| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_ARM |
| |
| #include "src/api/api-arguments.h" |
| #include "src/codegen/code-factory.h" |
| // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. |
| #include "src/codegen/macro-assembler-inl.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/frame-constants.h" |
| #include "src/execution/frames.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/logging/counters.h" |
| #include "src/objects/cell.h" |
| #include "src/objects/foreign.h" |
| #include "src/objects/heap-number.h" |
| #include "src/objects/js-generator.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| #include "src/runtime/runtime.h" |
| #include "src/wasm/wasm-linkage.h" |
| #include "src/wasm/wasm-objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { |
| #if defined(__thumb__) |
| // Thumb mode builtin. |
| DCHECK_EQ(1, reinterpret_cast<uintptr_t>( |
| ExternalReference::Create(address).address()) & |
| 1); |
| #endif |
| __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- r0 : actual argument count |
| // -- r1 : target function (preserved for callee) |
| // -- r3 : new target (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| // Push a copy of the target function, the new target and the actual |
| // argument count. |
| // Push function as parameter to the runtime call. |
| __ SmiTag(kJavaScriptCallArgCountRegister); |
| __ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister, |
| kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister); |
| |
| __ CallRuntime(function_id, 1); |
| __ mov(r2, r0); |
| |
| // Restore target function, new target and actual argument count. |
| __ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister, |
| kJavaScriptCallArgCountRegister); |
| __ SmiUntag(kJavaScriptCallArgCountRegister); |
| } |
| static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); |
| __ JumpCodeObject(r2); |
| } |
| |
| namespace { |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments |
| // -- r1 : constructor function |
| // -- r3 : new target |
| // -- cp : context |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| Register scratch = r2; |
| |
| Label stack_overflow; |
| |
| __ StackOverflowCheck(r0, scratch, &stack_overflow); |
| |
| // Enter a construct frame. |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(r0); |
| __ Push(cp, r0); |
| __ SmiUntag(r0); |
| |
| // TODO(victorgomes): When the arguments adaptor is completely removed, we |
| // should get the formal parameter count and copy the arguments in its |
| // correct position (including any undefined), instead of delaying this to |
| // InvokeFunction. |
| |
| // Set up pointer to last argument (skip receiver). |
| __ add( |
| r4, fp, |
| Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); |
| // Copy arguments and receiver to the expression stack. |
| __ PushArray(r4, r0, r5); |
| // The receiver for the builtin/api call. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| |
| // Call the function. |
| // r0: number of arguments (untagged) |
| // r1: constructor function |
| // r3: new target |
| __ InvokeFunctionWithNewTarget(r1, r3, r0, CALL_FUNCTION); |
| |
| // Restore context from the frame. |
| __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| // Restore smi-tagged arguments count from the frame. |
| __ ldr(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ add(sp, sp, Operand(scratch, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(sp, sp, Operand(kPointerSize)); |
| __ Jump(lr); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); // Unreachable code. |
| } |
| } |
| |
| } // namespace |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0: number of arguments (untagged) |
| // -- r1: constructor function |
| // -- r3: new target |
| // -- cp: context |
| // -- lr: return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| FrameScope scope(masm, StackFrame::MANUAL); |
| // Enter a construct frame. |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| __ EnterFrame(StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| __ LoadRoot(r4, RootIndex::kTheHoleValue); |
| __ SmiTag(r0); |
| __ Push(cp, r0, r1, r4, r3); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kPointerSize]: new target |
| // -- sp[1*kPointerSize]: padding |
| // -- r1 and sp[2*kPointerSize]: constructor function |
| // -- sp[3*kPointerSize]: number of arguments (tagged) |
| // -- sp[4*kPointerSize]: context |
| // ----------------------------------- |
| |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset)); |
| __ DecodeField<SharedFunctionInfo::FunctionKindBits>(r4); |
| __ JumpIfIsInRange(r4, kDefaultDerivedConstructor, kDerivedConstructor, |
| ¬_create_implicit_receiver); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, r4, |
| r5); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); |
| __ b(&post_instantiation_deopt_entry); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ bind(¬_create_implicit_receiver); |
| __ LoadRoot(r0, RootIndex::kTheHoleValue); |
| |
| // ----------- S t a t e ------------- |
| // -- r0: receiver |
| // -- Slot 3 / sp[0*kPointerSize]: new target |
| // -- Slot 2 / sp[1*kPointerSize]: constructor function |
| // -- Slot 1 / sp[2*kPointerSize]: number of arguments (tagged) |
| // -- Slot 0 / sp[3*kPointerSize]: context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target. |
| __ Pop(r3); |
| |
| // Push the allocated receiver to the stack. |
| __ Push(r0); |
| // We need two copies because we may have to return the original one |
| // and the calling conventions dictate that the called function pops the |
| // receiver. The second copy is pushed after the arguments, we saved in r6 |
| // since r0 needs to store the number of arguments before |
| // InvokingFunction. |
| __ mov(r6, r0); |
| |
| // Set up pointer to first argument (skip receiver). |
| __ add(r4, fp, |
| Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); |
| |
| // Restore constructor function and argument count. |
| __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); |
| __ ldr(r0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| __ SmiUntag(r0); |
| |
| Label stack_overflow; |
| __ StackOverflowCheck(r0, r5, &stack_overflow); |
| |
| // TODO(victorgomes): When the arguments adaptor is completely removed, we |
| // should get the formal parameter count and copy the arguments in its |
| // correct position (including any undefined), instead of delaying this to |
| // InvokeFunction. |
| |
| // Copy arguments to the expression stack. |
| __ PushArray(r4, r0, r5); |
| |
| // Push implicit receiver. |
| __ Push(r6); |
| |
| // Call the function. |
| __ InvokeFunctionWithNewTarget(r1, r3, r0, CALL_FUNCTION); |
| |
| // ----------- S t a t e ------------- |
| // -- r0: constructor result |
| // -- sp[0*kPointerSize]: implicit receiver |
| // -- sp[1*kPointerSize]: padding |
| // -- sp[2*kPointerSize]: constructor function |
| // -- sp[3*kPointerSize]: number of arguments |
| // -- sp[4*kPointerSize]: context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, leave_and_return, check_receiver; |
| |
| // If the result is undefined, we jump out to using the implicit receiver. |
| __ JumpIfNotRoot(r0, RootIndex::kUndefinedValue, &check_receiver); |
| |
| // Otherwise we do a smi check and fall through to check if the return value |
| // is a valid receiver. |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ ldr(r0, MemOperand(sp, 0 * kPointerSize)); |
| __ JumpIfRoot(r0, RootIndex::kTheHoleValue, &do_throw); |
| |
| __ bind(&leave_and_return); |
| // Restore smi-tagged arguments count from the frame. |
| __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| __ LeaveFrame(StackFrame::CONSTRUCT); |
| |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(sp, sp, Operand(kPointerSize)); |
| __ Jump(lr); |
| |
| __ bind(&check_receiver); |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(r0, &use_receiver); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(r0, r4, r5, FIRST_JS_RECEIVER_TYPE); |
| __ b(ge, &leave_and_return); |
| __ b(&use_receiver); |
| |
| __ bind(&do_throw); |
| // Restore the context from the frame. |
| __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| __ bkpt(0); |
| |
| __ bind(&stack_overflow); |
| // Restore the context from the frame. |
| __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ bkpt(0); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, |
| Register sfi_data, |
| Register scratch1) { |
| Label done; |
| |
| __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE); |
| __ b(ne, &done); |
| __ ldr(sfi_data, |
| FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); |
| |
| __ bind(&done); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the value to pass to the generator |
| // -- r1 : the JSGeneratorObject to resume |
| // -- lr : return address |
| // ----------------------------------- |
| __ AssertGeneratorObject(r1); |
| |
| // Store input value into generator object. |
| __ str(r0, FieldMemOperand(r1, JSGeneratorObject::kInputOrDebugPosOffset)); |
| __ RecordWriteField(r1, JSGeneratorObject::kInputOrDebugPosOffset, r0, |
| kLRHasNotBeenSaved, kDontSaveFPRegs); |
| |
| // Load suspended function and context. |
| __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); |
| __ ldr(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); |
| |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| Register scratch = r5; |
| |
| // Flood function if we are stepping. |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| __ Move(scratch, debug_hook); |
| __ ldrsb(scratch, MemOperand(scratch)); |
| __ cmp(scratch, Operand(0)); |
| __ b(ne, &prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended |
| // generator. |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| __ Move(scratch, debug_suspended_generator); |
| __ ldr(scratch, MemOperand(scratch)); |
| __ cmp(scratch, Operand(r1)); |
| __ b(eq, &prepare_step_in_suspended_generator); |
| __ bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| __ LoadStackLimit(scratch, StackLimitKind::kRealStackLimit); |
| __ cmp(sp, scratch); |
| __ b(lo, &stack_overflow); |
| |
| // ----------- S t a t e ------------- |
| // -- r1 : the JSGeneratorObject to resume |
| // -- r4 : generator function |
| // -- cp : generator context |
| // -- lr : return address |
| // -- sp[0] : generator receiver |
| // ----------------------------------- |
| |
| // Copy the function arguments from the generator object's register file. |
| __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldrh(r3, |
| FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ ldr(r2, |
| FieldMemOperand(r1, JSGeneratorObject::kParametersAndRegistersOffset)); |
| { |
| Label done_loop, loop; |
| __ mov(r6, r3); |
| |
| __ bind(&loop); |
| __ sub(r6, r6, Operand(1), SetCC); |
| __ b(lt, &done_loop); |
| __ add(scratch, r2, Operand(r6, LSL, kTaggedSizeLog2)); |
| __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| __ Push(scratch); |
| __ b(&loop); |
| |
| __ bind(&done_loop); |
| |
| // Push receiver. |
| __ ldr(scratch, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset)); |
| __ Push(scratch); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, r3, r0); |
| __ CompareObjectType(r3, r3, r3, BYTECODE_ARRAY_TYPE); |
| __ Assert(eq, AbortReason::kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ ldr(r0, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldrh(r0, FieldMemOperand( |
| r0, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| __ Move(r3, r1); |
| __ Move(r1, r4); |
| static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(r2); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r1, r4); |
| // Push hole as receiver since we do not use it for stepping. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(r1); |
| __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ b(&stepping_prepared); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r1); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(r1); |
| __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ b(&stepping_prepared); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); // This should be unreachable. |
| } |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(r1); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| namespace { |
| |
| // Total size of the stack space pushed by JSEntryVariant. |
| // JSEntryTrampoline uses this to access on stack arguments passed to |
| // JSEntryVariant. |
| constexpr int kPushedStackSpace = kNumCalleeSaved * kPointerSize + |
| kPointerSize /* LR */ + |
| kNumDoubleCalleeSaved * kDoubleSize + |
| 4 * kPointerSize /* r5, r6, r7, scratch */ + |
| EntryFrameConstants::kCallerFPOffset; |
| |
| // Assert that the EntryFrameConstants are in sync with the builtin. |
| static_assert(kPushedStackSpace == EntryFrameConstants::kDirectCallerSPOffset + |
| 3 * kPointerSize /* r5, r6, r7*/ + |
| EntryFrameConstants::kCallerFPOffset, |
| "Pushed stack space and frame constants do not match. See " |
| "frame-constants-arm.h"); |
| |
| // Called with the native C calling convention. The corresponding function |
| // signature is either: |
| // |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, Address new_target, Address target, |
| // Address receiver, intptr_t argc, Address** argv)>; |
| // or |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, MicrotaskQueue* microtask_queue)>; |
| void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, |
| Builtins::Name entry_trampoline) { |
| // The register state is either: |
| // r0: root_register_value |
| // r1: code entry |
| // r2: function |
| // r3: receiver |
| // [sp + 0 * kSystemPointerSize]: argc |
| // [sp + 1 * kSystemPointerSize]: argv |
| // or |
| // r0: root_register_value |
| // r1: microtask_queue |
| // Preserve all but r0 and pass them to entry_trampoline. |
| Label invoke, handler_entry, exit; |
| |
| // Update |pushed_stack_space| when we manipulate the stack. |
| int pushed_stack_space = EntryFrameConstants::kCallerFPOffset; |
| { |
| NoRootArrayScope no_root_array(masm); |
| |
| // Called from C, so do not pop argc and args on exit (preserve sp) |
| // No need to save register-passed args |
| // Save callee-saved registers (incl. cp and fp), sp, and lr |
| __ stm(db_w, sp, kCalleeSaved | lr.bit()); |
| pushed_stack_space += |
| kNumCalleeSaved * kPointerSize + kPointerSize /* LR */; |
| |
| // Save callee-saved vfp registers. |
| __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); |
| pushed_stack_space += kNumDoubleCalleeSaved * kDoubleSize; |
| |
| // Set up the reserved register for 0.0. |
| __ vmov(kDoubleRegZero, Double(0.0)); |
| |
| // Initialize the root register. |
| // C calling convention. The first argument is passed in r0. |
| __ mov(kRootRegister, r0); |
| } |
| |
| // Push a frame with special values setup to mark it as an entry frame. |
| // r0: root_register_value |
| __ mov(r7, Operand(StackFrame::TypeToMarker(type))); |
| __ mov(r6, Operand(StackFrame::TypeToMarker(type))); |
| __ Move(r5, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| masm->isolate())); |
| __ ldr(r5, MemOperand(r5)); |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| |
| // Push a bad frame pointer to fail if it is used. |
| __ mov(scratch, Operand(-1)); |
| __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | scratch.bit()); |
| pushed_stack_space += 4 * kPointerSize /* r5, r6, r7, scratch */; |
| } |
| |
| Register scratch = r6; |
| |
| // Set up frame pointer for the frame to be pushed. |
| __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| Label non_outermost_js; |
| ExternalReference js_entry_sp = ExternalReference::Create( |
| IsolateAddressId::kJSEntrySPAddress, masm->isolate()); |
| __ Move(r5, js_entry_sp); |
| __ ldr(scratch, MemOperand(r5)); |
| __ cmp(scratch, Operand::Zero()); |
| __ b(ne, &non_outermost_js); |
| __ str(fp, MemOperand(r5)); |
| __ mov(scratch, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| Label cont; |
| __ b(&cont); |
| __ bind(&non_outermost_js); |
| __ mov(scratch, Operand(StackFrame::INNER_JSENTRY_FRAME)); |
| __ bind(&cont); |
| __ push(scratch); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| |
| // Block literal pool emission whilst taking the position of the handler |
| // entry. This avoids making the assumption that literal pools are always |
| // emitted after an instruction is emitted, rather than before. |
| { |
| Assembler::BlockConstPoolScope block_const_pool(masm); |
| __ bind(&handler_entry); |
| |
| // Store the current pc as the handler offset. It's used later to create the |
| // handler table. |
| masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); |
| |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. Coming in here the |
| // fp will be invalid because the PushStackHandler below sets it to 0 to |
| // signal the existence of the JSEntry frame. |
| __ Move(scratch, |
| ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate())); |
| } |
| __ str(r0, MemOperand(scratch)); |
| __ LoadRoot(r0, RootIndex::kException); |
| __ b(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| // Must preserve r0-r4, r5-r6 are available. |
| __ PushStackHandler(); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the bl(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| // |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. |
| Handle<Code> trampoline_code = |
| masm->isolate()->builtins()->builtin_handle(entry_trampoline); |
| DCHECK_EQ(kPushedStackSpace, pushed_stack_space); |
| __ Call(trampoline_code, RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(); |
| |
| __ bind(&exit); // r0 holds result |
| // Check if the current stack frame is marked as the outermost JS frame. |
| Label non_outermost_js_2; |
| __ pop(r5); |
| __ cmp(r5, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ b(ne, &non_outermost_js_2); |
| __ mov(r6, Operand::Zero()); |
| __ Move(r5, js_entry_sp); |
| __ str(r6, MemOperand(r5)); |
| __ bind(&non_outermost_js_2); |
| |
| // Restore the top frame descriptors from the stack. |
| __ pop(r3); |
| __ Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| masm->isolate())); |
| __ str(r3, MemOperand(scratch)); |
| |
| // Reset the stack to the callee saved registers. |
| __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Restore callee-saved registers and return. |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| |
| // Restore callee-saved vfp registers. |
| __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); |
| |
| __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_JSEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kJSEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, |
| Builtins::kJSConstructEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kRunMicrotasksTrampoline); |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Called from Generate_JS_Entry |
| // r0: root_register_value |
| // r1: new.target |
| // r2: function |
| // r3: receiver |
| // [fp + kPushedStackSpace + 0 * kSystemPointerSize]: argc |
| // [fp + kPushedStackSpace + 1 * kSystemPointerSize]: argv |
| // r5-r6, r8 and cp may be clobbered |
| |
| __ ldr(r0, |
| MemOperand(fp, kPushedStackSpace + EntryFrameConstants::kArgcOffset)); |
| __ ldr(r4, |
| MemOperand(fp, kPushedStackSpace + EntryFrameConstants::kArgvOffset)); |
| |
| // r1: new.target |
| // r2: function |
| // r3: receiver |
| // r0: argc |
| // r4: argv |
| |
| // Enter an internal frame. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ Move(cp, context_address); |
| __ ldr(cp, MemOperand(cp)); |
| |
| // Push the function. |
| __ Push(r2); |
| |
| // Check if we have enough stack space to push all arguments + receiver. |
| // Clobbers r5. |
| Label enough_stack_space, stack_overflow; |
| __ add(r6, r0, Operand(1)); // Add one for receiver. |
| __ StackOverflowCheck(r6, r5, &stack_overflow); |
| __ b(&enough_stack_space); |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ bkpt(0); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments to the stack in a loop. |
| // r1: new.target |
| // r2: function |
| // r3: receiver |
| // r0: argc |
| // r4: argv, i.e. points to first arg |
| Label loop, entry; |
| __ add(r6, r4, Operand(r0, LSL, kSystemPointerSizeLog2)); |
| // r6 points past last arg. |
| __ b(&entry); |
| __ bind(&loop); |
| __ ldr(r5, MemOperand(r6, -kSystemPointerSize, |
| PreIndex)); // read next parameter |
| __ ldr(r5, MemOperand(r5)); // dereference handle |
| __ push(r5); // push parameter |
| __ bind(&entry); |
| __ cmp(r4, r6); |
| __ b(ne, &loop); |
| |
| // Push the receiver. |
| __ Push(r3); |
| |
| // Setup new.target and function. |
| __ mov(r3, r1); |
| __ mov(r1, r2); |
| // r0: argc |
| // r1: function |
| // r3: new.target |
| |
| // Initialize all JavaScript callee-saved registers, since they will be seen |
| // by the garbage collector as part of handlers. |
| __ LoadRoot(r4, RootIndex::kUndefinedValue); |
| __ mov(r2, r4); |
| __ mov(r5, r4); |
| __ mov(r6, r4); |
| __ mov(r8, r4); |
| if (kR9Available == 1) { |
| __ mov(r9, r4); |
| } |
| |
| // Invoke the code. |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the JS frame and remove the parameters (except function), and |
| // return. |
| // Respect ABI stack constraint. |
| } |
| __ Jump(lr); |
| |
| // r0: result |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { |
| // This expects two C++ function parameters passed by Invoke() in |
| // execution.cc. |
| // r0: root_register_value |
| // r1: microtask_queue |
| |
| __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r1); |
| __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); |
| } |
| |
| static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm, |
| Register optimized_code, |
| Register closure) { |
| // Store code entry in the closure. |
| __ str(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, optimized_code, |
| kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, |
| Register scratch2) { |
| Register params_size = scratch1; |
| // Get the size of the formal parameters + receiver (in bytes). |
| __ ldr(params_size, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ ldr(params_size, |
| FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset)); |
| |
| #ifdef V8_NO_ARGUMENTS_ADAPTOR |
| Register actual_params_size = scratch2; |
| // Compute the size of the actual parameters + receiver (in bytes). |
| __ ldr(actual_params_size, |
| MemOperand(fp, StandardFrameConstants::kArgCOffset)); |
| __ lsl(actual_params_size, actual_params_size, Operand(kPointerSizeLog2)); |
| __ add(actual_params_size, actual_params_size, Operand(kSystemPointerSize)); |
| |
| // If actual is bigger than formal, then we should use it to free up the stack |
| // arguments. |
| __ cmp(params_size, actual_params_size); |
| __ mov(params_size, actual_params_size, LeaveCC, lt); |
| #endif |
| |
| // Leave the frame (also dropping the register file). |
| __ LeaveFrame(StackFrame::INTERPRETED); |
| |
| // Drop receiver + arguments. |
| __ add(sp, sp, params_size, LeaveCC); |
| } |
| |
| // Tail-call |function_id| if |actual_marker| == |expected_marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register actual_marker, |
| OptimizationMarker expected_marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ cmp_raw_immediate(actual_marker, expected_marker); |
| __ b(ne, &no_match); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void TailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register optimized_code_entry, |
| Register scratch) { |
| // ----------- S t a t e ------------- |
| // -- r0 : actual argument count |
| // -- r3 : new target (preserved for callee if needed, and caller) |
| // -- r1 : target function (preserved for callee if needed, and caller) |
| // ----------------------------------- |
| DCHECK(!AreAliased(r1, r3, optimized_code_entry, scratch)); |
| |
| Register closure = r1; |
| Label heal_optimized_code_slot; |
| |
| // If the optimized code is cleared, go to runtime to update the optimization |
| // marker field. |
| __ LoadWeakValue(optimized_code_entry, optimized_code_entry, |
| &heal_optimized_code_slot); |
| |
| // Check if the optimized code is marked for deopt. If it is, call the |
| // runtime to clear it. |
| __ ldr(scratch, |
| FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); |
| __ ldr(scratch, |
| FieldMemOperand(scratch, CodeDataContainer::kKindSpecificFlagsOffset)); |
| __ tst(scratch, Operand(1 << Code::kMarkedForDeoptimizationBit)); |
| __ b(ne, &heal_optimized_code_slot); |
| |
| // Optimized code is good, get it into the closure and link the closure |
| // into the optimized functions list, then tail call the optimized code. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure); |
| static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); |
| __ LoadCodeObjectEntry(r2, optimized_code_entry); |
| __ Jump(r2); |
| |
| // Optimized code slot contains deoptimized code or code is cleared and |
| // optimized code marker isn't updated. Evict the code, update the marker |
| // and re-enter the closure's code. |
| __ bind(&heal_optimized_code_slot); |
| GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot); |
| } |
| |
| static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector, |
| Register optimization_marker) { |
| // ----------- S t a t e ------------- |
| // -- r0 : actual argument count |
| // -- r3 : new target (preserved for callee if needed, and caller) |
| // -- r1 : target function (preserved for callee if needed, and caller) |
| // -- feedback vector (preserved for caller if needed) |
| // -- optimization_marker : a int32 containing a non-zero optimization |
| // marker. |
| // ----------------------------------- |
| DCHECK(!AreAliased(feedback_vector, r1, r3, optimization_marker)); |
| |
| // TODO(v8:8394): The logging of first execution will break if |
| // feedback vectors are not allocated. We need to find a different way of |
| // logging these events if required. |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals(masm, optimization_marker, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| // Marker should be one of LogFirstExecution / CompileOptimized / |
| // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach |
| // here. |
| if (FLAG_debug_code) { |
| __ stop(); |
| } |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. Will bail out to a |
| // label if the bytecode (without prefix) is a return bytecode. Will not advance |
| // the bytecode offset if the current bytecode is a JumpLoop, instead just |
| // re-executing the JumpLoop to jump to the correct bytecode. |
| static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, |
| Register bytecode_array, |
| Register bytecode_offset, |
| Register bytecode, Register scratch1, |
| Register scratch2, Label* if_return) { |
| Register bytecode_size_table = scratch1; |
| |
| // The bytecode offset value will be increased by one in wide and extra wide |
| // cases. In the case of having a wide or extra wide JumpLoop bytecode, we |
| // will restore the original bytecode. In order to simplify the code, we have |
| // a backup of it. |
| Register original_bytecode_offset = scratch2; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, |
| bytecode, original_bytecode_offset)); |
| |
| __ Move(bytecode_size_table, |
| ExternalReference::bytecode_size_table_address()); |
| __ Move(original_bytecode_offset, bytecode_offset); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label process_bytecode; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); |
| STATIC_ASSERT(3 == |
| static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); |
| __ cmp(bytecode, Operand(0x3)); |
| __ b(hi, &process_bytecode); |
| __ tst(bytecode, Operand(0x1)); |
| // Load the next bytecode. |
| __ add(bytecode_offset, bytecode_offset, Operand(1)); |
| __ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset)); |
| |
| // Update table to the wide scaled table. |
| __ add(bytecode_size_table, bytecode_size_table, |
| Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| // Conditionally update table to the extra wide scaled table. We are taking |
| // advantage of the fact that the extra wide follows the wide one. |
| __ add(bytecode_size_table, bytecode_size_table, |
| Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount), LeaveCC, |
| ne); |
| |
| __ bind(&process_bytecode); |
| |
| // Bailout to the return label if this is a return bytecode. |
| |
| // Create cmp, cmpne, ..., cmpne to check for a return bytecode. |
| Condition flag = al; |
| #define JUMP_IF_EQUAL(NAME) \ |
| __ cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::k##NAME)), \ |
| flag); \ |
| flag = ne; |
| RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) |
| #undef JUMP_IF_EQUAL |
| |
| __ b(if_return, eq); |
| |
| // If this is a JumpLoop, re-execute it to perform the jump to the beginning |
| // of the loop. |
| Label end, not_jump_loop; |
| __ cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop))); |
| __ b(ne, ¬_jump_loop); |
| // We need to restore the original bytecode_offset since we might have |
| // increased it to skip the wide / extra-wide prefix bytecode. |
| __ Move(bytecode_offset, original_bytecode_offset); |
| __ b(&end); |
| |
| __ bind(¬_jump_loop); |
| // Otherwise, load the size of the current bytecode and advance the offset. |
| __ ldr(scratch1, MemOperand(bytecode_size_table, bytecode, LSL, 2)); |
| __ add(bytecode_offset, bytecode_offset, scratch1); |
| |
| __ bind(&end); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. |
| // |
| // The live registers are: |
| // o r0: actual argument count (not including the receiver) |
| // o r1: the JS function object being called. |
| // o r3: the incoming new target or generator object |
| // o cp: our context |
| // o fp: the caller's frame pointer |
| // o sp: stack pointer |
| // o lr: return address |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| Register closure = r1; |
| Register feedback_vector = r2; |
| |
| // Get the bytecode array from the function object and load it into |
| // kInterpreterBytecodeArrayRegister. |
| __ ldr(r4, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| FieldMemOperand(r4, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r8); |
| |
| // The bytecode array could have been flushed from the shared function info, |
| // if so, call into CompileLazy. |
| Label compile_lazy; |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg, |
| BYTECODE_ARRAY_TYPE); |
| __ b(ne, &compile_lazy); |
| |
| // Load the feedback vector from the closure. |
| __ ldr(feedback_vector, |
| FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); |
| __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); |
| |
| Label push_stack_frame; |
| // Check if feedback vector is valid. If valid, check for optimized code |
| // and update invocation count. Otherwise, setup the stack frame. |
| __ ldr(r4, FieldMemOperand(feedback_vector, HeapObject::kMapOffset)); |
| __ ldrh(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ cmp(r4, Operand(FEEDBACK_VECTOR_TYPE)); |
| __ b(ne, &push_stack_frame); |
| |
| Register optimization_state = r4; |
| |
| // Read off the optimization state in the feedback vector. |
| __ ldr(optimization_state, |
| FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset)); |
| |
| // Check if the optimized code slot is not empty or has a optimization marker. |
| Label has_optimized_code_or_marker; |
| __ tst( |
| optimization_state, |
| Operand(FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask)); |
| __ b(ne, &has_optimized_code_or_marker); |
| |
| Label not_optimized; |
| __ bind(¬_optimized); |
| |
| // Increment invocation count for the function. |
| __ ldr(r9, FieldMemOperand(feedback_vector, |
| FeedbackVector::kInvocationCountOffset)); |
| __ add(r9, r9, Operand(1)); |
| __ str(r9, FieldMemOperand(feedback_vector, |
| FeedbackVector::kInvocationCountOffset)); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| __ bind(&push_stack_frame); |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ PushStandardFrame(closure); |
| |
| // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are |
| // 8-bit fields next to each other, so we could just optimize by writing a |
| // 16-bit. These static asserts guard our assumption is valid. |
| STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == |
| BytecodeArray::kOsrNestingLevelOffset + kCharSize); |
| STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); |
| __ mov(r9, Operand(0)); |
| __ strh(r9, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kOsrNestingLevelOffset)); |
| |
| // Load the initial bytecode offset. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push bytecode array and Smi tagged bytecode array offset. |
| __ SmiTag(r4, kInterpreterBytecodeOffsetRegister); |
| __ Push(kInterpreterBytecodeArrayRegister, r4); |
| |
| // Allocate the local and temporary register file on the stack. |
| Label stack_overflow; |
| { |
| // Load frame size from the BytecodeArray object. |
| __ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| __ sub(r9, sp, Operand(r4)); |
| __ LoadStackLimit(r2, StackLimitKind::kRealStackLimit); |
| __ cmp(r9, Operand(r2)); |
| __ b(lo, &stack_overflow); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| Label loop_header; |
| Label loop_check; |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| __ b(&loop_check, al); |
| __ bind(&loop_header); |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| __ push(kInterpreterAccumulatorRegister); |
| // Continue loop if not done. |
| __ bind(&loop_check); |
| __ sub(r4, r4, Operand(kPointerSize), SetCC); |
| __ b(&loop_header, ge); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in r3. |
| __ ldr(r9, FieldMemOperand( |
| kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ cmp(r9, Operand::Zero()); |
| __ str(r3, MemOperand(fp, r9, LSL, kPointerSizeLog2), ne); |
| |
| // Perform interrupt stack check. |
| // TODO(solanes): Merge with the real stack limit check above. |
| Label stack_check_interrupt, after_stack_check_interrupt; |
| __ LoadStackLimit(r4, StackLimitKind::kInterruptStackLimit); |
| __ cmp(sp, r4); |
| __ b(lo, &stack_check_interrupt); |
| __ bind(&after_stack_check_interrupt); |
| |
| // The accumulator is already loaded with undefined. |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| __ ldrb(r4, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ ldr( |
| kJavaScriptCallCodeStartRegister, |
| MemOperand(kInterpreterDispatchTableRegister, r4, LSL, kPointerSizeLog2)); |
| __ Call(kJavaScriptCallCodeStartRegister); |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Either return, or advance to the next bytecode and dispatch. |
| Label do_return; |
| __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, r1, r2, r3, |
| &do_return); |
| __ jmp(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in r0. |
| LeaveInterpreterFrame(masm, r2, r4); |
| __ Jump(lr); |
| |
| __ bind(&stack_check_interrupt); |
| // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset |
| // for the call to the StackGuard. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag + |
| kFunctionEntryBytecodeOffset))); |
| __ str(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ CallRuntime(Runtime::kStackGuard); |
| |
| // After the call, restore the bytecode array, bytecode offset and accumulator |
| // registers again. Also, restore the bytecode offset in the stack to its |
| // previous value. |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| |
| __ SmiTag(r4, kInterpreterBytecodeOffsetRegister); |
| __ str(r4, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| __ jmp(&after_stack_check_interrupt); |
| |
| __ bind(&has_optimized_code_or_marker); |
| Label maybe_has_optimized_code; |
| |
| // Check if optimized code is available |
| __ tst( |
| optimization_state, |
| Operand(FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker)); |
| __ b(eq, &maybe_has_optimized_code); |
| |
| Register optimization_marker = optimization_state; |
| __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker); |
| MaybeOptimizeCode(masm, feedback_vector, optimization_marker); |
| // Fall through if there's no runnable optimized code. |
| __ jmp(¬_optimized); |
| |
| __ bind(&maybe_has_optimized_code); |
| Register optimized_code_entry = optimization_state; |
| __ ldr(optimization_marker, |
| FieldMemOperand(feedback_vector, |
| FeedbackVector::kMaybeOptimizedCodeOffset)); |
| TailCallOptimizedCodeSlot(masm, optimized_code_entry, r6); |
| |
| __ bind(&compile_lazy); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); // Should not return. |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, |
| Register start_address, |
| Register scratch) { |
| // Find the argument with lowest address. |
| __ sub(scratch, num_args, Operand(1)); |
| __ mov(scratch, Operand(scratch, LSL, kSystemPointerSizeLog2)); |
| __ sub(start_address, start_address, scratch); |
| // Push the arguments. |
| __ PushArray(start_address, num_args, scratch, |
| TurboAssembler::PushArrayOrder::kReverse); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r2 : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- r1 : the target to call (can be any Object). |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // The spread argument should not be pushed. |
| __ sub(r0, r0, Operand(1)); |
| } |
| |
| __ add(r3, r0, Operand(1)); // Add one for receiver. |
| |
| __ StackOverflowCheck(r3, r4, &stack_overflow); |
| |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Don't copy receiver. Argument count is correct. |
| __ mov(r3, r0); |
| } |
| |
| // Push the arguments. r2 and r4 will be modified. |
| Generate_InterpreterPushArgs(masm, r3, r2, r4); |
| |
| // Push "undefined" as the receiver arg if we need to. |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Pass the spread in the register r2. |
| // r2 already points to the penultimate argument, the spread |
| // lies in the next interpreter register. |
| __ sub(r2, r2, Operand(kSystemPointerSize)); |
| __ ldr(r2, MemOperand(r2)); |
| } |
| |
| // Call the target. |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ bkpt(0); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argument count (not including receiver) |
| // -- r3 : new target |
| // -- r1 : constructor to call |
| // -- r2 : allocation site feedback if available, undefined otherwise. |
| // -- r4 : address of the first argument |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| __ add(r5, r0, Operand(1)); // Add one for receiver. |
| |
| __ StackOverflowCheck(r5, r6, &stack_overflow); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // The spread argument should not be pushed. |
| __ sub(r0, r0, Operand(1)); |
| } |
| |
| // Push the arguments. r4 and r5 will be modified. |
| Generate_InterpreterPushArgs(masm, r0, r4, r5); |
| |
| // Push a slot for the receiver to be constructed. |
| __ mov(r5, Operand::Zero()); |
| __ push(r5); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Pass the spread in the register r2. |
| // r4 already points to the penultimate argument, the spread |
| // lies in the next interpreter register. |
| __ sub(r4, r4, Operand(kSystemPointerSize)); |
| __ ldr(r2, MemOperand(r4)); |
| } else { |
| __ AssertUndefinedOrAllocationSite(r2, r5); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kArrayFunction) { |
| __ AssertFunction(r1); |
| |
| // Tail call to the array construct stub (still in the caller |
| // context at this point). |
| Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor with r0, r1, and r3 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor with r0, r1, and r3 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ bkpt(0); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Label builtin_trampoline, trampoline_loaded; |
| Smi interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); |
| |
| // If the SFI function_data is an InterpreterData, the function will have a |
| // custom copy of the interpreter entry trampoline for profiling. If so, |
| // get the custom trampoline, otherwise grab the entry address of the global |
| // trampoline. |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); |
| __ ldr(r2, FieldMemOperand(r2, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset)); |
| __ CompareObjectType(r2, kInterpreterDispatchTableRegister, |
| kInterpreterDispatchTableRegister, |
| INTERPRETER_DATA_TYPE); |
| __ b(ne, &builtin_trampoline); |
| |
| __ ldr(r2, |
| FieldMemOperand(r2, InterpreterData::kInterpreterTrampolineOffset)); |
| __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ b(&trampoline_loaded); |
| |
| __ bind(&builtin_trampoline); |
| __ Move(r2, ExternalReference:: |
| address_of_interpreter_entry_trampoline_instruction_start( |
| masm->isolate())); |
| __ ldr(r2, MemOperand(r2)); |
| |
| __ bind(&trampoline_loaded); |
| __ add(lr, r2, Operand(interpreter_entry_return_pc_offset.value())); |
| |
| // Initialize the dispatch table register. |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| |
| // Get the bytecode array pointer from the frame. |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ SmiTst(kInterpreterBytecodeArrayRegister); |
| __ Assert( |
| ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, r1, no_reg, |
| BYTECODE_ARRAY_TYPE); |
| __ Assert( |
| eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| if (FLAG_debug_code) { |
| Label okay; |
| __ cmp(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| __ b(ge, &okay); |
| __ bkpt(0); |
| __ bind(&okay); |
| } |
| |
| // Dispatch to the target bytecode. |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ ldrb(scratch, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ ldr(kJavaScriptCallCodeStartRegister, |
| MemOperand(kInterpreterDispatchTableRegister, scratch, LSL, |
| kPointerSizeLog2)); |
| __ Jump(kJavaScriptCallCodeStartRegister); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| Label enter_bytecode, function_entry_bytecode; |
| __ cmp(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + |
| kFunctionEntryBytecodeOffset)); |
| __ b(eq, &function_entry_bytecode); |
| |
| // Load the current bytecode. |
| __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| |
| // Advance to the next bytecode. |
| Label if_return; |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, r1, r2, r3, |
| &if_return); |
| |
| __ bind(&enter_bytecode); |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ SmiTag(r2, kInterpreterBytecodeOffsetRegister); |
| __ str(r2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| |
| __ bind(&function_entry_bytecode); |
| // If the code deoptimizes during the implicit function entry stack interrupt |
| // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is |
| // not a valid bytecode offset. Detect this case and advance to the first |
| // actual bytecode. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| __ b(&enter_bytecode); |
| |
| // We should never take the if_return path. |
| __ bind(&if_return); |
| __ Abort(AbortReason::kInvalidBytecodeAdvance); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); // Temp register is not allocatable. |
| if (with_result) { |
| if (java_script_builtin) { |
| __ mov(scratch, r0); |
| } else { |
| // Overwrite the hole inserted by the deoptimizer with the return value |
| // from the LAZY deopt point. |
| __ str( |
| r0, |
| MemOperand( |
| sp, config->num_allocatable_general_registers() * kPointerSize + |
| BuiltinContinuationFrameConstants::kFixedFrameSize)); |
| } |
| } |
| for (int i = allocatable_register_count - 1; i >= 0; --i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| __ Pop(Register::from_code(code)); |
| if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { |
| __ SmiUntag(Register::from_code(code)); |
| } |
| } |
| if (java_script_builtin && with_result) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. r0 contains the arguments count, the return value |
| // from LAZY is always the last argument. |
| __ add(r0, r0, Operand(BuiltinContinuationFrameConstants::kFixedSlotCount)); |
| __ str(scratch, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| // Recover arguments count. |
| __ sub(r0, r0, Operand(BuiltinContinuationFrameConstants::kFixedSlotCount)); |
| } |
| __ ldr(fp, MemOperand( |
| sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| // Load builtin index (stored as a Smi) and use it to get the builtin start |
| // address from the builtins table. |
| Register builtin = scratch; |
| __ Pop(builtin); |
| __ add(sp, sp, |
| Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| __ Pop(lr); |
| __ LoadEntryFromBuiltinIndex(builtin); |
| __ bx(builtin); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| } |
| |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r0.code()); |
| __ pop(r0); |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| // If the code object is null, just return to the caller. |
| Label skip; |
| __ cmp(r0, Operand(Smi::zero())); |
| __ b(ne, &skip); |
| __ Ret(); |
| |
| __ bind(&skip); |
| |
| // Drop the handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| __ LeaveFrame(StackFrame::STUB); |
| |
| // Load deoptimization data from the code object. |
| // <deopt_data> = <code>[#deoptimization_data_offset] |
| __ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset)); |
| |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(masm); |
| __ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] |
| __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex))); |
| |
| // Compute the target address = code start + osr_offset |
| __ add(lr, r0, Operand::SmiUntag(r1)); |
| |
| // And "return" to the OSR entry point of the function. |
| __ Ret(); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argc |
| // -- sp[0] : receiver |
| // -- sp[4] : thisArg |
| // -- sp[8] : argArray |
| // ----------------------------------- |
| |
| // 1. Load receiver into r1, argArray into r2 (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| __ LoadRoot(r5, RootIndex::kUndefinedValue); |
| __ mov(r2, r5); |
| __ ldr(r1, MemOperand(sp, 0)); // receiver |
| __ cmp(r0, Operand(1)); |
| __ ldr(r5, MemOperand(sp, kSystemPointerSize), ge); // thisArg |
| __ cmp(r0, Operand(2), ge); |
| __ ldr(r2, MemOperand(sp, 2 * kSystemPointerSize), ge); // argArray |
| __ add(sp, sp, Operand(r0, LSL, kSystemPointerSizeLog2)); |
| __ str(r5, MemOperand(sp, 0)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argArray |
| // -- r1 : receiver |
| // -- sp[0] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(r2, RootIndex::kNullValue, &no_arguments); |
| __ JumpIfRoot(r2, RootIndex::kUndefinedValue, &no_arguments); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. |
| __ bind(&no_arguments); |
| { |
| __ mov(r0, Operand(0)); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // 1. Get the callable to call (passed as receiver) from the stack. |
| __ Pop(r1); |
| |
| // 2. Make sure we have at least one argument. |
| // r0: actual number of arguments |
| { |
| Label done; |
| __ cmp(r0, Operand::Zero()); |
| __ b(ne, &done); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ add(r0, r0, Operand(1)); |
| __ bind(&done); |
| } |
| |
| // 3. Adjust the actual number of arguments. |
| __ sub(r0, r0, Operand(1)); |
| |
| // 4. Call the callable. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argc |
| // -- sp[0] : receiver |
| // -- sp[4] : target (if argc >= 1) |
| // -- sp[8] : thisArgument (if argc >= 2) |
| // -- sp[12] : argumentsList (if argc == 3) |
| // ----------------------------------- |
| |
| // 1. Load target into r1 (if present), argumentsList into r2 (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| __ LoadRoot(r1, RootIndex::kUndefinedValue); |
| __ mov(r5, r1); |
| __ mov(r2, r1); |
| __ cmp(r0, Operand(1)); |
| __ ldr(r1, MemOperand(sp, kSystemPointerSize), ge); // target |
| __ cmp(r0, Operand(2), ge); |
| __ ldr(r5, MemOperand(sp, 2 * kSystemPointerSize), ge); // thisArgument |
| __ cmp(r0, Operand(3), ge); |
| __ ldr(r2, MemOperand(sp, 3 * kSystemPointerSize), ge); // argumentsList |
| __ add(sp, sp, Operand(r0, LSL, kSystemPointerSizeLog2)); |
| __ str(r5, MemOperand(sp, 0)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argumentsList |
| // -- r1 : target |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argc |
| // -- sp[0] : receiver |
| // -- sp[4] : target |
| // -- sp[8] : argumentsList |
| // -- sp[12] : new.target (optional) |
| // ----------------------------------- |
| |
| // 1. Load target into r1 (if present), argumentsList into r2 (if present), |
| // new.target into r3 (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| __ LoadRoot(r1, RootIndex::kUndefinedValue); |
| __ mov(r2, r1); |
| __ mov(r4, r1); |
| __ cmp(r0, Operand(1)); |
| __ ldr(r1, MemOperand(sp, kSystemPointerSize), ge); // target |
| __ mov(r3, r1); // new.target defaults to target |
| __ cmp(r0, Operand(2), ge); |
| __ ldr(r2, MemOperand(sp, 2 * kSystemPointerSize), ge); // argumentsList |
| __ cmp(r0, Operand(3), ge); |
| __ ldr(r3, MemOperand(sp, 3 * kSystemPointerSize), ge); // new.target |
| __ add(sp, sp, Operand(r0, LSL, kSystemPointerSizeLog2)); |
| __ str(r4, MemOperand(sp, 0)); // set undefined to the receiver |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argumentsList |
| // -- r3 : new.target |
| // -- r1 : target |
| // -- sp[0] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ SmiTag(r0); |
| __ mov(r4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | |
| fp.bit() | lr.bit()); |
| __ Push(Smi::zero()); // Padding. |
| __ add(fp, sp, |
| Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : result being passed through |
| // ----------------------------------- |
| // Get the number of arguments passed (as a smi), tear down the frame and |
| // then tear down the parameters. |
| __ ldr(r1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR); |
| __ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1)); |
| __ add(sp, sp, Operand(kPointerSize)); // adjust for receiver |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- r1 : target |
| // -- r0 : number of parameters on the stack (not including the receiver) |
| // -- r2 : arguments list (a FixedArray) |
| // -- r4 : len (number of elements to push from args) |
| // -- r3 : new.target (for [[Construct]]) |
| // ----------------------------------- |
| Register scratch = r8; |
| |
| if (masm->emit_debug_code()) { |
| // Allow r2 to be a FixedArray, or a FixedDoubleArray if r4 == 0. |
| Label ok, fail; |
| __ AssertNotSmi(r2); |
| __ ldr(scratch, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| __ ldrh(r6, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| __ cmp(r6, Operand(FIXED_ARRAY_TYPE)); |
| __ b(eq, &ok); |
| __ cmp(r6, Operand(FIXED_DOUBLE_ARRAY_TYPE)); |
| __ b(ne, &fail); |
| __ cmp(r4, Operand(0)); |
| __ b(eq, &ok); |
| // Fall through. |
| __ bind(&fail); |
| __ Abort(AbortReason::kOperandIsNotAFixedArray); |
| |
| __ bind(&ok); |
| } |
| |
| Label stack_overflow; |
| __ StackOverflowCheck(r4, scratch, &stack_overflow); |
| |
| // Move the arguments already in the stack, |
| // including the receiver and the return address. |
| { |
| Label copy, check; |
| Register num = r5, src = r6, dest = r9; // r7 and r8 are context and root. |
| __ mov(src, sp); |
| // Update stack pointer. |
| __ lsl(scratch, r4, Operand(kSystemPointerSizeLog2)); |
| __ AllocateStackSpace(scratch); |
| __ mov(dest, sp); |
| __ mov(num, r0); |
| __ b(&check); |
| __ bind(©); |
| __ ldr(scratch, MemOperand(src, kSystemPointerSize, PostIndex)); |
| __ str(scratch, MemOperand(dest, kSystemPointerSize, PostIndex)); |
| __ sub(num, num, Operand(1), SetCC); |
| __ bind(&check); |
| __ b(ge, ©); |
| } |
| |
| // Copy arguments onto the stack (thisArgument is already on the stack). |
| { |
| __ mov(r6, Operand(0)); |
| __ LoadRoot(r5, RootIndex::kTheHoleValue); |
| Label done, loop; |
| __ bind(&loop); |
| __ cmp(r6, r4); |
| __ b(eq, &done); |
| __ add(scratch, r2, Operand(r6, LSL, kTaggedSizeLog2)); |
| __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| __ cmp(scratch, r5); |
| // Turn the hole into undefined as we go. |
| __ LoadRoot(scratch, RootIndex::kUndefinedValue, eq); |
| __ str(scratch, MemOperand(r9, kSystemPointerSize, PostIndex)); |
| __ add(r6, r6, Operand(1)); |
| __ b(&loop); |
| __ bind(&done); |
| __ add(r0, r0, r6); |
| } |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r3 : the new.target (for [[Construct]] calls) |
| // -- r1 : the target to call (can be any Object) |
| // -- r2 : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| Register scratch = r6; |
| |
| // Check if new.target has a [[Construct]] internal method. |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(r3, &new_target_not_constructor); |
| __ ldr(scratch, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
| __ tst(scratch, Operand(Map::Bits1::IsConstructorBit::kMask)); |
| __ b(ne, &new_target_constructor); |
| __ bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ Push(r3); |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ bind(&new_target_constructor); |
| } |
| |
| #ifdef V8_NO_ARGUMENTS_ADAPTOR |
| // TODO(victorgomes): Remove this copy when all the arguments adaptor frame |
| // code is erased. |
| __ mov(r4, fp); |
| __ ldr(r5, MemOperand(fp, StandardFrameConstants::kArgCOffset)); |
| #else |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(scratch, |
| MemOperand(r4, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ cmp(scratch, |
| Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &arguments_adaptor); |
| { |
| __ ldr(r5, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); |
| __ ldr(r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldrh(r5, FieldMemOperand( |
| r5, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ mov(r4, fp); |
| } |
| __ b(&arguments_done); |
| __ bind(&arguments_adaptor); |
| { |
| // Load the length from the ArgumentsAdaptorFrame. |
| __ ldr(r5, MemOperand(r4, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(r5); |
| } |
| __ bind(&arguments_done); |
| #endif |
| |
| Label stack_done, stack_overflow; |
| __ sub(r5, r5, r2, SetCC); |
| __ b(le, &stack_done); |
| { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments already in the stack (not including the |
| // receiver) |
| // -- r1 : the target to call (can be any Object) |
| // -- r2 : start index (to support rest parameters) |
| // -- r3 : the new.target (for [[Construct]] calls) |
| // -- r4 : point to the caller stack frame |
| // -- r5 : number of arguments to copy, i.e. arguments count - start index |
| // ----------------------------------- |
| |
| // Check for stack overflow. |
| __ StackOverflowCheck(r5, scratch, &stack_overflow); |
| |
| // Forward the arguments from the caller frame. |
| // Point to the first argument to copy (skipping the receiver). |
| __ add(r4, r4, |
| Operand(CommonFrameConstants::kFixedFrameSizeAboveFp + |
| kSystemPointerSize)); |
| __ add(r4, r4, Operand(r2, LSL, kSystemPointerSizeLog2)); |
| |
| // Move the arguments already in the stack, |
| // including the receiver and the return address. |
| { |
| Label copy, check; |
| Register num = r8, src = r9, |
| dest = r2; // r7 and r10 are context and root. |
| __ mov(src, sp); |
| // Update stack pointer. |
| __ lsl(scratch, r5, Operand(kSystemPointerSizeLog2)); |
| __ AllocateStackSpace(scratch); |
| __ mov(dest, sp); |
| __ mov(num, r0); |
| __ b(&check); |
| __ bind(©); |
| __ ldr(scratch, MemOperand(src, kSystemPointerSize, PostIndex)); |
| __ str(scratch, MemOperand(dest, kSystemPointerSize, PostIndex)); |
| __ sub(num, num, Operand(1), SetCC); |
| __ bind(&check); |
| __ b(ge, ©); |
| } |
| // Copy arguments from the caller frame. |
| // TODO(victorgomes): Consider using forward order as potentially more cache |
| // friendly. |
| { |
| Label loop; |
| __ add(r0, r0, r5); |
| __ bind(&loop); |
| { |
| __ sub(r5, r5, Operand(1), SetCC); |
| __ ldr(scratch, MemOperand(r4, r5, LSL, kSystemPointerSizeLog2)); |
| __ str(scratch, MemOperand(r2, r5, LSL, kSystemPointerSizeLog2)); |
| __ b(ne, &loop); |
| } |
| } |
| } |
| __ b(&stack_done); |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&stack_done); |
| |
| // Tail-call to the {code} handler. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertFunction(r1); |
| |
| // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset)); |
| __ tst(r3, Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); |
| __ b(ne, &class_constructor); |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset)); |
| __ tst(r3, Operand(SharedFunctionInfo::IsNativeBit::kMask | |
| SharedFunctionInfo::IsStrictBit::kMask)); |
| __ b(ne, &done_convert); |
| { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSFunction) |
| // -- r2 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(r3); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ ldr(r3, __ ReceiverOperand(r0)); |
| __ JumpIfSmi(r3, &convert_to_object); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE); |
| __ b(hs, &done_convert); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(r3, RootIndex::kUndefinedValue, &convert_global_proxy); |
| __ JumpIfNotRoot(r3, RootIndex::kNullValue, &convert_to_object); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(r3); |
| } |
| __ b(&convert_receiver); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(r0); |
| __ Push(r0, r1); |
| __ mov(r0, r3); |
| __ Push(cp); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Pop(cp); |
| __ mov(r3, r0); |
| __ Pop(r0, r1); |
| __ SmiUntag(r0); |
| } |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ str(r3, __ ReceiverOperand(r0)); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSFunction) |
| // -- r2 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| __ ldrh(r2, |
| FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ InvokeFunctionCode(r1, no_reg, r2, r0, JUMP_FUNCTION); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameScope frame(masm, StackFrame::INTERNAL); |
| __ push(r1); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : target (checked to be a JSBoundFunction) |
| // -- r3 : new.target (only in case of [[Construct]]) |
| // ----------------------------------- |
| |
| // Load [[BoundArguments]] into r2 and length of that into r4. |
| Label no_bound_arguments; |
| __ ldr(r2, FieldMemOperand(r1, JSBoundFunction::kBoundArgumentsOffset)); |
| __ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
| __ SmiUntag(r4); |
| __ cmp(r4, Operand(0)); |
| __ b(eq, &no_bound_arguments); |
| { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : target (checked to be a JSBoundFunction) |
| // -- r2 : the [[BoundArguments]] (implemented as FixedArray) |
| // -- r3 : new.target (only in case of [[Construct]]) |
| // -- r4 : the number of [[BoundArguments]] |
| // ----------------------------------- |
| |
| Register scratch = r6; |
| |
| { |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack |
| // limit". |
| Label done; |
| __ mov(scratch, Operand(r4, LSL, kSystemPointerSizeLog2)); |
| { |
| UseScratchRegisterScope temps(masm); |
| Register remaining_stack_size = temps.Acquire(); |
| DCHECK(!AreAliased(r0, r1, r2, r3, r4, scratch, remaining_stack_size)); |
| |
| // Compute the space we have left. The stack might already be overflowed |
| // here which will cause remaining_stack_size to become negative. |
| __ LoadStackLimit(remaining_stack_size, |
| StackLimitKind::kRealStackLimit); |
| __ sub(remaining_stack_size, sp, remaining_stack_size); |
| |
| // Check if the arguments will overflow the stack. |
| __ cmp(remaining_stack_size, scratch); |
| } |
| __ b(gt, &done); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| // Pop receiver. |
| __ Pop(r5); |
| |
| // Push [[BoundArguments]]. |
| { |
| Label loop; |
| __ add(r0, r0, r4); // Adjust effective number of arguments. |
| __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| __ sub(r4, r4, Operand(1), SetCC); |
| __ ldr(scratch, MemOperand(r2, r4, LSL, kTaggedSizeLog2)); |
| __ Push(scratch); |
| __ b(gt, &loop); |
| } |
| |
| // Push receiver. |
| __ Push(r5); |
| } |
| __ bind(&no_bound_arguments); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(r1); |
| |
| // Patch the receiver to [[BoundThis]]. |
| __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundThisOffset)); |
| __ str(r3, __ ReceiverOperand(r0)); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| Label non_callable, non_smi; |
| __ JumpIfSmi(r1, &non_callable); |
| __ bind(&non_smi); |
| __ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET, eq); |
| __ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Check if target has a [[Call]] internal method. |
| __ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset)); |
| __ tst(r4, Operand(Map::Bits1::IsCallableBit::kMask)); |
| __ b(eq, &non_callable); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ cmp(r5, Operand(JS_PROXY_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| // Overwrite the original receiver the (original) target. |
| __ str(r1, __ ReceiverOperand(r0)); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r1); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r1); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the constructor to call (checked to be a JSFunction) |
| // -- r3 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertConstructor(r1); |
| __ AssertFunction(r1); |
| |
| // Calling convention for function specific ConstructStubs require |
| // r2 to contain either an AllocationSite or undefined. |
| __ LoadRoot(r2, RootIndex::kUndefinedValue); |
| |
| Label call_generic_stub; |
| |
| // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset)); |
| __ tst(r4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); |
| __ b(eq, &call_generic_stub); |
| |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), |
| RelocInfo::CODE_TARGET); |
| |
| __ bind(&call_generic_stub); |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSBoundFunction) |
| // -- r3 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertConstructor(r1); |
| __ AssertBoundFunction(r1); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| __ cmp(r1, r3); |
| __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset), |
| eq); |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the constructor to call (can be any Object) |
| // -- r3 : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // ----------------------------------- |
| |
| // Check if target is a Smi. |
| Label non_constructor, non_proxy; |
| __ JumpIfSmi(r1, &non_constructor); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r2, FieldMemOperand(r4, Map::kBitFieldOffset)); |
| __ tst(r2, Operand(Map::Bits1::IsConstructorBit::kMask)); |
| __ b(eq, &non_constructor); |
| |
| // Dispatch based on instance type. |
| __ CompareInstanceType(r4, r5, JS_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ cmp(r5, Operand(JS_PROXY_TYPE)); |
| __ b(ne, &non_proxy); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), |
| RelocInfo::CODE_TARGET); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| __ bind(&non_proxy); |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ str(r1, __ ReceiverOperand(r0)); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r1); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : actual number of arguments |
| // -- r1 : function (passed through to callee) |
| // -- r2 : expected number of arguments |
| // -- r3 : new target (passed through to callee) |
| // ----------------------------------- |
| |
| Label dont_adapt_arguments, stack_overflow; |
| __ cmp(r2, Operand(kDontAdaptArgumentsSentinel)); |
| __ b(eq, &dont_adapt_arguments); |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset)); |
| |
| // ------------------------------------------- |
| // Adapt arguments. |
| // ------------------------------------------- |
| { |
| Label under_application, over_application, invoke; |
| __ cmp(r0, r2); |
| __ b(lt, &under_application); |
| |
| // Enough parameters: actual >= expected |
| __ bind(&over_application); |
| { |
| EnterArgumentsAdaptorFrame(masm); |
| __ StackOverflowCheck(r2, r5, &stack_overflow); |
| |
| // Calculate copy start address into r0 and copy end address into r4. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| __ add(r0, fp, Operand(r2, LSL, kSystemPointerSizeLog2)); |
| // adjust for return address and receiver |
| __ add(r0, r0, Operand(2 * kSystemPointerSize)); |
| __ sub(r4, r0, Operand(r2, LSL, kSystemPointerSizeLog2)); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // r0: copy start address |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| // r4: copy end address |
| |
| Label copy; |
| __ bind(©); |
| __ ldr(r5, MemOperand(r0, 0)); |
| __ push(r5); |
| __ cmp(r0, r4); // Compare before moving to next argument. |
| __ sub(r0, r0, Operand(kSystemPointerSize)); |
| __ b(ne, ©); |
| |
| __ b(&invoke); |
| } |
| |
| // Too few parameters: Actual < expected |
| __ bind(&under_application); |
| { |
| EnterArgumentsAdaptorFrame(masm); |
| __ StackOverflowCheck(r2, r5, &stack_overflow); |
| |
| // Fill the remaining expected arguments with undefined. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| __ LoadRoot(r5, RootIndex::kUndefinedValue); |
| __ sub(r6, r2, Operand::SmiUntag(r0)); |
| __ sub(r4, fp, Operand(r6, LSL, kPointerSizeLog2)); |
| // Adjust for frame. |
| __ sub(r4, r4, |
| Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + |
| kPointerSize)); |
| |
| Label fill; |
| __ bind(&fill); |
| __ push(r5); |
| __ cmp(sp, r4); |
| __ b(ne, &fill); |
| |
| // Calculate copy start address into r0 and copy end address is fp. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // r0: copy start address |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| Label copy; |
| __ bind(©); |
| |
| // Adjust load for return address and receiver. |
| __ ldr(r5, MemOperand(r0, 2 * kPointerSize)); |
| __ push(r5); |
| |
| __ cmp(r0, fp); // Compare before moving to next argument. |
| __ sub(r0, r0, Operand(kPointerSize)); |
| __ b(ne, ©); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| __ mov(r0, r2); |
| // r0 : expected number of arguments |
| // r1 : function (passed through to callee) |
| // r3 : new target (passed through to callee) |
| static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset)); |
| __ CallCodeObject(r2); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Exit frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ Jump(lr); |
| } |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch"); |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(r2); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); |
| } |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| // The function index was put in a register by the jump table trampoline. |
| // Convert to Smi for the runtime call. |
| __ SmiTag(kWasmCompileLazyFuncIndexRegister, |
| kWasmCompileLazyFuncIndexRegister); |
| { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| constexpr RegList gp_regs = Register::ListOf(r0, r1, r2, r3); |
| constexpr DwVfpRegister lowest_fp_reg = d0; |
| constexpr DwVfpRegister highest_fp_reg = d7; |
| |
| __ stm(db_w, sp, gp_regs); |
| __ vstm(db_w, sp, lowest_fp_reg, highest_fp_reg); |
| |
| // Pass instance and function index as explicit arguments to the runtime |
| // function. |
| __ push(kWasmInstanceRegister); |
| __ push(kWasmCompileLazyFuncIndexRegister); |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ Move(cp, Smi::zero()); |
| __ CallRuntime(Runtime::kWasmCompileLazy, 2); |
| // The entrypoint address is the return value. |
| __ mov(r8, kReturnRegister0); |
| |
| // Restore registers. |
| __ vldm(ia_w, sp, lowest_fp_reg, highest_fp_reg); |
| __ ldm(ia_w, sp, gp_regs); |
| } |
| // Finally, jump to the entrypoint. |
| __ Jump(r8); |
| } |
| |
| void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::WASM_DEBUG_BREAK); |
| |
| // Save all parameter registers. They might hold live values, we restore |
| // them after the runtime call. |
| constexpr DwVfpRegister lowest_fp_reg = DwVfpRegister::from_code( |
| WasmDebugBreakFrameConstants::kFirstPushedFpReg); |
| constexpr DwVfpRegister highest_fp_reg = DwVfpRegister::from_code( |
| WasmDebugBreakFrameConstants::kLastPushedFpReg); |
| |
| // Store gp parameter registers. |
| __ stm(db_w, sp, WasmDebugBreakFrameConstants::kPushedGpRegs); |
| // Store fp parameter registers. |
| __ vstm(db_w, sp, lowest_fp_reg, highest_fp_reg); |
| |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ Move(cp, Smi::zero()); |
| __ CallRuntime(Runtime::kWasmDebugBreak, 0); |
| |
| // Restore registers. |
| __ vldm(ia_w, sp, lowest_fp_reg, highest_fp_reg); |
| __ ldm(ia_w, sp, WasmDebugBreakFrameConstants::kPushedGpRegs); |
| } |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, |
| SaveFPRegsMode save_doubles, ArgvMode argv_mode, |
| bool builtin_exit_frame) { |
| // Called from JavaScript; parameters are on stack as if calling JS function. |
| // r0: number of arguments including receiver |
| // r1: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| // |
| // If argv_mode == kArgvInRegister: |
| // r2: pointer to the first argument |
| |
| __ mov(r5, Operand(r1)); |
| |
| if (argv_mode == kArgvInRegister) { |
| // Move argv into the correct register. |
| __ mov(r1, Operand(r2)); |
| } else { |
| // Compute the argv pointer in a callee-saved register. |
| __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| __ sub(r1, r1, Operand(kPointerSize)); |
| } |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame( |
| save_doubles == kSaveFPRegs, 0, |
| builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| |
| // Store a copy of argc in callee-saved registers for later. |
| __ mov(r4, Operand(r0)); |
| |
| // r0, r4: number of arguments including receiver (C callee-saved) |
| // r1: pointer to the first argument (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| |
| #if V8_HOST_ARCH_ARM |
| int frame_alignment = MacroAssembler::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (FLAG_debug_code) { |
| if (frame_alignment > kPointerSize) { |
| Label alignment_as_expected; |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| __ tst(sp, Operand(frame_alignment_mask)); |
| __ b(eq, &alignment_as_expected); |
| // Don't use Check here, as it will call Runtime_Abort re-entering here. |
| __ stop(); |
| __ bind(&alignment_as_expected); |
| } |
| } |
| #endif |
| |
| // Call C built-in. |
| // r0 = argc, r1 = argv, r2 = isolate |
| __ Move(r2, ExternalReference::isolate_address(masm->isolate())); |
| __ StoreReturnAddressAndCall(r5); |
| |
| // Result returned in r0 or r1:r0 - do not destroy these registers! |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ CompareRoot(r0, RootIndex::kException); |
| __ b(eq, &exception_returned); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| Label okay; |
| ExternalReference pending_exception_address = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| __ Move(r3, pending_exception_address); |
| __ ldr(r3, MemOperand(r3)); |
| __ CompareRoot(r3, RootIndex::kTheHoleValue); |
| // Cannot use check here as it attempts to generate call into runtime. |
| __ b(eq, &okay); |
| __ stop(); |
| __ bind(&okay); |
| } |
| |
| // Exit C frame and return. |
| // r0:r1: result |
| // sp: stack pointer |
| // fp: frame pointer |
| Register argc = argv_mode == kArgvInRegister |
| // We don't want to pop arguments so set argc to no_reg. |
| ? no_reg |
| // Callee-saved register r4 still holds argc. |
| : r4; |
| __ LeaveExitFrame(save_doubles == kSaveFPRegs, argc); |
| __ mov(pc, lr); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); |
| ExternalReference pending_handler_entrypoint_address = |
| ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); |
| ExternalReference pending_handler_fp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); |
| ExternalReference pending_handler_sp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set r0 to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler = |
| ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ PrepareCallCFunction(3, 0); |
| __ mov(r0, Operand(0)); |
| __ mov(r1, Operand(0)); |
| __ Move(r2, ExternalReference::isolate_address(masm->isolate())); |
| __ CallCFunction(find_handler, 3); |
| } |
| |
| // Retrieve the handler context, SP and FP. |
| __ Move(cp, pending_handler_context_address); |
| __ ldr(cp, MemOperand(cp)); |
| __ Move(sp, pending_handler_sp_address); |
| __ ldr(sp, MemOperand(sp)); |
| __ Move(fp, pending_handler_fp_address); |
| __ ldr(fp, MemOperand(fp)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (cp == 0) for non-JS frames. |
| __ cmp(cp, Operand(0)); |
| __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| |
| // Reset the masking register. This is done independent of the underlying |
| // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work |
| // with both configurations. It is safe to always do this, because the |
| // underlying register is caller-saved and can be arbitrarily clobbered. |
| __ ResetSpeculationPoisonRegister(); |
| |
| // Compute the handler entry address and jump to it. |
| ConstantPoolUnavailableScope constant_pool_unavailable(masm); |
| __ Move(r1, pending_handler_entrypoint_address); |
| __ ldr(r1, MemOperand(r1)); |
| __ Jump(r1); |
| } |
| |
| void Builtins::Generate_DoubleToI(MacroAssembler* masm) { |
| Label negate, done; |
| |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| UseScratchRegisterScope temps(masm); |
| Register result_reg = r7; |
| Register double_low = GetRegisterThatIsNotOneOf(result_reg); |
| Register double_high = GetRegisterThatIsNotOneOf(result_reg, double_low); |
| LowDwVfpRegister double_scratch = temps.AcquireLowD(); |
| |
| // Save the old values from these temporary registers on the stack. |
| __ Push(result_reg, double_high, double_low); |
| |
| // Account for saved regs. |
| const int kArgumentOffset = 3 * kPointerSize; |
| |
| MemOperand input_operand(sp, kArgumentOffset); |
| MemOperand result_operand = input_operand; |
| |
| // Load double input. |
| __ vldr(double_scratch, input_operand); |
| __ vmov(double_low, double_high, double_scratch); |
| // Try to convert with a FPU convert instruction. This handles all |
| // non-saturating cases. |
| __ TryInlineTruncateDoubleToI(result_reg, double_scratch, &done); |
| |
| Register scratch = temps.Acquire(); |
| __ Ubfx(scratch, double_high, HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| // Load scratch with exponent - 1. This is faster than loading |
| // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. |
| STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); |
| __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); |
| // If exponent is greater than or equal to 84, the 32 less significant |
| // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), |
| // the result is 0. |
| // Compare exponent with 84 (compare exponent - 1 with 83). If the exponent is |
| // greater than this, the conversion is out of range, so return zero. |
| __ cmp(scratch, Operand(83)); |
| __ mov(result_reg, Operand::Zero(), LeaveCC, ge); |
| __ b(ge, &done); |
| |
| // If we reach this code, 30 <= exponent <= 83. |
| // `TryInlineTruncateDoubleToI` above will have truncated any double with an |
| // exponent lower than 30. |
| if (masm->emit_debug_code()) { |
| // Scratch is exponent - 1. |
| __ cmp(scratch, Operand(30 - 1)); |
| __ Check(ge, AbortReason::kUnexpectedValue); |
| } |
| |
| // We don't have to handle cases where 0 <= exponent <= 20 for which we would |
| // need to shift right the high part of the mantissa. |
| // Scratch contains exponent - 1. |
| // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). |
| __ rsb(scratch, scratch, Operand(51), SetCC); |
| |
| // 52 <= exponent <= 83, shift only double_low. |
| // On entry, scratch contains: 52 - exponent. |
| __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, ls); |
| __ mov(result_reg, Operand(double_low, LSL, scratch), LeaveCC, ls); |
| __ b(ls, &negate); |
| |
| // 21 <= exponent <= 51, shift double_low and double_high |
| // to generate the result. |
| __ mov(double_low, Operand(double_low, LSR, scratch)); |
| // Scratch contains: 52 - exponent. |
| // We needs: exponent - 20. |
| // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. |
| __ rsb(scratch, scratch, Operand(32)); |
| __ Ubfx(result_reg, double_high, 0, HeapNumber::kMantissaBitsInTopWord); |
| // Set the implicit 1 before the mantissa part in double_high. |
| __ orr(result_reg, result_reg, |
| Operand(1 << HeapNumber::kMantissaBitsInTopWord)); |
| __ orr(result_reg, double_low, Operand(result_reg, LSL, scratch)); |
| |
| __ bind(&negate); |
| // If input was positive, double_high ASR 31 equals 0 and |
| // double_high LSR 31 equals zero. |
| // New result = (result eor 0) + 0 = result. |
| // If the input was negative, we have to negate the result. |
| // Input_high ASR 31 equals 0xFFFFFFFF and double_high LSR 31 equals 1. |
| // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result. |
| __ eor(result_reg, result_reg, Operand(double_high, ASR, 31)); |
| __ add(result_reg, result_reg, Operand(double_high, LSR, 31)); |
| |
| __ bind(&done); |
| __ str(result_reg, result_operand); |
| |
| // Restore registers corrupted in this routine and return. |
| __ Pop(result_reg, double_high, double_low); |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) { |
| // TODO(v8:10701): Implement for this platform. |
| __ Trap(); |
| } |
| |
| namespace { |
| |
| int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
| return ref0.address() - ref1.address(); |
| } |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Restores context. stack_space |
| // - space to be unwound on exit (includes the call JS arguments space and |
| // the additional space allocated for the fast call). |
| void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, |
| ExternalReference thunk_ref, int stack_space, |
| MemOperand* stack_space_operand, |
| MemOperand return_value_operand) { |
| Isolate* isolate = masm->isolate(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| const int kNextOffset = 0; |
| const int kLimitOffset = AddressOffset( |
| ExternalReference::handle_scope_limit_address(isolate), next_address); |
| const int kLevelOffset = AddressOffset( |
| ExternalReference::handle_scope_level_address(isolate), next_address); |
| |
| DCHECK(function_address == r1 || function_address == r2); |
| |
| Label profiler_enabled, end_profiler_check; |
| __ Move(r9, ExternalReference::is_profiling_address(isolate)); |
| __ ldrb(r9, MemOperand(r9, 0)); |
| __ cmp(r9, Operand(0)); |
| __ b(ne, &profiler_enabled); |
| __ Move(r9, ExternalReference::address_of_runtime_stats_flag()); |
| __ ldr(r9, MemOperand(r9, 0)); |
| __ cmp(r9, Operand(0)); |
| __ b(ne, &profiler_enabled); |
| { |
| // Call the api function directly. |
| __ Move(r3, function_address); |
| __ b(&end_profiler_check); |
| } |
| __ bind(&profiler_enabled); |
| { |
| // Additional parameter is the address of the actual callback. |
| __ Move(r3, thunk_ref); |
| } |
| __ bind(&end_profiler_check); |
| |
| // Allocate HandleScope in callee-save registers. |
| __ Move(r9, next_address); |
| __ ldr(r4, MemOperand(r9, kNextOffset)); |
| __ ldr(r5, MemOperand(r9, kLimitOffset)); |
| __ ldr(r6, MemOperand(r9, kLevelOffset)); |
| __ add(r6, r6, Operand(1)); |
| __ str(r6, MemOperand(r9, kLevelOffset)); |
| |
| __ StoreReturnAddressAndCall(r3); |
| |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| Label return_value_loaded; |
| |
| // load value from ReturnValue |
| __ ldr(r0, return_value_operand); |
| __ bind(&return_value_loaded); |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ str(r4, MemOperand(r9, kNextOffset)); |
| if (__ emit_debug_code()) { |
| __ ldr(r1, MemOperand(r9, kLevelOffset)); |
| __ cmp(r1, r6); |
| __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall); |
| } |
| __ sub(r6, r6, Operand(1)); |
| __ str(r6, MemOperand(r9, kLevelOffset)); |
| __ ldr(r6, MemOperand(r9, kLimitOffset)); |
| __ cmp(r5, r6); |
| __ b(ne, &delete_allocated_handles); |
| |
| // Leave the API exit frame. |
| __ bind(&leave_exit_frame); |
| // LeaveExitFrame expects unwind space to be in a register. |
| if (stack_space_operand == nullptr) { |
| DCHECK_NE(stack_space, 0); |
| __ mov(r4, Operand(stack_space)); |
| } else { |
| DCHECK_EQ(stack_space, 0); |
| __ ldr(r4, *stack_space_operand); |
| } |
| __ LeaveExitFrame(false, r4, stack_space_operand != nullptr); |
| |
| // Check if the function scheduled an exception. |
| __ LoadRoot(r4, RootIndex::kTheHoleValue); |
| __ Move(r6, ExternalReference::scheduled_exception_address(isolate)); |
| __ ldr(r5, MemOperand(r6)); |
| __ cmp(r4, r5); |
| __ b(ne, &promote_scheduled_exception); |
| |
| __ mov(pc, lr); |
| |
| // Re-throw by promoting a scheduled exception. |
| __ bind(&promote_scheduled_exception); |
| __ TailCallRuntime(Runtime::kPromoteScheduledException); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| __ bind(&delete_allocated_handles); |
| __ str(r5, MemOperand(r9, kLimitOffset)); |
| __ mov(r4, r0); |
| __ PrepareCallCFunction(1); |
| __ Move(r0, ExternalReference::isolate_address(isolate)); |
| __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); |
| __ mov(r0, r4); |
| __ jmp(&leave_exit_frame); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_CallApiCallback(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- cp : context |
| // -- r1 : api function address |
| // -- r2 : arguments count (not including the receiver) |
| // -- r3 : call data |
| // -- r0 : holder |
| // -- sp[0] : receiver |
| // -- sp[8] : first argument |
| // -- ... |
| // -- sp[(argc) * 8] : last argument |
| // ----------------------------------- |
| |
| Register api_function_address = r1; |
| Register argc = r2; |
| Register call_data = r3; |
| Register holder = r0; |
| Register scratch = r4; |
| |
| DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch)); |
| |
| using FCA = FunctionCallbackArguments; |
| |
| STATIC_ASSERT(FCA::kArgsLength == 6); |
| STATIC_ASSERT(FCA::kNewTargetIndex == 5); |
| STATIC_ASSERT(FCA::kDataIndex == 4); |
| STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| STATIC_ASSERT(FCA::kHolderIndex == 0); |
| |
| // Set up FunctionCallbackInfo's implicit_args on the stack as follows: |
| // |
| // Target state: |
| // sp[0 * kPointerSize]: kHolder |
| // sp[1 * kPointerSize]: kIsolate |
| // sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue) |
| // sp[3 * kPointerSize]: undefined (kReturnValue) |
| // sp[4 * kPointerSize]: kData |
| // sp[5 * kPointerSize]: undefined (kNewTarget) |
| |
| // Reserve space on the stack. |
| __ AllocateStackSpace(FCA::kArgsLength * kPointerSize); |
| |
| // kHolder. |
| __ str(holder, MemOperand(sp, 0 * kPointerSize)); |
| |
| // kIsolate. |
| __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); |
| __ str(scratch, MemOperand(sp, 1 * kPointerSize)); |
| |
| // kReturnValueDefaultValue and kReturnValue. |
| __ LoadRoot(scratch, RootIndex::kUndefinedValue); |
| __ str(scratch, MemOperand(sp, 2 * kPointerSize)); |
| __ str(scratch, MemOperand(sp, 3 * kPointerSize)); |
| |
| // kData. |
| __ str(call_data, MemOperand(sp, 4 * kPointerSize)); |
| |
| // kNewTarget. |
| __ str(scratch, MemOperand(sp, 5 * kPointerSize)); |
| |
| // Keep a pointer to kHolder (= implicit_args) in a scratch register. |
| // We use it below to set up the FunctionCallbackInfo object. |
| __ mov(scratch, sp); |
| |
| // Allocate the v8::Arguments structure in the arguments' space since |
| // it's not controlled by GC. |
| static constexpr int kApiStackSpace = 4; |
| static constexpr bool kDontSaveDoubles = false; |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace); |
| |
| // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). |
| // Arguments are after the return address (pushed by EnterExitFrame()). |
| __ str(scratch, MemOperand(sp, 1 * kPointerSize)); |
| |
| // FunctionCallbackInfo::values_ (points at the first varargs argument passed |
| // on the stack). |
| __ add(scratch, scratch, Operand((FCA::kArgsLength + 1) * kPointerSize)); |
| __ str(scratch, MemOperand(sp, 2 * kPointerSize)); |
| |
| // FunctionCallbackInfo::length_. |
| __ str(argc, MemOperand(sp, 3 * kPointerSize)); |
| |
| // We also store the number of bytes to drop from the stack after returning |
| // from the API function here. |
| __ mov(scratch, |
| Operand((FCA::kArgsLength + 1 /* receiver */) * kPointerSize)); |
| __ add(scratch, scratch, Operand(argc, LSL, kPointerSizeLog2)); |
| __ str(scratch, MemOperand(sp, 4 * kPointerSize)); |
| |
| // v8::InvocationCallback's argument. |
| __ add(r0, sp, Operand(1 * kPointerSize)); |
| |
| ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); |
| |
| // There are two stack slots above the arguments we constructed on the stack. |
| // TODO(jgruber): Document what these arguments are. |
| static constexpr int kStackSlotsAboveFCA = 2; |
| MemOperand return_value_operand( |
| fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize); |
| |
| static constexpr int kUseStackSpaceOperand = 0; |
| MemOperand stack_space_operand(sp, 4 * kPointerSize); |
| |
| AllowExternalCallThatCantCauseGC scope(masm); |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, |
| kUseStackSpaceOperand, &stack_space_operand, |
| return_value_operand); |
| } |
| |
| void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { |
| // Build v8::PropertyCallbackInfo::args_ array on the stack and push property |
| // name below the exit frame to make GC aware of them. |
| STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); |
| STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); |
| STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); |
| STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); |
| STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); |
| STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); |
| |
| Register receiver = ApiGetterDescriptor::ReceiverRegister(); |
| Register holder = ApiGetterDescriptor::HolderRegister(); |
| Register callback = ApiGetterDescriptor::CallbackRegister(); |
| Register scratch = r4; |
| DCHECK(!AreAliased(receiver, holder, callback, scratch)); |
| |
| Register api_function_address = r2; |
| |
| __ push(receiver); |
| // Push data from AccessorInfo. |
| __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); |
| __ push(scratch); |
| __ LoadRoot(scratch, RootIndex::kUndefinedValue); |
| __ Push(scratch, scratch); |
| __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); |
| __ Push(scratch, holder); |
| __ Push(Smi::zero()); // should_throw_on_error -> false |
| __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); |
| __ push(scratch); |
| // v8::PropertyCallbackInfo::args_ array and name handle. |
| const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
| |
| // Load address of v8::PropertyAccessorInfo::args_ array and name handle. |
| __ mov(r0, sp); // r0 = Handle<Name> |
| __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = v8::PCI::args_ |
| |
| const int kApiStackSpace = 1; |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(false, kApiStackSpace); |
| |
| // Create v8::PropertyCallbackInfo object on the stack and initialize |
| // it's args_ field. |
| __ str(r1, MemOperand(sp, 1 * kPointerSize)); |
| __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = v8::PropertyCallbackInfo& |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_accessor_getter_callback(); |
| |
| __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); |
| __ ldr(api_function_address, |
| FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); |
| |
| // +3 is to skip prolog, return address and name handle. |
| MemOperand return_value_operand( |
| fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); |
| MemOperand* const kUseStackSpaceConstant = nullptr; |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, |
| kStackUnwindSpace, kUseStackSpaceConstant, |
| return_value_operand); |
| } |
| |
| void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { |
| // The sole purpose of DirectCEntry is for movable callers (e.g. any general |
| // purpose Code object) to be able to call into C functions that may trigger |
| // GC and thus move the caller. |
| // |
| // DirectCEntry places the return address on the stack (updated by the GC), |
| // making the call GC safe. The irregexp backend relies on this. |
| |
| __ str(lr, MemOperand(sp, 0)); // Store the return address. |
| __ blx(ip); // Call the C++ function. |
| __ ldr(pc, MemOperand(sp, 0)); // Return to calling code. |
| } |
| |
| void Builtins::Generate_MemCopyUint8Uint8(MacroAssembler* masm) { |
| Register dest = r0; |
| Register src = r1; |
| Register chars = r2; |
| Register temp1 = r3; |
| Label less_4; |
| |
| { |
| UseScratchRegisterScope temps(masm); |
| Register temp2 = temps.Acquire(); |
| Label loop; |
| |
| __ bic(temp2, chars, Operand(0x3), SetCC); |
| __ b(&less_4, eq); |
| __ add(temp2, dest, temp2); |
| |
| __ bind(&loop); |
| __ ldr(temp1, MemOperand(src, 4, PostIndex)); |
| __ str(temp1, MemOperand(dest, 4, PostIndex)); |
| __ cmp(dest, temp2); |
| __ b(&loop, ne); |
| } |
| |
| __ bind(&less_4); |
| __ mov(chars, Operand(chars, LSL, 31), SetCC); |
| // bit0 => Z (ne), bit1 => C (cs) |
| __ ldrh(temp1, MemOperand(src, 2, PostIndex), cs); |
| __ strh(temp1, MemOperand(dest, 2, PostIndex), cs); |
| __ ldrb(temp1, MemOperand(src), ne); |
| __ strb(temp1, MemOperand(dest), ne); |
| __ Ret(); |
| } |
| |
| namespace { |
| |
| // This code tries to be close to ia32 code so that any changes can be |
| // easily ported. |
| void Generate_DeoptimizationEntry(MacroAssembler* masm, |
| DeoptimizeKind deopt_kind) { |
| Isolate* isolate = masm->isolate(); |
| |
| // Note: This is an overapproximation; we always reserve space for 32 double |
| // registers, even though the actual CPU may only support 16. In the latter |
| // case, SaveFPRegs and RestoreFPRegs still use 32 stack slots, but only fill |
| // 16. |
| static constexpr int kDoubleRegsSize = |
| kDoubleSize * DwVfpRegister::kNumRegisters; |
| |
| // Save all allocatable VFP registers before messing with them. |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ SaveFPRegs(sp, scratch); |
| } |
| |
| // Save all general purpose registers before messing with them. |
| static constexpr int kNumberOfRegisters = Register::kNumRegisters; |
| STATIC_ASSERT(kNumberOfRegisters == 16); |
| |
| // Everything but pc, lr and ip which will be saved but not restored. |
| RegList restored_regs = kJSCallerSaved | kCalleeSaved | ip.bit(); |
| |
| // Push all 16 registers (needed to populate FrameDescription::registers_). |
| // TODO(v8:1588): Note that using pc with stm is deprecated, so we should |
| // perhaps handle this a bit differently. |
| __ stm(db_w, sp, restored_regs | sp.bit() | lr.bit() | pc.bit()); |
| |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ Move(scratch, ExternalReference::Create( |
| IsolateAddressId::kCEntryFPAddress, isolate)); |
| __ str(fp, MemOperand(scratch)); |
| } |
| |
| static constexpr int kSavedRegistersAreaSize = |
| (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize; |
| |
| __ mov(r2, Operand(Deoptimizer::kFixedExitSizeMarker)); |
| // Get the address of the location in the code object (r3) (return |
| // address for lazy deoptimization) and compute the fp-to-sp delta in |
| // register r4. |
| __ mov(r3, lr); |
| __ add(r4, sp, Operand(kSavedRegistersAreaSize)); |
| __ sub(r4, fp, r4); |
| |
| // Allocate a new deoptimizer object. |
| // Pass four arguments in r0 to r3 and fifth argument on stack. |
| __ PrepareCallCFunction(6); |
| __ mov(r0, Operand(0)); |
| Label context_check; |
| __ ldr(r1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ JumpIfSmi(r1, &context_check); |
| __ ldr(r0, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); |
| __ bind(&context_check); |
| __ mov(r1, Operand(static_cast<int>(deopt_kind))); |
| // r2: bailout id already loaded. |
| // r3: code address or 0 already loaded. |
| __ str(r4, MemOperand(sp, 0 * kPointerSize)); // Fp-to-sp delta. |
| __ Move(r5, ExternalReference::isolate_address(isolate)); |
| __ str(r5, MemOperand(sp, 1 * kPointerSize)); // Isolate. |
| // Call Deoptimizer::New(). |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6); |
| } |
| |
| // Preserve "deoptimizer" object in register r0 and get the input |
| // frame descriptor pointer to r1 (deoptimizer->input_); |
| __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset())); |
| |
| // Copy core registers into FrameDescription::registers_. |
| DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters); |
| for (int i = 0; i < kNumberOfRegisters; i++) { |
| int offset = (i * kPointerSize) + FrameDescription::registers_offset(); |
| __ ldr(r2, MemOperand(sp, i * kPointerSize)); |
| __ str(r2, MemOperand(r1, offset)); |
| } |
| |
| // Copy double registers to double_registers_. |
| static constexpr int kDoubleRegsOffset = |
| FrameDescription::double_registers_offset(); |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| Register src_location = r4; |
| __ add(src_location, sp, Operand(kNumberOfRegisters * kPointerSize)); |
| __ RestoreFPRegs(src_location, scratch); |
| |
| Register dst_location = r4; |
| __ add(dst_location, r1, Operand(kDoubleRegsOffset)); |
| __ SaveFPRegsToHeap(dst_location, scratch); |
| } |
| |
| // Mark the stack as not iterable for the CPU profiler which won't be able to |
| // walk the stack without the return address. |
| { |
| UseScratchRegisterScope temps(masm); |
| Register is_iterable = temps.Acquire(); |
| Register zero = r4; |
| __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate)); |
| __ mov(zero, Operand(0)); |
| __ strb(zero, MemOperand(is_iterable)); |
| } |
| |
| // Remove the saved registers from the stack. |
| __ add(sp, sp, Operand(kSavedRegistersAreaSize)); |
| |
| // Compute a pointer to the unwinding limit in register r2; that is |
| // the first stack slot not part of the input frame. |
| __ ldr(r2, MemOperand(r1, FrameDescription::frame_size_offset())); |
| __ add(r2, r2, sp); |
| |
| // Unwind the stack down to - but not including - the unwinding |
| // limit and copy the contents of the activation frame to the input |
| // frame description. |
| __ add(r3, r1, Operand(FrameDescription::frame_content_offset())); |
| Label pop_loop; |
| Label pop_loop_header; |
| __ b(&pop_loop_header); |
| __ bind(&pop_loop); |
| __ pop(r4); |
| __ str(r4, MemOperand(r3, 0)); |
| __ add(r3, r3, Operand(sizeof(uint32_t))); |
| __ bind(&pop_loop_header); |
| __ cmp(r2, sp); |
| __ b(ne, &pop_loop); |
| |
| // Compute the output frame in the deoptimizer. |
| __ push(r0); // Preserve deoptimizer object across call. |
| // r0: deoptimizer object; r1: scratch. |
| __ PrepareCallCFunction(1); |
| // Call Deoptimizer::ComputeOutputFrames(). |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ CallCFunction(ExternalReference::compute_output_frames_function(), 1); |
| } |
| __ pop(r0); // Restore deoptimizer object (class Deoptimizer). |
| |
| __ ldr(sp, MemOperand(r0, Deoptimizer::caller_frame_top_offset())); |
| |
| // Replace the current (input) frame with the output frames. |
| Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; |
| // Outer loop state: r4 = current "FrameDescription** output_", |
| // r1 = one past the last FrameDescription**. |
| __ ldr(r1, MemOperand(r0, Deoptimizer::output_count_offset())); |
| __ ldr(r4, MemOperand(r0, Deoptimizer::output_offset())); // r4 is output_. |
| __ add(r1, r4, Operand(r1, LSL, 2)); |
| __ jmp(&outer_loop_header); |
| __ bind(&outer_push_loop); |
| // Inner loop state: r2 = current FrameDescription*, r3 = loop index. |
| __ ldr(r2, MemOperand(r4, 0)); // output_[ix] |
| __ ldr(r3, MemOperand(r2, FrameDescription::frame_size_offset())); |
| __ jmp(&inner_loop_header); |
| __ bind(&inner_push_loop); |
| __ sub(r3, r3, Operand(sizeof(uint32_t))); |
| __ add(r6, r2, Operand(r3)); |
| __ ldr(r6, MemOperand(r6, FrameDescription::frame_content_offset())); |
| __ push(r6); |
| __ bind(&inner_loop_header); |
| __ cmp(r3, Operand::Zero()); |
| __ b(ne, &inner_push_loop); // test for gt? |
| __ add(r4, r4, Operand(kPointerSize)); |
| __ bind(&outer_loop_header); |
| __ cmp(r4, r1); |
| __ b(lt, &outer_push_loop); |
| |
| __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset())); |
| |
| // State: |
| // r1: Deoptimizer::input_ (FrameDescription*). |
| // r2: The last output FrameDescription pointer (FrameDescription*). |
| |
| // Restore double registers from the input frame description. |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| Register src_location = r6; |
| __ add(src_location, r1, Operand(kDoubleRegsOffset)); |
| __ RestoreFPRegsFromHeap(src_location, scratch); |
| } |
| |
| // Push pc and continuation from the last output frame. |
| __ ldr(r6, MemOperand(r2, FrameDescription::pc_offset())); |
| __ push(r6); |
| __ ldr(r6, MemOperand(r2, FrameDescription::continuation_offset())); |
| __ push(r6); |
| |
| // Push the registers from the last output frame. |
| for (int i = kNumberOfRegisters - 1; i >= 0; i--) { |
| int offset = (i * kPointerSize) + FrameDescription::registers_offset(); |
| __ ldr(r6, MemOperand(r2, offset)); |
| __ push(r6); |
| } |
| |
| // Restore the registers from the stack. |
| __ ldm(ia_w, sp, restored_regs); // all but pc registers. |
| |
| { |
| UseScratchRegisterScope temps(masm); |
| Register is_iterable = temps.Acquire(); |
| Register one = r4; |
| __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate)); |
| __ mov(one, Operand(1)); |
| __ strb(one, MemOperand(is_iterable)); |
| } |
| |
| // Remove sp, lr and pc. |
| __ Drop(3); |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ pop(scratch); // get continuation, leave pc on stack |
| __ pop(lr); |
| __ Jump(scratch); |
| } |
| |
| __ stop(); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout); |
| } |
| |
| void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) { |
| Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy); |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_ARM |