |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasGlobalStorage() && !ForAlignof) |
| Align = std::max(Align, getTargetInfo().getMinGlobalAlign()); |
| } |
| } |
| |
| // Fields can be subject to extra alignment constraints, like if |
| // the field is packed, the struct is packed, or the struct has a |
| // a max-field-alignment constraint (#pragma pack). So calculate |
| // the actual alignment of the field within the struct, and then |
| // (as we're expected to) constrain that by the alignment of the type. |
| if (const auto *Field = dyn_cast<FieldDecl>(VD)) { |
| const RecordDecl *Parent = Field->getParent(); |
| // We can only produce a sensible answer if the record is valid. |
| if (!Parent->isInvalidDecl()) { |
| const ASTRecordLayout &Layout = getASTRecordLayout(Parent); |
| |
| // Start with the record's overall alignment. |
| unsigned FieldAlign = toBits(Layout.getAlignment()); |
| |
| // Use the GCD of that and the offset within the record. |
| uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); |
| if (Offset > 0) { |
| // Alignment is always a power of 2, so the GCD will be a power of 2, |
| // which means we get to do this crazy thing instead of Euclid's. |
| uint64_t LowBitOfOffset = Offset & (~Offset + 1); |
| if (LowBitOfOffset < FieldAlign) |
| FieldAlign = static_cast<unsigned>(LowBitOfOffset); |
| } |
| |
| Align = std::min(Align, FieldAlign); |
| } |
| } |
| } |
| |
| return toCharUnitsFromBits(Align); |
| } |
| |
| // getTypeInfoDataSizeInChars - Return the size of a type, in |
| // chars. If the type is a record, its data size is returned. This is |
| // the size of the memcpy that's performed when assigning this type |
| // using a trivial copy/move assignment operator. |
| std::pair<CharUnits, CharUnits> |
| ASTContext::getTypeInfoDataSizeInChars(QualType T) const { |
| std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T); |
| |
| // In C++, objects can sometimes be allocated into the tail padding |
| // of a base-class subobject. We decide whether that's possible |
| // during class layout, so here we can just trust the layout results. |
| if (getLangOpts().CPlusPlus) { |
| if (const auto *RT = T->getAs<RecordType>()) { |
| const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); |
| sizeAndAlign.first = layout.getDataSize(); |
| } |
| } |
| |
| return sizeAndAlign; |
| } |
| |
| /// getConstantArrayInfoInChars - Performing the computation in CharUnits |
| /// instead of in bits prevents overflowing the uint64_t for some large arrays. |
| std::pair<CharUnits, CharUnits> |
| static getConstantArrayInfoInChars(const ASTContext &Context, |
| const ConstantArrayType *CAT) { |
| std::pair<CharUnits, CharUnits> EltInfo = |
| Context.getTypeInfoInChars(CAT->getElementType()); |
| uint64_t Size = CAT->getSize().getZExtValue(); |
| assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= |
| (uint64_t)(-1)/Size) && |
| "Overflow in array type char size evaluation"); |
| uint64_t Width = EltInfo.first.getQuantity() * Size; |
| unsigned Align = EltInfo.second.getQuantity(); |
| if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || |
| Context.getTargetInfo().getPointerWidth(0) == 64) |
| Width = llvm::alignTo(Width, Align); |
| return std::make_pair(CharUnits::fromQuantity(Width), |
| CharUnits::fromQuantity(Align)); |
| } |
| |
| std::pair<CharUnits, CharUnits> |
| ASTContext::getTypeInfoInChars(const Type *T) const { |
| if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) |
| return getConstantArrayInfoInChars(*this, CAT); |
| TypeInfo Info = getTypeInfo(T); |
| return std::make_pair(toCharUnitsFromBits(Info.Width), |
| toCharUnitsFromBits(Info.Align)); |
| } |
| |
| std::pair<CharUnits, CharUnits> |
| ASTContext::getTypeInfoInChars(QualType T) const { |
| return getTypeInfoInChars(T.getTypePtr()); |
| } |
| |
| bool ASTContext::isAlignmentRequired(const Type *T) const { |
| return getTypeInfo(T).AlignIsRequired; |
| } |
| |
| bool ASTContext::isAlignmentRequired(QualType T) const { |
| return isAlignmentRequired(T.getTypePtr()); |
| } |
| |
| unsigned ASTContext::getTypeAlignIfKnown(QualType T) const { |
| // An alignment on a typedef overrides anything else. |
| if (const auto *TT = T->getAs<TypedefType>()) |
| if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
| return Align; |
| |
| // If we have an (array of) complete type, we're done. |
| T = getBaseElementType(T); |
| if (!T->isIncompleteType()) |
| return getTypeAlign(T); |
| |
| // If we had an array type, its element type might be a typedef |
| // type with an alignment attribute. |
| if (const auto *TT = T->getAs<TypedefType>()) |
| if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
| return Align; |
| |
| // Otherwise, see if the declaration of the type had an attribute. |
| if (const auto *TT = T->getAs<TagType>()) |
| return TT->getDecl()->getMaxAlignment(); |
| |
| return 0; |
| } |
| |
| TypeInfo ASTContext::getTypeInfo(const Type *T) const { |
| TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); |
| if (I != MemoizedTypeInfo.end()) |
| return I->second; |
| |
| // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. |
| TypeInfo TI = getTypeInfoImpl(T); |
| MemoizedTypeInfo[T] = TI; |
| return TI; |
| } |
| |
| /// getTypeInfoImpl - Return the size of the specified type, in bits. This |
| /// method does not work on incomplete types. |
| /// |
| /// FIXME: Pointers into different addr spaces could have different sizes and |
| /// alignment requirements: getPointerInfo should take an AddrSpace, this |
| /// should take a QualType, &c. |
| TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { |
| uint64_t Width = 0; |
| unsigned Align = 8; |
| bool AlignIsRequired = false; |
| unsigned AS = 0; |
| switch (T->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ |
| case Type::Class: \ |
| assert(!T->isDependentType() && "should not see dependent types here"); \ |
| return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); |
| #include "clang/AST/TypeNodes.def" |
| llvm_unreachable("Should not see dependent types"); |
| |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| // GCC extension: alignof(function) = 32 bits |
| Width = 0; |
| Align = 32; |
| break; |
| |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| Width = 0; |
| Align = getTypeAlign(cast<ArrayType>(T)->getElementType()); |
| break; |
| |
| case Type::ConstantArray: { |
| const auto *CAT = cast<ConstantArrayType>(T); |
| |
| TypeInfo EltInfo = getTypeInfo(CAT->getElementType()); |
| uint64_t Size = CAT->getSize().getZExtValue(); |
| assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && |
| "Overflow in array type bit size evaluation"); |
| Width = EltInfo.Width * Size; |
| Align = EltInfo.Align; |
| if (!getTargetInfo().getCXXABI().isMicrosoft() || |
| getTargetInfo().getPointerWidth(0) == 64) |
| Width = llvm::alignTo(Width, Align); |
| break; |
| } |
| case Type::ExtVector: |
| case Type::Vector: { |
| const auto *VT = cast<VectorType>(T); |
| TypeInfo EltInfo = getTypeInfo(VT->getElementType()); |
| Width = EltInfo.Width * VT->getNumElements(); |
| Align = Width; |
| // If the alignment is not a power of 2, round up to the next power of 2. |
| // This happens for non-power-of-2 length vectors. |
| if (Align & (Align-1)) { |
| Align = llvm::NextPowerOf2(Align); |
| Width = llvm::alignTo(Width, Align); |
| } |
| // Adjust the alignment based on the target max. |
| uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); |
| if (TargetVectorAlign && TargetVectorAlign < Align) |
| Align = TargetVectorAlign; |
| break; |
| } |
| |
| case Type::Builtin: |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: llvm_unreachable("Unknown builtin type!"); |
| case BuiltinType::Void: |
| // GCC extension: alignof(void) = 8 bits. |
| Width = 0; |
| Align = 8; |
| break; |
| case BuiltinType::Bool: |
| Width = Target->getBoolWidth(); |
| Align = Target->getBoolAlign(); |
| break; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::SChar: |
| case BuiltinType::Char8: |
| Width = Target->getCharWidth(); |
| Align = Target->getCharAlign(); |
| break; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: |
| Width = Target->getWCharWidth(); |
| Align = Target->getWCharAlign(); |
| break; |
| case BuiltinType::Char16: |
| Width = Target->getChar16Width(); |
| Align = Target->getChar16Align(); |
| break; |
| case BuiltinType::Char32: |
| Width = Target->getChar32Width(); |
| Align = Target->getChar32Align(); |
| break; |
| case BuiltinType::UShort: |
| case BuiltinType::Short: |
| Width = Target->getShortWidth(); |
| Align = Target->getShortAlign(); |
| break; |
| case BuiltinType::UInt: |
| case BuiltinType::Int: |
| Width = Target->getIntWidth(); |
| Align = Target->getIntAlign(); |
| break; |
| case BuiltinType::ULong: |
| case BuiltinType::Long: |
| Width = Target->getLongWidth(); |
| Align = Target->getLongAlign(); |
| break; |
| case BuiltinType::ULongLong: |
| case BuiltinType::LongLong: |
| Width = Target->getLongLongWidth(); |
| Align = Target->getLongLongAlign(); |
| break; |
| case BuiltinType::Int128: |
| case BuiltinType::UInt128: |
| Width = 128; |
| Align = 128; // int128_t is 128-bit aligned on all targets. |
| break; |
| case BuiltinType::ShortAccum: |
| case BuiltinType::UShortAccum: |
| case BuiltinType::SatShortAccum: |
| case BuiltinType::SatUShortAccum: |
| Width = Target->getShortAccumWidth(); |
| Align = Target->getShortAccumAlign(); |
| break; |
| case BuiltinType::Accum: |
| case BuiltinType::UAccum: |
| case BuiltinType::SatAccum: |
| case BuiltinType::SatUAccum: |
| Width = Target->getAccumWidth(); |
| Align = Target->getAccumAlign(); |
| break; |
| case BuiltinType::LongAccum: |
| case BuiltinType::ULongAccum: |
| case BuiltinType::SatLongAccum: |
| case BuiltinType::SatULongAccum: |
| Width = Target->getLongAccumWidth(); |
| Align = Target->getLongAccumAlign(); |
| break; |
| case BuiltinType::ShortFract: |
| case BuiltinType::UShortFract: |
| case BuiltinType::SatShortFract: |
| case BuiltinType::SatUShortFract: |
| Width = Target->getShortFractWidth(); |
| Align = Target->getShortFractAlign(); |
| break; |
| case BuiltinType::Fract: |
| case BuiltinType::UFract: |
| case BuiltinType::SatFract: |
| case BuiltinType::SatUFract: |
| Width = Target->getFractWidth(); |
| Align = Target->getFractAlign(); |
| break; |
| case BuiltinType::LongFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatLongFract: |
| case BuiltinType::SatULongFract: |
| Width = Target->getLongFractWidth(); |
| Align = Target->getLongFractAlign(); |
| break; |
| case BuiltinType::Float16: |
| case BuiltinType::Half: |
| Width = Target->getHalfWidth(); |
| Align = Target->getHalfAlign(); |
| break; |
| case BuiltinType::Float: |
| Width = Target->getFloatWidth(); |
| Align = Target->getFloatAlign(); |
| break; |
| case BuiltinType::Double: |
| Width = Target->getDoubleWidth(); |
| Align = Target->getDoubleAlign(); |
| break; |
| case BuiltinType::LongDouble: |
| Width = Target->getLongDoubleWidth(); |
| Align = Target->getLongDoubleAlign(); |
| break; |
| case BuiltinType::Float128: |
| Width = Target->getFloat128Width(); |
| Align = Target->getFloat128Align(); |
| break; |
| case BuiltinType::NullPtr: |
| Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) |
| Align = Target->getPointerAlign(0); // == sizeof(void*) |
| break; |
| case BuiltinType::ObjCId: |
| case BuiltinType::ObjCClass: |
| case BuiltinType::ObjCSel: |
| Width = Target->getPointerWidth(0); |
| Align = Target->getPointerAlign(0); |
| break; |
| case BuiltinType::OCLSampler: |
| case BuiltinType::OCLEvent: |
| case BuiltinType::OCLClkEvent: |
| case BuiltinType::OCLQueue: |
| case BuiltinType::OCLReserveID: |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLImageTypes.def" |
| AS = getTargetAddressSpace( |
| Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T))); |
| Width = Target->getPointerWidth(AS); |
| Align = Target->getPointerAlign(AS); |
| break; |
| } |
| break; |
| case Type::ObjCObjectPointer: |
| Width = Target->getPointerWidth(0); |
| Align = Target->getPointerAlign(0); |
| break; |
| case Type::BlockPointer: |
| AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType()); |
| Width = Target->getPointerWidth(AS); |
| Align = Target->getPointerAlign(AS); |
| break; |
| case Type::LValueReference: |
| case Type::RValueReference: |
| // alignof and sizeof should never enter this code path here, so we go |
| // the pointer route. |
| AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType()); |
| Width = Target->getPointerWidth(AS); |
| Align = Target->getPointerAlign(AS); |
| break; |
| case Type::Pointer: |
| AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); |
| Width = Target->getPointerWidth(AS); |
| Align = Target->getPointerAlign(AS); |
| break; |
| case Type::MemberPointer: { |
| const auto *MPT = cast<MemberPointerType>(T); |
| CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); |
| Width = MPI.Width; |
| Align = MPI.Align; |
| break; |
| } |
| case Type::Complex: { |
| // Complex types have the same alignment as their elements, but twice the |
| // size. |
| TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); |
| Width = EltInfo.Width * 2; |
| Align = EltInfo.Align; |
| break; |
| } |
| case Type::ObjCObject: |
| return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); |
| case Type::Adjusted: |
| case Type::Decayed: |
| return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); |
| case Type::ObjCInterface: { |
| const auto *ObjCI = cast<ObjCInterfaceType>(T); |
| const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
| Width = toBits(Layout.getSize()); |
| Align = toBits(Layout.getAlignment()); |
| break; |
| } |
| case Type::Record: |
| case Type::Enum: { |
| const auto *TT = cast<TagType>(T); |
| |
| if (TT->getDecl()->isInvalidDecl()) { |
| Width = 8; |
| Align = 8; |
| break; |
| } |
| |
| if (const auto *ET = dyn_cast<EnumType>(TT)) { |
| const EnumDecl *ED = ET->getDecl(); |
| TypeInfo Info = |
| getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); |
| if (unsigned AttrAlign = ED->getMaxAlignment()) { |
| Info.Align = AttrAlign; |
| Info.AlignIsRequired = true; |
| } |
| return Info; |
| } |
| |
| const auto *RT = cast<RecordType>(TT); |
| const RecordDecl *RD = RT->getDecl(); |
| const ASTRecordLayout &Layout = getASTRecordLayout(RD); |
| Width = toBits(Layout.getSize()); |
| Align = toBits(Layout.getAlignment()); |
| AlignIsRequired = RD->hasAttr<AlignedAttr>(); |
| break; |
| } |
| |
| case Type::SubstTemplateTypeParm: |
| return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> |
| getReplacementType().getTypePtr()); |
| |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: { |
| const auto *A = cast<DeducedType>(T); |
| assert(!A->getDeducedType().isNull() && |
| "cannot request the size of an undeduced or dependent auto type"); |
| return getTypeInfo(A->getDeducedType().getTypePtr()); |
| } |
| |
| case Type::Paren: |
| return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); |
| |
| case Type::ObjCTypeParam: |
| return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr()); |
| |
| case Type::Typedef: { |
| const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); |
| TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); |
| // If the typedef has an aligned attribute on it, it overrides any computed |
| // alignment we have. This violates the GCC documentation (which says that |
| // attribute(aligned) can only round up) but matches its implementation. |
| if (unsigned AttrAlign = Typedef->getMaxAlignment()) { |
| Align = AttrAlign; |
| AlignIsRequired = true; |
| } else { |
| Align = Info.Align; |
| AlignIsRequired = Info.AlignIsRequired; |
| } |
| Width = Info.Width; |
| break; |
| } |
| |
| case Type::Elaborated: |
| return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); |
| |
| case Type::Attributed: |
| return getTypeInfo( |
| cast<AttributedType>(T)->getEquivalentType().getTypePtr()); |
| |
| case Type::Atomic: { |
| // Start with the base type information. |
| TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); |
| Width = Info.Width; |
| Align = Info.Align; |
| |
| if (!Width) { |
| // An otherwise zero-sized type should still generate an |
| // atomic operation. |
| Width = Target->getCharWidth(); |
| assert(Align); |
| } else if (Width <= Target->getMaxAtomicPromoteWidth()) { |
| // If the size of the type doesn't exceed the platform's max |
| // atomic promotion width, make the size and alignment more |
| // favorable to atomic operations: |
| |
| // Round the size up to a power of 2. |
| if (!llvm::isPowerOf2_64(Width)) |
| Width = llvm::NextPowerOf2(Width); |
| |
| // Set the alignment equal to the size. |
| Align = static_cast<unsigned>(Width); |
| } |
| } |
| break; |
| |
| case Type::Pipe: |
| Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global)); |
| Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global)); |
| break; |
| } |
| |
| assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); |
| return TypeInfo(Width, Align, AlignIsRequired); |
| } |
| |
| unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { |
| UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T); |
| if (I != MemoizedUnadjustedAlign.end()) |
| return I->second; |
| |
| unsigned UnadjustedAlign; |
| if (const auto *RT = T->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| const ASTRecordLayout &Layout = getASTRecordLayout(RD); |
| UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); |
| } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { |
| const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
| UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); |
| } else { |
| UnadjustedAlign = getTypeAlign(T); |
| } |
| |
| MemoizedUnadjustedAlign[T] = UnadjustedAlign; |
| return UnadjustedAlign; |
| } |
| |
| unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { |
| unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign(); |
| // Target ppc64 with QPX: simd default alignment for pointer to double is 32. |
| if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 || |
| getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) && |
| getTargetInfo().getABI() == "elfv1-qpx" && |
| T->isSpecificBuiltinType(BuiltinType::Double)) |
| SimdAlign = 256; |
| return SimdAlign; |
| } |
| |
| /// toCharUnitsFromBits - Convert a size in bits to a size in characters. |
| CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { |
| return CharUnits::fromQuantity(BitSize / getCharWidth()); |
| } |
| |
| /// toBits - Convert a size in characters to a size in characters. |
| int64_t ASTContext::toBits(CharUnits CharSize) const { |
| return CharSize.getQuantity() * getCharWidth(); |
| } |
| |
| /// getTypeSizeInChars - Return the size of the specified type, in characters. |
| /// This method does not work on incomplete types. |
| CharUnits ASTContext::getTypeSizeInChars(QualType T) const { |
| return getTypeInfoInChars(T).first; |
| } |
| CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { |
| return getTypeInfoInChars(T).first; |
| } |
| |
| /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in |
| /// characters. This method does not work on incomplete types. |
| CharUnits ASTContext::getTypeAlignInChars(QualType T) const { |
| return toCharUnitsFromBits(getTypeAlign(T)); |
| } |
| CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { |
| return toCharUnitsFromBits(getTypeAlign(T)); |
| } |
| |
| /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a |
| /// type, in characters, before alignment adustments. This method does |
| /// not work on incomplete types. |
| CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { |
| return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); |
| } |
| CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { |
| return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); |
| } |
| |
| /// getPreferredTypeAlign - Return the "preferred" alignment of the specified |
| /// type for the current target in bits. This can be different than the ABI |
| /// alignment in cases where it is beneficial for performance to overalign |
| /// a data type. |
| unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { |
| TypeInfo TI = getTypeInfo(T); |
| unsigned ABIAlign = TI.Align; |
| |
| T = T->getBaseElementTypeUnsafe(); |
| |
| // The preferred alignment of member pointers is that of a pointer. |
| if (T->isMemberPointerType()) |
| return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); |
| |
| if (!Target->allowsLargerPreferedTypeAlignment()) |
| return ABIAlign; |
| |
| // Double and long long should be naturally aligned if possible. |
| if (const auto *CT = T->getAs<ComplexType>()) |
| T = CT->getElementType().getTypePtr(); |
| if (const auto *ET = T->getAs<EnumType>()) |
| T = ET->getDecl()->getIntegerType().getTypePtr(); |
| if (T->isSpecificBuiltinType(BuiltinType::Double) || |
| T->isSpecificBuiltinType(BuiltinType::LongLong) || |
| T->isSpecificBuiltinType(BuiltinType::ULongLong)) |
| // Don't increase the alignment if an alignment attribute was specified on a |
| // typedef declaration. |
| if (!TI.AlignIsRequired) |
| return std::max(ABIAlign, (unsigned)getTypeSize(T)); |
| |
| return ABIAlign; |
| } |
| |
| /// getTargetDefaultAlignForAttributeAligned - Return the default alignment |
| /// for __attribute__((aligned)) on this target, to be used if no alignment |
| /// value is specified. |
| unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { |
| return getTargetInfo().getDefaultAlignForAttributeAligned(); |
| } |
| |
| /// getAlignOfGlobalVar - Return the alignment in bits that should be given |
| /// to a global variable of the specified type. |
| unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { |
| return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign()); |
| } |
| |
| /// getAlignOfGlobalVarInChars - Return the alignment in characters that |
| /// should be given to a global variable of the specified type. |
| CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { |
| return toCharUnitsFromBits(getAlignOfGlobalVar(T)); |
| } |
| |
| CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { |
| CharUnits Offset = CharUnits::Zero(); |
| const ASTRecordLayout *Layout = &getASTRecordLayout(RD); |
| while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { |
| Offset += Layout->getBaseClassOffset(Base); |
| Layout = &getASTRecordLayout(Base); |
| } |
| return Offset; |
| } |
| |
| /// DeepCollectObjCIvars - |
| /// This routine first collects all declared, but not synthesized, ivars in |
| /// super class and then collects all ivars, including those synthesized for |
| /// current class. This routine is used for implementation of current class |
| /// when all ivars, declared and synthesized are known. |
| void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, |
| bool leafClass, |
| SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { |
| if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) |
| DeepCollectObjCIvars(SuperClass, false, Ivars); |
| if (!leafClass) { |
| for (const auto *I : OI->ivars()) |
| Ivars.push_back(I); |
| } else { |
| auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); |
| for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; |
| Iv= Iv->getNextIvar()) |
| Ivars.push_back(Iv); |
| } |
| } |
| |
| /// CollectInheritedProtocols - Collect all protocols in current class and |
| /// those inherited by it. |
| void ASTContext::CollectInheritedProtocols(const Decl *CDecl, |
| llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { |
| if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { |
| // We can use protocol_iterator here instead of |
| // all_referenced_protocol_iterator since we are walking all categories. |
| for (auto *Proto : OI->all_referenced_protocols()) { |
| CollectInheritedProtocols(Proto, Protocols); |
| } |
| |
| // Categories of this Interface. |
| for (const auto *Cat : OI->visible_categories()) |
| CollectInheritedProtocols(Cat, Protocols); |
| |
| if (ObjCInterfaceDecl *SD = OI->getSuperClass()) |
| while (SD) { |
| CollectInheritedProtocols(SD, Protocols); |
| SD = SD->getSuperClass(); |
| } |
| } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { |
| for (auto *Proto : OC->protocols()) { |
| CollectInheritedProtocols(Proto, Protocols); |
| } |
| } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { |
| // Insert the protocol. |
| if (!Protocols.insert( |
| const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) |
| return; |
| |
| for (auto *Proto : OP->protocols()) |
| CollectInheritedProtocols(Proto, Protocols); |
| } |
| } |
| |
| static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, |
| const RecordDecl *RD) { |
| assert(RD->isUnion() && "Must be union type"); |
| CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl()); |
| |
| for (const auto *Field : RD->fields()) { |
| if (!Context.hasUniqueObjectRepresentations(Field->getType())) |
| return false; |
| CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType()); |
| if (FieldSize != UnionSize) |
| return false; |
| } |
| return !RD->field_empty(); |
| } |
| |
| static bool isStructEmpty(QualType Ty) { |
| const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); |
| |
| if (!RD->field_empty()) |
| return false; |
| |
| if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) |
| return ClassDecl->isEmpty(); |
| |
| return true; |
| } |
| |
| static llvm::Optional<int64_t> |
| structHasUniqueObjectRepresentations(const ASTContext &Context, |
| const RecordDecl *RD) { |
| assert(!RD->isUnion() && "Must be struct/class type"); |
| const auto &Layout = Context.getASTRecordLayout(RD); |
| |
| int64_t CurOffsetInBits = 0; |
| if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { |
| if (ClassDecl->isDynamicClass()) |
| return llvm::None; |
| |
| SmallVector<std::pair<QualType, int64_t>, 4> Bases; |
| for (const auto Base : ClassDecl->bases()) { |
| // Empty types can be inherited from, and non-empty types can potentially |
| // have tail padding, so just make sure there isn't an error. |
| if (!isStructEmpty(Base.getType())) { |
| llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations( |
| Context, Base.getType()->getAs<RecordType>()->getDecl()); |
| if (!Size) |
| return llvm::None; |
| Bases.emplace_back(Base.getType(), Size.getValue()); |
| } |
| } |
| |
| llvm::sort( |
| Bases.begin(), Bases.end(), [&](const std::pair<QualType, int64_t> &L, |
| const std::pair<QualType, int64_t> &R) { |
| return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) < |
| Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl()); |
| }); |
| |
| for (const auto Base : Bases) { |
| int64_t BaseOffset = Context.toBits( |
| Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl())); |
| int64_t BaseSize = Base.second; |
| if (BaseOffset != CurOffsetInBits) |
| return llvm::None; |
| CurOffsetInBits = BaseOffset + BaseSize; |
| } |
| } |
| |
| for (const auto *Field : RD->fields()) { |
| if (!Field->getType()->isReferenceType() && |
| !Context.hasUniqueObjectRepresentations(Field->getType())) |
| return llvm::None; |
| |
| int64_t FieldSizeInBits = |
| Context.toBits(Context.getTypeSizeInChars(Field->getType())); |
| if (Field->isBitField()) { |
| int64_t BitfieldSize = Field->getBitWidthValue(Context); |
| |
| if (BitfieldSize > FieldSizeInBits) |
| return llvm::None; |
| FieldSizeInBits = BitfieldSize; |
| } |
| |
| int64_t FieldOffsetInBits = Context.getFieldOffset(Field); |
| |
| if (FieldOffsetInBits != CurOffsetInBits) |
| return llvm::None; |
| |
| CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits; |
| } |
| |
| return CurOffsetInBits; |
| } |
| |
| bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const { |
| // C++17 [meta.unary.prop]: |
| // The predicate condition for a template specialization |
| // has_unique_object_representations<T> shall be |
| // satisfied if and only if: |
| // (9.1) - T is trivially copyable, and |
| // (9.2) - any two objects of type T with the same value have the same |
| // object representation, where two objects |
| // of array or non-union class type are considered to have the same value |
| // if their respective sequences of |
| // direct subobjects have the same values, and two objects of union type |
| // are considered to have the same |
| // value if they have the same active member and the corresponding members |
| // have the same value. |
| // The set of scalar types for which this condition holds is |
| // implementation-defined. [ Note: If a type has padding |
| // bits, the condition does not hold; otherwise, the condition holds true |
| // for unsigned integral types. -- end note ] |
| assert(!Ty.isNull() && "Null QualType sent to unique object rep check"); |
| |
| // Arrays are unique only if their element type is unique. |
| if (Ty->isArrayType()) |
| return hasUniqueObjectRepresentations(getBaseElementType(Ty)); |
| |
| // (9.1) - T is trivially copyable... |
| if (!Ty.isTriviallyCopyableType(*this)) |
| return false; |
| |
| // All integrals and enums are unique. |
| if (Ty->isIntegralOrEnumerationType()) |
| return true; |
| |
| // All other pointers are unique. |
| if (Ty->isPointerType()) |
| return true; |
| |
| if (Ty->isMemberPointerType()) { |
| const auto *MPT = Ty->getAs<MemberPointerType>(); |
| return !ABI->getMemberPointerInfo(MPT).HasPadding; |
| } |
| |
| if (Ty->isRecordType()) { |
| const RecordDecl *Record = Ty->getAs<RecordType>()->getDecl(); |
| |
| if (Record->isInvalidDecl()) |
| return false; |
| |
| if (Record->isUnion()) |
| return unionHasUniqueObjectRepresentations(*this, Record); |
| |
| Optional<int64_t> StructSize = |
| structHasUniqueObjectRepresentations(*this, Record); |
| |
| return StructSize && |
| StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty)); |
| } |
| |
| // FIXME: More cases to handle here (list by rsmith): |
| // vectors (careful about, eg, vector of 3 foo) |
| // _Complex int and friends |
| // _Atomic T |
| // Obj-C block pointers |
| // Obj-C object pointers |
| // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, |
| // clk_event_t, queue_t, reserve_id_t) |
| // There're also Obj-C class types and the Obj-C selector type, but I think it |
| // makes sense for those to return false here. |
| |
| return false; |
| } |
| |
| unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { |
| unsigned count = 0; |
| // Count ivars declared in class extension. |
| for (const auto *Ext : OI->known_extensions()) |
| count += Ext->ivar_size(); |
| |
| // Count ivar defined in this class's implementation. This |
| // includes synthesized ivars. |
| if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) |
| count += ImplDecl->ivar_size(); |
| |
| return count; |
| } |
| |
| bool ASTContext::isSentinelNullExpr(const Expr *E) { |
| if (!E) |
| return false; |
| |
| // nullptr_t is always treated as null. |
| if (E->getType()->isNullPtrType()) return true; |
| |
| if (E->getType()->isAnyPointerType() && |
| E->IgnoreParenCasts()->isNullPointerConstant(*this, |
| Expr::NPC_ValueDependentIsNull)) |
| return true; |
| |
| // Unfortunately, __null has type 'int'. |
| if (isa<GNUNullExpr>(E)) return true; |
| |
| return false; |
| } |
| |
| /// Get the implementation of ObjCInterfaceDecl, or nullptr if none |
| /// exists. |
| ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { |
| llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
| I = ObjCImpls.find(D); |
| if (I != ObjCImpls.end()) |
| return cast<ObjCImplementationDecl>(I->second); |
| return nullptr; |
| } |
| |
| /// Get the implementation of ObjCCategoryDecl, or nullptr if none |
| /// exists. |
| ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { |
| llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
| I = ObjCImpls.find(D); |
| if (I != ObjCImpls.end()) |
| return cast<ObjCCategoryImplDecl>(I->second); |
| return nullptr; |
| } |
| |
| /// Set the implementation of ObjCInterfaceDecl. |
| void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, |
| ObjCImplementationDecl *ImplD) { |
| assert(IFaceD && ImplD && "Passed null params"); |
| ObjCImpls[IFaceD] = ImplD; |
| } |
| |
| /// Set the implementation of ObjCCategoryDecl. |
| void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, |
| ObjCCategoryImplDecl *ImplD) { |
| assert(CatD && ImplD && "Passed null params"); |
| ObjCImpls[CatD] = ImplD; |
| } |
| |
| const ObjCMethodDecl * |
| ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { |
| return ObjCMethodRedecls.lookup(MD); |
| } |
| |
| void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, |
| const ObjCMethodDecl *Redecl) { |
| assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration"); |
| ObjCMethodRedecls[MD] = Redecl; |
| } |
| |
| const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( |
| const NamedDecl *ND) const { |
| if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) |
| return ID; |
| if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) |
| return CD->getClassInterface(); |
| if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) |
| return IMD->getClassInterface(); |
| |
| return nullptr; |
| } |
| |
| /// Get the copy initialization expression of VarDecl, or nullptr if |
| /// none exists. |
| Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) { |
| assert(VD && "Passed null params"); |
| assert(VD->hasAttr<BlocksAttr>() && |
| "getBlockVarCopyInits - not __block var"); |
| llvm::DenseMap<const VarDecl*, Expr*>::iterator |
| I = BlockVarCopyInits.find(VD); |
| return (I != BlockVarCopyInits.end()) ? I->second : nullptr; |
| } |
| |
| /// Set the copy inialization expression of a block var decl. |
| void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) { |
| assert(VD && Init && "Passed null params"); |
| assert(VD->hasAttr<BlocksAttr>() && |
| "setBlockVarCopyInits - not __block var"); |
| BlockVarCopyInits[VD] = Init; |
| } |
| |
| TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, |
| unsigned DataSize) const { |
| if (!DataSize) |
| DataSize = TypeLoc::getFullDataSizeForType(T); |
| else |
| assert(DataSize == TypeLoc::getFullDataSizeForType(T) && |
| "incorrect data size provided to CreateTypeSourceInfo!"); |
| |
| auto *TInfo = |
| (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); |
| new (TInfo) TypeSourceInfo(T); |
| return TInfo; |
| } |
| |
| TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, |
| SourceLocation L) const { |
| TypeSourceInfo *DI = CreateTypeSourceInfo(T); |
| DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); |
| return DI; |
| } |
| |
| const ASTRecordLayout & |
| ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { |
| return getObjCLayout(D, nullptr); |
| } |
| |
| const ASTRecordLayout & |
| ASTContext::getASTObjCImplementationLayout( |
| const ObjCImplementationDecl *D) const { |
| return getObjCLayout(D->getClassInterface(), D); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type creation/memoization methods |
| //===----------------------------------------------------------------------===// |
| |
| QualType |
| ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { |
| unsigned fastQuals = quals.getFastQualifiers(); |
| quals.removeFastQualifiers(); |
| |
| // Check if we've already instantiated this type. |
| llvm::FoldingSetNodeID ID; |
| ExtQuals::Profile(ID, baseType, quals); |
| void *insertPos = nullptr; |
| if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { |
| assert(eq->getQualifiers() == quals); |
| return QualType(eq, fastQuals); |
| } |
| |
| // If the base type is not canonical, make the appropriate canonical type. |
| QualType canon; |
| if (!baseType->isCanonicalUnqualified()) { |
| SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); |
| canonSplit.Quals.addConsistentQualifiers(quals); |
| canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); |
| |
| // Re-find the insert position. |
| (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); |
| } |
| |
| auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); |
| ExtQualNodes.InsertNode(eq, insertPos); |
| return QualType(eq, fastQuals); |
| } |
| |
| QualType ASTContext::getAddrSpaceQualType(QualType T, |
| LangAS AddressSpace) const { |
| QualType CanT = getCanonicalType(T); |
| if (CanT.getAddressSpace() == AddressSpace) |
| return T; |
| |
| // If we are composing extended qualifiers together, merge together |
| // into one ExtQuals node. |
| QualifierCollector Quals; |
| const Type *TypeNode = Quals.strip(T); |
| |
| // If this type already has an address space specified, it cannot get |
| // another one. |
| assert(!Quals.hasAddressSpace() && |
| "Type cannot be in multiple addr spaces!"); |
| Quals.addAddressSpace(AddressSpace); |
| |
| return getExtQualType(TypeNode, Quals); |
| } |
| |
| QualType ASTContext::removeAddrSpaceQualType(QualType T) const { |
| // If we are composing extended qualifiers together, merge together |
| // into one ExtQuals node. |
| QualifierCollector Quals; |
| const Type *TypeNode = Quals.strip(T); |
| |
| // If the qualifier doesn't have an address space just return it. |
| if (!Quals.hasAddressSpace()) |
| return T; |
| |
| Quals.removeAddressSpace(); |
| |
| // Removal of the address space can mean there are no longer any |
| // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) |
| // or required. |
| if (Quals.hasNonFastQualifiers()) |
| return getExtQualType(TypeNode, Quals); |
| else |
| return QualType(TypeNode, Quals.getFastQualifiers()); |
| } |
| |
| QualType ASTContext::getObjCGCQualType(QualType T, |
| Qualifiers::GC GCAttr) const { |
| QualType CanT = getCanonicalType(T); |
| if (CanT.getObjCGCAttr() == GCAttr) |
| return T; |
| |
| if (const auto *ptr = T->getAs<PointerType>()) { |
| QualType Pointee = ptr->getPointeeType(); |
| if (Pointee->isAnyPointerType()) { |
| QualType ResultType = getObjCGCQualType(Pointee, GCAttr); |
| return getPointerType(ResultType); |
| } |
| } |
| |
| // If we are composing extended qualifiers together, merge together |
| // into one ExtQuals node. |
| QualifierCollector Quals; |
| const Type *TypeNode = Quals.strip(T); |
| |
| // If this type already has an ObjCGC specified, it cannot get |
| // another one. |
| assert(!Quals.hasObjCGCAttr() && |
| "Type cannot have multiple ObjCGCs!"); |
| Quals.addObjCGCAttr(GCAttr); |
| |
| return getExtQualType(TypeNode, Quals); |
| } |
| |
| const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, |
| FunctionType::ExtInfo Info) { |
| if (T->getExtInfo() == Info) |
| return T; |
| |
| QualType Result; |
| if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) { |
| Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); |
| } else { |
| const auto *FPT = cast<FunctionProtoType>(T); |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.ExtInfo = Info; |
| Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); |
| } |
| |
| return cast<FunctionType>(Result.getTypePtr()); |
| } |
| |
| void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, |
| QualType ResultType) { |
| FD = FD->getMostRecentDecl(); |
| while (true) { |
| const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); |
| if (FunctionDecl *Next = FD->getPreviousDecl()) |
| FD = Next; |
| else |
| break; |
| } |
| if (ASTMutationListener *L = getASTMutationListener()) |
| L->DeducedReturnType(FD, ResultType); |
| } |
| |
| /// Get a function type and produce the equivalent function type with the |
| /// specified exception specification. Type sugar that can be present on a |
| /// declaration of a function with an exception specification is permitted |
| /// and preserved. Other type sugar (for instance, typedefs) is not. |
| QualType ASTContext::getFunctionTypeWithExceptionSpec( |
| QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) { |
| // Might have some parens. |
| if (const auto *PT = dyn_cast<ParenType>(Orig)) |
| return getParenType( |
| getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI)); |
| |
| // Might have a calling-convention attribute. |
| if (const auto *AT = dyn_cast<AttributedType>(Orig)) |
| return getAttributedType( |
| AT->getAttrKind(), |
| getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI), |
| getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI)); |
| |
| // Anything else must be a function type. Rebuild it with the new exception |
| // specification. |
| const auto *Proto = cast<FunctionProtoType>(Orig); |
| return getFunctionType( |
| Proto->getReturnType(), Proto->getParamTypes(), |
| Proto->getExtProtoInfo().withExceptionSpec(ESI)); |
| } |
| |
| bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, |
| QualType U) { |
| return hasSameType(T, U) || |
| (getLangOpts().CPlusPlus17 && |
| hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None), |
| getFunctionTypeWithExceptionSpec(U, EST_None))); |
| } |
| |
| void ASTContext::adjustExceptionSpec( |
| FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, |
| bool AsWritten) { |
| // Update the type. |
| QualType Updated = |
| getFunctionTypeWithExceptionSpec(FD->getType(), ESI); |
| FD->setType(Updated); |
| |
| if (!AsWritten) |
| return; |
| |
| // Update the type in the type source information too. |
| if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { |
| // If the type and the type-as-written differ, we may need to update |
| // the type-as-written too. |
| if (TSInfo->getType() != FD->getType()) |
| Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI); |
| |
| // FIXME: When we get proper type location information for exceptions, |
| // we'll also have to rebuild the TypeSourceInfo. For now, we just patch |
| // up the TypeSourceInfo; |
| assert(TypeLoc::getFullDataSizeForType(Updated) == |
| TypeLoc::getFullDataSizeForType(TSInfo->getType()) && |
| "TypeLoc size mismatch from updating exception specification"); |
| TSInfo->overrideType(Updated); |
| } |
| } |
| |
| /// getComplexType - Return the uniqued reference to the type for a complex |
| /// number with the specified element type. |
| QualType ASTContext::getComplexType(QualType T) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ComplexType::Profile(ID, T); |
| |
| void *InsertPos = nullptr; |
| if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(CT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getComplexType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical); |
| Types.push_back(New); |
| ComplexTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getPointerType - Return the uniqued reference to the type for a pointer to |
| /// the specified type. |
| QualType ASTContext::getPointerType(QualType T) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| PointerType::Profile(ID, T); |
| |
| void *InsertPos = nullptr; |
| if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getPointerType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| auto *New = new (*this, TypeAlignment) PointerType(T, Canonical); |
| Types.push_back(New); |
| PointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { |
| llvm::FoldingSetNodeID ID; |
| AdjustedType::Profile(ID, Orig, New); |
| void *InsertPos = nullptr; |
| AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (AT) |
| return QualType(AT, 0); |
| |
| QualType Canonical = getCanonicalType(New); |
| |
| // Get the new insert position for the node we care about. |
| AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!AT && "Shouldn't be in the map!"); |
| |
| AT = new (*this, TypeAlignment) |
| AdjustedType(Type::Adjusted, Orig, New, Canonical); |
| Types.push_back(AT); |
| AdjustedTypes.InsertNode(AT, InsertPos); |
| return QualType(AT, 0); |
| } |
| |
| QualType ASTContext::getDecayedType(QualType T) const { |
| assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); |
| |
| QualType Decayed; |
| |
| // C99 6.7.5.3p7: |
| // A declaration of a parameter as "array of type" shall be |
| // adjusted to "qualified pointer to type", where the type |
| // qualifiers (if any) are those specified within the [ and ] of |
| // the array type derivation. |
| if (T->isArrayType()) |
| Decayed = getArrayDecayedType(T); |
| |
| // C99 6.7.5.3p8: |
| // A declaration of a parameter as "function returning type" |
| // shall be adjusted to "pointer to function returning type", as |
| // in 6.3.2.1. |
| if (T->isFunctionType()) |
| Decayed = getPointerType(T); |
| |
| llvm::FoldingSetNodeID ID; |
| AdjustedType::Profile(ID, T, Decayed); |
| void *InsertPos = nullptr; |
| AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (AT) |
| return QualType(AT, 0); |
| |
| QualType Canonical = getCanonicalType(Decayed); |
| |
| // Get the new insert position for the node we care about. |
| AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!AT && "Shouldn't be in the map!"); |
| |
| AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); |
| Types.push_back(AT); |
| AdjustedTypes.InsertNode(AT, InsertPos); |
| return QualType(AT, 0); |
| } |
| |
| /// getBlockPointerType - Return the uniqued reference to the type for |
| /// a pointer to the specified block. |
| QualType ASTContext::getBlockPointerType(QualType T) const { |
| assert(T->isFunctionType() && "block of function types only"); |
| // Unique pointers, to guarantee there is only one block of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| BlockPointerType::Profile(ID, T); |
| |
| void *InsertPos = nullptr; |
| if (BlockPointerType *PT = |
| BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the block pointee type isn't canonical, this won't be a canonical |
| // type either so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getBlockPointerType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| BlockPointerType *NewIP = |
| BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical); |
| Types.push_back(New); |
| BlockPointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getLValueReferenceType - Return the uniqued reference to the type for an |
| /// lvalue reference to the specified type. |
| QualType |
| ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { |
| assert(getCanonicalType(T) != OverloadTy && |
| "Unresolved overloaded function type"); |
| |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T, SpelledAsLValue); |
| |
| void *InsertPos = nullptr; |
| if (LValueReferenceType *RT = |
| LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| const auto *InnerRef = T->getAs<ReferenceType>(); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { |
| QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
| Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); |
| |
| // Get the new insert position for the node we care about. |
| LValueReferenceType *NewIP = |
| LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, |
| SpelledAsLValue); |
| Types.push_back(New); |
| LValueReferenceTypes.InsertNode(New, InsertPos); |
| |
| return QualType(New, 0); |
| } |
| |
| /// getRValueReferenceType - Return the uniqued reference to the type for an |
| /// rvalue reference to the specified type. |
| QualType ASTContext::getRValueReferenceType(QualType T) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T, false); |
| |
| void *InsertPos = nullptr; |
| if (RValueReferenceType *RT = |
| RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| const auto *InnerRef = T->getAs<ReferenceType>(); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (InnerRef || !T.isCanonical()) { |
| QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
| Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); |
| |
| // Get the new insert position for the node we care about. |
| RValueReferenceType *NewIP = |
| RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); |
| Types.push_back(New); |
| RValueReferenceTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getMemberPointerType - Return the uniqued reference to the type for a |
| /// member pointer to the specified type, in the specified class. |
| QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| MemberPointerType::Profile(ID, T, Cls); |
| |
| void *InsertPos = nullptr; |
| if (MemberPointerType *PT = |
| MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee or class type isn't canonical, this won't be a canonical |
| // type either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { |
| Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); |
| |
| // Get the new insert position for the node we care about. |
| MemberPointerType *NewIP = |
| MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); |
| Types.push_back(New); |
| MemberPointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getConstantArrayType - Return the unique reference to the type for an |
| /// array of the specified element type. |
| QualType ASTContext::getConstantArrayType(QualType EltTy, |
| const llvm::APInt &ArySizeIn, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned IndexTypeQuals) const { |
| assert((EltTy->isDependentType() || |
| EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && |
| "Constant array of VLAs is illegal!"); |
| |
| // Convert the array size into a canonical width matching the pointer size for |
| // the target. |
| llvm::APInt ArySize(ArySizeIn); |
| ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth()); |
| |
| llvm::FoldingSetNodeID ID; |
| ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals); |
| |
| void *InsertPos = nullptr; |
| if (ConstantArrayType *ATP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical or has qualifiers, this won't |
| // be a canonical type either, so fill in the canonical type field. |
| QualType Canon; |
| if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
| SplitQualType canonSplit = getCanonicalType(EltTy).split(); |
| Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, |
| ASM, IndexTypeQuals); |
| Canon = getQualifiedType(Canon, canonSplit.Quals); |
| |
| // Get the new insert position for the node we care about. |
| ConstantArrayType *NewIP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| auto *New = new (*this,TypeAlignment) |
| ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals); |
| ConstantArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVariableArrayDecayedType - Turns the given type, which may be |
| /// variably-modified, into the corresponding type with all the known |
| /// sizes replaced with [*]. |
| QualType ASTContext::getVariableArrayDecayedType(QualType type) const { |
| // Vastly most common case. |
| if (!type->isVariablyModifiedType()) return type; |
| |
| QualType result; |
| |
| SplitQualType split = type.getSplitDesugaredType(); |
| const Type *ty = split.Ty; |
| switch (ty->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| llvm_unreachable("didn't desugar past all non-canonical types?"); |
| |
| // These types should never be variably-modified. |
| case Type::Builtin: |
| case Type::Complex: |
| case Type::Vector: |
| case Type::DependentVector: |
| case Type::ExtVector: |
| case Type::DependentSizedExtVector: |
| case Type::DependentAddressSpace: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::Record: |
| case Type::Enum: |
| case Type::UnresolvedUsing: |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::Decltype: |
| case Type::UnaryTransform: |
| case Type::DependentName: |
| case Type::InjectedClassName: |
| case Type::TemplateSpecialization: |
| case Type::DependentTemplateSpecialization: |
| case Type::TemplateTypeParm: |
| case Type::SubstTemplateTypeParmPack: |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| case Type::PackExpansion: |
| llvm_unreachable("type should never be variably-modified"); |
| |
| // These types can be variably-modified but should never need to |
| // further decay. |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| case Type::BlockPointer: |
| case Type::MemberPointer: |
| case Type::Pipe: |
| return type; |
| |
| // These types can be variably-modified. All these modifications |
| // preserve structure except as noted by comments. |
| // TODO: if we ever care about optimizing VLAs, there are no-op |
| // optimizations available here. |
| case Type::Pointer: |
| result = getPointerType(getVariableArrayDecayedType( |
| cast<PointerType>(ty)->getPointeeType())); |
| break; |
| |
| case Type::LValueReference: { |
| const auto *lv = cast<LValueReferenceType>(ty); |
| result = getLValueReferenceType( |
| getVariableArrayDecayedType(lv->getPointeeType()), |
| lv->isSpelledAsLValue()); |
| break; |
| } |
| |
| case Type::RValueReference: { |
| const auto *lv = cast<RValueReferenceType>(ty); |
| result = getRValueReferenceType( |
| getVariableArrayDecayedType(lv->getPointeeType())); |
| break; |
| } |
| |
| case Type::Atomic: { |
| const auto *at = cast<AtomicType>(ty); |
| result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); |
| break; |
| } |
| |
| case Type::ConstantArray: { |
| const auto *cat = cast<ConstantArrayType>(ty); |
| result = getConstantArrayType( |
| getVariableArrayDecayedType(cat->getElementType()), |
| cat->getSize(), |
| cat->getSizeModifier(), |
| cat->getIndexTypeCVRQualifiers()); |
| break; |
| } |
| |
| case Type::DependentSizedArray: { |
| const auto *dat = cast<DependentSizedArrayType>(ty); |
| result = getDependentSizedArrayType( |
| getVariableArrayDecayedType(dat->getElementType()), |
| dat->getSizeExpr(), |
| dat->getSizeModifier(), |
| dat->getIndexTypeCVRQualifiers(), |
| dat->getBracketsRange()); |
| break; |
| } |
| |
| // Turn incomplete types into [*] types. |
| case Type::IncompleteArray: { |
| const auto *iat = cast<IncompleteArrayType>(ty); |
| result = getVariableArrayType( |
| getVariableArrayDecayedType(iat->getElementType()), |
| /*size*/ nullptr, |
| ArrayType::Normal, |
| iat->getIndexTypeCVRQualifiers(), |
| SourceRange()); |
| break; |
| } |
| |
| // Turn VLA types into [*] types. |
| case Type::VariableArray: { |
| const auto *vat = cast<VariableArrayType>(ty); |
| result = getVariableArrayType( |
| getVariableArrayDecayedType(vat->getElementType()), |
| /*size*/ nullptr, |
| ArrayType::Star, |
| vat->getIndexTypeCVRQualifiers(), |
| vat->getBracketsRange()); |
| break; |
| } |
| } |
| |
| // Apply the top-level qualifiers from the original. |
| return getQualifiedType(result, split.Quals); |
| } |
| |
| /// getVariableArrayType - Returns a non-unique reference to the type for a |
| /// variable array of the specified element type. |
| QualType ASTContext::getVariableArrayType(QualType EltTy, |
| Expr *NumElts, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned IndexTypeQuals, |
| SourceRange Brackets) const { |
| // Since we don't unique expressions, it isn't possible to unique VLA's |
| // that have an expression provided for their size. |
| QualType Canon; |
| |
| // Be sure to pull qualifiers off the element type. |
| if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
| SplitQualType canonSplit = getCanonicalType(EltTy).split(); |
| Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, |
| IndexTypeQuals, Brackets); |
| Canon = getQualifiedType(Canon, canonSplit.Quals); |
| } |
| |
| auto *New = new (*this, TypeAlignment) |
| VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); |
| |
| VariableArrayTypes.push_back(New); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getDependentSizedArrayType - Returns a non-unique reference to |
| /// the type for a dependently-sized array of the specified element |
| /// type. |
| QualType ASTContext::getDependentSizedArrayType(QualType elementType, |
| Expr *numElements, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned elementTypeQuals, |
| SourceRange brackets) const { |
| assert((!numElements || numElements->isTypeDependent() || |
| numElements->isValueDependent()) && |
| "Size must be type- or value-dependent!"); |
| |
| // Dependently-sized array types that do not have a specified number |
| // of elements will have their sizes deduced from a dependent |
| // initializer. We do no canonicalization here at all, which is okay |
| // because they can't be used in most locations. |
| if (!numElements) { |
| auto *newType |
| = new (*this, TypeAlignment) |
| DependentSizedArrayType(*this, elementType, QualType(), |
| numElements, ASM, elementTypeQuals, |
| brackets); |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| // Otherwise, we actually build a new type every time, but we |
| // also build a canonical type. |
| |
| SplitQualType canonElementType = getCanonicalType(elementType).split(); |
| |
| void *insertPos = nullptr; |
| llvm::FoldingSetNodeID ID; |
| DependentSizedArrayType::Profile(ID, *this, |
| QualType(canonElementType.Ty, 0), |
| ASM, elementTypeQuals, numElements); |
| |
| // Look for an existing type with these properties. |
| DependentSizedArrayType *canonTy = |
| DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); |
| |
| // If we don't have one, build one. |
| if (!canonTy) { |
| canonTy = new (*this, TypeAlignment) |
| DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), |
| QualType(), numElements, ASM, elementTypeQuals, |
| brackets); |
| DependentSizedArrayTypes.InsertNode(canonTy, insertPos); |
| Types.push_back(canonTy); |
| } |
| |
| // Apply qualifiers from the element type to the array. |
| QualType canon = getQualifiedType(QualType(canonTy,0), |
| canonElementType.Quals); |
| |
| // If we didn't need extra canonicalization for the element type or the size |
| // expression, then just use that as our result. |
| if (QualType(canonElementType.Ty, 0) == elementType && |
| canonTy->getSizeExpr() == numElements) |
| return canon; |
| |
| // Otherwise, we need to build a type which follows the spelling |
| // of the element type. |
| auto *sugaredType |
| = new (*this, TypeAlignment) |
| DependentSizedArrayType(*this, elementType, canon, numElements, |
| ASM, elementTypeQuals, brackets); |
| Types.push_back(sugaredType); |
| return QualType(sugaredType, 0); |
| } |
| |
| QualType ASTContext::getIncompleteArrayType(QualType elementType, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned elementTypeQuals) const { |
| llvm::FoldingSetNodeID ID; |
| IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); |
| |
| void *insertPos = nullptr; |
| if (IncompleteArrayType *iat = |
| IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) |
| return QualType(iat, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. We also have to pull |
| // qualifiers off the element type. |
| QualType canon; |
| |
| if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { |
| SplitQualType canonSplit = getCanonicalType(elementType).split(); |
| canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), |
| ASM, elementTypeQuals); |
| canon = getQualifiedType(canon, canonSplit.Quals); |
| |
| // Get the new insert position for the node we care about. |
| IncompleteArrayType *existing = |
| IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); |
| assert(!existing && "Shouldn't be in the map!"); (void) existing; |
| } |
| |
| auto *newType = new (*this, TypeAlignment) |
| IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); |
| |
| IncompleteArrayTypes.InsertNode(newType, insertPos); |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| /// getVectorType - Return the unique reference to a vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, |
| VectorType::VectorKind VecKind) const { |
| assert(vecType->isBuiltinType()); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); |
| |
| void *InsertPos = nullptr; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType.isCanonical()) { |
| Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| auto *New = new (*this, TypeAlignment) |
| VectorType(vecType, NumElts, Canonical, VecKind); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| QualType |
| ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, |
| SourceLocation AttrLoc, |
| VectorType::VectorKind VecKind) const { |
| llvm::FoldingSetNodeID ID; |
| DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr, |
| VecKind); |
| void *InsertPos = nullptr; |
| DependentVectorType *Canon = |
| DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| DependentVectorType *New; |
| |
| if (Canon) { |
| New = new (*this, TypeAlignment) DependentVectorType( |
| *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); |
| } else { |
| QualType CanonVecTy = getCanonicalType(VecType); |
| if (CanonVecTy == VecType) { |
| New = new (*this, TypeAlignment) DependentVectorType( |
| *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind); |
| |
| DependentVectorType *CanonCheck = |
| DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CanonCheck && |
| "Dependent-sized vector_size canonical type broken"); |
| (void)CanonCheck; |
| DependentVectorTypes.InsertNode(New, InsertPos); |
| } else { |
| QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, |
| SourceLocation()); |
| New = new (*this, TypeAlignment) DependentVectorType( |
| *this, VecType, Canon, SizeExpr, AttrLoc, VecKind); |
| } |
| } |
| |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getExtVectorType - Return the unique reference to an extended vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType |
| ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { |
| assert(vecType->isBuiltinType() || vecType->isDependentType()); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, |
| VectorType::GenericVector); |
| void *InsertPos = nullptr; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType.isCanonical()) { |
| Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| auto *New = new (*this, TypeAlignment) |
| ExtVectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| QualType |
| ASTContext::getDependentSizedExtVectorType(QualType vecType, |
| Expr *SizeExpr, |
| SourceLocation AttrLoc) const { |
| llvm::FoldingSetNodeID ID; |
| DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), |
| SizeExpr); |
| |
| void *InsertPos = nullptr; |
| DependentSizedExtVectorType *Canon |
| = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| DependentSizedExtVectorType *New; |
| if (Canon) { |
| // We already have a canonical version of this array type; use it as |
| // the canonical type for a newly-built type. |
| New = new (*this, TypeAlignment) |
| DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), |
| SizeExpr, AttrLoc); |
| } else { |
| QualType CanonVecTy = getCanonicalType(vecType); |
| if (CanonVecTy == vecType) { |
| New = new (*this, TypeAlignment) |
| DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, |
| AttrLoc); |
| |
| DependentSizedExtVectorType *CanonCheck |
| = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); |
| (void)CanonCheck; |
| DependentSizedExtVectorTypes.InsertNode(New, InsertPos); |
| } else { |
| QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, |
| SourceLocation()); |
| New = new (*this, TypeAlignment) |
| DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc); |
| } |
| } |
| |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, |
| Expr *AddrSpaceExpr, |
| SourceLocation AttrLoc) const { |
| assert(AddrSpaceExpr->isInstantiationDependent()); |
| |
| QualType canonPointeeType = getCanonicalType(PointeeType); |
| |
| void *insertPos = nullptr; |
| llvm::FoldingSetNodeID ID; |
| DependentAddressSpaceType::Profile(ID, *this, canonPointeeType, |
| AddrSpaceExpr); |
| |
| DependentAddressSpaceType *canonTy = |
| DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos); |
| |
| if (!canonTy) { |
| canonTy = new (*this, TypeAlignment) |
| DependentAddressSpaceType(*this, canonPointeeType, |
| QualType(), AddrSpaceExpr, AttrLoc); |
| DependentAddressSpaceTypes.InsertNode(canonTy, insertPos); |
| Types.push_back(canonTy); |
| } |
| |
| if (canonPointeeType == PointeeType && |
| canonTy->getAddrSpaceExpr() == AddrSpaceExpr) |
| return QualType(canonTy, 0); |
| |
| auto *sugaredType |
| = new (*this, TypeAlignment) |
| DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0), |
| AddrSpaceExpr, AttrLoc); |
| Types.push_back(sugaredType); |
| return QualType(sugaredType, 0); |
| } |
| |
| /// Determine whether \p T is canonical as the result type of a function. |
| static bool isCanonicalResultType(QualType T) { |
| return T.isCanonical() && |
| (T.getObjCLifetime() == Qualifiers::OCL_None || |
| T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); |
| } |
| |
| /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. |
| QualType |
| ASTContext::getFunctionNoProtoType(QualType ResultTy, |
| const FunctionType::ExtInfo &Info) const { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionNoProtoType::Profile(ID, ResultTy, Info); |
| |
| void *InsertPos = nullptr; |
| if (FunctionNoProtoType *FT = |
| FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FT, 0); |
| |
| QualType Canonical; |
| if (!isCanonicalResultType(ResultTy)) { |
| Canonical = |
| getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info); |
| |
| // Get the new insert position for the node we care about. |
| FunctionNoProtoType *NewIP = |
| FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| auto *New = new (*this, TypeAlignment) |
| FunctionNoProtoType(ResultTy, Canonical, Info); |
| Types.push_back(New); |
| FunctionNoProtoTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| CanQualType |
| ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { |
| CanQualType CanResultType = getCanonicalType(ResultType); |
| |
| // Canonical result types do not have ARC lifetime qualifiers. |
| if (CanResultType.getQualifiers().hasObjCLifetime()) { |
| Qualifiers Qs = CanResultType.getQualifiers(); |
| Qs.removeObjCLifetime(); |
| return CanQualType::CreateUnsafe( |
| getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); |
| } |
| |
| return CanResultType; |
| } |
| |
| static bool isCanonicalExceptionSpecification( |
| const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { |
| if (ESI.Type == EST_None) |
| return true; |
| if (!NoexceptInType) |
| return false; |
| |
| // C++17 onwards: exception specification is part of the type, as a simple |
| // boolean "can this function type throw". |
| if (ESI.Type == EST_BasicNoexcept) |
| return true; |
| |
| // A noexcept(expr) specification is (possibly) canonical if expr is |
| // value-dependent. |
| if (ESI.Type == EST_DependentNoexcept) |
| return true; |
| |
| // A dynamic exception specification is canonical if it only contains pack |
| // expansions (so we can't tell whether it's non-throwing) and all its |
| // contained types are canonical. |
| if (ESI.Type == EST_Dynamic) { |
| bool AnyPackExpansions = false; |
| for (QualType ET : ESI.Exceptions) { |
| if (!ET.isCanonical()) |
| return false; |
| if (ET->getAs<PackExpansionType>()) |
| AnyPackExpansions = true; |
| } |
| return AnyPackExpansions; |
| } |
| |
| return false; |
| } |
| |
| QualType ASTContext::getFunctionTypeInternal( |
| QualType ResultTy, ArrayRef<QualType> ArgArray, |
| const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { |
| size_t NumArgs = ArgArray.size(); |
| |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, |
| *this, true); |
| |
| QualType Canonical; |
| bool Unique = false; |
| |
| void *InsertPos = nullptr; |
| if (FunctionProtoType *FPT = |
| FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
| QualType Existing = QualType(FPT, 0); |
| |
| // If we find a pre-existing equivalent FunctionProtoType, we can just reuse |
| // it so long as our exception specification doesn't contain a dependent |
| // noexcept expression, or we're just looking for a canonical type. |
| // Otherwise, we're going to need to create a type |
| // sugar node to hold the concrete expression. |
| if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) || |
| EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) |
| return Existing; |
| |
| // We need a new type sugar node for this one, to hold the new noexcept |
| // expression. We do no canonicalization here, but that's OK since we don't |
| // expect to see the same noexcept expression much more than once. |
| Canonical = getCanonicalType(Existing); |
| Unique = true; |
| } |
| |
| bool NoexceptInType = getLangOpts().CPlusPlus17; |
| bool IsCanonicalExceptionSpec = |
| isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType); |
| |
| // Determine whether the type being created is already canonical or not. |
| bool isCanonical = !Unique && IsCanonicalExceptionSpec && |
| isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn; |
| for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| if (!ArgArray[i].isCanonicalAsParam()) |
| isCanonical = false; |
| |
| if (OnlyWantCanonical) |
| assert(isCanonical && |
| "given non-canonical parameters constructing canonical type"); |
| |
| // If this type isn't canonical, get the canonical version of it if we don't |
| // already have it. The exception spec is only partially part of the |
| // canonical type, and only in C++17 onwards. |
| if (!isCanonical && Canonical.isNull()) { |
| SmallVector<QualType, 16> CanonicalArgs; |
| CanonicalArgs.reserve(NumArgs); |
| for (unsigned i = 0; i != NumArgs; ++i) |
| CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); |
| |
| llvm::SmallVector<QualType, 8> ExceptionTypeStorage; |
| FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; |
| CanonicalEPI.HasTrailingReturn = false; |
| |
| if (IsCanonicalExceptionSpec) { |
| // Exception spec is already OK. |
| } else if (NoexceptInType) { |
| switch (EPI.ExceptionSpec.Type) { |
| case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: |
| // We don't know yet. It shouldn't matter what we pick here; no-one |
| // should ever look at this. |
| LLVM_FALLTHROUGH; |
| case EST_None: case EST_MSAny: case EST_NoexceptFalse: |
| CanonicalEPI.ExceptionSpec.Type = EST_None; |
| break; |
| |
| // A dynamic exception specification is almost always "not noexcept", |
| // with the exception that a pack expansion might expand to no types. |
| case EST_Dynamic: { |
| bool AnyPacks = false; |
| for (QualType ET : EPI.ExceptionSpec.Exceptions) { |
| if (ET->getAs<PackExpansionType>()) |
| AnyPacks = true; |
| ExceptionTypeStorage.push_back(getCanonicalType(ET)); |
| } |
| if (!AnyPacks) |
| CanonicalEPI.ExceptionSpec.Type = EST_None; |
| else { |
| CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; |
| CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; |
| } |
| break; |
| } |
| |
| case EST_DynamicNone: case EST_BasicNoexcept: case EST_NoexceptTrue: |
| CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; |
| break; |
| |
| case EST_DependentNoexcept: |
| llvm_unreachable("dependent noexcept is already canonical"); |
| } |
| } else { |
| CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); |
| } |
| |
| // Adjust the canonical function result type. |
| CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); |
| Canonical = |
| getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true); |
| |
| // Get the new insert position for the node we care about. |
| FunctionProtoType *NewIP = |
| FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| // FunctionProtoType objects are allocated with extra bytes after |
| // them for three variable size arrays at the end: |
| // - parameter types |
| // - exception types |
| // - extended parameter information |
| // Instead of the exception types, there could be a noexcept |
| // expression, or information used to resolve the exception |
| // specification. |
| size_t Size = |
| sizeof(FunctionProtoType) + NumArgs * sizeof(QualType) + |
| FunctionProtoType::getExceptionSpecSize( |
| EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size()); |
| |
| // Put the ExtParameterInfos last. If all were equal, it would make |
| // more sense to put these before the exception specification, because |
| // it's much easier to skip past them compared to the elaborate switch |
| // required to skip the exception specification. However, all is not |
| // equal; ExtParameterInfos are used to model very uncommon features, |
| // and it's better not to burden the more common paths. |
| if (EPI.ExtParameterInfos) { |
| Size += NumArgs * sizeof(FunctionProtoType::ExtParameterInfo); |
| } |
| |
| auto *FTP = (FunctionProtoType *) Allocate(Size, TypeAlignment); |
| FunctionProtoType::ExtProtoInfo newEPI = EPI; |
| new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); |
| Types.push_back(FTP); |
| if (!Unique) |
| FunctionProtoTypes.InsertNode(FTP, InsertPos); |
| return QualType(FTP, 0); |
| } |
| |
| QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { |
| llvm::FoldingSetNodeID ID; |
| PipeType::Profile(ID, T, ReadOnly); |
| |
| void *InsertPos = nullptr; |
| if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pipe element type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getPipeType(getCanonicalType(T), ReadOnly); |
| |
| // Get the new insert position for the node we care about. |
| PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); |
| (void)NewIP; |
| } |
| auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly); |
| Types.push_back(New); |
| PipeTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { |
| // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. |
| return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant) |
| : Ty; |
| } |
| |
| QualType ASTContext::getReadPipeType(QualType T) const { |
| return getPipeType(T, true); |
| } |
| |
| QualType ASTContext::getWritePipeType(QualType T) const { |
| return getPipeType(T, false); |
| } |
| |
| #ifndef NDEBUG |
| static bool NeedsInjectedClassNameType(const RecordDecl *D) { |
| if (!isa<CXXRecordDecl>(D)) return false; |
| const auto *RD = cast<CXXRecordDecl>(D); |
| if (isa<ClassTemplatePartialSpecializationDecl>(RD)) |
| return true; |
| if (RD->getDescribedClassTemplate() && |
| !isa<ClassTemplateSpecializationDecl>(RD)) |
| return true; |
| return false; |
| } |
| #endif |
| |
| /// getInjectedClassNameType - Return the unique reference to the |
| /// injected class name type for the specified templated declaration. |
| QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, |
| QualType TST) const { |
| assert(NeedsInjectedClassNameType(Decl)); |
| if (Decl->TypeForDecl) { |
| assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
| } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { |
| assert(PrevDecl->TypeForDecl && "previous declaration has no type"); |
| Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
| } else { |
| Type *newType = |
| new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| } |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getTypeDeclType - Return the unique reference to the type for the |
| /// specified type declaration. |
| QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { |
| assert(Decl && "Passed null for Decl param"); |
| assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); |
| |
| if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl)) |
| return getTypedefType(Typedef); |
| |
| assert(!isa<TemplateTypeParmDecl>(Decl) && |
| "Template type parameter types are always available."); |
| |
| if (const auto *Record = dyn_cast<RecordDecl>(Decl)) { |
| assert(Record->isFirstDecl() && "struct/union has previous declaration"); |
| assert(!NeedsInjectedClassNameType(Record)); |
| return getRecordType(Record); |
| } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) { |
| assert(Enum->isFirstDecl() && "enum has previous declaration"); |
| return getEnumType(Enum); |
| } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { |
| Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| } else |
| llvm_unreachable("TypeDecl without a type?"); |
| |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getTypedefType - Return the unique reference to the type for the |
| /// specified typedef name decl. |
| QualType |
| ASTContext::getTypedefType(const TypedefNameDecl *Decl, |
| QualType Canonical) const { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| if (Canonical.isNull()) |
| Canonical = getCanonicalType(Decl->getUnderlyingType()); |
| auto *newType = new (*this, TypeAlignment) |
| TypedefType(Type::Typedef, Decl, Canonical); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| QualType ASTContext::getRecordType(const RecordDecl *Decl) const { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) |
| if (PrevDecl->TypeForDecl) |
| return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
| |
| auto *newType = new (*this, TypeAlignment) RecordType(Decl); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| QualType ASTContext::getEnumType(const EnumDecl *Decl) const { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) |
| if (PrevDecl->TypeForDecl) |
| return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
| |
| auto *newType = new (*this, TypeAlignment) EnumType(Decl); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| QualType ASTContext::getAttributedType(AttributedType::Kind attrKind, |
| QualType modifiedType, |
| QualType equivalentType) { |
| llvm::FoldingSetNodeID id; |
| AttributedType::Profile(id, attrKind, modifiedType, equivalentType); |
| |
| void *insertPos = nullptr; |
| AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); |
| if (type) return QualType(type, 0); |
| |
| QualType canon = getCanonicalType(equivalentType); |
| type = new (*this, TypeAlignment) |
| AttributedType(canon, attrKind, modifiedType, equivalentType); |
| |
| Types.push_back(type); |
| AttributedTypes.InsertNode(type, insertPos); |
| |
| return QualType(type, 0); |
| } |
| |
| /// Retrieve a substitution-result type. |
| QualType |
| ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, |
| QualType Replacement) const { |
| assert(Replacement.isCanonical() |
| && "replacement types must always be canonical"); |
| |
| llvm::FoldingSetNodeID ID; |
| SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); |
| void *InsertPos = nullptr; |
| SubstTemplateTypeParmType *SubstParm |
| = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!SubstParm) { |
| SubstParm = new (*this, TypeAlignment) |
| SubstTemplateTypeParmType(Parm, Replacement); |
| Types.push_back(SubstParm); |
| SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); |
| } |
| |
| return QualType(SubstParm, 0); |
| } |
| |
| /// Retrieve a |
| QualType ASTContext::getSubstTemplateTypeParmPackType( |
| const TemplateTypeParmType *Parm, |
| const TemplateArgument &ArgPack) { |
| #ifndef NDEBUG |
| for (const auto &P : ArgPack.pack_elements()) { |
| assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"); |
| assert(P.getAsType().isCanonical() && "Pack contains non-canonical type"); |
| } |
| #endif |
| |
| llvm::FoldingSetNodeID ID; |
| SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); |
| void *InsertPos = nullptr; |
| if (SubstTemplateTypeParmPackType *SubstParm |
| = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(SubstParm, 0); |
| |
| QualType Canon; |
| if (!Parm->isCanonicalUnqualified()) { |
| Canon = getCanonicalType(QualType(Parm, 0)); |
| Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), |
| ArgPack); |
| SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| auto *SubstParm |
| = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, |
| ArgPack); |
| Types.push_back(SubstParm); |
| SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos); |
| return QualType(SubstParm, 0); |
| } |
| |
| /// Retrieve the template type parameter type for a template |
| /// parameter or parameter pack with the given depth, index, and (optionally) |
| /// name. |
| QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, |
| bool ParameterPack, |
| TemplateTypeParmDecl *TTPDecl) const { |
| llvm::FoldingSetNodeID ID; |
| TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); |
| void *InsertPos = nullptr; |
| TemplateTypeParmType *TypeParm |
| = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (TypeParm) |
| return QualType(TypeParm, 0); |
| |
| if (TTPDecl) { |
| QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); |
| TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); |
| |
| TemplateTypeParmType *TypeCheck |
| = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!TypeCheck && "Template type parameter canonical type broken"); |
| (void)TypeCheck; |
| } else |
| TypeParm = new (*this, TypeAlignment) |
| TemplateTypeParmType(Depth, Index, ParameterPack); |
| |
| Types.push_back(TypeParm); |
| TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); |
| |
| return QualType(TypeParm, 0); |
| } |
| |
| TypeSourceInfo * |
| ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, |
| SourceLocation NameLoc, |
| const TemplateArgumentListInfo &Args, |
| QualType Underlying) const { |
| assert(!Name.getAsDependentTemplateName() && |
| "No dependent template names here!"); |
| QualType TST = getTemplateSpecializationType(Name, Args, Underlying); |
| |
| TypeSourceInfo *DI = CreateTypeSourceInfo(TST); |
| TemplateSpecializationTypeLoc TL = |
| DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); |
| TL.setTemplateKeywordLoc(SourceLocation()); |
| TL.setTemplateNameLoc(NameLoc); |
| TL.setLAngleLoc(Args.getLAngleLoc()); |
| TL.setRAngleLoc(Args.getRAngleLoc()); |
| for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) |
| TL.setArgLocInfo(i, Args[i].getLocInfo()); |
| return DI; |
| } |
| |
| QualType |
| ASTContext::getTemplateSpecializationType(TemplateName Template, |
| const TemplateArgumentListInfo &Args, |
| QualType Underlying) const { |
| assert(!Template.getAsDependentTemplateName() && |
| "No dependent template names here!"); |
| |
| SmallVector<TemplateArgument, 4> ArgVec; |
| ArgVec.reserve(Args.size()); |
| for (const TemplateArgumentLoc &Arg : Args.arguments()) |
| ArgVec.push_back(Arg.getArgument()); |
| |
| return getTemplateSpecializationType(Template, ArgVec, Underlying); |
| } |
| |
| #ifndef NDEBUG |
| static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { |
| for (const TemplateArgument &Arg : Args) |
| if (Arg.isPackExpansion()) |
| return true; |
| |
| return true; |
| } |
| #endif |
| |
| QualType |
| ASTContext::getTemplateSpecializationType(TemplateName Template, |
| ArrayRef<TemplateArgument> Args, |
| QualType Underlying) const { |
| assert(!Template.getAsDependentTemplateName() && |
| "No dependent template names here!"); |
| // Look through qualified template names. |
| if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| Template = TemplateName(QTN->getTemplateDecl()); |
| |
| bool IsTypeAlias = |
| Template.getAsTemplateDecl() && |
| isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); |
| QualType CanonType; |
| if (!Underlying.isNull()) |
| CanonType = getCanonicalType(Underlying); |
| else { |
| // We can get here with an alias template when the specialization contains |
| // a pack expansion that does not match up with a parameter pack. |
| assert((!IsTypeAlias || hasAnyPackExpansions(Args)) && |
| "Caller must compute aliased type"); |
| IsTypeAlias = false; |
| CanonType = getCanonicalTemplateSpecializationType(Template, Args); |
| } |
| |
| // Allocate the (non-canonical) template specialization type, but don't |
| // try to unique it: these types typically have location information that |
| // we don't unique and don't want to lose. |
| void *Mem = Allocate(sizeof(TemplateSpecializationType) + |
| sizeof(TemplateArgument) * Args.size() + |
| (IsTypeAlias? sizeof(QualType) : 0), |
| TypeAlignment); |
| auto *Spec |
| = new (Mem) TemplateSpecializationType(Template, Args, CanonType, |
| IsTypeAlias ? Underlying : QualType()); |
| |
| Types.push_back(Spec); |
| return QualType(Spec, 0); |
| } |
| |
| QualType ASTContext::getCanonicalTemplateSpecializationType( |
| TemplateName Template, ArrayRef<TemplateArgument> Args) const { |
| assert(!Template.getAsDependentTemplateName() && |
| "No dependent template names here!"); |
| |
| // Look through qualified template names. |
| if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| Template = TemplateName(QTN->getTemplateDecl()); |
| |
| // Build the canonical template specialization type. |
| TemplateName CanonTemplate = getCanonicalTemplateName(Template); |
| SmallVector<TemplateArgument, 4> CanonArgs; |
| unsigned NumArgs = Args.size(); |
| CanonArgs.reserve(NumArgs); |
| for (const TemplateArgument &Arg : Args) |
| CanonArgs.push_back(getCanonicalTemplateArgument(Arg)); |
| |
| // Determine whether this canonical template specialization type already |
| // exists. |
| llvm::FoldingSetNodeID ID; |
| TemplateSpecializationType::Profile(ID, CanonTemplate, |
| CanonArgs, *this); |
| |
| void *InsertPos = nullptr; |
| TemplateSpecializationType *Spec |
| = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!Spec) { |
| // Allocate a new canonical template specialization type. |
| void *Mem = Allocate((sizeof(TemplateSpecializationType) + |
| sizeof(TemplateArgument) * NumArgs), |
| TypeAlignment); |
| Spec = new (Mem) TemplateSpecializationType(CanonTemplate, |
| CanonArgs, |
| QualType(), QualType()); |
| Types.push_back(Spec); |
| TemplateSpecializationTypes.InsertNode(Spec, InsertPos); |
| } |
| |
| assert(Spec->isDependentType() && |
| "Non-dependent template-id type must have a canonical type"); |
| return QualType(Spec, 0); |
| } |
| |
| QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifier *NNS, |
| QualType NamedType, |
| TagDecl *OwnedTagDecl) const { |
| llvm::FoldingSetNodeID ID; |
| ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); |
| |
| void *InsertPos = nullptr; |
| ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| QualType Canon = NamedType; |
| if (!Canon.isCanonical()) { |
| Canon = getCanonicalType(NamedType); |
| ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CheckT && "Elaborated canonical type broken"); |
| (void)CheckT; |
| } |
| |
| T = new (*this, TypeAlignment) |
| ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); |
| Types.push_back(T); |
| ElaboratedTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| QualType |
| ASTContext::getParenType(QualType InnerType) const { |
| llvm::FoldingSetNodeID ID; |
| ParenType::Profile(ID, InnerType); |
| |
| void *InsertPos = nullptr; |
| ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| QualType Canon = InnerType; |
| if (!Canon.isCanonical()) { |
| Canon = getCanonicalType(InnerType); |
| ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CheckT && "Paren canonical type broken"); |
| (void)CheckT; |
| } |
| |
| T = new (*this, TypeAlignment) ParenType(InnerType, Canon); |
| Types.push_back(T); |
| ParenTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name, |
| QualType Canon) const { |
| if (Canon.isNull()) { |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| if (CanonNNS != NNS) |
| Canon = getDependentNameType(Keyword, CanonNNS, Name); |
| } |
| |
| llvm::FoldingSetNodeID ID; |
| DependentNameType::Profile(ID, Keyword, NNS, Name); |
| |
| void *InsertPos = nullptr; |
| DependentNameType *T |
| = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon); |
| Types.push_back(T); |
| DependentNameTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| QualType |
| ASTContext::getDependentTemplateSpecializationType( |
| ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name, |
| const TemplateArgumentListInfo &Args) const { |
| // TODO: avoid this copy |
| SmallVector<TemplateArgument, 16> ArgCopy; |
| for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| ArgCopy.push_back(Args[I].getArgument()); |
| return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy); |
| } |
| |
| QualType |
| ASTContext::getDependentTemplateSpecializationType( |
| ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name, |
| ArrayRef<TemplateArgument> Args) const { |
| assert((!NNS || NNS->isDependent()) && |
| "nested-name-specifier must be dependent"); |
| |
| llvm::FoldingSetNodeID ID; |
| DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, |
| Name, Args); |
| |
| void *InsertPos = nullptr; |
| DependentTemplateSpecializationType *T |
| = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| |
| ElaboratedTypeKeyword CanonKeyword = Keyword; |
| if (Keyword == ETK_None) CanonKeyword = ETK_Typename; |
| |
| bool AnyNonCanonArgs = false; |
| unsigned NumArgs = Args.size(); |
| SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); |
| for (unsigned I = 0; I != NumArgs; ++I) { |
| CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); |
| if (!CanonArgs[I].structurallyEquals(Args[I])) |
| AnyNonCanonArgs = true; |
| } |
| |
| QualType Canon; |
| if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { |
| Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, |
| Name, |
| CanonArgs); |
| |
| // Find the insert position again. |
| DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + |
| sizeof(TemplateArgument) * NumArgs), |
| TypeAlignment); |
| T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, |
| Name, Args, Canon); |
| Types.push_back(T); |
| DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) { |
| TemplateArgument Arg; |
| if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { |
| QualType ArgType = getTypeDeclType(TTP); |
| if (TTP->isParameterPack()) |
| ArgType = getPackExpansionType(ArgType, None); |
| |
| Arg = TemplateArgument(ArgType); |
| } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| Expr *E = new (*this) DeclRefExpr( |
| NTTP, /*enclosing*/false, |
| NTTP->getType().getNonLValueExprType(*this), |
| Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation()); |
| |
| if (NTTP->isParameterPack()) |
| E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(), |
| None); |
| Arg = TemplateArgument(E); |
| } else { |
| auto *TTP = cast<TemplateTemplateParmDecl>(Param); |
| if (TTP->isParameterPack()) |
| Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>()); |
| else |
| Arg = TemplateArgument(TemplateName(TTP)); |
| } |
| |
| if (Param->isTemplateParameterPack()) |
| Arg = TemplateArgument::CreatePackCopy(*this, Arg); |
| |
| return Arg; |
| } |
| |
| void |
| ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params, |
| SmallVectorImpl<TemplateArgument> &Args) { |
| Args.reserve(Args.size() + Params->size()); |
| |
| for (NamedDecl *Param : *Params) |
| Args.push_back(getInjectedTemplateArg(Param)); |
| } |
| |
| QualType ASTContext::getPackExpansionType(QualType Pattern, |
| Optional<unsigned> NumExpansions) { |
| llvm::FoldingSetNodeID ID; |
| PackExpansionType::Profile(ID, Pattern, NumExpansions); |
| |
| assert(Pattern->containsUnexpandedParameterPack() && |
| "Pack expansions must expand one or more parameter packs"); |
| void *InsertPos = nullptr; |
| PackExpansionType *T |
| = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| QualType Canon; |
| if (!Pattern.isCanonical()) { |
| Canon = getCanonicalType(Pattern); |
| // The canonical type might not contain an unexpanded parameter pack, if it |
| // contains an alias template specialization which ignores one of its |
| // parameters. |
| if (Canon->containsUnexpandedParameterPack()) { |
| Canon = getPackExpansionType(Canon, NumExpansions); |
| |
| // Find the insert position again, in case we inserted an element into |
| // PackExpansionTypes and invalidated our insert position. |
| PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| } |
| |
| T = new (*this, TypeAlignment) |
| PackExpansionType(Pattern, Canon, NumExpansions); |
| Types.push_back(T); |
| PackExpansionTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| /// CmpProtocolNames - Comparison predicate for sorting protocols |
| /// alphabetically. |
| static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, |
| ObjCProtocolDecl *const *RHS) { |
| return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); |
| } |
| |
| static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { |
| if (Protocols.empty()) return true; |
| |
| if (Protocols[0]->getCanonicalDecl() != Protocols[0]) |
| return false; |
| |
| for (unsigned i = 1; i != Protocols.size(); ++i) |
| if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || |
| Protocols[i]->getCanonicalDecl() != Protocols[i]) |
| return false; |
| return true; |
| } |
| |
| static void |
| SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { |
| // Sort protocols, keyed by name. |
| llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); |
| |
| // Canonicalize. |
| for (ObjCProtocolDecl *&P : Protocols) |
| P = P->getCanonicalDecl(); |
| |
| // Remove duplicates. |
| auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end()); |
| Protocols.erase(ProtocolsEnd, Protocols.end()); |
| } |
| |
| QualType ASTContext::getObjCObjectType(QualType BaseType, |
| ObjCProtocolDecl * const *Protocols, |
| unsigned NumProtocols) const { |
| return getObjCObjectType(BaseType, {}, |
| llvm::makeArrayRef(Protocols, NumProtocols), |
| /*isKindOf=*/false); |
| } |
| |
| QualType ASTContext::getObjCObjectType( |
| QualType baseType, |
| ArrayRef<QualType> typeArgs, |
| ArrayRef<ObjCProtocolDecl *> protocols, |
| bool isKindOf) const { |
| // If the base type is an interface and there aren't any protocols or |
| // type arguments to add, then the interface type will do just fine. |
| if (typeArgs.empty() && protocols.empty() && !isKindOf && |
| isa<ObjCInterfaceType>(baseType)) |
| return baseType; |
| |
| // Look in the folding set for an existing type. |
| llvm::FoldingSetNodeID ID; |
| ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); |
| void *InsertPos = nullptr; |
| if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // Determine the type arguments to be used for canonicalization, |
| // which may be explicitly specified here or written on the base |
| // type. |
| ArrayRef<QualType> effectiveTypeArgs = typeArgs; |
| if (effectiveTypeArgs.empty()) { |
| if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) |
| effectiveTypeArgs = baseObject->getTypeArgs(); |
| } |
| |
| // Build the canonical type, which has the canonical base type and a |
| // sorted-and-uniqued list of protocols and the type arguments |
| // canonicalized. |
| QualType canonical; |
| bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(), |
| effectiveTypeArgs.end(), |
| [&](QualType type) { |
| return type.isCanonical(); |
| }); |
| bool protocolsSorted = areSortedAndUniqued(protocols); |
| if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { |
| // Determine the canonical type arguments. |
| ArrayRef<QualType> canonTypeArgs; |
| SmallVector<QualType, 4> canonTypeArgsVec; |
| if (!typeArgsAreCanonical) { |
| canonTypeArgsVec.reserve(effectiveTypeArgs.size()); |
| for (auto typeArg : effectiveTypeArgs) |
| canonTypeArgsVec.push_back(getCanonicalType(typeArg)); |
| canonTypeArgs = canonTypeArgsVec; |
| } else { |
| canonTypeArgs = effectiveTypeArgs; |
| } |
| |
| ArrayRef<ObjCProtocolDecl *> canonProtocols; |
| SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; |
| if (!protocolsSorted) { |
| canonProtocolsVec.append(protocols.begin(), protocols.end()); |
| SortAndUniqueProtocols(canonProtocolsVec); |
| canonProtocols = canonProtocolsVec; |
| } else { |
| canonProtocols = protocols; |
| } |
| |
| canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, |
| canonProtocols, isKindOf); |
| |
| // Regenerate InsertPos. |
| ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| unsigned size = sizeof(ObjCObjectTypeImpl); |
| size += typeArgs.size() * sizeof(QualType); |
| size += protocols.size() * sizeof(ObjCProtocolDecl *); |
| void *mem = Allocate(size, TypeAlignment); |
| auto *T = |
| new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, |
| isKindOf); |
| |
| Types.push_back(T); |
| ObjCObjectTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| /// Apply Objective-C protocol qualifiers to the given type. |
| /// If this is for the canonical type of a type parameter, we can apply |
| /// protocol qualifiers on the ObjCObjectPointerType. |
| QualType |
| ASTContext::applyObjCProtocolQualifiers(QualType type, |
| ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, |
| bool allowOnPointerType) const { |
| hasError = false; |
| |
| if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) { |
| return getObjCTypeParamType(objT->getDecl(), protocols); |
| } |
| |
| // Apply protocol qualifiers to ObjCObjectPointerType. |
| if (allowOnPointerType) { |
| if (const auto *objPtr = |
| dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) { |
| const ObjCObjectType *objT = objPtr->getObjectType(); |
| // Merge protocol lists and construct ObjCObjectType. |
| SmallVector<ObjCProtocolDecl*, 8> protocolsVec; |
| protocolsVec.append(objT->qual_begin(), |
| objT->qual_end()); |
| protocolsVec.append(protocols.begin(), protocols.end()); |
| ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; |
| type = getObjCObjectType( |
| objT->getBaseType(), |
| objT->getTypeArgsAsWritten(), |
| protocols, |
| objT->isKindOfTypeAsWritten()); |
| return getObjCObjectPointerType(type); |
| } |
| } |
| |
| // Apply protocol qualifiers to ObjCObjectType. |
| if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){ |
| // FIXME: Check for protocols to which the class type is already |
| // known to conform. |
| |
| return getObjCObjectType(objT->getBaseType(), |
| objT->getTypeArgsAsWritten(), |
| protocols, |
| objT->isKindOfTypeAsWritten()); |
| } |
| |
| // If the canonical type is ObjCObjectType, ... |
| if (type->isObjCObjectType()) { |
| // Silently overwrite any existing protocol qualifiers. |
| // TODO: determine whether that's the right thing to do. |
| |
| // FIXME: Check for protocols to which the class type is already |
| // known to conform. |
| return getObjCObjectType(type, {}, protocols, false); |
| } |
| |
| // id<protocol-list> |
| if (type->isObjCIdType()) { |
| const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
| type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols, |
| objPtr->isKindOfType()); |
| return getObjCObjectPointerType(type); |
| } |
| |
| // Class<protocol-list> |
| if (type->isObjCClassType()) { |
| const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
| type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols, |
| objPtr->isKindOfType()); |
| return getObjCObjectPointerType(type); |
| } |
| |
| hasError = true; |
| return type; |
| } |
| |
| QualType |
| ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, |
| ArrayRef<ObjCProtocolDecl *> protocols, |
| QualType Canonical) const { |
| // Look in the folding set for an existing type. |
| llvm::FoldingSetNodeID ID; |
| ObjCTypeParamType::Profile(ID, Decl, protocols); |
| void *InsertPos = nullptr; |
| if (ObjCTypeParamType *TypeParam = |
| ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(TypeParam, 0); |
| |
| if (Canonical.isNull()) { |
| // We canonicalize to the underlying type. |
| Canonical = getCanonicalType(Decl->getUnderlyingType()); |
| if (!protocols.empty()) { |
| // Apply the protocol qualifers. |
| bool hasError; |
| Canonical = applyObjCProtocolQualifiers(Canonical, protocols, hasError, |
| true/*allowOnPointerType*/); |
| assert(!hasError && "Error when apply protocol qualifier to bound type"); |
| } |
| } |
| |
| unsigned size = sizeof(ObjCTypeParamType); |
| size += protocols.size() * sizeof(ObjCProtocolDecl *); |
| void *mem = Allocate(size, TypeAlignment); |
| auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); |
| |
| Types.push_back(newType); |
| ObjCTypeParamTypes.InsertNode(newType, InsertPos); |
| return QualType(newType, 0); |
| } |
| |
| /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's |
| /// protocol list adopt all protocols in QT's qualified-id protocol |
| /// list. |
| bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, |
| ObjCInterfaceDecl *IC) { |
| if (!QT->isObjCQualifiedIdType()) |
| return false; |
| |
| if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { |
| // If both the right and left sides have qualifiers. |
| for (auto *Proto : OPT->quals()) { |
| if (!IC->ClassImplementsProtocol(Proto, false)) |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in |
| /// QT's qualified-id protocol list adopt all protocols in IDecl's list |
| /// of protocols. |
| bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, |
| ObjCInterfaceDecl *IDecl) { |
| if (!QT->isObjCQualifiedIdType()) |
| return false; |
| const auto *OPT = QT->getAs<ObjCObjectPointerType>(); |
| if (!OPT) |
| return false; |
| if (!IDecl->hasDefinition()) |
| return false; |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; |
| CollectInheritedProtocols(IDecl, InheritedProtocols); |
| if (InheritedProtocols.empty()) |
| return false; |
| // Check that if every protocol in list of id<plist> conforms to a protocol |
| // of IDecl's, then bridge casting is ok. |
| bool Conforms = false; |
| for (auto *Proto : OPT->quals()) { |
| Conforms = false; |
| for (auto *PI : InheritedProtocols) { |
| if (ProtocolCompatibleWithProtocol(Proto, PI)) { |
| Conforms = true; |
| break; |
| } |
| } |
| if (!Conforms) |
| break; |
| } |
| if (Conforms) |
| return true; |
| |
| for (auto *PI : InheritedProtocols) { |
| // If both the right and left sides have qualifiers. |
| bool Adopts = false; |
| for (auto *Proto : OPT->quals()) { |
| // return 'true' if 'PI' is in the inheritance hierarchy of Proto |
| if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) |
| break; |
| } |
| if (!Adopts) |
| return false; |
| } |
| return true; |
| } |
| |
| /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for |
| /// the given object type. |
| QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { |
| llvm::FoldingSetNodeID ID; |
| ObjCObjectPointerType::Profile(ID, ObjectT); |
| |
| void *InsertPos = nullptr; |
| if (ObjCObjectPointerType *QT = |
| ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // Find the canonical object type. |
| QualType Canonical; |
| if (!ObjectT.isCanonical()) { |
| Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); |
| |
| // Regenerate InsertPos. |
| ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| // No match. |
| void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); |
| auto *QType = |
| new (Mem) ObjCObjectPointerType(Canonical, ObjectT); |
| |
| Types.push_back(QType); |
| ObjCObjectPointerTypes.InsertNode(QType, InsertPos); |
| return QualType(QType, 0); |
| } |
| |
| /// getObjCInterfaceType - Return the unique reference to the type for the |
| /// specified ObjC interface decl. The list of protocols is optional. |
| QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, |
| ObjCInterfaceDecl *PrevDecl) const { |
| if (Decl->TypeForDecl) |
| return QualType(Decl->TypeForDecl, 0); |
| |
| if (PrevDecl) { |
| assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); |
| Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| return QualType(PrevDecl->TypeForDecl, 0); |
| } |
| |
| // Prefer the definition, if there is one. |
| if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) |
| Decl = Def; |
| |
| void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); |
| auto *T = new (Mem) ObjCInterfaceType(Decl); |
| Decl->TypeForDecl = T; |
| Types.push_back(T); |
| return QualType(T, 0); |
| } |
| |
| /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique |
| /// TypeOfExprType AST's (since expression's are never shared). For example, |
| /// multiple declarations that refer to "typeof(x)" all contain different |
| /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { |
| TypeOfExprType *toe; |
| if (tofExpr->isTypeDependent()) { |
| llvm::FoldingSetNodeID ID; |
| DependentTypeOfExprType::Profile(ID, *this, tofExpr); |
| |
| void *InsertPos = nullptr; |
| DependentTypeOfExprType *Canon |
| = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (Canon) { |
| // We already have a "canonical" version of an identical, dependent |
| // typeof(expr) type. Use that as our canonical type. |
| toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, |
| QualType((TypeOfExprType*)Canon, 0)); |
| } else { |
| // Build a new, canonical typeof(expr) type. |
| Canon |
| = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); |
| DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); |
| toe = Canon; |
| } |
| } else { |
| QualType Canonical = getCanonicalType(tofExpr->getType()); |
| toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); |
| } |
| Types.push_back(toe); |
| return QualType(toe, 0); |
| } |
| |
| /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
| /// TypeOfType nodes. The only motivation to unique these nodes would be |
| /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
| /// an issue. This doesn't affect the type checker, since it operates |
| /// on canonical types (which are always unique). |
| QualType ASTContext::getTypeOfType(QualType tofType) const { |
| QualType Canonical = getCanonicalType(tofType); |
| auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); |
| Types.push_back(tot); |
| return QualType(tot, 0); |
| } |
| |
| /// Unlike many "get<Type>" functions, we don't unique DecltypeType |
| /// nodes. This would never be helpful, since each such type has its own |
| /// expression, and would not give a significant memory saving, since there |
| /// is an Expr tree under each such type. |
| QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { |
| DecltypeType *dt; |
| |
| // C++11 [temp.type]p2: |
| // If an expression e involves a template parameter, decltype(e) denotes a |
| // unique dependent type. Two such decltype-specifiers refer to the same |
| // type only if their expressions are equivalent (14.5.6.1). |
| if (e->isInstantiationDependent()) { |
| llvm::FoldingSetNodeID ID; |
| DependentDecltypeType::Profile(ID, *this, e); |
| |
| void *InsertPos = nullptr; |
| DependentDecltypeType *Canon |
| = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (!Canon) { |
| // Build a new, canonical decltype(expr) type. |
| Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); |
| DependentDecltypeTypes.InsertNode(Canon, InsertPos); |
| } |
| dt = new (*this, TypeAlignment) |
| DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); |
| } else { |
| dt = new (*this, TypeAlignment) |
| DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); |
| } |
| Types.push_back(dt); |
| return QualType(dt, 0); |
| } |
| |
| /// getUnaryTransformationType - We don't unique these, since the memory |
| /// savings are minimal and these are rare. |
| QualType ASTContext::getUnaryTransformType(QualType BaseType, |
| QualType UnderlyingType, |
| UnaryTransformType::UTTKind Kind) |
| const { |
| UnaryTransformType *ut = nullptr; |
| |
| if (BaseType->isDependentType()) { |
| // Look in the folding set for an existing type. |
| llvm::FoldingSetNodeID ID; |
| DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind); |
| |
| void *InsertPos = nullptr; |
| DependentUnaryTransformType *Canon |
| = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!Canon) { |
| // Build a new, canonical __underlying_type(type) type. |
| Canon = new (*this, TypeAlignment) |
| DependentUnaryTransformType(*this, getCanonicalType(BaseType), |
| Kind); |
| DependentUnaryTransformTypes.InsertNode(Canon, InsertPos); |
| } |
| ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, |
| QualType(), Kind, |
| QualType(Canon, 0)); |
| } else { |
| QualType CanonType = getCanonicalType(UnderlyingType); |
| ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, |
| UnderlyingType, Kind, |
| CanonType); |
| } |
| Types.push_back(ut); |
| return QualType(ut, 0); |
| } |
| |
| /// getAutoType - Return the uniqued reference to the 'auto' type which has been |
| /// deduced to the given type, or to the canonical undeduced 'auto' type, or the |
| /// canonical deduced-but-dependent 'auto' type. |
| QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, |
| bool IsDependent) const { |
| if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent) |
| return getAutoDeductType(); |
| |
| // Look in the folding set for an existing type. |
| void *InsertPos = nullptr; |
| llvm::FoldingSetNodeID ID; |
| AutoType::Profile(ID, DeducedType, Keyword, IsDependent); |
| if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(AT, 0); |
| |
| auto *AT = new (*this, TypeAlignment) |
| AutoType(DeducedType, Keyword, IsDependent); |
| Types.push_back(AT); |
| if (InsertPos) |
| AutoTypes.InsertNode(AT, InsertPos); |
| return QualType(AT, 0); |
| } |
| |
| /// Return the uniqued reference to the deduced template specialization type |
| /// which has been deduced to the given type, or to the canonical undeduced |
| /// such type, or the canonical deduced-but-dependent such type. |
| QualType ASTContext::getDeducedTemplateSpecializationType( |
| TemplateName Template, QualType DeducedType, bool IsDependent) const { |
| // Look in the folding set for an existing type. |
| void *InsertPos = nullptr; |
| llvm::FoldingSetNodeID ID; |
| DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType, |
| IsDependent); |
| if (DeducedTemplateSpecializationType *DTST = |
| DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(DTST, 0); |
| |
| auto *DTST = new (*this, TypeAlignment) |
| DeducedTemplateSpecializationType(Template, DeducedType, IsDependent); |
| Types.push_back(DTST); |
| if (InsertPos) |
| DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos); |
| return QualType(DTST, 0); |
| } |
| |
| /// getAtomicType - Return the uniqued reference to the atomic type for |
| /// the given value type. |
| QualType ASTContext::getAtomicType(QualType T) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| AtomicType::Profile(ID, T); |
| |
| void *InsertPos = nullptr; |
| if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(AT, 0); |
| |
| // If the atomic value type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getAtomicType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical); |
| Types.push_back(New); |
| AtomicTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getAutoDeductType - Get type pattern for deducing against 'auto'. |
| QualType ASTContext::getAutoDeductType() const { |
| if (AutoDeductTy.isNull()) |
| AutoDeductTy = QualType( |
| new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto, |
| /*dependent*/false), |
| 0); |
| return AutoDeductTy; |
| } |
| |
| /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. |
| QualType ASTContext::getAutoRRefDeductType() const { |
| if (AutoRRefDeductTy.isNull()) |
| AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); |
| assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); |
| return AutoRRefDeductTy; |
| } |
| |
| /// getTagDeclType - Return the unique reference to the type for the |
| /// specified TagDecl (struct/union/class/enum) decl. |
| QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { |
| assert(Decl); |
| // FIXME: What is the design on getTagDeclType when it requires casting |
| // away const? mutable? |
| return getTypeDeclType(const_cast<TagDecl*>(Decl)); |
| } |
| |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| CanQualType ASTContext::getSizeType() const { |
| return getFromTargetType(Target->getSizeType()); |
| } |
| |
| /// Return the unique signed counterpart of the integer type |
| /// corresponding to size_t. |
| CanQualType ASTContext::getSignedSizeType() const { |
| return getFromTargetType(Target->getSignedSizeType()); |
| } |
| |
| /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). |
| CanQualType ASTContext::getIntMaxType() const { |
| return getFromTargetType(Target->getIntMaxType()); |
| } |
| |
| /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). |
| CanQualType ASTContext::getUIntMaxType() const { |
| return getFromTargetType(Target->getUIntMaxType()); |
| } |
| |
| /// getSignedWCharType - Return the type of "signed wchar_t". |
| /// Used when in C++, as a GCC extension. |
| QualType ASTContext::getSignedWCharType() const { |
| // FIXME: derive from "Target" ? |
| return WCharTy; |
| } |
| |
| /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
| /// Used when in C++, as a GCC extension. |
| QualType ASTContext::getUnsignedWCharType() const { |
| // FIXME: derive from "Target" ? |
| return UnsignedIntTy; |
| } |
| |
| QualType ASTContext::getIntPtrType() const { |
| return getFromTargetType(Target->getIntPtrType()); |
| } |
| |
| QualType ASTContext::getUIntPtrType() const { |
| return getCorrespondingUnsignedType(getIntPtrType()); |
| } |
| |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| QualType ASTContext::getPointerDiffType() const { |
| return getFromTargetType(Target->getPtrDiffType(0)); |
| } |
| |
| /// Return the unique unsigned counterpart of "ptrdiff_t" |
| /// integer type. The standard (C11 7.21.6.1p7) refers to this type |
| /// in the definition of %tu format specifier. |
| QualType ASTContext::getUnsignedPointerDiffType() const { |
| return getFromTargetType(Target->getUnsignedPtrDiffType(0)); |
| } |
| |
| /// Return the unique type for "pid_t" defined in |
| /// <sys/types.h>. We need this to compute the correct type for vfork(). |
| QualType ASTContext::getProcessIDType() const { |
| return getFromTargetType(Target->getProcessIDType()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Operators |
| //===----------------------------------------------------------------------===// |
| |
| CanQualType ASTContext::getCanonicalParamType(QualType T) const { |
| // Push qualifiers into arrays, and then discard any remaining |
| // qualifiers. |
| T = getCanonicalType(T); |
| T = getVariableArrayDecayedType(T); |
| const Type *Ty = T.getTypePtr(); |
| QualType Result; |
| if (isa<ArrayType>(Ty)) { |
| Result = getArrayDecayedType(QualType(Ty,0)); |
| } else if (isa<FunctionType>(Ty)) { |
| Result = getPointerType(QualType(Ty, 0)); |
| } else { |
| Result = QualType(Ty, 0); |
| } |
| |
| return CanQualType::CreateUnsafe(Result); |
| } |
| |
| QualType ASTContext::getUnqualifiedArrayType(QualType type, |
| Qualifiers &quals) { |
| SplitQualType splitType = type.getSplitUnqualifiedType(); |
| |
| // FIXME: getSplitUnqualifiedType() actually walks all the way to |
| // the unqualified desugared type and then drops it on the floor. |
| // We then have to strip that sugar back off with |
| // getUnqualifiedDesugaredType(), which is silly. |
| const auto *AT = |
| dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); |
| |
| // If we don't have an array, just use the results in splitType. |
| if (!AT) { |
| quals = splitType.Quals; |
| return QualType(splitType.Ty, 0); |
| } |
| |
| // Otherwise, recurse on the array's element type. |
| QualType elementType = AT->getElementType(); |
| QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); |
| |
| // If that didn't change the element type, AT has no qualifiers, so we |
| // can just use the results in splitType. |
| if (elementType == unqualElementType) { |
| assert(quals.empty()); // from the recursive call |
| quals = splitType.Quals; |
| return QualType(splitType.Ty, 0); |
| } |
| |
| // Otherwise, add in the qualifiers from the outermost type, then |
| // build the type back up. |
| quals.addConsistentQualifiers(splitType.Quals); |
| |
| if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { |
| return getConstantArrayType(unqualElementType, CAT->getSize(), |
| CAT->getSizeModifier(), 0); |
| } |
| |
| if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
| return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); |
| } |
| |
| if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) { |
| return getVariableArrayType(unqualElementType, |
| VAT->getSizeExpr(), |
| VAT->getSizeModifier(), |
| VAT->getIndexTypeCVRQualifiers(), |
| VAT->getBracketsRange()); |
| } |
| |
| const auto *DSAT = cast<DependentSizedArrayType>(AT); |
| return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), |
| DSAT->getSizeModifier(), 0, |
| SourceRange()); |
| } |
| |
| /// Attempt to unwrap two types that may both be array types with the same bound |
| /// (or both be array types of unknown bound) for the purpose of comparing the |
| /// cv-decomposition of two types per C++ [conv.qual]. |
| bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) { |
| bool UnwrappedAny = false; |
| while (true) { |
| auto *AT1 = getAsArrayType(T1); |
| if (!AT1) return UnwrappedAny; |
| |
| auto *AT2 = getAsArrayType(T2); |
| if (!AT2) return UnwrappedAny; |
| |
| // If we don't have two array types with the same constant bound nor two |
| // incomplete array types, we've unwrapped everything we can. |
| if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) { |
| auto *CAT2 = dyn_cast<ConstantArrayType>(AT2); |
| if (!CAT2 || CAT1->getSize() != CAT2->getSize()) |
| return UnwrappedAny; |
| } else if (!isa<IncompleteArrayType>(AT1) || |
| !isa<IncompleteArrayType>(AT2)) { |
| return UnwrappedAny; |
| } |
| |
| T1 = AT1->getElementType(); |
| T2 = AT2->getElementType(); |
| UnwrappedAny = true; |
| } |
| } |
| |
| /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). |
| /// |
| /// If T1 and T2 are both pointer types of the same kind, or both array types |
| /// with the same bound, unwraps layers from T1 and T2 until a pointer type is |
| /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. |
| /// |
| /// This function will typically be called in a loop that successively |
| /// "unwraps" pointer and pointer-to-member types to compare them at each |
| /// level. |
| /// |
| /// \return \c true if a pointer type was unwrapped, \c false if we reached a |
| /// pair of types that can't be unwrapped further. |
| bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) { |
| UnwrapSimilarArrayTypes(T1, T2); |
| |
| const auto *T1PtrType = T1->getAs<PointerType>(); |
| const auto *T2PtrType = T2->getAs<PointerType>(); |
| if (T1PtrType && T2PtrType) { |
| T1 = T1PtrType->getPointeeType(); |
| T2 = T2PtrType->getPointeeType(); |
| return true; |
| } |
| |
| const auto *T1MPType = T1->getAs<MemberPointerType>(); |
| const auto *T2MPType = T2->getAs<MemberPointerType>(); |
| if (T1MPType && T2MPType && |
| hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), |
| QualType(T2MPType->getClass(), 0))) { |
| T1 = T1MPType->getPointeeType(); |
| T2 = T2MPType->getPointeeType(); |
| return true; |
| } |
| |
| if (getLangOpts().ObjC1) { |
| const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); |
| const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); |
| if (T1OPType && T2OPType) { |
| T1 = T1OPType->getPointeeType(); |
| T2 = T2OPType->getPointeeType(); |
| return true; |
| } |
| } |
| |
| // FIXME: Block pointers, too? |
| |
| return false; |
| } |
| |
| bool ASTContext::hasSimilarType(QualType T1, QualType T2) { |
| while (true) { |
| Qualifiers Quals; |
| T1 = getUnqualifiedArrayType(T1, Quals); |
| T2 = getUnqualifiedArrayType(T2, Quals); |
| if (hasSameType(T1, T2)) |
| return true; |
| if (!UnwrapSimilarTypes(T1, T2)) |
| return false; |
| } |
| } |
| |
| bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { |
| while (true) { |
| Qualifiers Quals1, Quals2; |
| T1 = getUnqualifiedArrayType(T1, Quals1); |
| T2 = getUnqualifiedArrayType(T2, Quals2); |
| |
| Quals1.removeCVRQualifiers(); |
| Quals2.removeCVRQualifiers(); |
| if (Quals1 != Quals2) |
| return false; |
| |
| if (hasSameType(T1, T2)) |
| return true; |
| |
| if (!UnwrapSimilarTypes(T1, T2)) |
| return false; |
| } |
| } |
| |
| DeclarationNameInfo |
| ASTContext::getNameForTemplate(TemplateName Name, |
| SourceLocation NameLoc) const { |
| switch (Name.getKind()) { |
| case TemplateName::QualifiedTemplate: |
| case TemplateName::Template: |
| // DNInfo work in progress: CHECKME: what about DNLoc? |
| return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), |
| NameLoc); |
| |
| case TemplateName::OverloadedTemplate: { |
| OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); |
| // DNInfo work in progress: CHECKME: what about DNLoc? |
| return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); |
| } |
| |
| case TemplateName::DependentTemplate: { |
| DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
| DeclarationName DName; |
| if (DTN->isIdentifier()) { |
| DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); |
| return DeclarationNameInfo(DName, NameLoc); |
| } else { |
| DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); |
| // DNInfo work in progress: FIXME: source locations? |
| DeclarationNameLoc DNLoc; |
| DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); |
| DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); |
| return DeclarationNameInfo(DName, NameLoc, DNLoc); |
| } |
| } |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| SubstTemplateTemplateParmStorage *subst |
| = Name.getAsSubstTemplateTemplateParm(); |
| return DeclarationNameInfo(subst->getParameter()->getDeclName(), |
| NameLoc); |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| SubstTemplateTemplateParmPackStorage *subst |
| = Name.getAsSubstTemplateTemplateParmPack(); |
| return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), |
| NameLoc); |
| } |
| } |
| |
| llvm_unreachable("bad template name kind!"); |
| } |
| |
| TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { |
| switch (Name.getKind()) { |
| case TemplateName::QualifiedTemplate: |
| case TemplateName::Template: { |
| TemplateDecl *Template = Name.getAsTemplateDecl(); |
| if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template)) |
| Template = getCanonicalTemplateTemplateParmDecl(TTP); |
| |
| // The canonical template name is the canonical template declaration. |
| return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); |
| } |
| |
| case TemplateName::OverloadedTemplate: |
| llvm_unreachable("cannot canonicalize overloaded template"); |
| |
| case TemplateName::DependentTemplate: { |
| DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
| assert(DTN && "Non-dependent template names must refer to template decls."); |
| return DTN->CanonicalTemplateName; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| SubstTemplateTemplateParmStorage *subst |
| = Name.getAsSubstTemplateTemplateParm(); |
| return getCanonicalTemplateName(subst->getReplacement()); |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| SubstTemplateTemplateParmPackStorage *subst |
| = Name.getAsSubstTemplateTemplateParmPack(); |
| TemplateTemplateParmDecl *canonParameter |
| = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); |
| TemplateArgument canonArgPack |
| = getCanonicalTemplateArgument(subst->getArgumentPack()); |
| return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); |
| } |
| } |
| |
| llvm_unreachable("bad template name!"); |
| } |
| |
| bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { |
| X = getCanonicalTemplateName(X); |
| Y = getCanonicalTemplateName(Y); |
| return X.getAsVoidPointer() == Y.getAsVoidPointer(); |
| } |
| |
| TemplateArgument |
| ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| return Arg; |
| |
| case TemplateArgument::Expression: |
| return Arg; |
| |
| case TemplateArgument::Declaration: { |
| auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); |
| return TemplateArgument(D, Arg.getParamTypeForDecl()); |
| } |
| |
| case TemplateArgument::NullPtr: |
| return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), |
| /*isNullPtr*/true); |
| |
| case TemplateArgument::Template: |
| return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); |
| |
| case TemplateArgument::TemplateExpansion: |
| return TemplateArgument(getCanonicalTemplateName( |
| Arg.getAsTemplateOrTemplatePattern()), |
| Arg.getNumTemplateExpansions()); |
| |
| case TemplateArgument::Integral: |
| return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); |
| |
| case TemplateArgument::Type: |
| return TemplateArgument(getCanonicalType(Arg.getAsType())); |
| |
| case TemplateArgument::Pack: { |
| if (Arg.pack_size() == 0) |
| return Arg; |
| |
| auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()]; |
| unsigned Idx = 0; |
| for (TemplateArgument::pack_iterator A = Arg.pack_begin(), |
| AEnd = Arg.pack_end(); |
| A != AEnd; (void)++A, ++Idx) |
| CanonArgs[Idx] = getCanonicalTemplateArgument(*A); |
| |
| return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size())); |
| } |
| } |
| |
| // Silence GCC warning |
| llvm_unreachable("Unhandled template argument kind"); |
| } |
| |
| NestedNameSpecifier * |
| ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { |
| if (!NNS) |
| return nullptr; |
| |
| switch (NNS->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| // Canonicalize the prefix but keep the identifier the same. |
| return NestedNameSpecifier::Create(*this, |
| getCanonicalNestedNameSpecifier(NNS->getPrefix()), |
| NNS->getAsIdentifier()); |
| |
| case NestedNameSpecifier::Namespace: |
| // A namespace is canonical; build a nested-name-specifier with |
| // this namespace and no prefix. |
| return NestedNameSpecifier::Create(*this, nullptr, |
| NNS->getAsNamespace()->getOriginalNamespace()); |
| |
| case NestedNameSpecifier::NamespaceAlias: |
| // A namespace is canonical; build a nested-name-specifier with |
| // this namespace and no prefix. |
| return NestedNameSpecifier::Create(*this, nullptr, |
| NNS->getAsNamespaceAlias()->getNamespace() |
| ->getOriginalNamespace()); |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: { |
| QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); |
| |
| // If we have some kind of dependent-named type (e.g., "typename T::type"), |
| // break it apart into its prefix and identifier, then reconsititute those |
| // as the canonical nested-name-specifier. This is required to canonicalize |
| // a dependent nested-name-specifier involving typedefs of dependent-name |
| // types, e.g., |
| // typedef typename T::type T1; |
| // typedef typename T1::type T2; |
| if (const auto *DNT = T->getAs<DependentNameType>()) |
| return NestedNameSpecifier::Create(*this, DNT->getQualifier(), |
| const_cast<IdentifierInfo *>(DNT->getIdentifier())); |
| |
| // Otherwise, just canonicalize the type, and force it to be a TypeSpec. |
| // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the |
| // first place? |
| return NestedNameSpecifier::Create(*this, nullptr, false, |
| const_cast<Type *>(T.getTypePtr())); |
| } |
| |
| case NestedNameSpecifier::Global: |
| case NestedNameSpecifier::Super: |
| // The global specifier and __super specifer are canonical and unique. |
| return NNS; |
| } |
| |
| llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); |
| } |
| |
| const ArrayType *ASTContext::getAsArrayType(QualType T) const { |
| // Handle the non-qualified case efficiently. |
| if (!T.hasLocalQualifiers()) { |
| // Handle the common positive case fast. |
| if (const auto *AT = dyn_cast<ArrayType>(T)) |
| return AT; |
| } |
| |
| // Handle the common negative case fast. |
| if (!isa<ArrayType>(T.getCanonicalType())) |
| return nullptr; |
| |
| // Apply any qualifiers from the array type to the element type. This |
| // implements C99 6.7.3p8: "If the specification of an array type includes |
| // any type qualifiers, the element type is so qualified, not the array type." |
| |
| // If we get here, we either have type qualifiers on the type, or we have |
| // sugar such as a typedef in the way. If we have type qualifiers on the type |
| // we must propagate them down into the element type. |
| |
| SplitQualType split = T.getSplitDesugaredType(); |
| Qualifiers qs = split.Quals; |
| |
| // If we have a simple case, just return now. |
| const auto *ATy = dyn_cast<ArrayType>(split.Ty); |
| if (!ATy || qs.empty()) |
| return ATy; |
| |
| // Otherwise, we have an array and we have qualifiers on it. Push the |
| // qualifiers into the array element type and return a new array type. |
| QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); |
| |
| if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy)) |
| return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), |
| CAT->getSizeModifier(), |
| CAT->getIndexTypeCVRQualifiers())); |
| if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy)) |
| return cast<ArrayType>(getIncompleteArrayType(NewEltTy, |
| IAT->getSizeModifier(), |
| IAT->getIndexTypeCVRQualifiers())); |
| |
| if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy)) |
| return cast<ArrayType>( |
| getDependentSizedArrayType(NewEltTy, |
| DSAT->getSizeExpr(), |
| DSAT->getSizeModifier(), |
| DSAT->getIndexTypeCVRQualifiers(), |
| DSAT->getBracketsRange())); |
| |
| const auto *VAT = cast<VariableArrayType>(ATy); |
| return cast<ArrayType>(getVariableArrayType(NewEltTy, |
| VAT->getSizeExpr(), |
| VAT->getSizeModifier(), |
| VAT->getIndexTypeCVRQualifiers(), |
| VAT->getBracketsRange())); |
| } |
| |
| QualType ASTContext::getAdjustedParameterType(QualType T) const { |
| if (T->isArrayType() || T->isFunctionType()) |
| return getDecayedType(T); |
| return T; |
| } |
| |
| QualType ASTContext::getSignatureParameterType(QualType T) const { |
| T = getVariableArrayDecayedType(T); |
| T = getAdjustedParameterType(T); |
| return T.getUnqualifiedType(); |
| } |
| |
| QualType ASTContext::getExceptionObjectType(QualType T) const { |
| // C++ [except.throw]p3: |
| // A throw-expression initializes a temporary object, called the exception |
| // object, the type of which is determined by removing any top-level |
| // cv-qualifiers from the static type of the operand of throw and adjusting |
| // the type from "array of T" or "function returning T" to "pointer to T" |
| // or "pointer to function returning T", [...] |
| T = getVariableArrayDecayedType(T); |
| if (T->isArrayType() || T->isFunctionType()) |
| T = getDecayedType(T); |
| return T.getUnqualifiedType(); |
| } |
| |
| /// getArrayDecayedType - Return the properly qualified result of decaying the |
| /// specified array type to a pointer. This operation is non-trivial when |
| /// handling typedefs etc. The canonical type of "T" must be an array type, |
| /// this returns a pointer to a properly qualified element of the array. |
| /// |
| /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
| QualType ASTContext::getArrayDecayedType(QualType Ty) const { |
| // Get the element type with 'getAsArrayType' so that we don't lose any |
| // typedefs in the element type of the array. This also handles propagation |
| // of type qualifiers from the array type into the element type if present |
| // (C99 6.7.3p8). |
| const ArrayType *PrettyArrayType = getAsArrayType(Ty); |
| assert(PrettyArrayType && "Not an array type!"); |
| |
| QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); |
| |
| // int x[restrict 4] -> int *restrict |
| QualType Result = getQualifiedType(PtrTy, |
| PrettyArrayType->getIndexTypeQualifiers()); |
| |
| // int x[_Nullable] -> int * _Nullable |
| if (auto Nullability = Ty->getNullability(*this)) { |
| Result = const_cast<ASTContext *>(this)->getAttributedType( |
| AttributedType::getNullabilityAttrKind(*Nullability), Result, Result); |
| } |
| return Result; |
| } |
| |
| QualType ASTContext::getBaseElementType(const ArrayType *array) const { |
| return getBaseElementType(array->getElementType()); |
| } |
| |
| QualType ASTContext::getBaseElementType(QualType type) const { |
| Qualifiers qs; |
| while (true) { |
| SplitQualType split = type.getSplitDesugaredType(); |
| const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); |
| if (!array) break; |
| |
| type = array->getElementType(); |
| qs.addConsistentQualifiers(split.Quals); |
| } |
| |
| return getQualifiedType(type, qs); |
| } |
| |
| /// getConstantArrayElementCount - Returns number of constant array elements. |
| uint64_t |
| ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { |
| uint64_t ElementCount = 1; |
| do { |
| ElementCount *= CA->getSize().getZExtValue(); |
| CA = dyn_cast_or_null<ConstantArrayType>( |
| CA->getElementType()->getAsArrayTypeUnsafe()); |
| } while (CA); |
| return ElementCount; |
| } |
| |
| /// getFloatingRank - Return a relative rank for floating point types. |
| /// This routine will assert if passed a built-in type that isn't a float. |
| static FloatingRank getFloatingRank(QualType T) { |
| if (const auto *CT = T->getAs<ComplexType>()) |
| return getFloatingRank(CT->getElementType()); |
| |
| assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"); |
| switch (T->getAs<BuiltinType>()->getKind()) { |
| default: llvm_unreachable("getFloatingRank(): not a floating type"); |
| case BuiltinType::Float16: return Float16Rank; |
| case BuiltinType::Half: return HalfRank; |
| case BuiltinType::Float: return FloatRank; |
| case BuiltinType::Double: return DoubleRank; |
| case BuiltinType::LongDouble: return LongDoubleRank; |
| case BuiltinType::Float128: return Float128Rank; |
| } |
| } |
| |
| /// getFloatingTypeOfSizeWithinDomain - Returns a real floating |
| /// point or a complex type (based on typeDomain/typeSize). |
| /// 'typeDomain' is a real floating point or complex type. |
| /// 'typeSize' is a real floating point or complex type. |
| QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, |
| QualType Domain) const { |
| FloatingRank EltRank = getFloatingRank(Size); |
| if (Domain->isComplexType()) { |
| switch (EltRank) { |
| case Float16Rank: |
| case HalfRank: llvm_unreachable("Complex half is not supported"); |
| case FloatRank: return FloatComplexTy; |
| case DoubleRank: return DoubleComplexTy; |
| case LongDoubleRank: return LongDoubleComplexTy; |
| case Float128Rank: return Float128ComplexTy; |
| } |
| } |
| |
| assert(Domain->isRealFloatingType() && "Unknown domain!"); |
| switch (EltRank) { |
| case Float16Rank: return HalfTy; |
| case HalfRank: return HalfTy; |
| case FloatRank: return FloatTy; |
| case DoubleRank: return DoubleTy; |
| case LongDoubleRank: return LongDoubleTy; |
| case Float128Rank: return Float128Ty; |
| } |
| llvm_unreachable("getFloatingRank(): illegal value for rank"); |
| } |
| |
| /// getFloatingTypeOrder - Compare the rank of the two specified floating |
| /// point types, ignoring the domain of the type (i.e. 'double' == |
| /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| /// LHS < RHS, return -1. |
| int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { |
| FloatingRank LHSR = getFloatingRank(LHS); |
| FloatingRank RHSR = getFloatingRank(RHS); |
| |
| if (LHSR == RHSR) |
| return 0; |
| if (LHSR > RHSR) |
| return 1; |
| return -1; |
| } |
| |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| /// routine will assert if passed a built-in type that isn't an integer or enum, |
| /// or if it is not canonicalized. |
| unsigned ASTContext::getIntegerRank(const Type *T) const { |
| assert(T->isCanonicalUnqualified() && "T should be canonicalized"); |
| |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: llvm_unreachable("getIntegerRank(): not a built-in integer"); |
| case BuiltinType::Bool: |
| return 1 + (getIntWidth(BoolTy) << 3); |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| return 2 + (getIntWidth(CharTy) << 3); |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| return 3 + (getIntWidth(ShortTy) << 3); |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return 4 + (getIntWidth(IntTy) << 3); |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| return 5 + (getIntWidth(LongTy) << 3); |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| return 6 + (getIntWidth(LongLongTy) << 3); |
| case BuiltinType::Int128: |
| case BuiltinType::UInt128: |
| return 7 + (getIntWidth(Int128Ty) << 3); |
| } |
| } |
| |
| /// Whether this is a promotable bitfield reference according |
| /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). |
| /// |
| /// \returns the type this bit-field will promote to, or NULL if no |
| /// promotion occurs. |
| QualType ASTContext::isPromotableBitField(Expr *E) const { |
| if (E->isTypeDependent() || E->isValueDependent()) |
| return {}; |
| |
| // C++ [conv.prom]p5: |
| // If the bit-field has an enumerated type, it is treated as any other |
| // value of that type for promotion purposes. |
| if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) |
| return {}; |
| |
| // FIXME: We should not do this unless E->refersToBitField() is true. This |
| // matters in C where getSourceBitField() will find bit-fields for various |
| // cases where the source expression is not a bit-field designator. |
| |
| FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? |
| if (!Field) |
| return {}; |
| |
| QualType FT = Field->getType(); |
| |
| uint64_t BitWidth = Field->getBitWidthValue(*this); |
| uint64_t IntSize = getTypeSize(IntTy); |
| // C++ [conv.prom]p5: |
| // A prvalue for an integral bit-field can be converted to a prvalue of type |
| // int if int can represent all the values of the bit-field; otherwise, it |
| // can be converted to unsigned int if unsigned int can represent all the |
| // values of the bit-field. If the bit-field is larger yet, no integral |
| // promotion applies to it. |
| // C11 6.3.1.1/2: |
| // [For a bit-field of type _Bool, int, signed int, or unsigned int:] |
| // If an int can represent all values of the original type (as restricted by |
| // the width, for a bit-field), the value is converted to an int; otherwise, |
| // it is converted to an unsigned int. |
| // |
| // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. |
| // We perform that promotion here to match GCC and C++. |
| // FIXME: C does not permit promotion of an enum bit-field whose rank is |
| // greater than that of 'int'. We perform that promotion to match GCC. |
| if (BitWidth < IntSize) |
| return IntTy; |
| |
| if (BitWidth == IntSize) |
| return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; |
| |
| // Bit-fields wider than int are not subject to promotions, and therefore act |
| // like the base type. GCC has some weird bugs in this area that we |
| // deliberately do not follow (GCC follows a pre-standard resolution to |
| // C's DR315 which treats bit-width as being part of the type, and this leaks |
| // into their semantics in some cases). |
| return {}; |
| } |
| |
| /// getPromotedIntegerType - Returns the type that Promotable will |
| /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable |
| /// integer type. |
| QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { |
| assert(!Promotable.isNull()); |
| assert(Promotable->isPromotableIntegerType()); |
| if (const auto *ET = Promotable->getAs<EnumType>()) |
| return ET->getDecl()->getPromotionType(); |
| |
| if (const auto *BT = Promotable->getAs<BuiltinType>()) { |
| // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t |
| // (3.9.1) can be converted to a prvalue of the first of the following |
| // types that can represent all the values of its underlying type: |
| // int, unsigned int, long int, unsigned long int, long long int, or |
| // unsigned long long int [...] |
| // FIXME: Is there some better way to compute this? |
| if (BT->getKind() == BuiltinType::WChar_S || |
| BT->getKind() == BuiltinType::WChar_U || |
| BT->getKind() == BuiltinType::Char8 || |
| BT->getKind() == BuiltinType::Char16 || |
| BT->getKind() == BuiltinType::Char32) { |
| bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; |
| uint64_t FromSize = getTypeSize(BT); |
| QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, |
| LongLongTy, UnsignedLongLongTy }; |
| for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { |
| uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); |
| if (FromSize < ToSize || |
| (FromSize == ToSize && |
| FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) |
| return PromoteTypes[Idx]; |
| } |
| llvm_unreachable("char type should fit into long long"); |
| } |
| } |
| |
| // At this point, we should have a signed or unsigned integer type. |
| if (Promotable->isSignedIntegerType()) |
| return IntTy; |
| uint64_t PromotableSize = getIntWidth(Promotable); |
| uint64_t IntSize = getIntWidth(IntTy); |
| assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); |
| return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; |
| } |
| |
| /// Recurses in pointer/array types until it finds an objc retainable |
| /// type and returns its ownership. |
| Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { |
| while (!T.isNull()) { |
| if (T.getObjCLifetime() != Qualifiers::OCL_None) |
| return T.getObjCLifetime(); |
| if (T->isArrayType()) |
| T = getBaseElementType(T); |
| else if (const auto *PT = T->getAs<PointerType>()) |
| T = PT->getPointeeType(); |
| else if (const auto *RT = T->getAs<ReferenceType>()) |
| T = RT->getPointeeType(); |
| else |
| break; |
| } |
| |
| return Qualifiers::OCL_None; |
| } |
| |
| static const Type *getIntegerTypeForEnum(const EnumType *ET) { |
| // Incomplete enum types are not treated as integer types. |
| // FIXME: In C++, enum types are never integer types. |
| if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
| return ET->getDecl()->getIntegerType().getTypePtr(); |
| return nullptr; |
| } |
| |
| /// getIntegerTypeOrder - Returns the highest ranked integer type: |
| /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| /// LHS < RHS, return -1. |
| int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { |
| const Type *LHSC = getCanonicalType(LHS).getTypePtr(); |
| const Type *RHSC = getCanonicalType(RHS).getTypePtr(); |
| |
| // Unwrap enums to their underlying type. |
| if (const auto *ET = dyn_cast<EnumType>(LHSC)) |
| LHSC = getIntegerTypeForEnum(ET); |
| if (const auto *ET = dyn_cast<EnumType>(RHSC)) |
| RHSC = getIntegerTypeForEnum(ET); |
| |
| if (LHSC == RHSC) return 0; |
| |
| bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
| bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
| |
| unsigned LHSRank = getIntegerRank(LHSC); |
| unsigned RHSRank = getIntegerRank(RHSC); |
| |
| if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
| if (LHSRank == RHSRank) return 0; |
| return LHSRank > RHSRank ? 1 : -1; |
| } |
| |
| // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
| if (LHSUnsigned) { |
| // If the unsigned [LHS] type is larger, return it. |
| if (LHSRank >= RHSRank) |
| return 1; |
| |
| // If the signed type can represent all values of the unsigned type, it |
| // wins. Because we are dealing with 2's complement and types that are |
| // powers of two larger than each other, this is always safe. |
| return -1; |
| } |
| |
| // If the unsigned [RHS] type is larger, return it. |
| if (RHSRank >= LHSRank) |
| return -1; |
| |
| // If the signed type can represent all values of the unsigned type, it |
| // wins. Because we are dealing with 2's complement and types that are |
| // powers of two larger than each other, this is always safe. |
| return 1; |
| } |
| |
| TypedefDecl *ASTContext::getCFConstantStringDecl() const { |
| if (!CFConstantStringTypeDecl) { |
| assert(!CFConstantStringTagDecl && |
| "tag and typedef should be initialized together"); |
| CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag"); |
| CFConstantStringTagDecl->startDefinition(); |
| |
| QualType FieldTypes[4]; |
| const char *FieldNames[4]; |
| |
| // const int *isa; |
| FieldTypes[0] = getPointerType(IntTy.withConst()); |
| FieldNames[0] = "isa"; |
| // int flags; |
| FieldTypes[1] = IntTy; |
| FieldNames[1] = "flags"; |
| // const char *str; |
| FieldTypes[2] = getPointerType(CharTy.withConst()); |
| FieldNames[2] = "str"; |
| // long length; |
| FieldTypes[3] = LongTy; |
| FieldNames[3] = "length"; |
| |
| // Create fields |
| for (unsigned i = 0; i < 4; ++i) { |
| FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTagDecl, |
| SourceLocation(), |
| SourceLocation(), |
| &Idents.get(FieldNames[i]), |
| FieldTypes[i], /*TInfo=*/nullptr, |
| /*BitWidth=*/nullptr, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| CFConstantStringTagDecl->addDecl(Field); |
| } |
| |
| CFConstantStringTagDecl->completeDefinition(); |
| // This type is designed to be compatible with NSConstantString, but cannot |
| // use the same name, since NSConstantString is an interface. |
| auto tagType = getTagDeclType(CFConstantStringTagDecl); |
| CFConstantStringTypeDecl = |
| buildImplicitTypedef(tagType, "__NSConstantString"); |
| } |
| |
| return CFConstantStringTypeDecl; |
| } |
| |
| RecordDecl *ASTContext::getCFConstantStringTagDecl() const { |
| if (!CFConstantStringTagDecl) |
| getCFConstantStringDecl(); // Build the tag and the typedef. |
| return CFConstantStringTagDecl; |
| } |
| |
| // getCFConstantStringType - Return the type used for constant CFStrings. |
| QualType ASTContext::getCFConstantStringType() const { |
| return getTypedefType(getCFConstantStringDecl()); |
| } |
| |
| QualType ASTContext::getObjCSuperType() const { |
| if (ObjCSuperType.isNull()) { |
| RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); |
| TUDecl->addDecl(ObjCSuperTypeDecl); |
| ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); |
| } |
| return ObjCSuperType; |
| } |
| |
| void ASTContext::setCFConstantStringType(QualType T) { |
| const auto *TD = T->getAs<TypedefType>(); |
| assert(TD && "Invalid CFConstantStringType"); |
| CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl()); |
| const auto *TagType = |
| CFConstantStringTypeDecl->getUnderlyingType()->getAs<RecordType>(); |
| assert(TagType && "Invalid CFConstantStringType"); |
| CFConstantStringTagDecl = TagType->getDecl(); |
| } |
| |
| QualType ASTContext::getBlockDescriptorType() const { |
| if (BlockDescriptorType) |
| return getTagDeclType(BlockDescriptorType); |
| |
| RecordDecl *RD; |
| // FIXME: Needs the FlagAppleBlock bit. |
| RD = buildImplicitRecord("__block_descriptor"); |
| RD->startDefinition(); |
| |
| QualType FieldTypes[] = { |
| UnsignedLongTy, |
| UnsignedLongTy, |
| }; |
| |
| static const char *const FieldNames[] = { |
| "reserved", |
| "Size" |
| }; |
| |
| for (size_t i = 0; i < 2; ++i) { |
| FieldDecl *Field = FieldDecl::Create( |
| *this, RD, SourceLocation(), SourceLocation(), |
| &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
| /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); |
| Field->setAccess(AS_public); |
| RD->addDecl(Field); |
| } |
| |
| RD->completeDefinition(); |
| |
| BlockDescriptorType = RD; |
| |
| return getTagDeclType(BlockDescriptorType); |
| } |
| |
| QualType ASTContext::getBlockDescriptorExtendedType() const { |
| if (BlockDescriptorExtendedType) |
| return getTagDeclType(BlockDescriptorExtendedType); |
| |
| RecordDecl *RD; |
| // FIXME: Needs the FlagAppleBlock bit. |
| RD = buildImplicitRecord("__block_descriptor_withcopydispose"); |
| RD->startDefinition(); |
| |
| QualType FieldTypes[] = { |
| UnsignedLongTy, |
| UnsignedLongTy, |
| getPointerType(VoidPtrTy), |
| getPointerType(VoidPtrTy) |
| }; |
| |
| static const char *const FieldNames[] = { |
| "reserved", |
| "Size", |
| "CopyFuncPtr", |
| "DestroyFuncPtr" |
| }; |
| |
| for (size_t i = 0; i < 4; ++i) { |
| FieldDecl *Field = FieldDecl::Create( |
| *this, RD, SourceLocation(), SourceLocation(), |
| &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
| /*BitWidth=*/nullptr, |
| /*Mutable=*/false, ICIS_NoInit); |
| Field->setAccess(AS_public); |
| RD->addDecl(Field); |
| } |
| |
| RD->completeDefinition(); |
| |
| BlockDescriptorExtendedType = RD; |
| return getTagDeclType(BlockDescriptorExtendedType); |
| } |
| |
| TargetInfo::OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { |
| const auto *BT = dyn_cast<BuiltinType>(T); |
| |
| if (!BT) { |
| if (isa<PipeType>(T)) |
| return TargetInfo::OCLTK_Pipe; |
| |
| return TargetInfo::OCLTK_Default; |
| } |
| |
| switch (BT->getKind()) { |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: \ |
| return TargetInfo::OCLTK_Image; |
| #include "clang/Basic/OpenCLImageTypes.def" |
| |
| case BuiltinType::OCLClkEvent: |
| return TargetInfo::OCLTK_ClkEvent; |
| |
| case BuiltinType::OCLEvent: |
| return TargetInfo::OCLTK_Event; |
| |
| case BuiltinType::OCLQueue: |
| return TargetInfo::OCLTK_Queue; |
| |
| case BuiltinType::OCLReserveID: |
| return TargetInfo::OCLTK_ReserveID; |
| |
| case BuiltinType::OCLSampler: |
| return TargetInfo::OCLTK_Sampler; |
| |
| default: |
| return TargetInfo::OCLTK_Default; |
| } |
| } |
| |
| LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { |
| return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); |
| } |
| |
| /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" |
| /// requires copy/dispose. Note that this must match the logic |
| /// in buildByrefHelpers. |
| bool ASTContext::BlockRequiresCopying(QualType Ty, |
| const VarDecl *D) { |
| if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { |
| const Expr *copyExpr = getBlockVarCopyInits(D); |
| if (!copyExpr && record->hasTrivialDestructor()) return false; |
| |
| return true; |
| } |
| |
| // The block needs copy/destroy helpers if Ty is non-trivial to destructively |
| // move or destroy. |
| if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) |
| return true; |
| |
| if (!Ty->isObjCRetainableType()) return false; |
| |
| Qualifiers qs = Ty.getQualifiers(); |
| |
| // If we have lifetime, that dominates. |
| if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { |
| switch (lifetime) { |
| case Qualifiers::OCL_None: llvm_unreachable("impossible"); |
| |
| // These are just bits as far as the runtime is concerned. |
| case Qualifiers::OCL_ExplicitNone: |
| case Qualifiers::OCL_Autoreleasing: |
| return false; |
| |
| // These cases should have been taken care of when checking the type's |
| // non-triviality. |
| case Qualifiers::OCL_Weak: |
| case Qualifiers::OCL_Strong: |
| llvm_unreachable("impossible"); |
| } |
| llvm_unreachable("fell out of lifetime switch!"); |
| } |
| return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || |
| Ty->isObjCObjectPointerType()); |
| } |
| |
| bool ASTContext::getByrefLifetime(QualType Ty, |
| Qualifiers::ObjCLifetime &LifeTime, |
| bool &HasByrefExtendedLayout) const { |
| if (!getLangOpts().ObjC1 || |
| getLangOpts().getGC() != LangOptions::NonGC) |
| return false; |
| |
| HasByrefExtendedLayout = false; |
| if (Ty->isRecordType()) { |
| HasByrefExtendedLayout = true; |
| LifeTime = Qualifiers::OCL_None; |
| } else if ((LifeTime = Ty.getObjCLifetime())) { |
| // Honor the ARC qualifiers. |
| } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { |
| // The MRR rule. |
| LifeTime = Qualifiers::OCL_ExplicitNone; |
| } else { |
| LifeTime = Qualifiers::OCL_None; |
| } |
| return true; |
| } |
| |
| TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { |
| if (!ObjCInstanceTypeDecl) |
| ObjCInstanceTypeDecl = |
| buildImplicitTypedef(getObjCIdType(), "instancetype"); |
| return ObjCInstanceTypeDecl; |
| } |
| |
| // This returns true if a type has been typedefed to BOOL: |
| // typedef <type> BOOL; |
| static bool isTypeTypedefedAsBOOL(QualType T) { |
| if (const auto *TT = dyn_cast<TypedefType>(T)) |
| if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) |
| return II->isStr("BOOL"); |
| |
| return false; |
| } |
| |
| /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
| /// purpose. |
| CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { |
| if (!type->isIncompleteArrayType() && type->isIncompleteType()) |
| return CharUnits::Zero(); |
| |
| CharUnits sz = getTypeSizeInChars(type); |
| |
| // Make all integer and enum types at least as large as an int |
| if (sz.isPositive() && type->isIntegralOrEnumerationType()) |
| sz = std::max(sz, getTypeSizeInChars(IntTy)); |
| // Treat arrays as pointers, since that's how they're passed in. |
| else if (type->isArrayType()) |
| sz = getTypeSizeInChars(VoidPtrTy); |
| return sz; |
| } |
| |
| bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { |
| return getTargetInfo().getCXXABI().isMicrosoft() && |
| VD->isStaticDataMember() && |
| VD->getType()->isIntegralOrEnumerationType() && |
| !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); |
| } |
| |
| ASTContext::InlineVariableDefinitionKind |
| ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { |
| if (!VD->isInline()) |
| return InlineVariableDefinitionKind::None; |
| |
| // In almost all cases, it's a weak definition. |
| auto *First = VD->getFirstDecl(); |
| if (First->isInlineSpecified() || !First->isStaticDataMember()) |
| return InlineVariableDefinitionKind::Weak; |
| |
| // If there's a file-context declaration in this translation unit, it's a |
| // non-discardable definition. |
| for (auto *D : VD->redecls()) |
| if (D->getLexicalDeclContext()->isFileContext() && |
| !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) |
| return InlineVariableDefinitionKind::Strong; |
| |
| // If we've not seen one yet, we don't know. |
| return InlineVariableDefinitionKind::WeakUnknown; |
| } |
| |
| static std::string charUnitsToString(const CharUnits &CU) { |
| return llvm::itostr(CU.getQuantity()); |
| } |
| |
| /// getObjCEncodingForBlock - Return the encoded type for this block |
| /// declaration. |
| std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { |
| std::string S; |
| |
| const BlockDecl *Decl = Expr->getBlockDecl(); |
| QualType BlockTy = |
| Expr->getType()->getAs<BlockPointerType>()->getPointeeType(); |
| // Encode result type. |
| if (getLangOpts().EncodeExtendedBlockSig) |
| getObjCEncodingForMethodParameter( |
| Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S, |
| true /*Extended*/); |
| else |
| getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S); |
| // Compute size of all parameters. |
| // Start with computing size of a pointer in number of bytes. |
| // FIXME: There might(should) be a better way of doing this computation! |
| CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
| CharUnits ParmOffset = PtrSize; |
| for (auto PI : Decl->parameters()) { |
| QualType PType = PI->getType(); |
| CharUnits sz = getObjCEncodingTypeSize(PType); |
| if (sz.isZero()) |
| continue; |
| assert(sz.isPositive() && "BlockExpr - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| // Size of the argument frame |
| S += charUnitsToString(ParmOffset); |
| // Block pointer and offset. |
| S += "@?0"; |
| |
| // Argument types. |
| ParmOffset = PtrSize; |
| for (auto PVDecl : Decl->parameters()) { |
| QualType PType = PVDecl->getOriginalType(); |
| if (const auto *AT = |
| dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| // Use array's original type only if it has known number of |
| // elements. |
| if (!isa<ConstantArrayType>(AT)) |
| PType = PVDecl->getType(); |
| } else if (PType->isFunctionType()) |
| PType = PVDecl->getType(); |
| if (getLangOpts().EncodeExtendedBlockSig) |
| getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, |
| S, true /*Extended*/); |
| else |
| getObjCEncodingForType(PType, S); |
| S += charUnitsToString(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| |
| return S; |
| } |
| |
| std::string |
| ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { |
| std::string S; |
| // Encode result type. |
| getObjCEncodingForType(Decl->getReturnType(), S); |
| CharUnits ParmOffset; |
| // Compute size of all parameters. |
| for (auto PI : Decl->parameters()) { |
| QualType PType = PI->getType(); |
| CharUnits sz = getObjCEncodingTypeSize(PType); |
| if (sz.isZero()) |
| continue; |
| |
| assert(sz.isPositive() && |
| "getObjCEncodingForFunctionDecl - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| S += charUnitsToString(ParmOffset); |
| ParmOffset = CharUnits::Zero(); |
| |
| // Argument types. |
| for (auto PVDecl : Decl->parameters()) { |
| QualType PType = PVDecl->getOriginalType(); |
| if (const auto *AT = |
| dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| // Use array's original type only if it has known number of |
| // elements. |
| if (!isa<ConstantArrayType>(AT)) |
| PType = PVDecl->getType(); |
| } else if (PType->isFunctionType()) |
| PType = PVDecl->getType(); |
| getObjCEncodingForType(PType, S); |
| S += charUnitsToString(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| |
| return S; |
| } |
| |
| /// getObjCEncodingForMethodParameter - Return the encoded type for a single |
| /// method parameter or return type. If Extended, include class names and |
| /// block object types. |
| void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, |
| QualType T, std::string& S, |
| bool Extended) const { |
| // Encode type qualifer, 'in', 'inout', etc. for the parameter. |
| getObjCEncodingForTypeQualifier(QT, S); |
| // Encode parameter type. |
| getObjCEncodingForTypeImpl(T, S, true, true, nullptr, |
| true /*OutermostType*/, |
| false /*EncodingProperty*/, |
| false /*StructField*/, |
| Extended /*EncodeBlockParameters*/, |
| Extended /*EncodeClassNames*/); |
| } |
| |
| /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
| /// declaration. |
| std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
| bool Extended) const { |
| // FIXME: This is not very efficient. |
| // Encode return type. |
| std::string S; |
| getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), |
| Decl->getReturnType(), S, Extended); |
| // Compute size of all parameters. |
| // Start with computing size of a pointer in number of bytes. |
| // FIXME: There might(should) be a better way of doing this computation! |
| CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
| // The first two arguments (self and _cmd) are pointers; account for |
| // their size. |
| CharUnits ParmOffset = 2 * PtrSize; |
| for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
| E = Decl->sel_param_end(); PI != E; ++PI) { |
| QualType PType = (*PI)->getType(); |
| CharUnits sz = getObjCEncodingTypeSize(PType); |
| if (sz.isZero()) |
| continue; |
| |
| assert(sz.isPositive() && |
| "getObjCEncodingForMethodDecl - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| S += charUnitsToString(ParmOffset); |
| S += "@0:"; |
| S += charUnitsToString(PtrSize); |
| |
| // Argument types. |
| ParmOffset = 2 * PtrSize; |
| for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
| E = Decl->sel_param_end(); PI != E; ++PI) { |
| const ParmVarDecl *PVDecl = *PI; |
| QualType PType = PVDecl->getOriginalType(); |
| if (const auto *AT = |
| dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| // Use array's original type only if it has known number of |
| // elements. |
| if (!isa<ConstantArrayType>(AT)) |
| PType = PVDecl->getType(); |
| } else if (PType->isFunctionType()) |
| PType = PVDecl->getType(); |
| getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), |
| PType, S, Extended); |
| S += charUnitsToString(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| |
| return S; |
| } |
| |
| ObjCPropertyImplDecl * |
| ASTContext::getObjCPropertyImplDeclForPropertyDecl( |
| const ObjCPropertyDecl *PD, |
| const Decl *Container) const { |
| if (!Container) |
| return nullptr; |
| if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) { |
| for (auto *PID : CID->property_impls()) |
| if (PID->getPropertyDecl() == PD) |
| return PID; |
| } else { |
| const auto *OID = cast<ObjCImplementationDecl>(Container); |
| for (auto *PID : OID->property_impls()) |
| if (PID->getPropertyDecl() == PD) |
| return PID; |
| } |
| return nullptr; |
| } |
| |
| /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
| /// property declaration. If non-NULL, Container must be either an |
| /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
| /// NULL when getting encodings for protocol properties. |
| /// Property attributes are stored as a comma-delimited C string. The simple |
| /// attributes readonly and bycopy are encoded as single characters. The |
| /// parametrized attributes, getter=name, setter=name, and ivar=name, are |
| /// encoded as single characters, followed by an identifier. Property types |
| /// are also encoded as a parametrized attribute. The characters used to encode |
| /// these attributes are defined by the following enumeration: |
| /// @code |
| /// enum PropertyAttributes { |
| /// kPropertyReadOnly = 'R', // property is read-only. |
| /// kPropertyBycopy = 'C', // property is a copy of the value last assigned |
| /// kPropertyByref = '&', // property is a reference to the value last assigned |
| /// kPropertyDynamic = 'D', // property is dynamic |
| /// kPropertyGetter = 'G', // followed by getter selector name |
| /// kPropertySetter = 'S', // followed by setter selector name |
| /// kPropertyInstanceVariable = 'V' // followed by instance variable name |
| /// kPropertyType = 'T' // followed by old-style type encoding. |
| /// kPropertyWeak = 'W' // 'weak' property |
| /// kPropertyStrong = 'P' // property GC'able |
| /// kPropertyNonAtomic = 'N' // property non-atomic |
| /// }; |
| /// @endcode |
| std::string |
| ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
| const Decl *Container) const { |
| // Collect information from the property implementation decl(s). |
| bool Dynamic = false; |
| ObjCPropertyImplDecl *SynthesizePID = nullptr; |
| |
| if (ObjCPropertyImplDecl *PropertyImpDecl = |
| getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { |
| if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) |
| Dynamic = true; |
| else |
| SynthesizePID = PropertyImpDecl; |
| } |
| |
| // FIXME: This is not very efficient. |
| std::string S = "T"; |
| |
| // Encode result type. |
| // GCC has some special rules regarding encoding of properties which |
| // closely resembles encoding of ivars. |
| getObjCEncodingForPropertyType(PD->getType(), S); |
| |
| if (PD->isReadOnly()) { |
| S += ",R"; |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy) |
| S += ",C"; |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain) |
| S += ",&"; |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak) |
| S += ",W"; |
| } else { |
| switch (PD->getSetterKind()) { |
| case ObjCPropertyDecl::Assign: break; |
| case ObjCPropertyDecl::Copy: S += ",C"; break; |
| case ObjCPropertyDecl::Retain: S += ",&"; break; |
| case ObjCPropertyDecl::Weak: S += ",W"; break; |
| } |
| } |
| |
| // It really isn't clear at all what this means, since properties |
| // are "dynamic by default". |
| if (Dynamic) |
| S += ",D"; |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) |
| S += ",N"; |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { |
| S += ",G"; |
| S += PD->getGetterName().getAsString(); |
| } |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { |
| S += ",S"; |
| S += PD->getSetterName().getAsString(); |
| } |
| |
| if (SynthesizePID) { |
| const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
| S += ",V"; |
| S += OID->getNameAsString(); |
| } |
| |
| // FIXME: OBJCGC: weak & strong |
| return S; |
| } |
| |
| /// getLegacyIntegralTypeEncoding - |
| /// Another legacy compatibility encoding: 32-bit longs are encoded as |
| /// 'l' or 'L' , but not always. For typedefs, we need to use |
| /// 'i' or 'I' instead if encoding a struct field, or a pointer! |
| void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { |
| if (isa<TypedefType>(PointeeTy.getTypePtr())) { |
| if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { |
| if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) |
| PointeeTy = UnsignedIntTy; |
| else |
| if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) |
| PointeeTy = IntTy; |
| } |
| } |
| } |
| |
| void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
| const FieldDecl *Field, |
| QualType *NotEncodedT) const { |
| // We follow the behavior of gcc, expanding structures which are |
| // directly pointed to, and expanding embedded structures. Note that |
| // these rules are sufficient to prevent recursive encoding of the |
| // same type. |
| getObjCEncodingForTypeImpl(T, S, true, true, Field, |
| true /* outermost type */, false, false, |
| false, false, false, NotEncodedT); |
| } |
| |
| void ASTContext::getObjCEncodingForPropertyType(QualType T, |
| std::string& S) const { |
| // Encode result type. |
| // GCC has some special rules regarding encoding of properties which |
| // closely resembles encoding of ivars. |
| getObjCEncodingForTypeImpl(T, S, true, true, nullptr, |
| true /* outermost type */, |
| true /* encoding property */); |
| } |
| |
| static char getObjCEncodingForPrimitiveKind(const ASTContext *C, |
| BuiltinType::Kind kind) { |
| switch (kind) { |
| case BuiltinType::Void: return 'v'; |
| case BuiltinType::Bool: return 'B'; |
| case BuiltinType::Char8: |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: return 'C'; |
| case BuiltinType::Char16: |
| case BuiltinType::UShort: return 'S'; |
| case BuiltinType::Char32: |
| case BuiltinType::UInt: return 'I'; |
| case BuiltinType::ULong: |
| return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; |
| case BuiltinType::UInt128: return 'T'; |
| case BuiltinType::ULongLong: return 'Q'; |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: return 'c'; |
| case BuiltinType::Short: return 's'; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: |
| case BuiltinType::Int: return 'i'; |
| case BuiltinType::Long: |
| return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; |
| case BuiltinType::LongLong: return 'q'; |
| case BuiltinType::Int128: return 't'; |
| case BuiltinType::Float: return 'f'; |
| case BuiltinType::Double: return 'd'; |
| case BuiltinType::LongDouble: return 'D'; |
| case BuiltinType::NullPtr: return '*'; // like char* |
| |
| case BuiltinType::Float16: |
| case BuiltinType::Float128: |
| case BuiltinType::Half: |
| case BuiltinType::ShortAccum: |
| case BuiltinType::Accum: |
| case BuiltinType::LongAccum: |
| case BuiltinType::UShortAccum: |
| case BuiltinType::UAccum: |
| case BuiltinType::ULongAccum: |
| case BuiltinType::ShortFract: |
| case BuiltinType::Fract: |
| case BuiltinType::LongFract: |
| case BuiltinType::UShortFract: |
| case BuiltinType::UFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatShortAccum: |
| case BuiltinType::SatAccum: |
| case BuiltinType::SatLongAccum: |
| case BuiltinType::SatUShortAccum: |
| case BuiltinType::SatUAccum: |
| case BuiltinType::SatULongAccum: |
| case BuiltinType::SatShortFract: |
| case BuiltinType::SatFract: |
| case BuiltinType::SatLongFract: |
| case BuiltinType::SatUShortFract: |
| case BuiltinType::SatUFract: |
| case BuiltinType::SatULongFract: |
| // FIXME: potentially need @encodes for these! |
| return ' '; |
| |
| case BuiltinType::ObjCId: |
| case BuiltinType::ObjCClass: |
| case BuiltinType::ObjCSel: |
| llvm_unreachable("@encoding ObjC primitive type"); |
| |
| // OpenCL and placeholder types don't need @encodings. |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLImageTypes.def" |
| case BuiltinType::OCLEvent: |
| case BuiltinType::OCLClkEvent: |
| case BuiltinType::OCLQueue: |
| case BuiltinType::OCLReserveID: |
| case BuiltinType::OCLSampler: |
| case BuiltinType::Dependent: |
| #define BUILTIN_TYPE(KIND, ID) |
| #define PLACEHOLDER_TYPE(KIND, ID) \ |
| case BuiltinType::KIND: |
| #include "clang/AST/BuiltinTypes.def" |
| llvm_unreachable("invalid builtin type for @encode"); |
| } |
| llvm_unreachable("invalid BuiltinType::Kind value"); |
| } |
| |
| static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { |
| EnumDecl *Enum = ET->getDecl(); |
| |
| // The encoding of an non-fixed enum type is always 'i', regardless of size. |
| if (!Enum->isFixed()) |
| return 'i'; |
| |
| // The encoding of a fixed enum type matches its fixed underlying type. |
| const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); |
| return getObjCEncodingForPrimitiveKind(C, BT->getKind()); |
| } |
| |
| static void EncodeBitField(const ASTContext *Ctx, std::string& S, |
| QualType T, const FieldDecl *FD) { |
| assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); |
| S += 'b'; |
| // The NeXT runtime encodes bit fields as b followed by the number of bits. |
| // The GNU runtime requires more information; bitfields are encoded as b, |
| // then the offset (in bits) of the first element, then the type of the |
| // bitfield, then the size in bits. For example, in this structure: |
| // |
| // struct |
| // { |
| // int integer; |
| // int flags:2; |
| // }; |
| // On a 32-bit system, the encoding for flags would be b2 for the NeXT |
| // runtime, but b32i2 for the GNU runtime. The reason for this extra |
| // information is not especially sensible, but we're stuck with it for |
| // compatibility with GCC, although providing it breaks anything that |
| // actually uses runtime introspection and wants to work on both runtimes... |
| if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { |
| uint64_t Offset; |
| |
| if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) { |
| Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr, |
| IVD); |
| } else { |
| const RecordDecl *RD = FD->getParent(); |
| const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); |
| Offset = RL.getFieldOffset(FD->getFieldIndex()); |
| } |
| |
| S += llvm::utostr(Offset); |
| |
| if (const auto *ET = T->getAs<EnumType>()) |
| S += ObjCEncodingForEnumType(Ctx, ET); |
| else { |
| const auto *BT = T->castAs<BuiltinType>(); |
| S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind()); |
| } |
| } |
| S += llvm::utostr(FD->getBitWidthValue(*Ctx)); |
| } |
| |
| // FIXME: Use SmallString for accumulating string. |
| void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, |
| bool ExpandPointedToStructures, |
| bool ExpandStructures, |
| const FieldDecl *FD, |
| bool OutermostType, |
| bool EncodingProperty, |
| bool StructField, |
| bool EncodeBlockParameters, |
| bool EncodeClassNames, |
| bool EncodePointerToObjCTypedef, |
| QualType *NotEncodedT) const { |
| CanQualType CT = getCanonicalType(T); |
| switch (CT->getTypeClass()) { |
| case Type::Builtin: |
| case Type::Enum: |
| if (FD && FD->isBitField()) |
| return EncodeBitField(this, S, T, FD); |
| if (const auto *BT = dyn_cast<BuiltinType>(CT)) |
| S += getObjCEncodingForPrimitiveKind(this, BT->getKind()); |
| else |
| S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); |
| return; |
| |
| case Type::Complex: { |
| const auto *CT = T->castAs<ComplexType>(); |
| S += 'j'; |
| getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr); |
| return; |
| } |
| |
| case Type::Atomic: { |
| const auto *AT = T->castAs<AtomicType>(); |
| S += 'A'; |
| getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr); |
| return; |
| } |
| |
| // encoding for pointer or reference types. |
| case Type::Pointer: |
| case Type::LValueReference: |
| case Type::RValueReference: { |
| QualType PointeeTy; |
| if (isa<PointerType>(CT)) { |
| const auto *PT = T->castAs<PointerType>(); |
| if (PT->isObjCSelType()) { |
| S += ':'; |
| return; |
| } |
| PointeeTy = PT->getPointeeType(); |
| } else { |
| PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); |
| } |
| |
| bool isReadOnly = false; |
| // For historical/compatibility reasons, the read-only qualifier of the |
| // pointee gets emitted _before_ the '^'. The read-only qualifier of |
| // the pointer itself gets ignored, _unless_ we are looking at a typedef! |
| // Also, do not emit the 'r' for anything but the outermost type! |
| if (isa<TypedefType>(T.getTypePtr())) { |
| if (OutermostType && T.isConstQualified()) { |
| isReadOnly = true; |
| S += 'r'; |
| } |
| } else if (OutermostType) { |
| QualType P = PointeeTy; |
| while (P->getAs<PointerType>()) |
| P = P->getAs<PointerType>()->getPointeeType(); |
| if (P.isConstQualified()) { |
| isReadOnly = true; |
| S += 'r'; |
| } |
| } |
| if (isReadOnly) { |
| // Another legacy compatibility encoding. Some ObjC qualifier and type |
| // combinations need to be rearranged. |
| // Rewrite "in const" from "nr" to "rn" |
| if (StringRef(S).endswith("nr")) |
| S.replace(S.end()-2, S.end(), "rn"); |
| } |
| |
| if (PointeeTy->isCharType()) { |
| // char pointer types should be encoded as '*' unless it is a |
| // type that has been typedef'd to 'BOOL'. |
| if (!isTypeTypedefedAsBOOL(PointeeTy)) { |
| S += '*'; |
| return; |
| } |
| } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { |
| // GCC binary compat: Need to convert "struct objc_class *" to "#". |
| if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { |
| S += '#'; |
| return; |
| } |
| // GCC binary compat: Need to convert "struct objc_object *" to "@". |
| if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { |
| S += '@'; |
| return; |
| } |
| // fall through... |
| } |
| S += '^'; |
| getLegacyIntegralTypeEncoding(PointeeTy); |
| |
| getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, |
| nullptr, false, false, false, false, false, false, |
| NotEncodedT); |
| return; |
| } |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: { |
| const auto *AT = cast<ArrayType>(CT); |
| |
| if (isa<IncompleteArrayType>(AT) && !StructField) { |
| // Incomplete arrays are encoded as a pointer to the array element. |
| S += '^'; |
| |
| getObjCEncodingForTypeImpl(AT->getElementType(), S, |
| false, ExpandStructures, FD); |
| } else { |
| S += '['; |
| |
| if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
| S += llvm::utostr(CAT->getSize().getZExtValue()); |
| else { |
| //Variable length arrays are encoded as a regular array with 0 elements. |
| assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && |
| "Unknown array type!"); |
| S += '0'; |
| } |
| |
| getObjCEncodingForTypeImpl(AT->getElementType(), S, |
| false, ExpandStructures, FD, |
| false, false, false, false, false, false, |
| NotEncodedT); |
| S += ']'; |
| } |
| return; |
| } |
| |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| S += '?'; |
| return; |
| |
| case Type::Record: { |
| RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); |
| S += RDecl->isUnion() ? '(' : '{'; |
| // Anonymous structures print as '?' |
| if (const IdentifierInfo *II = RDecl->getIdentifier()) { |
| S += II->getName(); |
| if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { |
| const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| llvm::raw_string_ostream OS(S); |
| printTemplateArgumentList(OS, TemplateArgs.asArray(), |
| getPrintingPolicy()); |
| } |
| } else { |
| S += '?'; |
| } |
| if (ExpandStructures) { |
| S += '='; |
| if (!RDecl->isUnion()) { |
| getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); |
| } else { |
| for (const auto *Field : RDecl->fields()) { |
| if (FD) { |
| S += '"'; |
| S += Field->getNameAsString(); |
| S += '"'; |
| } |
| |
| // Special case bit-fields. |
| if (Field->isBitField()) { |
| getObjCEncodingForTypeImpl(Field->getType(), S, false, true, |
| Field); |
| } else { |
| QualType qt = Field->getType(); |
| getLegacyIntegralTypeEncoding(qt); |
| getObjCEncodingForTypeImpl(qt, S, false, true, |
| FD, /*OutermostType*/false, |
| /*EncodingProperty*/false, |
| /*StructField*/true, |
| false, false, false, NotEncodedT); |
| } |
| } |
| } |
| } |
| S += RDecl->isUnion() ? ')' : '}'; |
| return; |
| } |
| |
| case Type::BlockPointer: { |
| const auto *BT = T->castAs<BlockPointerType>(); |
| S += "@?"; // Unlike a pointer-to-function, which is "^?". |
| if (EncodeBlockParameters) { |
| const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); |
| |
| S += '<'; |
| // Block return type |
| getObjCEncodingForTypeImpl( |
| FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures, |
| FD, false /* OutermostType */, EncodingProperty, |
| false /* StructField */, EncodeBlockParameters, EncodeClassNames, false, |
| NotEncodedT); |
| // Block self |
| S += "@?"; |
| // Block parameters |
| if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) { |
| for (const auto &I : FPT->param_types()) |
| getObjCEncodingForTypeImpl( |
| I, S, ExpandPointedToStructures, ExpandStructures, FD, |
| false /* OutermostType */, EncodingProperty, |
| false /* StructField */, EncodeBlockParameters, EncodeClassNames, |
| false, NotEncodedT); |
| } |
| S += '>'; |
| } |
| return; |
| } |
| |
| case Type::ObjCObject: { |
| // hack to match legacy encoding of *id and *Class |
| QualType Ty = getObjCObjectPointerType(CT); |
| if (Ty->isObjCIdType()) { |
| S += "{objc_object=}"; |
| return; |
| } |
| else if (Ty->isObjCClassType()) { |
| S += "{objc_class=}"; |
| return; |
| } |
| // TODO: Double check to make sure this intentionally falls through. |
| LLVM_FALLTHROUGH; |
| } |
| |
| case Type::ObjCInterface: { |
| // Ignore protocol qualifiers when mangling at this level. |
| // @encode(class_name) |
| ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); |
| S += '{'; |
| S += OI->getObjCRuntimeNameAsString(); |
| if (ExpandStructures) { |
| S += '='; |
| SmallVector<const ObjCIvarDecl*, 32> Ivars; |
| DeepCollectObjCIvars(OI, true, Ivars); |
| for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { |
| const FieldDecl *Field = Ivars[i]; |
| if (Field->isBitField()) |
| getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field); |
| else |
| getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD, |
| false, false, false, false, false, |
| EncodePointerToObjCTypedef, |
| NotEncodedT); |
| } |
| } |
| S += '}'; |
| return; |
| } |
| |
| case Type::ObjCObjectPointer: { |
| const auto *OPT = T->castAs<ObjCObjectPointerType>(); |
| if (OPT->isObjCIdType()) { |
| S += '@'; |
| return; |
| } |
| |
| if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { |
| // FIXME: Consider if we need to output qualifiers for 'Class<p>'. |
| // Since this is a binary compatibility issue, need to consult with runtime |
| // folks. Fortunately, this is a *very* obscure construct. |
| S += '#'; |
| return; |
| } |
| |
| if (OPT->isObjCQualifiedIdType()) { |
| getObjCEncodingForTypeImpl(getObjCIdType(), S, |
| ExpandPointedToStructures, |
| ExpandStructures, FD); |
| if (FD || EncodingProperty || EncodeClassNames) { |
| // Note that we do extended encoding of protocol qualifer list |
| // Only when doing ivar or property encoding. |
| S += '"'; |
| for (const auto *I : OPT->quals()) { |
| S += '<'; |
| S += I->getObjCRuntimeNameAsString(); |
| S += '>'; |
| } |
| S += '"'; |
| } |
| return; |
| } |
| |
| QualType PointeeTy = OPT->getPointeeType(); |
| if (!EncodingProperty && |
| isa<TypedefType>(PointeeTy.getTypePtr()) && |
| !EncodePointerToObjCTypedef) { |
| // Another historical/compatibility reason. |
| // We encode the underlying type which comes out as |
| // {...}; |
| S += '^'; |
| if (FD && OPT->getInterfaceDecl()) { |
| // Prevent recursive encoding of fields in some rare cases. |
| ObjCInterfaceDecl *OI = OPT->getInterfaceDecl(); |
| SmallVector<const ObjCIvarDecl*, 32> Ivars; |
| DeepCollectObjCIvars(OI, true, Ivars); |
| for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { |
| if (Ivars[i] == FD) { |
| S += '{'; |
| S += OI->getObjCRuntimeNameAsString(); |
| S += '}'; |
| return; |
| } |
| } |
| } |
| getObjCEncodingForTypeImpl(PointeeTy, S, |
| false, ExpandPointedToStructures, |
| nullptr, |
| false, false, false, false, false, |
| /*EncodePointerToObjCTypedef*/true); |
| return; |
| } |
| |
| S += '@'; |
| if (OPT->getInterfaceDecl() && |
| (FD || EncodingProperty || EncodeClassNames)) { |
| S += '"'; |
| S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); |
| for (const auto *I : OPT->quals()) { |
| S += '<'; |
| S += I->getObjCRuntimeNameAsString(); |
| S += '>'; |
| } |
| S += '"'; |
| } |
| return; |
| } |
| |
| // gcc just blithely ignores member pointers. |
| // FIXME: we shoul do better than that. 'M' is available. |
| case Type::MemberPointer: |
| // This matches gcc's encoding, even though technically it is insufficient. |
| //FIXME. We should do a better job than gcc. |
| case Type::Vector: |
| case Type::ExtVector: |
| // Until we have a coherent encoding of these three types, issue warning. |
| if (NotEncodedT) |
| *NotEncodedT = T; |
| return; |
| |
| // We could see an undeduced auto type here during error recovery. |
| // Just ignore it. |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| return; |
| |
| case Type::Pipe: |
| #define ABSTRACT_TYPE(KIND, BASE) |
| #define TYPE(KIND, BASE) |
| #define DEPENDENT_TYPE(KIND, BASE) \ |
| case Type::KIND: |
| #define NON_CANONICAL_TYPE(KIND, BASE) \ |
| case Type::KIND: |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ |
| case Type::KIND: |
| #include "clang/AST/TypeNodes.def" |
| llvm_unreachable("@encode for dependent type!"); |
| } |
| llvm_unreachable("bad type kind!"); |
| } |
| |
| void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, |
| std::string &S, |
| const FieldDecl *FD, |
| bool includeVBases, |
| QualType *NotEncodedT) const { |
| assert(RDecl && "Expected non-null RecordDecl"); |
| assert(!RDecl->isUnion() && "Should not be called for unions"); |
| if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) |
| return; |
| |
| const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); |
| std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; |
| const ASTRecordLayout &layout = getASTRecordLayout(RDecl); |
| |
| if (CXXRec) { |
| for (const auto &BI : CXXRec->bases()) { |
| if (!BI.isVirtual()) { |
| CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
| if (base->isEmpty()) |
| continue; |
| uint64_t offs = toBits(layout.getBaseClassOffset(base)); |
| FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| std::make_pair(offs, base)); |
| } |
| } |
| } |
| |
| unsigned i = 0; |
| for (auto *Field : RDecl->fields()) { |
| uint64_t offs = layout.getFieldOffset(i); |
| FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| std::make_pair(offs, Field)); |
| ++i; |
| } |
| |
| if (CXXRec && includeVBases) { |
| for (const auto &BI : CXXRec->vbases()) { |
| CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
| if (base->isEmpty()) |
| continue; |
| uint64_t offs = toBits(layout.getVBaseClassOffset(base)); |
| if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && |
| FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) |
| FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), |
| std::make_pair(offs, base)); |
| } |
| } |
| |
| CharUnits size; |
| if (CXXRec) { |
| size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); |
| } else { |
| size = layout.getSize(); |
| } |
| |
| #ifndef NDEBUG |
| uint64_t CurOffs = 0; |
| #endif |
| std::multimap<uint64_t, NamedDecl *>::iterator |
| CurLayObj = FieldOrBaseOffsets.begin(); |
| |
| if (CXXRec && CXXRec->isDynamicClass() && |
| (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { |
| if (FD) { |
| S += "\"_vptr$"; |
| std::string recname = CXXRec->getNameAsString(); |
| if (recname.empty()) recname = "?"; |
| S += recname; |
| S += '"'; |
| } |
| S += "^^?"; |
| #ifndef NDEBUG |
| CurOffs += getTypeSize(VoidPtrTy); |
| #endif |
| } |
| |
| if (!RDecl->hasFlexibleArrayMember()) { |
| // Mark the end of the structure. |
| uint64_t offs = toBits(size); |
| FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| std::make_pair(offs, nullptr)); |
| } |
| |
| for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { |
| #ifndef NDEBUG |
| assert(CurOffs <= CurLayObj->first); |
| if (CurOffs < CurLayObj->first) { |
| uint64_t padding = CurLayObj->first - CurOffs; |
| // FIXME: There doesn't seem to be a way to indicate in the encoding that |
| // packing/alignment of members is different that normal, in which case |
| // the encoding will be out-of-sync with the real layout. |
| // If the runtime switches to just consider the size of types without |
| // taking into account alignment, we could make padding explicit in the |
| // encoding (e.g. using arrays of chars). The encoding strings would be |
| // longer then though. |
| CurOffs += padding; |
| } |
| #endif |
| |
| NamedDecl *dcl = CurLayObj->second; |
| if (!dcl) |
| break; // reached end of structure. |
| |
| if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) { |
| // We expand the bases without their virtual bases since those are going |
| // in the initial structure. Note that this differs from gcc which |
| // expands virtual bases each time one is encountered in the hierarchy, |
| // making the encoding type bigger than it really is. |
| getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, |
| NotEncodedT); |
| assert(!base->isEmpty()); |
| #ifndef NDEBUG |
| CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); |
| #endif |
| } else { |
| const auto *field = cast<FieldDecl>(dcl); |
| if (FD) { |
| S += '"'; |
| S += field->getNameAsString(); |
| S += '"'; |
| } |
| |
| if (field->isBitField()) { |
| EncodeBitField(this, S, field->getType(), field); |
| #ifndef NDEBUG |
| CurOffs += field->getBitWidthValue(*this); |
| #endif |
| } else { |
| QualType qt = field->getType(); |
| getLegacyIntegralTypeEncoding(qt); |
| getObjCEncodingForTypeImpl(qt, S, false, true, FD, |
| /*OutermostType*/false, |
| /*EncodingProperty*/false, |
| /*StructField*/true, |
| false, false, false, NotEncodedT); |
| #ifndef NDEBUG |
| CurOffs += getTypeSize(field->getType()); |
| #endif |
| } |
| } |
| } |
| } |
| |
| void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
| std::string& S) const { |
| if (QT & Decl::OBJC_TQ_In) |
| S += 'n'; |
| if (QT & Decl::OBJC_TQ_Inout) |
| S += 'N'; |
| if (QT & Decl::OBJC_TQ_Out) |
| S += 'o'; |
| if (QT & Decl::OBJC_TQ_Bycopy) |
| S += 'O'; |
| if (QT & Decl::OBJC_TQ_Byref) |
| S += 'R'; |
| if (QT & Decl::OBJC_TQ_Oneway) |
| S += 'V'; |
| } |
| |
| TypedefDecl *ASTContext::getObjCIdDecl() const { |
| if (!ObjCIdDecl) { |
| QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {}); |
| T = getObjCObjectPointerType(T); |
| ObjCIdDecl = buildImplicitTypedef(T, "id"); |
| } |
| return ObjCIdDecl; |
| } |
| |
| TypedefDecl *ASTContext::getObjCSelDecl() const { |
| if (!ObjCSelDecl) { |
| QualType T = getPointerType(ObjCBuiltinSelTy); |
| ObjCSelDecl = buildImplicitTypedef(T, "SEL"); |
| } |
| return ObjCSelDecl; |
| } |
| |
| TypedefDecl *ASTContext::getObjCClassDecl() const { |
| if (!ObjCClassDecl) { |
| QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {}); |
| T = getObjCObjectPointerType(T); |
| ObjCClassDecl = buildImplicitTypedef(T, "Class"); |
| } |
| return ObjCClassDecl; |
| } |
| |
| ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { |
| if (!ObjCProtocolClassDecl) { |
| ObjCProtocolClassDecl |
| = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), |
| &Idents.get("Protocol"), |
| /*typeParamList=*/nullptr, |
| /*PrevDecl=*/nullptr, |
| SourceLocation(), true); |
| } |
| |
| return ObjCProtocolClassDecl; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // __builtin_va_list Construction Functions |
| //===----------------------------------------------------------------------===// |
| |
| static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, |
| StringRef Name) { |
| // typedef char* __builtin[_ms]_va_list; |
| QualType T = Context->getPointerType(Context->CharTy); |
| return Context->buildImplicitTypedef(T, Name); |
| } |
| |
| static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { |
| return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); |
| } |
| |
| static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { |
| return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); |
| } |
| |
| static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { |
| // typedef void* __builtin_va_list; |
| QualType T = Context->getPointerType(Context->VoidTy); |
| return Context->buildImplicitTypedef(T, "__builtin_va_list"); |
| } |
| |
| static TypedefDecl * |
| CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { |
| // struct __va_list |
| RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); |
| if (Context->getLangOpts().CPlusPlus) { |
| // namespace std { struct __va_list { |
| NamespaceDecl *NS; |
| NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), |
| Context->getTranslationUnitDecl(), |
| /*Inline*/ false, SourceLocation(), |
| SourceLocation(), &Context->Idents.get("std"), |
| /*PrevDecl*/ nullptr); |
| NS->setImplicit(); |
| VaListTagDecl->setDeclContext(NS); |
| } |
| |
| VaListTagDecl->startDefinition(); |
| |
| const size_t NumFields = 5; |
| QualType FieldTypes[NumFields]; |
| const char *FieldNames[NumFields]; |
| |
| // void *__stack; |
| FieldTypes[0] = Context->getPointerType(Context->VoidTy); |
| FieldNames[0] = "__stack"; |
| |
| // void *__gr_top; |
| FieldTypes[1] = Context->getPointerType(Context->VoidTy); |
| FieldNames[1] = "__gr_top"; |
| |
| // void *__vr_top; |
| FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| FieldNames[2] = "__vr_top"; |
| |
| // int __gr_offs; |
| FieldTypes[3] = Context->IntTy; |
| FieldNames[3] = "__gr_offs"; |
| |
| // int __vr_offs; |
| FieldTypes[4] = Context->IntTy; |
| FieldNames[4] = "__vr_offs"; |
| |
| // Create fields |
| for (unsigned i = 0; i < NumFields; ++i) { |
| FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| VaListTagDecl, |
| SourceLocation(), |
| SourceLocation(), |
| &Context->Idents.get(FieldNames[i]), |
| FieldTypes[i], /*TInfo=*/nullptr, |
| /*BitWidth=*/nullptr, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| VaListTagDecl->addDecl(Field); |
| } |
| VaListTagDecl->completeDefinition(); |
| Context->VaListTagDecl = VaListTagDecl; |
| QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| |
| // } __builtin_va_list; |
| return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); |
| } |
| |
| static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { |
| // typedef struct __va_list_tag { |
| RecordDecl *VaListTagDecl; |
| |
| VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
| VaListTagDecl->startDefinition(); |
| |
| const size_t NumFields = 5; |
| QualType FieldTypes[NumFields]; |
| const char *FieldNames[NumFields]; |
| |
| // unsigned char gpr; |
| FieldTypes[0] = Context->UnsignedCharTy; |
| FieldNames[0] = "gpr"; |
| |
| // unsigned char fpr; |
| FieldTypes[1] = Context->UnsignedCharTy; |
| FieldNames[1] = "fpr"; |
| |
| // unsigned short reserved; |
| FieldTypes[2] = Context->UnsignedShortTy; |
| FieldNames[2] = "reserved"; |
| |
| // void* overflow_arg_area; |
| FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| FieldNames[3] = "overflow_arg_area"; |
| |
| // void* reg_save_area; |
| FieldTypes[4] = Context->getPointerType(Context->VoidTy); |
| FieldNames[4] = "reg_save_area"; |
| |
| // Create fields |
| for (unsigned i = 0; i < NumFields; ++i) { |
| FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, |
| SourceLocation(), |
| SourceLocation(), |
| &Context->Idents.get(FieldNames[i]), |
| FieldTypes[i], /*TInfo=*/nullptr, |
| /*BitWidth=*/nullptr, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| VaListTagDecl->addDecl(Field); |
| } |
| VaListTagDecl->completeDefinition(); |
| Context->VaListTagDecl = VaListTagDecl; |
| QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| |
| // } __va_list_tag; |
| TypedefDecl *VaListTagTypedefDecl = |
| Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); |
| |
| QualType VaListTagTypedefType = |
| Context->getTypedefType(VaListTagTypedefDecl); |
| |
| // typedef __va_list_tag __builtin_va_list[1]; |
| llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
| QualType VaListTagArrayType |
| = Context->getConstantArrayType(VaListTagTypedefType, |
| Size, ArrayType::Normal, 0); |
| return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
| } |
| |
| static TypedefDecl * |
| CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { |
| // struct __va_list_tag { |
| RecordDecl *VaListTagDecl; |
| VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
| VaListTagDecl->startDefinition(); |
| |
| const size_t NumFields = 4; |
| QualType FieldTypes[NumFields]; |
| const char *FieldNames[NumFields]; |
| |
| // unsigned gp_offset; |
| FieldTypes[0] = Context->UnsignedIntTy; |
| FieldNames[0] = "gp_offset"; |
| |
| // unsigned fp_offset; |
| FieldTypes[1] = Context->UnsignedIntTy; |
| FieldNames[1] = "fp_offset"; |
| |
| // void* overflow_arg_area; |
| FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| FieldNames[2] = "overflow_arg_area"; |
| |
| // void* reg_save_area; |
| FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| FieldNames[3] = "reg_save_area"; |
| |
| // Create fields |
| for (unsigned i = 0; i < NumFields; ++i) { |
| FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| VaListTagDecl, |
| SourceLocation(), |
| SourceLocation(), |
| &Context->Idents.get(FieldNames[i]), |
| FieldTypes[i], /*TInfo=*/nullptr, |
| /*BitWidth=*/nullptr, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| VaListTagDecl->addDecl(Field); |
| } |
| VaListTagDecl->completeDefinition(); |
| Context->VaListTagDecl = VaListTagDecl; |
| QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| |
| // }; |
| |
| // typedef struct __va_list_tag __builtin_va_list[1]; |
| llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
| QualType VaListTagArrayType = |
| Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0); |
| return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
| } |
| |
| static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { |
| // typedef int __builtin_va_list[4]; |
| llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); |
| QualType IntArrayType = |
| Context->getConstantArrayType(Context->IntTy, Size, ArrayType::Normal, 0); |
| return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); |
| } |
| |
| static TypedefDecl * |
| CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { |
| // struct __va_list |
| RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); |
| if (Context->getLangOpts().CPlusPlus) { |
| // namespace std { struct __va_list { |
| NamespaceDecl *NS; |
| NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), |
| Context->getTranslationUnitDecl(), |
| /*Inline*/false, SourceLocation(), |
| SourceLocation(), &Context->Idents.get("std"), |
| /*PrevDecl*/ nullptr); |
| NS->setImplicit(); |
| VaListDecl->setDeclContext(NS); |
| } |
| |
| VaListDecl->startDefinition(); |
| |
| // void * __ap; |
| FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| VaListDecl, |
| SourceLocation(), |
| SourceLocation(), |
| &Context->Idents.get("__ap"), |
| Context->getPointerType(Context->VoidTy), |
| /*TInfo=*/nullptr, |
| /*BitWidth=*/nullptr, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| VaListDecl->addDecl(Field); |
| |
| // }; |
| VaListDecl->completeDefinition(); |
| Context->VaListTagDecl = VaListDecl; |
| |
| // typedef struct __va_list __builtin_va_list; |
| QualType T = Context->getRecordType(VaListDecl); |
| return Context->buildImplicitTypedef(T, "__builtin_va_list"); |
| } |
| |
| static TypedefDecl * |
| CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { |
| // struct __va_list_tag { |
| RecordDecl *VaListTagDecl; |
| VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
| VaListTagDecl->startDefinition(); |
| |
| const size_t NumFields = 4; |
| QualType FieldTypes[NumFields]; |
| const char *FieldNames[NumFields]; |
| |
| // long __gpr; |
| FieldTypes[0] = Context->LongTy; |
| FieldNames[0] = "__gpr"; |
| |
| // long __fpr; |
| FieldTypes[1] = Context->LongTy; |
| FieldNames[1] = "__fpr"; |
| |
| // void *__overflow_arg_area; |
| FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| FieldNames[2] = "__overflow_arg_area"; |
| |
| // void *__reg_save_area; |
| FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| FieldNames[3] = "__reg_save_area"; |
| |
| // Create fields |
| for (unsigned i = 0; i < NumFields; ++i) { |
| FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| VaListTagDecl, |
| SourceLocation(), |
| SourceLocation(), |
| &Context->Idents.get(FieldNames[i]), |
| FieldTypes[i], /*TInfo=*/nullptr, |
| /*BitWidth=*/nullptr, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| VaListTagDecl->addDecl(Field); |
| } |
| VaListTagDecl->completeDefinition(); |
| Context->VaListTagDecl = VaListTagDecl; |
| QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| |
| // }; |
| |
| // typedef __va_list_tag __builtin_va_list[1]; |
| llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
| QualType VaListTagArrayType = |
| Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0); |
| |
| return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
| } |
| |
| static TypedefDecl *CreateVaListDecl(const ASTContext *Context, |
| TargetInfo::BuiltinVaListKind Kind) { |
| switch (Kind) { |
| case TargetInfo::CharPtrBuiltinVaList: |
| return CreateCharPtrBuiltinVaListDecl(Context); |
| case TargetInfo::VoidPtrBuiltinVaList: |
| return CreateVoidPtrBuiltinVaListDecl(Context); |
| case TargetInfo::AArch64ABIBuiltinVaList: |
| return CreateAArch64ABIBuiltinVaListDecl(Context); |
| case TargetInfo::PowerABIBuiltinVaList: |
| return CreatePowerABIBuiltinVaListDecl(Context); |
| case TargetInfo::X86_64ABIBuiltinVaList: |
| return CreateX86_64ABIBuiltinVaListDecl(Context); |
| case TargetInfo::PNaClABIBuiltinVaList: |
| return CreatePNaClABIBuiltinVaListDecl(Context); |
| case TargetInfo::AAPCSABIBuiltinVaList: |
| return CreateAAPCSABIBuiltinVaListDecl(Context); |
| case TargetInfo::SystemZBuiltinVaList: |
| return CreateSystemZBuiltinVaListDecl(Context); |
| } |
| |
| llvm_unreachable("Unhandled __builtin_va_list type kind"); |
| } |
| |
| TypedefDecl *ASTContext::getBuiltinVaListDecl() const { |
| if (!BuiltinVaListDecl) { |
| BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); |
| assert(BuiltinVaListDecl->isImplicit()); |
| } |
| |
| return BuiltinVaListDecl; |
| } |
| |
| Decl *ASTContext::getVaListTagDecl() const { |
| // Force the creation of VaListTagDecl by building the __builtin_va_list |
| // declaration. |
| if (!VaListTagDecl) |
| (void)getBuiltinVaListDecl(); |
| |
| return VaListTagDecl; |
| } |
| |
| TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { |
| if (!BuiltinMSVaListDecl) |
| BuiltinMSVaListDecl = CreateMSVaListDecl(this); |
| |
| return BuiltinMSVaListDecl; |
| } |
| |
| bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { |
| return BuiltinInfo.canBeRedeclared(FD->getBuiltinID()); |
| } |
| |
| void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
| assert(ObjCConstantStringType.isNull() && |
| "'NSConstantString' type already set!"); |
| |
| ObjCConstantStringType = getObjCInterfaceType(Decl); |
| } |
| |
| /// Retrieve the template name that corresponds to a non-empty |
| /// lookup. |
| TemplateName |
| ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, |
| UnresolvedSetIterator End) const { |
| unsigned size = End - Begin; |
| assert(size > 1 && "set is not overloaded!"); |
| |
| void *memory = Allocate(sizeof(OverloadedTemplateStorage) + |
| size * sizeof(FunctionTemplateDecl*)); |
| auto *OT = new (memory) OverloadedTemplateStorage(size); |
| |
| NamedDecl **Storage = OT->getStorage(); |
| for (UnresolvedSetIterator I = Begin; I != End; ++I) { |
| NamedDecl *D = *I; |
| assert(isa<FunctionTemplateDecl>(D) || |
| isa<UnresolvedUsingValueDecl>(D) || |
| (isa<UsingShadowDecl>(D) && |
| isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); |
| *Storage++ = D; |
| } |
| |
| return TemplateName(OT); |
| } |
| |
| /// Retrieve the template name that represents a qualified |
| /// template name such as \c std::vector. |
| TemplateName |
| ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, |
| bool TemplateKeyword, |
| TemplateDecl *Template) const { |
| assert(NNS && "Missing nested-name-specifier in qualified template name"); |
| |
| // FIXME: Canonicalization? |
| llvm::FoldingSetNodeID ID; |
| QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); |
| |
| void *InsertPos = nullptr; |
| QualifiedTemplateName *QTN = |
| QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| if (!QTN) { |
| QTN = new (*this, alignof(QualifiedTemplateName)) |
| QualifiedTemplateName(NNS, TemplateKeyword, Template); |
| QualifiedTemplateNames.InsertNode(QTN, InsertPos); |
| } |
| |
| return TemplateName(QTN); |
| } |
| |
| /// Retrieve the template name that represents a dependent |
| /// template name such as \c MetaFun::template apply. |
| TemplateName |
| ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name) const { |
| assert((!NNS || NNS->isDependent()) && |
| "Nested name specifier must be dependent"); |
| |
| llvm::FoldingSetNodeID ID; |
| DependentTemplateName::Profile(ID, NNS, Name); |
| |
| void *InsertPos = nullptr; |
| DependentTemplateName *QTN = |
| DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (QTN) |
| return TemplateName(QTN); |
| |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| if (CanonNNS == NNS) { |
| QTN = new (*this, alignof(DependentTemplateName)) |
| DependentTemplateName(NNS, Name); |
| } else { |
| TemplateName Canon = getDependentTemplateName(CanonNNS, Name); |
| QTN = new (*this, alignof(DependentTemplateName)) |
| DependentTemplateName(NNS, Name, Canon); |
| DependentTemplateName *CheckQTN = |
| DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CheckQTN && "Dependent type name canonicalization broken"); |
| (void)CheckQTN; |
| } |
| |
| DependentTemplateNames.InsertNode(QTN, InsertPos); |
| return TemplateName(QTN); |
| } |
| |
| /// Retrieve the template name that represents a dependent |
| /// template name such as \c MetaFun::template operator+. |
| TemplateName |
| ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
| OverloadedOperatorKind Operator) const { |
| assert((!NNS || NNS->isDependent()) && |
| "Nested name specifier must be dependent"); |
| |
| llvm::FoldingSetNodeID ID; |
| DependentTemplateName::Profile(ID, NNS, Operator); |
| |
| void *InsertPos = nullptr; |
| DependentTemplateName *QTN |
| = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (QTN) |
| return TemplateName(QTN); |
| |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| if (CanonNNS == NNS) { |
| QTN = new (*this, alignof(DependentTemplateName)) |
| DependentTemplateName(NNS, Operator); |
| } else { |
| TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); |
| QTN = new (*this, alignof(DependentTemplateName)) |
| DependentTemplateName(NNS, Operator, Canon); |
| |
| DependentTemplateName *CheckQTN |
| = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CheckQTN && "Dependent template name canonicalization broken"); |
| (void)CheckQTN; |
| } |
| |
| DependentTemplateNames.InsertNode(QTN, InsertPos); |
| return TemplateName(QTN); |
| } |
| |
| TemplateName |
| ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, |
| TemplateName replacement) const { |
| llvm::FoldingSetNodeID ID; |
| SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); |
| |
| void *insertPos = nullptr; |
| SubstTemplateTemplateParmStorage *subst |
| = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); |
| |
| if (!subst) { |
| subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); |
| SubstTemplateTemplateParms.InsertNode(subst, insertPos); |
| } |
| |
| return TemplateName(subst); |
| } |
| |
| TemplateName |
| ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, |
| const TemplateArgument &ArgPack) const { |
| auto &Self = const_cast<ASTContext &>(*this); |
| llvm::FoldingSetNodeID ID; |
| SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); |
| |
| void *InsertPos = nullptr; |
| SubstTemplateTemplateParmPackStorage *Subst |
| = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!Subst) { |
| Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, |
| ArgPack.pack_size(), |
| ArgPack.pack_begin()); |
| SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); |
| } |
| |
| return TemplateName(Subst); |
| } |
| |
| /// getFromTargetType - Given one of the integer types provided by |
| /// TargetInfo, produce the corresponding type. The unsigned @p Type |
| /// is actually a value of type @c TargetInfo::IntType. |
| CanQualType ASTContext::getFromTargetType(unsigned Type) const { |
| switch (Type) { |
| case TargetInfo::NoInt: return {}; |
| case TargetInfo::SignedChar: return SignedCharTy; |
| case TargetInfo::UnsignedChar: return UnsignedCharTy; |
| case TargetInfo::SignedShort: return ShortTy; |
| case TargetInfo::UnsignedShort: return UnsignedShortTy; |
| case TargetInfo::SignedInt: return IntTy; |
| case TargetInfo::UnsignedInt: return UnsignedIntTy; |
| case TargetInfo::SignedLong: return LongTy; |
| case TargetInfo::UnsignedLong: return UnsignedLongTy; |
| case TargetInfo::SignedLongLong: return LongLongTy; |
| case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; |
| } |
| |
| llvm_unreachable("Unhandled TargetInfo::IntType value"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Predicates. |
| //===----------------------------------------------------------------------===// |
| |
| /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's |
| /// garbage collection attribute. |
| /// |
| Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { |
| if (getLangOpts().getGC() == LangOptions::NonGC) |
| return Qualifiers::GCNone; |
| |
| assert(getLangOpts().ObjC1); |
| Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); |
| |
| // Default behaviour under objective-C's gc is for ObjC pointers |
| // (or pointers to them) be treated as though they were declared |
| // as __strong. |
| if (GCAttrs == Qualifiers::GCNone) { |
| if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) |
| return Qualifiers::Strong; |
| else if (Ty->isPointerType()) |
| return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType()); |
| } else { |
| // It's not valid to set GC attributes on anything that isn't a |
| // pointer. |
| #ifndef NDEBUG |
| QualType CT = Ty->getCanonicalTypeInternal(); |
| while (const auto *AT = dyn_cast<ArrayType>(CT)) |
| CT = AT->getElementType(); |
| assert(CT->isAnyPointerType() || CT->isBlockPointerType()); |
| #endif |
| } |
| return GCAttrs; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Compatibility Testing |
| //===----------------------------------------------------------------------===// |
| |
| /// areCompatVectorTypes - Return true if the two specified vector types are |
| /// compatible. |
| static bool areCompatVectorTypes(const VectorType *LHS, |
| const VectorType *RHS) { |
| assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
| return LHS->getElementType() == RHS->getElementType() && |
| LHS->getNumElements() == RHS->getNumElements(); |
| } |
| |
| bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, |
| QualType SecondVec) { |
| assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); |
| assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); |
| |
| if (hasSameUnqualifiedType(FirstVec, SecondVec)) |
| return true; |
| |
| // Treat Neon vector types and most AltiVec vector types as if they are the |
| // equivalent GCC vector types. |
| const auto *First = FirstVec->getAs<VectorType>(); |
| const auto *Second = SecondVec->getAs<VectorType>(); |
| if (First->getNumElements() == Second->getNumElements() && |
| hasSameType(First->getElementType(), Second->getElementType()) && |
| First->getVectorKind() != VectorType::AltiVecPixel && |
| First->getVectorKind() != VectorType::AltiVecBool && |
| Second->getVectorKind() != VectorType::AltiVecPixel && |
| Second->getVectorKind() != VectorType::AltiVecBool) |
| return true; |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. |
| //===----------------------------------------------------------------------===// |
| |
| /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the |
| /// inheritance hierarchy of 'rProto'. |
| bool |
| ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, |
| ObjCProtocolDecl *rProto) const { |
| if (declaresSameEntity(lProto, rProto)) |
| return true; |
| for (auto *PI : rProto->protocols()) |
| if (ProtocolCompatibleWithProtocol(lProto, PI)) |
| return true; |
| return false; |
| } |
| |
| /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and |
| /// Class<pr1, ...>. |
| bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs, |
| QualType rhs) { |
| const auto *lhsQID = lhs->getAs<ObjCObjectPointerType>(); |
| const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
| assert((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"); |
| |
| for (auto *lhsProto : lhsQID->quals()) { |
| bool match = false; |
| for (auto *rhsProto : rhsOPT->quals()) { |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) |
| return false; |
| } |
| return true; |
| } |
| |
| /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an |
| /// ObjCQualifiedIDType. |
| bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, |
| bool compare) { |
| // Allow id<P..> and an 'id' or void* type in all cases. |
| if (lhs->isVoidPointerType() || |
| lhs->isObjCIdType() || lhs->isObjCClassType()) |
| return true; |
| else if (rhs->isVoidPointerType() || |
| rhs->isObjCIdType() || rhs->isObjCClassType()) |
| return true; |
| |
| if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { |
| const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
| |
| if (!rhsOPT) return false; |
| |
| if (rhsOPT->qual_empty()) { |
| // If the RHS is a unqualified interface pointer "NSString*", |
| // make sure we check the class hierarchy. |
| if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { |
| for (auto *I : lhsQID->quals()) { |
| // when comparing an id<P> on lhs with a static type on rhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| if (!rhsID->ClassImplementsProtocol(I, true)) |
| return false; |
| } |
| } |
| // If there are no qualifiers and no interface, we have an 'id'. |
| return true; |
| } |
| // Both the right and left sides have qualifiers. |
| for (auto *lhsProto : lhsQID->quals()) { |
| bool match = false; |
| |
| // when comparing an id<P> on lhs with a static type on rhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| for (auto *rhsProto : rhsOPT->quals()) { |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| match = true; |
| break; |
| } |
| } |
| // If the RHS is a qualified interface pointer "NSString<P>*", |
| // make sure we check the class hierarchy. |
| if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { |
| for (auto *I : lhsQID->quals()) { |
| // when comparing an id<P> on lhs with a static type on rhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| if (rhsID->ClassImplementsProtocol(I, true)) { |
| match = true; |
| break; |
| } |
| } |
| } |
| if (!match) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); |
| assert(rhsQID && "One of the LHS/RHS should be id<x>"); |
| |
| if (const ObjCObjectPointerType *lhsOPT = |
| lhs->getAsObjCInterfacePointerType()) { |
| // If both the right and left sides have qualifiers. |
| for (auto *lhsProto : lhsOPT->quals()) { |
| bool match = false; |
| |
| // when comparing an id<P> on rhs with a static type on lhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| // First, lhs protocols in the qualifier list must be found, direct |
| // or indirect in rhs's qualifier list or it is a mismatch. |
| for (auto *rhsProto : rhsQID->quals()) { |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) |
| return false; |
| } |
| |
| // Static class's protocols, or its super class or category protocols |
| // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. |
| if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) { |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; |
| CollectInheritedProtocols(lhsID, LHSInheritedProtocols); |
| // This is rather dubious but matches gcc's behavior. If lhs has |
| // no type qualifier and its class has no static protocol(s) |
| // assume that it is mismatch. |
| if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty()) |
| return false; |
| for (auto *lhsProto : LHSInheritedProtocols) { |
| bool match = false; |
| for (auto *rhsProto : rhsQID->quals()) { |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) |
| return false; |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| /// canAssignObjCInterfaces - Return true if the two interface types are |
| /// compatible for assignment from RHS to LHS. This handles validation of any |
| /// protocol qualifiers on the LHS or RHS. |
| bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, |
| const ObjCObjectPointerType *RHSOPT) { |
| const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
| const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
| |
| // If either type represents the built-in 'id' or 'Class' types, return true. |
| if (LHS->isObjCUnqualifiedIdOrClass() || |
| RHS->isObjCUnqualifiedIdOrClass()) |
| return true; |
| |
| // Function object that propagates a successful result or handles |
| // __kindof types. |
| auto finish = [&](bool succeeded) -> bool { |
| if (succeeded) |
| return true; |
| |
| if (!RHS->isKindOfType()) |
| return false; |
| |
| // Strip off __kindof and protocol qualifiers, then check whether |
| // we can assign the other way. |
| return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), |
| LHSOPT->stripObjCKindOfTypeAndQuals(*this)); |
| }; |
| |
| if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { |
| return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), |
| QualType(RHSOPT,0), |
| false)); |
| } |
| |
| if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { |
| return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0), |
| QualType(RHSOPT,0))); |
| } |
| |
| // If we have 2 user-defined types, fall into that path. |
| if (LHS->getInterface() && RHS->getInterface()) { |
| return finish(canAssignObjCInterfaces(LHS, RHS)); |
| } |
| |
| return false; |
| } |
| |
| /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written |
| /// for providing type-safety for objective-c pointers used to pass/return |
| /// arguments in block literals. When passed as arguments, passing 'A*' where |
| /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is |
| /// not OK. For the return type, the opposite is not OK. |
| bool ASTContext::canAssignObjCInterfacesInBlockPointer( |
| const ObjCObjectPointerType *LHSOPT, |
| const ObjCObjectPointerType *RHSOPT, |
| bool BlockReturnType) { |
| |
| // Function object that propagates a successful result or handles |
| // __kindof types. |
| auto finish = [&](bool succeeded) -> bool { |
| if (succeeded) |
| return true; |
| |
| const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; |
| if (!Expected->isKindOfType()) |
| return false; |
| |
| // Strip off __kindof and protocol qualifiers, then check whether |
| // we can assign the other way. |
| return canAssignObjCInterfacesInBlockPointer( |
| RHSOPT->stripObjCKindOfTypeAndQuals(*this), |
| LHSOPT->stripObjCKindOfTypeAndQuals(*this), |
| BlockReturnType); |
| }; |
| |
| if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) |
| return true; |
| |
| if (LHSOPT->isObjCBuiltinType()) { |
| return finish(RHSOPT->isObjCBuiltinType() || |
| RHSOPT->isObjCQualifiedIdType()); |
| } |
| |
| if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) |
| return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), |
| QualType(RHSOPT,0), |
| false)); |
| |
| const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); |
| const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); |
| if (LHS && RHS) { // We have 2 user-defined types. |
| if (LHS != RHS) { |
| if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) |
| return finish(BlockReturnType); |
| if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) |
| return finish(!BlockReturnType); |
| } |
| else |
| return true; |
| } |
| return false; |
| } |
| |
| /// Comparison routine for Objective-C protocols to be used with |
| /// llvm::array_pod_sort. |
| static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, |
| ObjCProtocolDecl * const *rhs) { |
| return (*lhs)->getName().compare((*rhs)->getName()); |
| } |
| |
| /// getIntersectionOfProtocols - This routine finds the intersection of set |
| /// of protocols inherited from two distinct objective-c pointer objects with |
| /// the given common base. |
| /// It is used to build composite qualifier list of the composite type of |
| /// the conditional expression involving two objective-c pointer objects. |
| static |
| void getIntersectionOfProtocols(ASTContext &Context, |
| const ObjCInterfaceDecl *CommonBase, |
| const ObjCObjectPointerType *LHSOPT, |
| const ObjCObjectPointerType *RHSOPT, |
| SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { |
| |
| const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
| const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
| assert(LHS->getInterface() && "LHS must have an interface base"); |
| assert(RHS->getInterface() && "RHS must have an interface base"); |
| |
| // Add all of the protocols for the LHS. |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; |
| |
| // Start with the protocol qualifiers. |
| for (auto proto : LHS->quals()) { |
| Context.CollectInheritedProtocols(proto, LHSProtocolSet); |
| } |
| |
| // Also add the protocols associated with the LHS interface. |
| Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); |
| |
| // Add all of the protocls for the RHS. |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; |
| |
| // Start with the protocol qualifiers. |
| for (auto proto : RHS->quals()) { |
| Context.CollectInheritedProtocols(proto, RHSProtocolSet); |
| } |
| |
| // Also add the protocols associated with the RHS interface. |
| Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); |
| |
| // Compute the intersection of the collected protocol sets. |
| for (auto proto : LHSProtocolSet) { |
| if (RHSProtocolSet.count(proto)) |
| IntersectionSet.push_back(proto); |
| } |
| |
| // Compute the set of protocols that is implied by either the common type or |
| // the protocols within the intersection. |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; |
| Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); |
| |
| // Remove any implied protocols from the list of inherited protocols. |
| if (!ImpliedProtocols.empty()) { |
| IntersectionSet.erase( |
| std::remove_if(IntersectionSet.begin(), |
| IntersectionSet.end(), |
| [&](ObjCProtocolDecl *proto) -> bool { |
| return ImpliedProtocols.count(proto) > 0; |
| }), |
| IntersectionSet.end()); |
| } |
| |
| // Sort the remaining protocols by name. |
| llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), |
| compareObjCProtocolsByName); |
| } |
| |
| /// Determine whether the first type is a subtype of the second. |
| static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, |
| QualType rhs) { |
| // Common case: two object pointers. |
| const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); |
| const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
| if (lhsOPT && rhsOPT) |
| return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); |
| |
| // Two block pointers. |
| const auto *lhsBlock = lhs->getAs<BlockPointerType>(); |
| const auto *rhsBlock = rhs->getAs<BlockPointerType>(); |
| if (lhsBlock && rhsBlock) |
| return ctx.typesAreBlockPointerCompatible(lhs, rhs); |
| |
| // If either is an unqualified 'id' and the other is a block, it's |
| // acceptable. |
| if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || |
| (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) |
| return true; |
| |
| return false; |
| } |
| |
| // Check that the given Objective-C type argument lists are equivalent. |
| static bool sameObjCTypeArgs(ASTContext &ctx, |
| const ObjCInterfaceDecl *iface, |
| ArrayRef<QualType> lhsArgs, |
| ArrayRef<QualType> rhsArgs, |
| bool stripKindOf) { |
| if (lhsArgs.size() != rhsArgs.size()) |
| return false; |
| |
| ObjCTypeParamList *typeParams = iface->getTypeParamList(); |
| for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { |
| if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) |
| continue; |
| |
| switch (typeParams->begin()[i]->getVariance()) { |
| case ObjCTypeParamVariance::Invariant: |
| if (!stripKindOf || |
| !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), |
| rhsArgs[i].stripObjCKindOfType(ctx))) { |
| return false; |
| } |
| break; |
| |
| case ObjCTypeParamVariance::Covariant: |
| if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) |
| return false; |
| break; |
| |
| case ObjCTypeParamVariance::Contravariant: |
| if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) |
| return false; |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| QualType ASTContext::areCommonBaseCompatible( |
| const ObjCObjectPointerType *Lptr, |
| const ObjCObjectPointerType *Rptr) { |
| const ObjCObjectType *LHS = Lptr->getObjectType(); |
| const ObjCObjectType *RHS = Rptr->getObjectType(); |
| const ObjCInterfaceDecl* LDecl = LHS->getInterface(); |
| const ObjCInterfaceDecl* RDecl = RHS->getInterface(); |
| |
| if (!LDecl || !RDecl) |
| return {}; |
| |
| // When either LHS or RHS is a kindof type, we should return a kindof type. |
| // For example, for common base of kindof(ASub1) and kindof(ASub2), we return |
| // kindof(A). |
| bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); |
| |
| // Follow the left-hand side up the class hierarchy until we either hit a |
| // root or find the RHS. Record the ancestors in case we don't find it. |
| llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> |
| LHSAncestors; |
| while (true) { |
| // Record this ancestor. We'll need this if the common type isn't in the |
| // path from the LHS to the root. |
| LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; |
| |
| if (declaresSameEntity(LHS->getInterface(), RDecl)) { |
| // Get the type arguments. |
| ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); |
| bool anyChanges = false; |
| if (LHS->isSpecialized() && RHS->isSpecialized()) { |
| // Both have type arguments, compare them. |
| if (!sameObjCTypeArgs(*this, LHS->getInterface(), |
| LHS->getTypeArgs(), RHS->getTypeArgs(), |
| /*stripKindOf=*/true)) |
| return {}; |
| } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
| // If only one has type arguments, the result will not have type |
| // arguments. |
| LHSTypeArgs = {}; |
| anyChanges = true; |
| } |
| |
| // Compute the intersection of protocols. |
| SmallVector<ObjCProtocolDecl *, 8> Protocols; |
| getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, |
| Protocols); |
| if (!Protocols.empty()) |
| anyChanges = true; |
| |
| // If anything in the LHS will have changed, build a new result type. |
| // If we need to return a kindof type but LHS is not a kindof type, we |
| // build a new result type. |
| if (anyChanges || LHS->isKindOfType() != anyKindOf) { |
| QualType Result = getObjCInterfaceType(LHS->getInterface()); |
| Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, |
| anyKindOf || LHS->isKindOfType()); |
| return getObjCObjectPointerType(Result); |
| } |
| |
| return getObjCObjectPointerType(QualType(LHS, 0)); |
| } |
| |
| // Find the superclass. |
| QualType LHSSuperType = LHS->getSuperClassType(); |
| if (LHSSuperType.isNull()) |
| break; |
| |
| LHS = LHSSuperType->castAs<ObjCObjectType>(); |
| } |
| |
| // We didn't find anything by following the LHS to its root; now check |
| // the RHS against the cached set of ancestors. |
| while (true) { |
| auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); |
| if (KnownLHS != LHSAncestors.end()) { |
| LHS = KnownLHS->second; |
| |
| // Get the type arguments. |
| ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); |
| bool anyChanges = false; |
| if (LHS->isSpecialized() && RHS->isSpecialized()) { |
| // Both have type arguments, compare them. |
| if (!sameObjCTypeArgs(*this, LHS->getInterface(), |
| LHS->getTypeArgs(), RHS->getTypeArgs(), |
| /*stripKindOf=*/true)) |
| return {}; |
| } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
| // If only one has type arguments, the result will not have type |
| // arguments. |
| RHSTypeArgs = {}; |
| anyChanges = true; |
| } |
| |
| // Compute the intersection of protocols. |
| SmallVector<ObjCProtocolDecl *, 8> Protocols; |
| getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, |
| Protocols); |
| if (!Protocols.empty()) |
| anyChanges = true; |
| |
| // If we need to return a kindof type but RHS is not a kindof type, we |
| // build a new result type. |
| if (anyChanges || RHS->isKindOfType() != anyKindOf) { |
| QualType Result = getObjCInterfaceType(RHS->getInterface()); |
| Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, |
| anyKindOf || RHS->isKindOfType()); |
| return getObjCObjectPointerType(Result); |
| } |
| |
| return getObjCObjectPointerType(QualType(RHS, 0)); |
| } |
| |
| // Find the superclass of the RHS. |
| QualType RHSSuperType = RHS->getSuperClassType(); |
| if (RHSSuperType.isNull()) |
| break; |
| |
| RHS = RHSSuperType->castAs<ObjCObjectType>(); |
| } |
| |
| return {}; |
| } |
| |
| bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, |
| const ObjCObjectType *RHS) { |
| assert(LHS->getInterface() && "LHS is not an interface type"); |
| assert(RHS->getInterface() && "RHS is not an interface type"); |
| |
| // Verify that the base decls are compatible: the RHS must be a subclass of |
| // the LHS. |
| ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); |
| bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); |
| if (!IsSuperClass) |
| return false; |
| |
| // If the LHS has protocol qualifiers, determine whether all of them are |
| // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the |
| // LHS). |
| if (LHS->getNumProtocols() > 0) { |
| // OK if conversion of LHS to SuperClass results in narrowing of types |
| // ; i.e., SuperClass may implement at least one of the protocols |
| // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. |
| // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; |
| CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); |
| // Also, if RHS has explicit quelifiers, include them for comparing with LHS's |
| // qualifiers. |
| for (auto *RHSPI : RHS->quals()) |
| CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); |
| // If there is no protocols associated with RHS, it is not a match. |
| if (SuperClassInheritedProtocols.empty()) |
| return false; |
| |
| for (const auto *LHSProto : LHS->quals()) { |
| bool SuperImplementsProtocol = false; |
| for (auto *SuperClassProto : SuperClassInheritedProtocols) |
| if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { |
| SuperImplementsProtocol = true; |
| break; |
| } |
| if (!SuperImplementsProtocol) |
| return false; |
| } |
| } |
| |
| // If the LHS is specialized, we may need to check type arguments. |
| if (LHS->isSpecialized()) { |
| // Follow the superclass chain until we've matched the LHS class in the |
| // hierarchy. This substitutes type arguments through. |
| const ObjCObjectType *RHSSuper = RHS; |
| while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) |
| RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); |
| |
| // If the RHS is specializd, compare type arguments. |
| if (RHSSuper->isSpecialized() && |
| !sameObjCTypeArgs(*this, LHS->getInterface(), |
| LHS->getTypeArgs(), RHSSuper->getTypeArgs(), |
| /*stripKindOf=*/true)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { |
| // get the "pointed to" types |
| const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); |
| const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); |
| |
| if (!LHSOPT || !RHSOPT) |
| return false; |
| |
| return canAssignObjCInterfaces(LHSOPT, RHSOPT) || |
| canAssignObjCInterfaces(RHSOPT, LHSOPT); |
| } |
| |
| bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { |
| return canAssignObjCInterfaces( |
| getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(), |
| getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>()); |
| } |
| |
| /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
| /// both shall have the identically qualified version of a compatible type. |
| /// C99 6.2.7p1: Two types have compatible types if their types are the |
| /// same. See 6.7.[2,3,5] for additional rules. |
| bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, |
| bool CompareUnqualified) { |
| if (getLangOpts().CPlusPlus) |
| return hasSameType(LHS, RHS); |
| |
| return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); |
| } |
| |
| bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { |
| return typesAreCompatible(LHS, RHS); |
| } |
| |
| bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { |
| return !mergeTypes(LHS, RHS, true).isNull(); |
| } |
| |
| /// mergeTransparentUnionType - if T is a transparent union type and a member |
| /// of T is compatible with SubType, return the merged type, else return |
| /// QualType() |
| QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, |
| bool OfBlockPointer, |
| bool Unqualified) { |
| if (const RecordType *UT = T->getAsUnionType()) { |
| RecordDecl *UD = UT->getDecl(); |
| if (UD->hasAttr<TransparentUnionAttr>()) { |
| for (const auto *I : UD->fields()) { |
| QualType ET = I->getType().getUnqualifiedType(); |
| QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); |
| if (!MT.isNull()) |
| return MT; |
| } |
| } |
| } |
| |
| return {}; |
| } |
| |
| /// mergeFunctionParameterTypes - merge two types which appear as function |
| /// parameter types |
| QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, |
| bool OfBlockPointer, |
| bool Unqualified) { |
| // GNU extension: two types are compatible if they appear as a function |
| // argument, one of the types is a transparent union type and the other |
| // type is compatible with a union member |
| QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, |
| Unqualified); |
| if (!lmerge.isNull()) |
| return lmerge; |
| |
| QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, |
| Unqualified); |
| if (!rmerge.isNull()) |
| return rmerge; |
| |
| return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); |
| } |
| |
| QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, |
| bool OfBlockPointer, |
| bool Unqualified) { |
| const auto *lbase = lhs->getAs<FunctionType>(); |
| const auto *rbase = rhs->getAs<FunctionType>(); |
| const auto *lproto = dyn_cast<FunctionProtoType>(lbase); |
| const auto *rproto = dyn_cast<FunctionProtoType>(rbase); |
| bool allLTypes = true; |
| bool allRTypes = true; |
| |
| // Check return type |
| QualType retType; |
| if (OfBlockPointer) { |
| QualType RHS = rbase->getReturnType(); |
| QualType LHS = lbase->getReturnType(); |
| bool UnqualifiedResult = Unqualified; |
| if (!UnqualifiedResult) |
| UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); |
| retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); |
| } |
| else |
| retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, |
| Unqualified); |
| if (retType.isNull()) |
| return {}; |
| |
| if (Unqualified) |
| retType = retType.getUnqualifiedType(); |
| |
| CanQualType LRetType = getCanonicalType(lbase->getReturnType()); |
| CanQualType RRetType = getCanonicalType(rbase->getReturnType()); |
| if (Unqualified) { |
| LRetType = LRetType.getUnqualifiedType(); |
| RRetType = RRetType.getUnqualifiedType(); |
| } |
| |
| if (getCanonicalType(retType) != LRetType) |
| allLTypes = false; |
| if (getCanonicalType(retType) != RRetType) |
| allRTypes = false; |
| |
| // FIXME: double check this |
| // FIXME: should we error if lbase->getRegParmAttr() != 0 && |
| // rbase->getRegParmAttr() != 0 && |
| // lbase->getRegParmAttr() != rbase->getRegParmAttr()? |
| FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); |
| FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); |
| |
| // Compatible functions must have compatible calling conventions |
| if (lbaseInfo.getCC() != rbaseInfo.getCC()) |
| return {}; |
| |
| // Regparm is part of the calling convention. |
| if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) |
| return {}; |
| if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) |
| return {}; |
| |
| if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) |
| return {}; |
| if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) |
| return {}; |
| if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) |
| return {}; |
| |
| // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. |
| bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); |
| |
| if (lbaseInfo.getNoReturn() != NoReturn) |
| allLTypes = false; |
| if (rbaseInfo.getNoReturn() != NoReturn) |
| allRTypes = false; |
| |
| FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); |
| |
| if (lproto && rproto) { // two C99 style function prototypes |
| assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && |
| "C++ shouldn't be here"); |
| // Compatible functions must have the same number of parameters |
| if (lproto->getNumParams() != rproto->getNumParams()) |
| return {}; |
| |
| // Variadic and non-variadic functions aren't compatible |
| if (lproto->isVariadic() != rproto->isVariadic()) |
| return {}; |
| |
| if (lproto->getTypeQuals() != rproto->getTypeQuals()) |
| return {}; |
| |
| SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; |
| bool canUseLeft, canUseRight; |
| if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight, |
| newParamInfos)) |
| return {}; |
| |
| if (!canUseLeft) |
| allLTypes = false; |
| if (!canUseRight) |
| allRTypes = false; |
| |
| // Check parameter type compatibility |
| SmallVector<QualType, 10> types; |
| for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { |
| QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); |
| QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); |
| QualType paramType = mergeFunctionParameterTypes( |
| lParamType, rParamType, OfBlockPointer, Unqualified); |
| if (paramType.isNull()) |
| return {}; |
| |
| if (Unqualified) |
| paramType = paramType.getUnqualifiedType(); |
| |
| types.push_back(paramType); |
| if (Unqualified) { |
| lParamType = lParamType.getUnqualifiedType(); |
| rParamType = rParamType.getUnqualifiedType(); |
| } |
| |
| if (getCanonicalType(paramType) != getCanonicalType(lParamType)) |
| allLTypes = false; |
| if (getCanonicalType(paramType) != getCanonicalType(rParamType)) |
| allRTypes = false; |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| |
| FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); |
| EPI.ExtInfo = einfo; |
| EPI.ExtParameterInfos = |
| newParamInfos.empty() ? nullptr : newParamInfos.data(); |
| return getFunctionType(retType, types, EPI); |
| } |
| |
| if (lproto) allRTypes = false; |
| if (rproto) allLTypes = false; |
| |
| const FunctionProtoType *proto = lproto ? lproto : rproto; |
| if (proto) { |
| assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); |
| if (proto->isVariadic()) |
| return {}; |
| // Check that the types are compatible with the types that |
| // would result from default argument promotions (C99 6.7.5.3p15). |
| // The only types actually affected are promotable integer |
| // types and floats, which would be passed as a different |
| // type depending on whether the prototype is visible. |
| for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { |
| QualType paramTy = proto->getParamType(i); |
| |
| // Look at the converted type of enum types, since that is the type used |
| // to pass enum values. |
| if (const auto *Enum = paramTy->getAs<EnumType>()) { |
| paramTy = Enum->getDecl()->getIntegerType(); |
| if (paramTy.isNull()) |
| return {}; |
| } |
| |
| if (paramTy->isPromotableIntegerType() || |
| getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) |
| return {}; |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| |
| FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); |
| EPI.ExtInfo = einfo; |
| return getFunctionType(retType, proto->getParamTypes(), EPI); |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| return getFunctionNoProtoType(retType, einfo); |
| } |
| |
| /// Given that we have an enum type and a non-enum type, try to merge them. |
| static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, |
| QualType other, bool isBlockReturnType) { |
| // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
| // a signed integer type, or an unsigned integer type. |
| // Compatibility is based on the underlying type, not the promotion |
| // type. |
| QualType underlyingType = ET->getDecl()->getIntegerType(); |
| if (underlyingType.isNull()) |
| return {}; |
| if (Context.hasSameType(underlyingType, other)) |
| return other; |
| |
| // In block return types, we're more permissive and accept any |
| // integral type of the same size. |
| if (isBlockReturnType && other->isIntegerType() && |
| Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) |
| return other; |
| |
| return {}; |
| } |
| |
| QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, |
| bool OfBlockPointer, |
| bool Unqualified, bool BlockReturnType) { |
| // C++ [expr]: If an expression initially has the type "reference to T", the |
| // type is adjusted to "T" prior to any further analysis, the expression |
| // designates the object or function denoted by the reference, and the |
| // expression is an lvalue unless the reference is an rvalue reference and |
| // the expression is a function call (possibly inside parentheses). |
| assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?"); |
| assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?"); |
| |
| if (Unqualified) { |
| LHS = LHS.getUnqualifiedType(); |
| RHS = RHS.getUnqualifiedType(); |
| } |
| |
| QualType LHSCan = getCanonicalType(LHS), |
| RHSCan = getCanonicalType(RHS); |
| |
| // If two types are identical, they are compatible. |
| if (LHSCan == RHSCan) |
| return LHS; |
| |
| // If the qualifiers are different, the types aren't compatible... mostly. |
| Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
| Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
| if (LQuals != RQuals) { |
| // If any of these qualifiers are different, we have a type |
| // mismatch. |
| if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
| LQuals.getAddressSpace() != RQuals.getAddressSpace() || |
| LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || |
| LQuals.hasUnaligned() != RQuals.hasUnaligned()) |
| return {}; |
| |
| // Exactly one GC qualifier difference is allowed: __strong is |
| // okay if the other type has no GC qualifier but is an Objective |
| // C object pointer (i.e. implicitly strong by default). We fix |
| // this by pretending that the unqualified type was actually |
| // qualified __strong. |
| Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
| Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
| assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); |
| |
| if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
| return {}; |
| |
| if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { |
| return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); |
| } |
| if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { |
| return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); |
| } |
| return {}; |
| } |
| |
| // Okay, qualifiers are equal. |
| |
| Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
| Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
| |
| // We want to consider the two function types to be the same for these |
| // comparisons, just force one to the other. |
| if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
| if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
| |
| // Same as above for arrays |
| if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
| LHSClass = Type::ConstantArray; |
| if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
| RHSClass = Type::ConstantArray; |
| |
| // ObjCInterfaces are just specialized ObjCObjects. |
| if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; |
| if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; |
| |
| // Canonicalize ExtVector -> Vector. |
| if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
| if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
| |
| // If the canonical type classes don't match. |
| if (LHSClass != RHSClass) { |
| // Note that we only have special rules for turning block enum |
| // returns into block int returns, not vice-versa. |
| if (const auto *ETy = LHS->getAs<EnumType>()) { |
| return mergeEnumWithInteger(*this, ETy, RHS, false); |
| } |
| if (const EnumType* ETy = RHS->getAs<EnumType>()) { |
| return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); |
| } |
| // allow block pointer type to match an 'id' type. |
| if (OfBlockPointer && !BlockReturnType) { |
| if (LHS->isObjCIdType() && RHS->isBlockPointerType()) |
| return LHS; |
| if (RHS->isObjCIdType() && LHS->isBlockPointerType()) |
| return RHS; |
| } |
| |
| return {}; |
| } |
| |
| // The canonical type classes match. |
| switch (LHSClass) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| llvm_unreachable("Non-canonical and dependent types shouldn't get here"); |
| |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| case Type::LValueReference: |
| case Type::RValueReference: |
| case Type::MemberPointer: |
| llvm_unreachable("C++ should never be in mergeTypes"); |
| |
| case Type::ObjCInterface: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::FunctionProto: |
| case Type::ExtVector: |
| llvm_unreachable("Types are eliminated above"); |
| |
| case Type::Pointer: |
| { |
| // Merge two pointer types, while trying to preserve typedef info |
| QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType(); |
| QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType(); |
| if (Unqualified) { |
| LHSPointee = LHSPointee.getUnqualifiedType(); |
| RHSPointee = RHSPointee.getUnqualifiedType(); |
| } |
| QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, |
| Unqualified); |
| if (ResultType.isNull()) |
| return {}; |
| if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
| return LHS; |
| if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
| return RHS; |
| return getPointerType(ResultType); |
| } |
| case Type::BlockPointer: |
| { |
| // Merge two block pointer types, while trying to preserve typedef info |
| QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType(); |
| QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType(); |
| if (Unqualified) { |
| LHSPointee = LHSPointee.getUnqualifiedType(); |
| RHSPointee = RHSPointee.getUnqualifiedType(); |
| } |
| if (getLangOpts().OpenCL) { |
| Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); |
| Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); |
| // Blocks can't be an expression in a ternary operator (OpenCL v2.0 |
| // 6.12.5) thus the following check is asymmetric. |
| if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual)) |
| return {}; |
| LHSPteeQual.removeAddressSpace(); |
| RHSPteeQual.removeAddressSpace(); |
| LHSPointee = |
| QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); |
| RHSPointee = |
| QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); |
| } |
| QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, |
| Unqualified); |
| if (ResultType.isNull()) |
| return {}; |
| if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
| return LHS; |
| if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
| return RHS; |
| return getBlockPointerType(ResultType); |
| } |
| case Type::Atomic: |
| { |
| // Merge two pointer types, while trying to preserve typedef info |
| QualType LHSValue = LHS->getAs<AtomicType>()->getValueType(); |
| QualType RHSValue = RHS->getAs<AtomicType>()->getValueType(); |
| if (Unqualified) { |
| LHSValue = LHSValue.getUnqualifiedType(); |
| RHSValue = RHSValue.getUnqualifiedType(); |
| } |
| QualType ResultType = mergeTypes(LHSValue, RHSValue, false, |
| Unqualified); |
| if (ResultType.isNull()) |
| return {}; |
| if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) |
| return LHS; |
| if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) |
| return RHS; |
| return getAtomicType(ResultType); |
| } |
| case Type::ConstantArray: |
| { |
| const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); |
| const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); |
| if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) |
| return {}; |
| |
| QualType LHSElem = getAsArrayType(LHS)->getElementType(); |
| QualType RHSElem = getAsArrayType(RHS)->getElementType(); |
| if (Unqualified) { |
| LHSElem = LHSElem.getUnqualifiedType(); |
| RHSElem = RHSElem.getUnqualifiedType(); |
| } |
| |
| QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); |
| if (ResultType.isNull()) |
| return {}; |
| |
| const VariableArrayType* LVAT = getAsVariableArrayType(LHS); |
| const VariableArrayType* RVAT = getAsVariableArrayType(RHS); |
| |
| // If either side is a variable array, and both are complete, check whether |
| // the current dimension is definite. |
| if (LVAT || RVAT) { |
| auto SizeFetch = [this](const VariableArrayType* VAT, |
| const ConstantArrayType* CAT) |
| -> std::pair<bool,llvm::APInt> { |
| if (VAT) { |
| llvm::APSInt TheInt; |
| Expr *E = VAT->getSizeExpr(); |
| if (E && E->isIntegerConstantExpr(TheInt, *this)) |
| return std::make_pair(true, TheInt); |
| else |
| return std::make_pair(false, TheInt); |
| } else if (CAT) { |
| return std::make_pair(true, CAT->getSize()); |
| } else { |
| return std::make_pair(false, llvm::APInt()); |
| } |
| }; |
| |
| bool HaveLSize, HaveRSize; |
| llvm::APInt LSize, RSize; |
| std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT); |
| std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT); |
| if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize)) |
| return {}; // Definite, but unequal, array dimension |
| } |
| |
| if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
| return LHS; |
| if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
| return RHS; |
| if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), |
| ArrayType::ArraySizeModifier(), 0); |
| if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), |
| ArrayType::ArraySizeModifier(), 0); |
| if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
| return LHS; |
| if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
| return RHS; |
| if (LVAT) { |
| // FIXME: This isn't correct! But tricky to implement because |
| // the array's size has to be the size of LHS, but the type |
| // has to be different. |
| return LHS; |
| } |
| if (RVAT) { |
| // FIXME: This isn't correct! But tricky to implement because |
| // the array's size has to be the size of RHS, but the type |
| // has to be different. |
| return RHS; |
| } |
| if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; |
| if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; |
| return getIncompleteArrayType(ResultType, |
| ArrayType::ArraySizeModifier(), 0); |
| } |
| case Type::FunctionNoProto: |
| return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); |
| case Type::Record: |
| case Type::Enum: |
| return {}; |
| case Type::Builtin: |
| // Only exactly equal builtin types are compatible, which is tested above. |
| return {}; |
| case Type::Complex: |
| // Distinct complex types are incompatible. |
| return {}; |
| case Type::Vector: |
| // FIXME: The merged type should be an ExtVector! |
| if (areCompatVectorTypes(LHSCan->getAs<VectorType>(), |
| RHSCan->getAs<VectorType>())) |
| return LHS; |
| return {}; |
| case Type::ObjCObject: { |
| // Check if the types are assignment compatible. |
| // FIXME: This should be type compatibility, e.g. whether |
| // "LHS x; RHS x;" at global scope is legal. |
| const auto *LHSIface = LHS->getAs<ObjCObjectType>(); |
| const auto *RHSIface = RHS->getAs<ObjCObjectType>(); |
| if (canAssignObjCInterfaces(LHSIface, RHSIface)) |
| return LHS; |
| |
| return {}; |
| } |
| case Type::ObjCObjectPointer: |
| if (OfBlockPointer) { |
| if (canAssignObjCInterfacesInBlockPointer( |
| LHS->getAs<ObjCObjectPointerType>(), |
| RHS->getAs<ObjCObjectPointerType>(), |
| BlockReturnType)) |
| return LHS; |
| return {}; |
| } |
| if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(), |
| RHS->getAs<ObjCObjectPointerType>())) |
| return LHS; |
| |
| return {}; |
| case Type::Pipe: |
| assert(LHS != RHS && |
| "Equivalent pipe types should have already been handled!"); |
| return {}; |
| } |
| |
| llvm_unreachable("Invalid Type::Class!"); |
| } |
| |
| bool ASTContext::mergeExtParameterInfo( |
| const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, |
| bool &CanUseFirst, bool &CanUseSecond, |
| SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { |
| assert(NewParamInfos.empty() && "param info list not empty"); |
| CanUseFirst = CanUseSecond = true; |
| bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); |
| bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); |
| |
| // Fast path: if the first type doesn't have ext parameter infos, |
| // we match if and only if the second type also doesn't have them. |
| if (!FirstHasInfo && !SecondHasInfo) |
| return true; |
| |
| bool NeedParamInfo = false; |
| size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() |
| : SecondFnType->getExtParameterInfos().size(); |
| |
| for (size_t I = 0; I < E; ++I) { |
| FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; |
| if (FirstHasInfo) |
| FirstParam = FirstFnType->getExtParameterInfo(I); |
| if (SecondHasInfo) |
| SecondParam = SecondFnType->getExtParameterInfo(I); |
| |
| // Cannot merge unless everything except the noescape flag matches. |
| if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false)) |
| return false; |
| |
| bool FirstNoEscape = FirstParam.isNoEscape(); |
| bool SecondNoEscape = SecondParam.isNoEscape(); |
| bool IsNoEscape = FirstNoEscape && SecondNoEscape; |
| NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape)); |
| if (NewParamInfos.back().getOpaqueValue()) |
| NeedParamInfo = true; |
| if (FirstNoEscape != IsNoEscape) |
| CanUseFirst = false; |
| if (SecondNoEscape != IsNoEscape) |
| CanUseSecond = false; |
| } |
| |
| if (!NeedParamInfo) |
| NewParamInfos.clear(); |
| |
| return true; |
| } |
| |
| void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) { |
| ObjCLayouts[CD] = nullptr; |
| } |
| |
| /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and |
| /// 'RHS' attributes and returns the merged version; including for function |
| /// return types. |
| QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { |
| QualType LHSCan = getCanonicalType(LHS), |
| RHSCan = getCanonicalType(RHS); |
| // If two types are identical, they are compatible. |
| if (LHSCan == RHSCan) |
| return LHS; |
| if (RHSCan->isFunctionType()) { |
| if (!LHSCan->isFunctionType()) |
| return {}; |
| QualType OldReturnType = |
| cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); |
| QualType NewReturnType = |
| cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); |
| QualType ResReturnType = |
| mergeObjCGCQualifiers(NewReturnType, OldReturnType); |
| if (ResReturnType.isNull()) |
| return {}; |
| if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { |
| // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); |
| // In either case, use OldReturnType to build the new function type. |
| const auto *F = LHS->getAs<FunctionType>(); |
| if (const auto *FPT = cast<FunctionProtoType>(F)) { |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.ExtInfo = getFunctionExtInfo(LHS); |
| QualType ResultType = |
| getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); |
| return ResultType; |
| } |
| } |
| return {}; |
| } |
| |
| // If the qualifiers are different, the types can still be merged. |
| Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
| Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
| if (LQuals != RQuals) { |
| // If any of these qualifiers are different, we have a type mismatch. |
| if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
| LQuals.getAddressSpace() != RQuals.getAddressSpace()) |
| return {}; |
| |
| // Exactly one GC qualifier difference is allowed: __strong is |
| // okay if the other type has no GC qualifier but is an Objective |
| // C object pointer (i.e. implicitly strong by default). We fix |
| // this by pretending that the unqualified type was actually |
| // qualified __strong. |
| Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
| Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
| assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); |
| |
| if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
| return {}; |
| |
| if (GC_L == Qualifiers::Strong) |
| return LHS; |
| if (GC_R == Qualifiers::Strong) |
| return RHS; |
| return {}; |
| } |
| |
| if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { |
| QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); |
| if (ResQT == LHSBaseQT) |
| return LHS; |
| if (ResQT == RHSBaseQT) |
| return RHS; |
| } |
| return {}; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Predicates |
| //===----------------------------------------------------------------------===// |
| |
| unsigned ASTContext::getIntWidth(QualType T) const { |
| if (const auto *ET = T->getAs<EnumType>()) |
| T = ET->getDecl()->getIntegerType(); |
| if (T->isBooleanType()) |
| return 1; |
| // For builtin types, just use the standard type sizing method |
| return (unsigned)getTypeSize(T); |
| } |
| |
| QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { |
| assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && |
| "Unexpected type"); |
| |
| // Turn <4 x signed int> -> <4 x unsigned int> |
| if (const auto *VTy = T->getAs<VectorType>()) |
| return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), |
| VTy->getNumElements(), VTy->getVectorKind()); |
| |
| // For enums, we return the unsigned version of the base type. |
| if (const auto *ETy = T->getAs<EnumType>()) |
| T = ETy->getDecl()->getIntegerType(); |
| |
| const auto *BTy = T->getAs<BuiltinType>(); |
| assert(BTy && "Unexpected signed integer or fixed point type"); |
| switch (BTy->getKind()) { |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: |
| return UnsignedCharTy; |
| case BuiltinType::Short: |
| return UnsignedShortTy; |
| case BuiltinType::Int: |
| return UnsignedIntTy; |
| case BuiltinType::Long: |
| return UnsignedLongTy; |
| case BuiltinType::LongLong: |
| return UnsignedLongLongTy; |
| case BuiltinType::Int128: |
| return UnsignedInt128Ty; |
| |
| case BuiltinType::ShortAccum: |
| return UnsignedShortAccumTy; |
| case BuiltinType::Accum: |
| return UnsignedAccumTy; |
| case BuiltinType::LongAccum: |
| return UnsignedLongAccumTy; |
| case BuiltinType::SatShortAccum: |
| return SatUnsignedShortAccumTy; |
| case BuiltinType::SatAccum: |
| return SatUnsignedAccumTy; |
| case BuiltinType::SatLongAccum: |
| return SatUnsignedLongAccumTy; |
| case BuiltinType::ShortFract: |
| return UnsignedShortFractTy; |
| case BuiltinType::Fract: |
| return UnsignedFractTy; |
| case BuiltinType::LongFract: |
| return UnsignedLongFractTy; |
| case BuiltinType::SatShortFract: |
| return SatUnsignedShortFractTy; |
| case BuiltinType::SatFract: |
| return SatUnsignedFractTy; |
| case BuiltinType::SatLongFract: |
| return SatUnsignedLongFractTy; |
| default: |
| llvm_unreachable("Unexpected signed integer or fixed point type"); |
| } |
| } |
| |
| ASTMutationListener::~ASTMutationListener() = default; |
| |
| void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, |
| QualType ReturnType) {} |
| |
| //===----------------------------------------------------------------------===// |
| // Builtin Type Computation |
| //===----------------------------------------------------------------------===// |
| |
| /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the |
| /// pointer over the consumed characters. This returns the resultant type. If |
| /// AllowTypeModifiers is false then modifier like * are not parsed, just basic |
| /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of |
| /// a vector of "i*". |
| /// |
| /// RequiresICE is filled in on return to indicate whether the value is required |
| /// to be an Integer Constant Expression. |
| static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, |
| ASTContext::GetBuiltinTypeError &Error, |
| bool &RequiresICE, |
| bool AllowTypeModifiers) { |
| // Modifiers. |
| int HowLong = 0; |
| bool Signed = false, Unsigned = false; |
| RequiresICE = false; |
| |
| // Read the prefixed modifiers first. |
| bool Done = false; |
| #ifndef NDEBUG |
| bool IsSpecialLong = false; |
| #endif |
| while (!Done) { |
| switch (*Str++) { |
| default: Done = true; --Str; break; |
| case 'I': |
| RequiresICE = true; |
| break; |
| case 'S': |
| assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); |
| assert(!Signed && "Can't use 'S' modifier multiple times!"); |
| Signed = true; |
| break; |
| case 'U': |
| assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); |
| assert(!Unsigned && "Can't use 'U' modifier multiple times!"); |
| Unsigned = true; |
| break; |
| case 'L': |
| assert(!IsSpecialLong && "Can't use 'L' with 'W' or 'N' modifiers"); |
| assert(HowLong <= 2 && "Can't have LLLL modifier"); |
| ++HowLong; |
| break; |
| case 'N': |
| // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. |
| assert(!IsSpecialLong && "Can't use two 'N' or 'W' modifiers!"); |
| assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!"); |
| #ifndef NDEBUG |
| IsSpecialLong = true; |
| #endif |
| if (Context.getTargetInfo().getLongWidth() == 32) |
| ++HowLong; |
| break; |
| case 'W': |
| // This modifier represents int64 type. |
| assert(!IsSpecialLong && "Can't use two 'N' or 'W' modifiers!"); |
| assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); |
| #ifndef NDEBUG |
| IsSpecialLong = true; |
| #endif |
| switch (Context.getTargetInfo().getInt64Type()) { |
| default: |
| llvm_unreachable("Unexpected integer type"); |
| case TargetInfo::SignedLong: |
| HowLong = 1; |
| break; |
| case TargetInfo::SignedLongLong: |
| HowLong = 2; |
| break; |
| } |
| break; |
| } |
| } |
| |
| QualType Type; |
| |
| // Read the base type. |
| switch (*Str++) { |
| default: llvm_unreachable("Unknown builtin type letter!"); |
| case 'v': |
| assert(HowLong == 0 && !Signed && !Unsigned && |
| "Bad modifiers used with 'v'!"); |
| Type = Context.VoidTy; |
| break; |
| case 'h': |
| assert(HowLong == 0 && !Signed && !Unsigned && |
| "Bad modifiers used with 'h'!"); |
| Type = Context.HalfTy; |
| break; |
| case 'f': |
| assert(HowLong == 0 && !Signed && !Unsigned && |
| "Bad modifiers used with 'f'!"); |
| Type = Context.FloatTy; |
| break; |
| case 'd': |
| assert(HowLong < 3 && !Signed && !Unsigned && |
| "Bad modifiers used with 'd'!"); |
| if (HowLong == 1) |
| Type = Context.LongDoubleTy; |
| else if (HowLong == 2) |
| Type = Context.Float128Ty; |
| else |
| Type = Context.DoubleTy; |
| break; |
| case 's': |
| assert(HowLong == 0 && "Bad modifiers used with 's'!"); |
| if (Unsigned) |
| Type = Context.UnsignedShortTy; |
| else |
| Type = Context.ShortTy; |
| break; |
| case 'i': |
| if (HowLong == 3) |
| Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; |
| else if (HowLong == 2) |
| Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; |
| else if (HowLong == 1) |
| Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; |
| else |
| Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; |
| break; |
| case 'c': |
| assert(HowLong == 0 && "Bad modifiers used with 'c'!"); |
| if (Signed) |
| Type = Context.SignedCharTy; |
| else if (Unsigned) |
| Type = Context.UnsignedCharTy; |
| else |
| Type = Context.CharTy; |
| break; |
| case 'b': // boolean |
| assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); |
| Type = Context.BoolTy; |
| break; |
| case 'z': // size_t. |
| assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); |
| Type = Context.getSizeType(); |
| break; |
| case 'w': // wchar_t. |
| assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!"); |
| Type = Context.getWideCharType(); |
| break; |
| case 'F': |
| Type = Context.getCFConstantStringType(); |
| break; |
| case 'G': |
| Type = Context.getObjCIdType(); |
| break; |
| case 'H': |
| Type = Context.getObjCSelType(); |
| break; |
| case 'M': |
| Type = Context.getObjCSuperType(); |
| break; |
| case 'a': |
| Type = Context.getBuiltinVaListType(); |
| assert(!Type.isNull() && "builtin va list type not initialized!"); |
| break; |
| case 'A': |
| // This is a "reference" to a va_list; however, what exactly |
| // this means depends on how va_list is defined. There are two |
| // different kinds of va_list: ones passed by value, and ones |
| // passed by reference. An example of a by-value va_list is |
| // x86, where va_list is a char*. An example of by-ref va_list |
| // is x86-64, where va_list is a __va_list_tag[1]. For x86, |
| // we want this argument to be a char*&; for x86-64, we want |
| // it to be a __va_list_tag*. |
| Type = Context.getBuiltinVaListType(); |
| assert(!Type.isNull() && "builtin va list type not initialized!"); |
| if (Type->isArrayType()) |
| Type = Context.getArrayDecayedType(Type); |
| else |
| Type = Context.getLValueReferenceType(Type); |
| break; |
| case 'V': { |
| char *End; |
| unsigned NumElements = strtoul(Str, &End, 10); |
| assert(End != Str && "Missing vector size"); |
| Str = End; |
| |
| QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
| RequiresICE, false); |
| assert(!RequiresICE && "Can't require vector ICE"); |
| |
| // TODO: No way to make AltiVec vectors in builtins yet. |
| Type = Context.getVectorType(ElementType, NumElements, |
| VectorType::GenericVector); |
| break; |
| } |
| case 'E': { |
| char *End; |
| |
| unsigned NumElements = strtoul(Str, &End, 10); |
| assert(End != Str && "Missing vector size"); |
| |
| Str = End; |
| |
| QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
| false); |
| Type = Context.getExtVectorType(ElementType, NumElements); |
| break; |
| } |
| case 'X': { |
| QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
| false); |
| assert(!RequiresICE && "Can't require complex ICE"); |
| Type = Context.getComplexType(ElementType); |
| break; |
| } |
| case 'Y': |
| Type = Context.getPointerDiffType(); |
| break; |
| case 'P': |
| Type = Context.getFILEType(); |
| if (Type.isNull()) { |
| Error = ASTContext::GE_Missing_stdio; |
| return {}; |
| } |
| break; |
| case 'J': |
| if (Signed) |
| Type = Context.getsigjmp_bufType(); |
| else |
| Type = Context.getjmp_bufType(); |
| |
| if (Type.isNull()) { |
| Error = ASTContext::GE_Missing_setjmp; |
| return {}; |
| } |
| break; |
| case 'K': |
| assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); |
| Type = Context.getucontext_tType(); |
| |
| if (Type.isNull()) { |
| Error = ASTContext::GE_Missing_ucontext; |
| return {}; |
| } |
| break; |
| case 'p': |
| Type = Context.getProcessIDType(); |
| break; |
| } |
| |
| // If there are modifiers and if we're allowed to parse them, go for it. |
| Done = !AllowTypeModifiers; |
| while (!Done) { |
| switch (char c = *Str++) { |
| default: Done = true; --Str; break; |
| case '*': |
| case '&': { |
| // Both pointers and references can have their pointee types |
| // qualified with an address space. |
| char *End; |
| unsigned AddrSpace = strtoul(Str, &End, 10); |
| if (End != Str && AddrSpace != 0) { |
| Type = Context.getAddrSpaceQualType(Type, |
| getLangASFromTargetAS(AddrSpace)); |
| Str = End; |
| } |
| if (c == '*') |
| Type = Context.getPointerType(Type); |
| else |
| Type = Context.getLValueReferenceType(Type); |
| break; |
| } |
| // FIXME: There's no way to have a built-in with an rvalue ref arg. |
| case 'C': |
| Type = Type.withConst(); |
| break; |
| case 'D': |
| Type = Context.getVolatileType(Type); |
| break; |
| case 'R': |
| Type = Type.withRestrict(); |
| break; |
| } |
| } |
| |
| assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && |
| "Integer constant 'I' type must be an integer"); |
| |
| return Type; |
| } |
| |
| /// GetBuiltinType - Return the type for the specified builtin. |
| QualType ASTContext::GetBuiltinType(unsigned Id, |
| GetBuiltinTypeError &Error, |
| unsigned *IntegerConstantArgs) const { |
| const char *TypeStr = BuiltinInfo.getTypeString(Id); |
| |
| SmallVector<QualType, 8> ArgTypes; |
| |
| bool RequiresICE = false; |
| Error = GE_None; |
| QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, |
| RequiresICE, true); |
| if (Error != GE_None) |
| return {}; |
| |
| assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); |
| |
| while (TypeStr[0] && TypeStr[0] != '.') { |
| QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); |
| if (Error != GE_None) |
| return {}; |
| |
| // If this argument is required to be an IntegerConstantExpression and the |
| // caller cares, fill in the bitmask we return. |
| if (RequiresICE && IntegerConstantArgs) |
| *IntegerConstantArgs |= 1 << ArgTypes.size(); |
| |
| // Do array -> pointer decay. The builtin should use the decayed type. |
| if (Ty->isArrayType()) |
| Ty = getArrayDecayedType(Ty); |
| |
| ArgTypes.push_back(Ty); |
| } |
| |
| if (Id == Builtin::BI__GetExceptionInfo) |
| return {}; |
| |
| assert((TypeStr[0] != '.' || TypeStr[1] == 0) && |
| "'.' should only occur at end of builtin type list!"); |
| |
| FunctionType::ExtInfo EI(CC_C); |
| if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); |
| |
| bool Variadic = (TypeStr[0] == '.'); |
| |
| // We really shouldn't be making a no-proto type here. |
| if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus) |
| return getFunctionNoProtoType(ResType, EI); |
| |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.ExtInfo = EI; |
| EPI.Variadic = Variadic; |
| if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id)) |
| EPI.ExceptionSpec.Type = |
| getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; |
| |
| return getFunctionType(ResType, ArgTypes, EPI); |
| } |
| |
| static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, |
| const FunctionDecl *FD) { |
| if (!FD->isExternallyVisible()) |
| return GVA_Internal; |
| |
| // Non-user-provided functions get emitted as weak definitions with every |
| // use, no matter whether they've been explicitly instantiated etc. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
| if (!MD->isUserProvided()) |
| return GVA_DiscardableODR; |
| |
| GVALinkage External; |
| switch (FD->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| External = GVA_StrongExternal; |
| break; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| return GVA_StrongODR; |
| |
| // C++11 [temp.explicit]p10: |
| // [ Note: The intent is that an inline function that is the subject of |
| // an explicit instantiation declaration will still be implicitly |
| // instantiated when used so that the body can be considered for |
| // inlining, but that no out-of-line copy of the inline function would be |
| // generated in the translation unit. -- end note ] |
| case TSK_ExplicitInstantiationDeclaration: |
| return GVA_AvailableExternally; |
| |
| case TSK_ImplicitInstantiation: |
| External = GVA_DiscardableODR; |
| break; |
| } |
| |
| if (!FD->isInlined()) |
| return External; |
| |
| if ((!Context.getLangOpts().CPlusPlus && |
| !Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| !FD->hasAttr<DLLExportAttr>()) || |
| FD->hasAttr<GNUInlineAttr>()) { |
| // FIXME: This doesn't match gcc's behavior for dllexport inline functions. |
| |
| // GNU or C99 inline semantics. Determine whether this symbol should be |
| // externally visible. |
| if (FD->isInlineDefinitionExternallyVisible()) |
| return External; |
| |
| // C99 inline semantics, where the symbol is not externally visible. |
| return GVA_AvailableExternally; |
| } |
| |
| // Functions specified with extern and inline in -fms-compatibility mode |
| // forcibly get emitted. While the body of the function cannot be later |
| // replaced, the function definition cannot be discarded. |
| if (FD->isMSExternInline()) |
| return GVA_StrongODR; |
| |
| return GVA_DiscardableODR; |
| } |
| |
| static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, |
| const Decl *D, GVALinkage L) { |
| // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx |
| // dllexport/dllimport on inline functions. |
| if (D->hasAttr<DLLImportAttr>()) { |
| if (L == GVA_DiscardableODR || L == GVA_StrongODR) |
| return GVA_AvailableExternally; |
| } else if (D->hasAttr<DLLExportAttr>()) { |
| if (L == GVA_DiscardableODR) |
| return GVA_StrongODR; |
| } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice && |
| D->hasAttr<CUDAGlobalAttr>()) { |
| // Device-side functions with __global__ attribute must always be |
| // visible externally so they can be launched from host. |
| if (L == GVA_DiscardableODR || L == GVA_Internal) |
| return GVA_StrongODR; |
| } |
| return L; |
| } |
| |
| /// Adjust the GVALinkage for a declaration based on what an external AST source |
| /// knows about whether there can be other definitions of this declaration. |
| static GVALinkage |
| adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, |
| GVALinkage L) { |
| ExternalASTSource *Source = Ctx.getExternalSource(); |
| if (!Source) |
| return L; |
| |
| switch (Source->hasExternalDefinitions(D)) { |
| case ExternalASTSource::EK_Never: |
| // Other translation units rely on us to provide the definition. |
| if (L == GVA_DiscardableODR) |
| return GVA_StrongODR; |
| break; |
| |
| case ExternalASTSource::EK_Always: |
| return GVA_AvailableExternally; |
| |
| case ExternalASTSource::EK_ReplyHazy: |
| break; |
| } |
| return L; |
| } |
| |
| GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { |
| return adjustGVALinkageForExternalDefinitionKind(*this, FD, |
| adjustGVALinkageForAttributes(*this, FD, |
| basicGVALinkageForFunction(*this, FD))); |
| } |
| |
| static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, |
| const VarDecl *VD) { |
| if (!VD->isExternallyVisible()) |
| return GVA_Internal; |
| |
| if (VD->isStaticLocal()) { |
| const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); |
| while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) |
| LexicalContext = LexicalContext->getLexicalParent(); |
| |
| // ObjC Blocks can create local variables that don't have a FunctionDecl |
| // LexicalContext. |
| if (!LexicalContext) |
| return GVA_DiscardableODR; |
| |
| // Otherwise, let the static local variable inherit its linkage from the |
| // nearest enclosing function. |
| auto StaticLocalLinkage = |
| Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); |
| |
| // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must |
| // be emitted in any object with references to the symbol for the object it |
| // contains, whether inline or out-of-line." |
| // Similar behavior is observed with MSVC. An alternative ABI could use |
| // StrongODR/AvailableExternally to match the function, but none are |
| // known/supported currently. |
| if (StaticLocalLinkage == GVA_StrongODR || |
| StaticLocalLinkage == GVA_AvailableExternally) |
| return GVA_DiscardableODR; |
| return StaticLocalLinkage; |
| } |
| |
| // MSVC treats in-class initialized static data members as definitions. |
| // By giving them non-strong linkage, out-of-line definitions won't |
| // cause link errors. |
| if (Context.isMSStaticDataMemberInlineDefinition(VD)) |
| return GVA_DiscardableODR; |
| |
| // Most non-template variables have strong linkage; inline variables are |
| // linkonce_odr or (occasionally, for compatibility) weak_odr. |
| GVALinkage StrongLinkage; |
| switch (Context.getInlineVariableDefinitionKind(VD)) { |
| case ASTContext::InlineVariableDefinitionKind::None: |
| StrongLinkage = GVA_StrongExternal; |
| break; |
| case ASTContext::InlineVariableDefinitionKind::Weak: |
| case ASTContext::InlineVariableDefinitionKind::WeakUnknown: |
| StrongLinkage = GVA_DiscardableODR; |
| break; |
| case ASTContext::InlineVariableDefinitionKind::Strong: |
| StrongLinkage = GVA_StrongODR; |
| break; |
| } |
| |
| switch (VD->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| return StrongLinkage; |
| |
| case TSK_ExplicitSpecialization: |
| return Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| VD->isStaticDataMember() |
| ? GVA_StrongODR |
| : StrongLinkage; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| return GVA_StrongODR; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| return GVA_AvailableExternally; |
| |
| case TSK_ImplicitInstantiation: |
| return GVA_DiscardableODR; |
| } |
| |
| llvm_unreachable("Invalid Linkage!"); |
| } |
| |
| GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { |
| return adjustGVALinkageForExternalDefinitionKind(*this, VD, |
| adjustGVALinkageForAttributes(*this, VD, |
| basicGVALinkageForVariable(*this, VD))); |
| } |
| |
| bool ASTContext::DeclMustBeEmitted(const Decl *D) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (!VD->isFileVarDecl()) |
| return false; |
| // Global named register variables (GNU extension) are never emitted. |
| if (VD->getStorageClass() == SC_Register) |
| return false; |
| if (VD->getDescribedVarTemplate() || |
| isa<VarTemplatePartialSpecializationDecl>(VD)) |
| return false; |
| } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| // We never need to emit an uninstantiated function template. |
| if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
| return false; |
| } else if (isa<PragmaCommentDecl>(D)) |
| return true; |
| else if (isa<OMPThreadPrivateDecl>(D)) |
| return true; |
| else if (isa<PragmaDetectMismatchDecl>(D)) |
| return true; |
| else if (isa<OMPThreadPrivateDecl>(D)) |
| return !D->getDeclContext()->isDependentContext(); |
| else if (isa<OMPDeclareReductionDecl>(D)) |
| return !D->getDeclContext()->isDependentContext(); |
| else if (isa<ImportDecl>(D)) |
| return true; |
| else |
| return false; |
| |
| if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) { |
| assert(getExternalSource() && "It's from an AST file; must have a source."); |
| // On Windows, PCH files are built together with an object file. If this |
| // declaration comes from such a PCH and DeclMustBeEmitted would return |
| // true, it would have returned true and the decl would have been emitted |
| // into that object file, so it doesn't need to be emitted here. |
| // Note that decls are still emitted if they're referenced, as usual; |
| // DeclMustBeEmitted is used to decide whether a decl must be emitted even |
| // if it's not referenced. |
| // |
| // Explicit template instantiation definitions are tricky. If there was an |
| // explicit template instantiation decl in the PCH before, it will look like |
| // the definition comes from there, even if that was just the declaration. |
| // (Explicit instantiation defs of variable templates always get emitted.) |
| bool IsExpInstDef = |
| isa<FunctionDecl>(D) && |
| cast<FunctionDecl>(D)->getTemplateSpecializationKind() == |
| TSK_ExplicitInstantiationDefinition; |
| |
| if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef) |
| return false; |
| } |
| |
| // If this is a member of a class template, we do not need to emit it. |
| if (D->getDeclContext()->isDependentContext()) |
| return false; |
| |
| // Weak references don't produce any output by themselves. |
| if (D->hasAttr<WeakRefAttr>()) |
| return false; |
| |
| // Aliases and used decls are required. |
| if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) |
| return true; |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| // Multiversioned functions always have to be emitted, because they are used |
| // by the resolver. |
| if (FD->isMultiVersion()) |
| return true; |
| // Forward declarations aren't required. |
| if (!FD->doesThisDeclarationHaveABody()) |
| return FD->doesDeclarationForceExternallyVisibleDefinition(); |
| |
| // Constructors and destructors are required. |
| if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) |
| return true; |
| |
| // The key function for a class is required. This rule only comes |
| // into play when inline functions can be key functions, though. |
| if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| const CXXRecordDecl *RD = MD->getParent(); |
| if (MD->isOutOfLine() && RD->isDynamicClass()) { |
| const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); |
| if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) |
| return true; |
| } |
| } |
| } |
| |
| GVALinkage Linkage = GetGVALinkageForFunction(FD); |
| |
| // static, static inline, always_inline, and extern inline functions can |
| // always be deferred. Normal inline functions can be deferred in C99/C++. |
| // Implicit template instantiations can also be deferred in C++. |
| return !isDiscardableGVALinkage(Linkage); |
| } |
| |
| const auto *VD = cast<VarDecl>(D); |
| assert(VD->isFileVarDecl() && "Expected file scoped var"); |
| |
| if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && |
| !isMSStaticDataMemberInlineDefinition(VD)) |
| return false; |
| |
| // Variables that can be needed in other TUs are required. |
| auto Linkage = GetGVALinkageForVariable(VD); |
| if (!isDiscardableGVALinkage(Linkage)) |
| return true; |
| |
| // We never need to emit a variable that is available in another TU. |
| if (Linkage == GVA_AvailableExternally) |
| return false; |
| |
| // Variables that have destruction with side-effects are required. |
| if (VD->getType().isDestructedType()) |
| return true; |
| |
| // Variables that have initialization with side-effects are required. |
| if (VD->getInit() && VD->getInit()->HasSideEffects(*this) && |
| // We can get a value-dependent initializer during error recovery. |
| (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
| return true; |
| |
| // Likewise, variables with tuple-like bindings are required if their |
| // bindings have side-effects. |
| if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) |
| for (const auto *BD : DD->bindings()) |
| if (const auto *BindingVD = BD->getHoldingVar()) |
| if (DeclMustBeEmitted(BindingVD)) |
| return true; |
| |
| // If the decl is marked as `declare target`, it should be emitted. |
| if (const llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
| return *Res != OMPDeclareTargetDeclAttr::MT_Link; |
| |
| return false; |
| } |
| |
| void ASTContext::forEachMultiversionedFunctionVersion( |
| const FunctionDecl *FD, |
| llvm::function_ref<void(FunctionDecl *)> Pred) const { |
| assert(FD->isMultiVersion() && "Only valid for multiversioned functions"); |
| llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; |
| FD = FD->getCanonicalDecl(); |
| for (auto *CurDecl : |
| FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) { |
| FunctionDecl *CurFD = CurDecl->getAsFunction()->getCanonicalDecl(); |
| if (CurFD && hasSameType(CurFD->getType(), FD->getType()) && |
| std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) { |
| SeenDecls.insert(CurFD); |
| Pred(CurFD); |
| } |
| } |
| } |
| |
| CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, |
| bool IsCXXMethod) const { |
| // Pass through to the C++ ABI object |
| if (IsCXXMethod) |
| return ABI->getDefaultMethodCallConv(IsVariadic); |
| |
| switch (LangOpts.getDefaultCallingConv()) { |
| case LangOptions::DCC_None: |
| break; |
| case LangOptions::DCC_CDecl: |
| return CC_C; |
| case LangOptions::DCC_FastCall: |
| if (getTargetInfo().hasFeature("sse2") && !IsVariadic) |
| return CC_X86FastCall; |
| break; |
| case LangOptions::DCC_StdCall: |
| if (!IsVariadic) |
| return CC_X86StdCall; |
| break; |
| case LangOptions::DCC_VectorCall: |
| // __vectorcall cannot be applied to variadic functions. |
| if (!IsVariadic) |
| return CC_X86VectorCall; |
| break; |
| case LangOptions::DCC_RegCall: |
| // __regcall cannot be applied to variadic functions. |
| if (!IsVariadic) |
| return CC_X86RegCall; |
| break; |
| } |
| return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown); |
| } |
| |
| bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { |
| // Pass through to the C++ ABI object |
| return ABI->isNearlyEmpty(RD); |
| } |
| |
| VTableContextBase *ASTContext::getVTableContext() { |
| if (!VTContext.get()) { |
| if (Target->getCXXABI().isMicrosoft()) |
| VTContext.reset(new MicrosoftVTableContext(*this)); |
| else |
| VTContext.reset(new ItaniumVTableContext(*this)); |
| } |
| return VTContext.get(); |
| } |
| |
| MangleContext *ASTContext::createMangleContext() { |
| switch (Target->getCXXABI().getKind()) { |
| case TargetCXXABI::GenericAArch64: |
| case TargetCXXABI::GenericItanium: |
| case TargetCXXABI::GenericARM: |
| case TargetCXXABI::GenericMIPS: |
| case TargetCXXABI::iOS: |
| case TargetCXXABI::iOS64: |
| case TargetCXXABI::WebAssembly: |
| case TargetCXXABI::WatchOS: |
| return ItaniumMangleContext::create(*this, getDiagnostics()); |
| case TargetCXXABI::Microsoft: |
| return MicrosoftMangleContext::create(*this, getDiagnostics()); |
| } |
| llvm_unreachable("Unsupported ABI"); |
| } |
| |
| CXXABI::~CXXABI() = default; |
| |
| size_t ASTContext::getSideTableAllocatedMemory() const { |
| return ASTRecordLayouts.getMemorySize() + |
| llvm::capacity_in_bytes(ObjCLayouts) + |
| llvm::capacity_in_bytes(KeyFunctions) + |
| llvm::capacity_in_bytes(ObjCImpls) + |
| llvm::capacity_in_bytes(BlockVarCopyInits) + |
| llvm::capacity_in_bytes(DeclAttrs) + |
| llvm::capacity_in_bytes(TemplateOrInstantiation) + |
| llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + |
| llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + |
| llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + |
| llvm::capacity_in_bytes(OverriddenMethods) + |
| llvm::capacity_in_bytes(Types) + |
| llvm::capacity_in_bytes(VariableArrayTypes) + |
| llvm::capacity_in_bytes(ClassScopeSpecializationPattern); |
| } |
| |
| /// getIntTypeForBitwidth - |
| /// sets integer QualTy according to specified details: |
| /// bitwidth, signed/unsigned. |
| /// Returns empty type if there is no appropriate target types. |
| QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, |
| unsigned Signed) const { |
| TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); |
| CanQualType QualTy = getFromTargetType(Ty); |
| if (!QualTy && DestWidth == 128) |
| return Signed ? Int128Ty : UnsignedInt128Ty; |
| return QualTy; |
| } |
| |
| /// getRealTypeForBitwidth - |
| /// sets floating point QualTy according to specified bitwidth. |
| /// Returns empty type if there is no appropriate target types. |
| QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const { |
| TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth); |
| switch (Ty) { |
| case TargetInfo::Float: |
| return FloatTy; |
| case TargetInfo::Double: |
| return DoubleTy; |
| case TargetInfo::LongDouble: |
| return LongDoubleTy; |
| case TargetInfo::Float128: |
| return Float128Ty; |
| case TargetInfo::NoFloat: |
| return {}; |
| } |
| |
| llvm_unreachable("Unhandled TargetInfo::RealType value"); |
| } |
| |
| void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { |
| if (Number > 1) |
| MangleNumbers[ND] = Number; |
| } |
| |
| unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { |
| auto I = MangleNumbers.find(ND); |
| return I != MangleNumbers.end() ? I->second : 1; |
| } |
| |
| void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { |
| if (Number > 1) |
| StaticLocalNumbers[VD] = Number; |
| } |
| |
| unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { |
| auto I = StaticLocalNumbers.find(VD); |
| return I != StaticLocalNumbers.end() ? I->second : 1; |
| } |
| |
| MangleNumberingContext & |
| ASTContext::getManglingNumberContext(const DeclContext *DC) { |
| assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
| std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; |
| if (!MCtx) |
| MCtx = createMangleNumberingContext(); |
| return *MCtx; |
| } |
| |
| std::unique_ptr<MangleNumberingContext> |
| ASTContext::createMangleNumberingContext() const { |
| return ABI->createMangleNumberingContext(); |
| } |
| |
| const CXXConstructorDecl * |
| ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { |
| return ABI->getCopyConstructorForExceptionObject( |
| cast<CXXRecordDecl>(RD->getFirstDecl())); |
| } |
| |
| void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, |
| CXXConstructorDecl *CD) { |
| return ABI->addCopyConstructorForExceptionObject( |
| cast<CXXRecordDecl>(RD->getFirstDecl()), |
| cast<CXXConstructorDecl>(CD->getFirstDecl())); |
| } |
| |
| void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, |
| TypedefNameDecl *DD) { |
| return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); |
| } |
| |
| TypedefNameDecl * |
| ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { |
| return ABI->getTypedefNameForUnnamedTagDecl(TD); |
| } |
| |
| void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, |
| DeclaratorDecl *DD) { |
| return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); |
| } |
| |
| DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { |
| return ABI->getDeclaratorForUnnamedTagDecl(TD); |
| } |
| |
| void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { |
| ParamIndices[D] = index; |
| } |
| |
| unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { |
| ParameterIndexTable::const_iterator I = ParamIndices.find(D); |
| assert(I != ParamIndices.end() && |
| "ParmIndices lacks entry set by ParmVarDecl"); |
| return I->second; |
| } |
| |
| APValue * |
| ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E, |
| bool MayCreate) { |
| assert(E && E->getStorageDuration() == SD_Static && |
| "don't need to cache the computed value for this temporary"); |
| if (MayCreate) { |
| APValue *&MTVI = MaterializedTemporaryValues[E]; |
| if (!MTVI) |
| MTVI = new (*this) APValue; |
| return MTVI; |
| } |
| |
| return MaterializedTemporaryValues.lookup(E); |
| } |
| |
| bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { |
| const llvm::Triple &T = getTargetInfo().getTriple(); |
| if (!T.isOSDarwin()) |
| return false; |
| |
| if (!(T.isiOS() && T.isOSVersionLT(7)) && |
| !(T.isMacOSX() && T.isOSVersionLT(10, 9))) |
| return false; |
| |
| QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
| CharUnits sizeChars = getTypeSizeInChars(AtomicTy); |
| uint64_t Size = sizeChars.getQuantity(); |
| CharUnits alignChars = getTypeAlignInChars(AtomicTy); |
| unsigned Align = alignChars.getQuantity(); |
| unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); |
| return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); |
| } |
| |
| static ast_type_traits::DynTypedNode getSingleDynTypedNodeFromParentMap( |
| ASTContext::ParentMapPointers::mapped_type U) { |
| if (const auto *D = U.dyn_cast<const Decl *>()) |
| return ast_type_traits::DynTypedNode::create(*D); |
| if (const auto *S = U.dyn_cast<const Stmt *>()) |
| return ast_type_traits::DynTypedNode::create(*S); |
| return *U.get<ast_type_traits::DynTypedNode *>(); |
| } |
| |
| namespace { |
| |
| /// Template specializations to abstract away from pointers and TypeLocs. |
| /// @{ |
| template <typename T> |
| ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) { |
| return ast_type_traits::DynTypedNode::create(*Node); |
| } |
| template <> |
| ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) { |
| return ast_type_traits::DynTypedNode::create(Node); |
| } |
| template <> |
| ast_type_traits::DynTypedNode |
| createDynTypedNode(const NestedNameSpecifierLoc &Node) { |
| return ast_type_traits::DynTypedNode::create(Node); |
| } |
| /// @} |
| |
| /// A \c RecursiveASTVisitor that builds a map from nodes to their |
| /// parents as defined by the \c RecursiveASTVisitor. |
| /// |
| /// Note that the relationship described here is purely in terms of AST |
| /// traversal - there are other relationships (for example declaration context) |
| /// in the AST that are better modeled by special matchers. |
| /// |
| /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes. |
| class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> { |
| public: |
| /// Builds and returns the translation unit's parent map. |
| /// |
| /// The caller takes ownership of the returned \c ParentMap. |
| static std::pair<ASTContext::ParentMapPointers *, |
| ASTContext::ParentMapOtherNodes *> |
| buildMap(TranslationUnitDecl &TU) { |
| ParentMapASTVisitor Visitor(new ASTContext::ParentMapPointers, |
| new ASTContext::ParentMapOtherNodes); |
| Visitor.TraverseDecl(&TU); |
| return std::make_pair(Visitor.Parents, Visitor.OtherParents); |
| } |
| |
| private: |
| friend class RecursiveASTVisitor<ParentMapASTVisitor>; |
| |
| using VisitorBase = RecursiveASTVisitor<ParentMapASTVisitor>; |
| |
| ParentMapASTVisitor(ASTContext::ParentMapPointers *Parents, |
| ASTContext::ParentMapOtherNodes *OtherParents) |
| : Parents(Parents), OtherParents(OtherParents) {} |
| |
| bool shouldVisitTemplateInstantiations() const { |
| return true; |
| } |
| |
| bool shouldVisitImplicitCode() const { |
| return true; |
| } |
| |
| template <typename T, typename MapNodeTy, typename BaseTraverseFn, |
| typename MapTy> |
| bool TraverseNode(T Node, MapNodeTy MapNode, |
| BaseTraverseFn BaseTraverse, MapTy *Parents) { |
| if (!Node) |
| return true; |
| if (ParentStack.size() > 0) { |
| // FIXME: Currently we add the same parent multiple times, but only |
| // when no memoization data is available for the type. |
| // For example when we visit all subexpressions of template |
| // instantiations; this is suboptimal, but benign: the only way to |
| // visit those is with hasAncestor / hasParent, and those do not create |
| // new matches. |
| // The plan is to enable DynTypedNode to be storable in a map or hash |
| // map. The main problem there is to implement hash functions / |
| // comparison operators for all types that DynTypedNode supports that |
| // do not have pointer identity. |
| auto &NodeOrVector = (*Parents)[MapNode]; |
| if (NodeOrVector.isNull()) { |
| if (const auto *D = ParentStack.back().get<Decl>()) |
| NodeOrVector = D; |
| else if (const auto *S = ParentStack.back().get<Stmt>()) |
| NodeOrVector = S; |
| else |
| NodeOrVector = |
| new ast_type_traits::DynTypedNode(ParentStack.back()); |
| } else { |
| if (!NodeOrVector.template is<ASTContext::ParentVector *>()) { |
| auto *Vector = new ASTContext::ParentVector( |
| 1, getSingleDynTypedNodeFromParentMap(NodeOrVector)); |
| delete NodeOrVector |
| .template dyn_cast<ast_type_traits::DynTypedNode *>(); |
| NodeOrVector = Vector; |
| } |
| |
| auto *Vector = |
| NodeOrVector.template get<ASTContext::ParentVector *>(); |
| // Skip duplicates for types that have memoization data. |
| // We must check that the type has memoization data before calling |
| // std::find() because DynTypedNode::operator== can't compare all |
| // types. |
| bool Found = ParentStack.back().getMemoizationData() && |
| std::find(Vector->begin(), Vector->end(), |
| ParentStack.back()) != Vector->end(); |
| if (!Found) |
| Vector->push_back(ParentStack.back()); |
| } |
| } |
| ParentStack.push_back(createDynTypedNode(Node)); |
| bool Result = BaseTraverse(); |
| ParentStack.pop_back(); |
| return Result; |
| } |
| |
| bool TraverseDecl(Decl *DeclNode) { |
| return TraverseNode(DeclNode, DeclNode, |
| [&] { return VisitorBase::TraverseDecl(DeclNode); }, |
| Parents); |
| } |
| |
| bool TraverseStmt(Stmt *StmtNode) { |
| return TraverseNode(StmtNode, StmtNode, |
| [&] { return VisitorBase::TraverseStmt(StmtNode); }, |
| Parents); |
| } |
| |
| bool TraverseTypeLoc(TypeLoc TypeLocNode) { |
| return TraverseNode( |
| TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode), |
| [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); }, |
| OtherParents); |
| } |
| |
| bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) { |
| return TraverseNode( |
| NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode), |
| [&] { |
| return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); |
| }, |
| OtherParents); |
| } |
| |
| ASTContext::ParentMapPointers *Parents; |
| ASTContext::ParentMapOtherNodes *OtherParents; |
| llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack; |
| }; |
| |
| } // namespace |
| |
| template <typename NodeTy, typename MapTy> |
| static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node, |
| const MapTy &Map) { |
| auto I = Map.find(Node); |
| if (I == Map.end()) { |
| return llvm::ArrayRef<ast_type_traits::DynTypedNode>(); |
| } |
| if (const auto *V = |
| I->second.template dyn_cast<ASTContext::ParentVector *>()) { |
| return llvm::makeArrayRef(*V); |
| } |
| return getSingleDynTypedNodeFromParentMap(I->second); |
| } |
| |
| ASTContext::DynTypedNodeList |
| ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) { |
| if (!PointerParents) { |
| // We always need to run over the whole translation unit, as |
| // hasAncestor can escape any subtree. |
| auto Maps = ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()); |
| PointerParents.reset(Maps.first); |
| OtherParents.reset(Maps.second); |
| } |
| if (Node.getNodeKind().hasPointerIdentity()) |
| return getDynNodeFromMap(Node.getMemoizationData(), *PointerParents); |
| return getDynNodeFromMap(Node, *OtherParents); |
| } |
| |
| bool |
| ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, |
| const ObjCMethodDecl *MethodImpl) { |
| // No point trying to match an unavailable/deprecated mothod. |
| if (MethodDecl->hasAttr<UnavailableAttr>() |
| || MethodDecl->hasAttr<DeprecatedAttr>()) |
| return false; |
| if (MethodDecl->getObjCDeclQualifier() != |
| MethodImpl->getObjCDeclQualifier()) |
| return false; |
| if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) |
| return false; |
| |
| if (MethodDecl->param_size() != MethodImpl->param_size()) |
| return false; |
| |
| for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), |
| IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), |
| EF = MethodDecl->param_end(); |
| IM != EM && IF != EF; ++IM, ++IF) { |
| const ParmVarDecl *DeclVar = (*IF); |
| const ParmVarDecl *ImplVar = (*IM); |
| if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) |
| return false; |
| if (!hasSameType(DeclVar->getType(), ImplVar->getType())) |
| return false; |
| } |
| |
| return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); |
| } |
| |
| uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { |
| LangAS AS; |
| if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) |
| AS = LangAS::Default; |
| else |
| AS = QT->getPointeeType().getAddressSpace(); |
| |
| return getTargetInfo().getNullPointerValue(AS); |
| } |
| |
| unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { |
| if (isTargetAddressSpace(AS)) |
| return toTargetAddressSpace(AS); |
| else |
| return (*AddrSpaceMap)[(unsigned)AS]; |
| } |
| |
| QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { |
| assert(Ty->isFixedPointType()); |
| |
| if (Ty->isSaturatedFixedPointType()) return Ty; |
| |
| const auto &BT = Ty->getAs<BuiltinType>(); |
| switch (BT->getKind()) { |
| default: |
| llvm_unreachable("Not a fixed point type!"); |
| case BuiltinType::ShortAccum: |
| return SatShortAccumTy; |
| case BuiltinType::Accum: |
| return SatAccumTy; |
| case BuiltinType::LongAccum: |
| return SatLongAccumTy; |
| case BuiltinType::UShortAccum: |
| return SatUnsignedShortAccumTy; |
| case BuiltinType::UAccum: |
| return SatUnsignedAccumTy; |
| case BuiltinType::ULongAccum: |
| return SatUnsignedLongAccumTy; |
| case BuiltinType::ShortFract: |
| return SatShortFractTy; |
| case BuiltinType::Fract: |
| return SatFractTy; |
| case BuiltinType::LongFract: |
| return SatLongFractTy; |
| case BuiltinType::UShortFract: |
| return SatUnsignedShortFractTy; |
| case BuiltinType::UFract: |
| return SatUnsignedFractTy; |
| case BuiltinType::ULongFract: |
| return SatUnsignedLongFractTy; |
| } |
| } |
| |
| // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that |
| // doesn't include ASTContext.h |
| template |
| clang::LazyGenerationalUpdatePtr< |
| const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType |
| clang::LazyGenerationalUpdatePtr< |
| const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( |
| const clang::ASTContext &Ctx, Decl *Value); |
| |
| unsigned char ASTContext::getFixedPointScale(QualType Ty) const { |
| assert(Ty->isFixedPointType()); |
| |
| const auto *BT = Ty->getAs<BuiltinType>(); |
| const TargetInfo &Target = getTargetInfo(); |
| switch (BT->getKind()) { |
| default: |
| llvm_unreachable("Not a fixed point type!"); |
| case BuiltinType::ShortAccum: |
| case BuiltinType::SatShortAccum: |
| return Target.getShortAccumScale(); |
| case BuiltinType::Accum: |
| case BuiltinType::SatAccum: |
| return Target.getAccumScale(); |
| case BuiltinType::LongAccum: |
| case BuiltinType::SatLongAccum: |
| return Target.getLongAccumScale(); |
| case BuiltinType::UShortAccum: |
| case BuiltinType::SatUShortAccum: |
| return Target.getUnsignedShortAccumScale(); |
| case BuiltinType::UAccum: |
| case BuiltinType::SatUAccum: |
| return Target.getUnsignedAccumScale(); |
| case BuiltinType::ULongAccum: |
| case BuiltinType::SatULongAccum: |
| return Target.getUnsignedLongAccumScale(); |
| case BuiltinType::ShortFract: |
| case BuiltinType::SatShortFract: |
| return Target.getShortFractScale(); |
| case BuiltinType::Fract: |
| case BuiltinType::SatFract: |
| return Target.getFractScale(); |
| case BuiltinType::LongFract: |
| case BuiltinType::SatLongFract: |
| return Target.getLongFractScale(); |
| case BuiltinType::UShortFract: |
| case BuiltinType::SatUShortFract: |
| return Target.getUnsignedShortFractScale(); |
| case BuiltinType::UFract: |
| case BuiltinType::SatUFract: |
| return Target.getUnsignedFractScale(); |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatULongFract: |
| return Target.getUnsignedLongFractScale(); |
| } |
| } |
| |
| unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { |
| assert(Ty->isFixedPointType()); |
| |
| const auto *BT = Ty->getAs<BuiltinType>(); |
| const TargetInfo &Target = getTargetInfo(); |
| switch (BT->getKind()) { |
| default: |
| llvm_unreachable("Not a fixed point type!"); |
| case BuiltinType::ShortAccum: |
| case BuiltinType::SatShortAccum: |
| return Target.getShortAccumIBits(); |
| case BuiltinType::Accum: |
| case BuiltinType::SatAccum: |
| return Target.getAccumIBits(); |
| case BuiltinType::LongAccum: |
| case BuiltinType::SatLongAccum: |
| return Target.getLongAccumIBits(); |
| case BuiltinType::UShortAccum: |
| case BuiltinType::SatUShortAccum: |
| return Target.getUnsignedShortAccumIBits(); |
| case BuiltinType::UAccum: |
| case BuiltinType::SatUAccum: |
| return Target.getUnsignedAccumIBits(); |
| case BuiltinType::ULongAccum: |
| case BuiltinType::SatULongAccum: |
| return Target.getUnsignedLongAccumIBits(); |
| case BuiltinType::ShortFract: |
| case BuiltinType::SatShortFract: |
| case BuiltinType::Fract: |
| case BuiltinType::SatFract: |
| case BuiltinType::LongFract: |
| case BuiltinType::SatLongFract: |
| case BuiltinType::UShortFract: |
| case BuiltinType::SatUShortFract: |
| case BuiltinType::UFract: |
| case BuiltinType::SatUFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatULongFract: |
| return 0; |
| } |
| } |