|  | /* | 
|  | * QR Code generator library (C) | 
|  | * | 
|  | * Copyright (c) Project Nayuki. (MIT License) | 
|  | * https://www.nayuki.io/page/qr-code-generator-library | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy of | 
|  | * this software and associated documentation files (the "Software"), to deal in | 
|  | * the Software without restriction, including without limitation the rights to | 
|  | * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | 
|  | * the Software, and to permit persons to whom the Software is furnished to do so, | 
|  | * subject to the following conditions: | 
|  | * - The above copyright notice and this permission notice shall be included in | 
|  | *   all copies or substantial portions of the Software. | 
|  | * - The Software is provided "as is", without warranty of any kind, express or | 
|  | *   implied, including but not limited to the warranties of merchantability, | 
|  | *   fitness for a particular purpose and noninfringement. In no event shall the | 
|  | *   authors or copyright holders be liable for any claim, damages or other | 
|  | *   liability, whether in an action of contract, tort or otherwise, arising from, | 
|  | *   out of or in connection with the Software or the use or other dealings in the | 
|  | *   Software. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include "qrcodegen.h" | 
|  |  | 
|  | #ifndef QRCODEGEN_TEST | 
|  | #define testable static  // Keep functions private | 
|  | #else | 
|  | // Expose private functions | 
|  | #ifndef __cplusplus | 
|  | #define testable | 
|  | #else | 
|  | // Needed for const variables because they are treated as implicitly 'static' in C++ | 
|  | #define testable extern | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /*---- Forward declarations for private functions ----*/ | 
|  |  | 
|  | // Regarding all public and private functions defined in this source file: | 
|  | // - They require all pointer/array arguments to be not null. | 
|  | // - They only read input scalar/array arguments, write to output pointer/array | 
|  | //   arguments, and return scalar values; they are "pure" functions. | 
|  | // - They don't read mutable global variables or write to any global variables. | 
|  | // - They don't perform I/O, read the clock, print to console, etc. | 
|  | // - They allocate a small and constant amount of stack memory. | 
|  | // - They don't allocate or free any memory on the heap. | 
|  | // - They don't recurse or mutually recurse. All the code | 
|  | //   could be inlined into the top-level public functions. | 
|  | // - They run in at most quadratic time with respect to input arguments. | 
|  | //   Most functions run in linear time, and some in constant time. | 
|  | //   There are no unbounded loops or non-obvious termination conditions. | 
|  | // - They are completely thread-safe if the caller does not give the | 
|  | //   same writable buffer to concurrent calls to these functions. | 
|  |  | 
|  | testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen); | 
|  |  | 
|  | testable void appendErrorCorrection(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]); | 
|  | testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl); | 
|  | testable int getNumRawDataModules(int version); | 
|  |  | 
|  | testable void calcReedSolomonGenerator(int degree, uint8_t result[]); | 
|  | testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, | 
|  | const uint8_t generator[], int degree, uint8_t result[]); | 
|  | testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y); | 
|  |  | 
|  | testable void initializeFunctionModules(int version, uint8_t qrcode[]); | 
|  | static void drawWhiteFunctionModules(uint8_t qrcode[], int version); | 
|  | static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]); | 
|  | testable int getAlignmentPatternPositions(int version, uint8_t result[7]); | 
|  | static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]); | 
|  |  | 
|  | static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]); | 
|  | static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask); | 
|  | static long getPenaltyScore(const uint8_t qrcode[]); | 
|  |  | 
|  | testable bool getModule(const uint8_t qrcode[], int x, int y); | 
|  | testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack); | 
|  | testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack); | 
|  |  | 
|  | testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars); | 
|  | testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version); | 
|  | static int numCharCountBits(enum qrcodegen_Mode mode, int version); | 
|  |  | 
|  |  | 
|  |  | 
|  | /*---- Private tables of constants ----*/ | 
|  |  | 
|  | // For checking text and encoding segments. | 
|  | static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; | 
|  |  | 
|  | // For generating error correction codes. | 
|  | testable const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = { | 
|  | // Version: (note that index 0 is for padding, and is set to an illegal value) | 
|  | //0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level | 
|  | {-1,  7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // Low | 
|  | {-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28},  // Medium | 
|  | {-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // Quartile | 
|  | {-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // High | 
|  | }; | 
|  |  | 
|  | // For generating error correction codes. | 
|  | testable const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = { | 
|  | // Version: (note that index 0 is for padding, and is set to an illegal value) | 
|  | //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level | 
|  | {-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4,  4,  4,  4,  4,  6,  6,  6,  6,  7,  8,  8,  9,  9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25},  // Low | 
|  | {-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5,  5,  8,  9,  9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49},  // Medium | 
|  | {-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8,  8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68},  // Quartile | 
|  | {-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81},  // High | 
|  | }; | 
|  |  | 
|  | // For automatic mask pattern selection. | 
|  | static const int PENALTY_N1 = 3; | 
|  | static const int PENALTY_N2 = 3; | 
|  | static const int PENALTY_N3 = 40; | 
|  | static const int PENALTY_N4 = 10; | 
|  |  | 
|  |  | 
|  |  | 
|  | /*---- High-level QR Code encoding functions ----*/ | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode[], | 
|  | enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { | 
|  |  | 
|  | size_t textLen = strlen(text); | 
|  | if (textLen == 0) | 
|  | return qrcodegen_encodeSegmentsAdvanced(NULL, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); | 
|  | size_t bufLen = qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion); | 
|  |  | 
|  | struct qrcodegen_Segment seg; | 
|  | if (qrcodegen_isNumeric(text)) { | 
|  | if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen) | 
|  | goto fail; | 
|  | seg = qrcodegen_makeNumeric(text, tempBuffer); | 
|  | } else if (qrcodegen_isAlphanumeric(text)) { | 
|  | if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen) | 
|  | goto fail; | 
|  | seg = qrcodegen_makeAlphanumeric(text, tempBuffer); | 
|  | } else { | 
|  | if (textLen > bufLen) | 
|  | goto fail; | 
|  | for (size_t i = 0; i < textLen; i++) | 
|  | tempBuffer[i] = (uint8_t)text[i]; | 
|  | seg.mode = qrcodegen_Mode_BYTE; | 
|  | seg.bitLength = calcSegmentBitLength(seg.mode, textLen); | 
|  | if (seg.bitLength == -1) | 
|  | goto fail; | 
|  | seg.numChars = (int)textLen; | 
|  | seg.data = tempBuffer; | 
|  | } | 
|  | return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode); | 
|  |  | 
|  | fail: | 
|  | qrcode[0] = 0;  // Set size to invalid value for safety | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcode[], | 
|  | enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) { | 
|  |  | 
|  | struct qrcodegen_Segment seg; | 
|  | seg.mode = qrcodegen_Mode_BYTE; | 
|  | seg.bitLength = calcSegmentBitLength(seg.mode, dataLen); | 
|  | if (seg.bitLength == -1) { | 
|  | qrcode[0] = 0;  // Set size to invalid value for safety | 
|  | return false; | 
|  | } | 
|  | seg.numChars = (int)dataLen; | 
|  | seg.data = dataAndTemp; | 
|  | return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Appends the given sequence of bits to the given byte-based bit buffer, increasing the bit length. | 
|  | testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen) { | 
|  | assert(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0); | 
|  | for (int i = numBits - 1; i >= 0; i--, (*bitLen)++) | 
|  | buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7)); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /*---- Error correction code generation functions ----*/ | 
|  |  | 
|  | // Appends error correction bytes to each block of the given data array, then interleaves bytes | 
|  | // from the blocks and stores them in the result array. data[0 : rawCodewords - totalEcc] contains | 
|  | // the input data. data[rawCodewords - totalEcc : rawCodewords] is used as a temporary work area | 
|  | // and will be clobbered by this function. The final answer is stored in result[0 : rawCodewords]. | 
|  | testable void appendErrorCorrection(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]) { | 
|  | // Calculate parameter numbers | 
|  | assert(0 <= (int)ecl && (int)ecl < 4 && qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); | 
|  | int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int)ecl][version]; | 
|  | int blockEccLen = ECC_CODEWORDS_PER_BLOCK[(int)ecl][version]; | 
|  | int rawCodewords = getNumRawDataModules(version) / 8; | 
|  | int dataLen = rawCodewords - blockEccLen * numBlocks; | 
|  | int numShortBlocks = numBlocks - rawCodewords % numBlocks; | 
|  | int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen; | 
|  |  | 
|  | // Split data into blocks and append ECC after all data | 
|  | uint8_t generator[30]; | 
|  | calcReedSolomonGenerator(blockEccLen, generator); | 
|  | for (int i = 0, j = dataLen, k = 0; i < numBlocks; i++) { | 
|  | int blockLen = shortBlockDataLen; | 
|  | if (i >= numShortBlocks) | 
|  | blockLen++; | 
|  | calcReedSolomonRemainder(&data[k], blockLen, generator, blockEccLen, &data[j]); | 
|  | j += blockEccLen; | 
|  | k += blockLen; | 
|  | } | 
|  |  | 
|  | // Interleave (not concatenate) the bytes from every block into a single sequence | 
|  | for (int i = 0, k = 0; i < numBlocks; i++) { | 
|  | for (int j = 0, l = i; j < shortBlockDataLen; j++, k++, l += numBlocks) | 
|  | result[l] = data[k]; | 
|  | if (i >= numShortBlocks) | 
|  | k++; | 
|  | } | 
|  | for (int i = numShortBlocks, k = (numShortBlocks + 1) * shortBlockDataLen, l = numBlocks * shortBlockDataLen; | 
|  | i < numBlocks; i++, k += shortBlockDataLen + 1, l++) | 
|  | result[l] = data[k]; | 
|  | for (int i = 0, k = dataLen; i < numBlocks; i++) { | 
|  | for (int j = 0, l = dataLen + i; j < blockEccLen; j++, k++, l += numBlocks) | 
|  | result[l] = data[k]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns the number of 8-bit codewords that can be used for storing data (not ECC), | 
|  | // for the given version number and error correction level. The result is in the range [9, 2956]. | 
|  | testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl) { | 
|  | int v = version, e = (int)ecl; | 
|  | assert(0 <= e && e < 4 && qrcodegen_VERSION_MIN <= v && v <= qrcodegen_VERSION_MAX); | 
|  | return getNumRawDataModules(v) / 8 - ECC_CODEWORDS_PER_BLOCK[e][v] * NUM_ERROR_CORRECTION_BLOCKS[e][v]; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns the number of data bits that can be stored in a QR Code of the given version number, after | 
|  | // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. | 
|  | // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. | 
|  | testable int getNumRawDataModules(int version) { | 
|  | assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); | 
|  | int result = (16 * version + 128) * version + 64; | 
|  | if (version >= 2) { | 
|  | int numAlign = version / 7 + 2; | 
|  | result -= (25 * numAlign - 10) * numAlign - 55; | 
|  | if (version >= 7) | 
|  | result -= 18 * 2;  // Subtract version information | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /*---- Reed-Solomon ECC generator functions ----*/ | 
|  |  | 
|  | // Calculates the Reed-Solomon generator polynomial of the given degree, storing in result[0 : degree]. | 
|  | testable void calcReedSolomonGenerator(int degree, uint8_t result[]) { | 
|  | // Start with the monomial x^0 | 
|  | assert(1 <= degree && degree <= 30); | 
|  | memset(result, 0, degree * sizeof(result[0])); | 
|  | result[degree - 1] = 1; | 
|  |  | 
|  | // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), | 
|  | // drop the highest term, and store the rest of the coefficients in order of descending powers. | 
|  | // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). | 
|  | uint8_t root = 1; | 
|  | for (int i = 0; i < degree; i++) { | 
|  | // Multiply the current product by (x - r^i) | 
|  | for (int j = 0; j < degree; j++) { | 
|  | result[j] = finiteFieldMultiply(result[j], root); | 
|  | if (j + 1 < degree) | 
|  | result[j] ^= result[j + 1]; | 
|  | } | 
|  | root = finiteFieldMultiply(root, 0x02); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Calculates the remainder of the polynomial data[0 : dataLen] when divided by the generator[0 : degree], where all | 
|  | // polynomials are in big endian and the generator has an implicit leading 1 term, storing the result in result[0 : degree]. | 
|  | testable void calcReedSolomonRemainder(const uint8_t data[], int dataLen, | 
|  | const uint8_t generator[], int degree, uint8_t result[]) { | 
|  |  | 
|  | // Perform polynomial division | 
|  | assert(1 <= degree && degree <= 30); | 
|  | memset(result, 0, degree * sizeof(result[0])); | 
|  | for (int i = 0; i < dataLen; i++) { | 
|  | uint8_t factor = data[i] ^ result[0]; | 
|  | memmove(&result[0], &result[1], (degree - 1) * sizeof(result[0])); | 
|  | result[degree - 1] = 0; | 
|  | for (int j = 0; j < degree; j++) | 
|  | result[j] ^= finiteFieldMultiply(generator[j], factor); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns the product of the two given field elements modulo GF(2^8/0x11D). | 
|  | // All inputs are valid. This could be implemented as a 256*256 lookup table. | 
|  | testable uint8_t finiteFieldMultiply(uint8_t x, uint8_t y) { | 
|  | // Russian peasant multiplication | 
|  | uint8_t z = 0; | 
|  | for (int i = 7; i >= 0; i--) { | 
|  | z = (z << 1) ^ ((z >> 7) * 0x11D); | 
|  | z ^= ((y >> i) & 1) * x; | 
|  | } | 
|  | return z; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /*---- Drawing function modules ----*/ | 
|  |  | 
|  | // Clears the given QR Code grid with white modules for the given | 
|  | // version's size, then marks every function module as black. | 
|  | testable void initializeFunctionModules(int version, uint8_t qrcode[]) { | 
|  | // Initialize QR Code | 
|  | int qrsize = version * 4 + 17; | 
|  | memset(qrcode, 0, ((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0])); | 
|  | qrcode[0] = (uint8_t)qrsize; | 
|  |  | 
|  | // Fill horizontal and vertical timing patterns | 
|  | fillRectangle(6, 0, 1, qrsize, qrcode); | 
|  | fillRectangle(0, 6, qrsize, 1, qrcode); | 
|  |  | 
|  | // Fill 3 finder patterns (all corners except bottom right) and format bits | 
|  | fillRectangle(0, 0, 9, 9, qrcode); | 
|  | fillRectangle(qrsize - 8, 0, 8, 9, qrcode); | 
|  | fillRectangle(0, qrsize - 8, 9, 8, qrcode); | 
|  |  | 
|  | // Fill numerous alignment patterns | 
|  | uint8_t alignPatPos[7] = {0}; | 
|  | int numAlign = getAlignmentPatternPositions(version, alignPatPos); | 
|  | for (int i = 0; i < numAlign; i++) { | 
|  | for (int j = 0; j < numAlign; j++) { | 
|  | if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) | 
|  | continue;  // Skip the three finder corners | 
|  | else | 
|  | fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill version blocks | 
|  | if (version >= 7) { | 
|  | fillRectangle(qrsize - 11, 0, 3, 6, qrcode); | 
|  | fillRectangle(0, qrsize - 11, 6, 3, qrcode); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Draws white function modules and possibly some black modules onto the given QR Code, without changing | 
|  | // non-function modules. This does not draw the format bits. This requires all function modules to be previously | 
|  | // marked black (namely by initializeFunctionModules()), because this may skip redrawing black function modules. | 
|  | static void drawWhiteFunctionModules(uint8_t qrcode[], int version) { | 
|  | // Draw horizontal and vertical timing patterns | 
|  | int qrsize = qrcodegen_getSize(qrcode); | 
|  | for (int i = 7; i < qrsize - 7; i += 2) { | 
|  | setModule(qrcode, 6, i, false); | 
|  | setModule(qrcode, i, 6, false); | 
|  | } | 
|  |  | 
|  | // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) | 
|  | for (int i = -4; i <= 4; i++) { | 
|  | for (int j = -4; j <= 4; j++) { | 
|  | int dist = abs(i); | 
|  | if (abs(j) > dist) | 
|  | dist = abs(j); | 
|  | if (dist == 2 || dist == 4) { | 
|  | setModuleBounded(qrcode, 3 + j, 3 + i, false); | 
|  | setModuleBounded(qrcode, qrsize - 4 + j, 3 + i, false); | 
|  | setModuleBounded(qrcode, 3 + j, qrsize - 4 + i, false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Draw numerous alignment patterns | 
|  | uint8_t alignPatPos[7] = {0}; | 
|  | int numAlign = getAlignmentPatternPositions(version, alignPatPos); | 
|  | for (int i = 0; i < numAlign; i++) { | 
|  | for (int j = 0; j < numAlign; j++) { | 
|  | if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)) | 
|  | continue;  // Skip the three finder corners | 
|  | else { | 
|  | for (int k = -1; k <= 1; k++) { | 
|  | for (int l = -1; l <= 1; l++) | 
|  | setModule(qrcode, alignPatPos[i] + l, alignPatPos[j] + k, k == 0 && l == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Draw version blocks | 
|  | if (version >= 7) { | 
|  | // Calculate error correction code and pack bits | 
|  | int rem = version;  // version is uint6, in the range [7, 40] | 
|  | for (int i = 0; i < 12; i++) | 
|  | rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); | 
|  | long data = (long)version << 12 | rem;  // uint18 | 
|  | assert(data >> 18 == 0); | 
|  |  | 
|  | // Draw two copies | 
|  | for (int i = 0; i < 6; i++) { | 
|  | for (int j = 0; j < 3; j++) { | 
|  | int k = qrsize - 11 + j; | 
|  | setModule(qrcode, k, i, (data & 1) != 0); | 
|  | setModule(qrcode, i, k, (data & 1) != 0); | 
|  | data >>= 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Draws two copies of the format bits (with its own error correction code) based | 
|  | // on the given mask and error correction level. This always draws all modules of | 
|  | // the format bits, unlike drawWhiteFunctionModules() which might skip black modules. | 
|  | static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]) { | 
|  | // Calculate error correction code and pack bits | 
|  | assert(0 <= (int)mask && (int)mask <= 7); | 
|  | int data = -1;  // Dummy value | 
|  | switch (ecl) { | 
|  | case qrcodegen_Ecc_LOW     :  data = 1;  break; | 
|  | case qrcodegen_Ecc_MEDIUM  :  data = 0;  break; | 
|  | case qrcodegen_Ecc_QUARTILE:  data = 3;  break; | 
|  | case qrcodegen_Ecc_HIGH    :  data = 2;  break; | 
|  | default:  assert(false); | 
|  | } | 
|  | data = data << 3 | (int)mask;  // ecl-derived value is uint2, mask is uint3 | 
|  | int rem = data; | 
|  | for (int i = 0; i < 10; i++) | 
|  | rem = (rem << 1) ^ ((rem >> 9) * 0x537); | 
|  | data = data << 10 | rem; | 
|  | data ^= 0x5412;  // uint15 | 
|  | assert(data >> 15 == 0); | 
|  |  | 
|  | // Draw first copy | 
|  | for (int i = 0; i <= 5; i++) | 
|  | setModule(qrcode, 8, i, ((data >> i) & 1) != 0); | 
|  | setModule(qrcode, 8, 7, ((data >> 6) & 1) != 0); | 
|  | setModule(qrcode, 8, 8, ((data >> 7) & 1) != 0); | 
|  | setModule(qrcode, 7, 8, ((data >> 8) & 1) != 0); | 
|  | for (int i = 9; i < 15; i++) | 
|  | setModule(qrcode, 14 - i, 8, ((data >> i) & 1) != 0); | 
|  |  | 
|  | // Draw second copy | 
|  | int qrsize = qrcodegen_getSize(qrcode); | 
|  | for (int i = 0; i <= 7; i++) | 
|  | setModule(qrcode, qrsize - 1 - i, 8, ((data >> i) & 1) != 0); | 
|  | for (int i = 8; i < 15; i++) | 
|  | setModule(qrcode, 8, qrsize - 15 + i, ((data >> i) & 1) != 0); | 
|  | setModule(qrcode, 8, qrsize - 8, true); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Calculates the positions of alignment patterns in ascending order for the given version number, | 
|  | // storing them to the given array and returning an array length in the range [0, 7]. | 
|  | testable int getAlignmentPatternPositions(int version, uint8_t result[7]) { | 
|  | if (version == 1) | 
|  | return 0; | 
|  | int numAlign = version / 7 + 2; | 
|  | int step; | 
|  | if (version != 32) { | 
|  | // ceil((size - 13) / (2*numAlign - 2)) * 2 | 
|  | step = (version * 4 + numAlign * 2 + 1) / (2 * numAlign - 2) * 2; | 
|  | } else  // C-C-C-Combo breaker! | 
|  | step = 26; | 
|  | for (int i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step) | 
|  | result[i] = pos; | 
|  | result[0] = 6; | 
|  | return numAlign; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Sets every pixel in the range [left : left + width] * [top : top + height] to black. | 
|  | static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]) { | 
|  | for (int dy = 0; dy < height; dy++) { | 
|  | for (int dx = 0; dx < width; dx++) | 
|  | setModule(qrcode, left + dx, top + dy, true); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /*---- Drawing data modules and masking ----*/ | 
|  |  | 
|  | // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of | 
|  | // the QR Code to be black at function modules and white at codeword modules (including unused remainder bits). | 
|  | static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) { | 
|  | int qrsize = qrcodegen_getSize(qrcode); | 
|  | int i = 0;  // Bit index into the data | 
|  | // Do the funny zigzag scan | 
|  | for (int right = qrsize - 1; right >= 1; right -= 2) {  // Index of right column in each column pair | 
|  | if (right == 6) | 
|  | right = 5; | 
|  | for (int vert = 0; vert < qrsize; vert++) {  // Vertical counter | 
|  | for (int j = 0; j < 2; j++) { | 
|  | int x = right - j;  // Actual x coordinate | 
|  | bool upward = ((right + 1) & 2) == 0; | 
|  | int y = upward ? qrsize - 1 - vert : vert;  // Actual y coordinate | 
|  | if (!getModule(qrcode, x, y) && i < dataLen * 8) { | 
|  | bool black = ((data[i >> 3] >> (7 - (i & 7))) & 1) != 0; | 
|  | setModule(qrcode, x, y, black); | 
|  | i++; | 
|  | } | 
|  | // If there are any remainder bits (0 to 7), they are already | 
|  | // set to 0/false/white when the grid of modules was initialized | 
|  | } | 
|  | } | 
|  | } | 
|  | assert(i == dataLen * 8); | 
|  | } | 
|  |  | 
|  |  | 
|  | // XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical | 
|  | // properties, calling applyMask(..., m) twice with the same value is equivalent to no change at all. | 
|  | // This means it is possible to apply a mask, undo it, and try another mask. Note that a final | 
|  | // well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.). | 
|  | static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask) { | 
|  | assert(0 <= (int)mask && (int)mask <= 7);  // Disallows qrcodegen_Mask_AUTO | 
|  | int qrsize = qrcodegen_getSize(qrcode); | 
|  | for (int y = 0; y < qrsize; y++) { | 
|  | for (int x = 0; x < qrsize; x++) { | 
|  | if (getModule(functionModules, x, y)) | 
|  | continue; | 
|  | bool invert = false;  // Dummy value | 
|  | switch ((int)mask) { | 
|  | case 0:  invert = (x + y) % 2 == 0;                    break; | 
|  | case 1:  invert = y % 2 == 0;                          break; | 
|  | case 2:  invert = x % 3 == 0;                          break; | 
|  | case 3:  invert = (x + y) % 3 == 0;                    break; | 
|  | case 4:  invert = (x / 3 + y / 2) % 2 == 0;            break; | 
|  | case 5:  invert = x * y % 2 + x * y % 3 == 0;          break; | 
|  | case 6:  invert = (x * y % 2 + x * y % 3) % 2 == 0;    break; | 
|  | case 7:  invert = ((x + y) % 2 + x * y % 3) % 2 == 0;  break; | 
|  | default:  assert(false); | 
|  | } | 
|  | bool val = getModule(qrcode, x, y); | 
|  | setModule(qrcode, x, y, val ^ invert); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Calculates and returns the penalty score based on state of the given QR Code's current modules. | 
|  | // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. | 
|  | static long getPenaltyScore(const uint8_t qrcode[]) { | 
|  | int qrsize = qrcodegen_getSize(qrcode); | 
|  | long result = 0; | 
|  |  | 
|  | // Adjacent modules in row having same color | 
|  | for (int y = 0; y < qrsize; y++) { | 
|  | bool colorX = false; | 
|  | for (int x = 0, runX = -1; x < qrsize; x++) { | 
|  | if (x == 0 || getModule(qrcode, x, y) != colorX) { | 
|  | colorX = getModule(qrcode, x, y); | 
|  | runX = 1; | 
|  | } else { | 
|  | runX++; | 
|  | if (runX == 5) | 
|  | result += PENALTY_N1; | 
|  | else if (runX > 5) | 
|  | result++; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Adjacent modules in column having same color | 
|  | for (int x = 0; x < qrsize; x++) { | 
|  | bool colorY = false; | 
|  | for (int y = 0, runY = -1; y < qrsize; y++) { | 
|  | if (y == 0 || getModule(qrcode, x, y) != colorY) { | 
|  | colorY = getModule(qrcode, x, y); | 
|  | runY = 1; | 
|  | } else { | 
|  | runY++; | 
|  | if (runY == 5) | 
|  | result += PENALTY_N1; | 
|  | else if (runY > 5) | 
|  | result++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // 2*2 blocks of modules having same color | 
|  | for (int y = 0; y < qrsize - 1; y++) { | 
|  | for (int x = 0; x < qrsize - 1; x++) { | 
|  | bool  color = getModule(qrcode, x, y); | 
|  | if (  color == getModule(qrcode, x + 1, y) && | 
|  | color == getModule(qrcode, x, y + 1) && | 
|  | color == getModule(qrcode, x + 1, y + 1)) | 
|  | result += PENALTY_N2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finder-like pattern in rows | 
|  | for (int y = 0; y < qrsize; y++) { | 
|  | for (int x = 0, bits = 0; x < qrsize; x++) { | 
|  | bits = ((bits << 1) & 0x7FF) | (getModule(qrcode, x, y) ? 1 : 0); | 
|  | if (x >= 10 && (bits == 0x05D || bits == 0x5D0))  // Needs 11 bits accumulated | 
|  | result += PENALTY_N3; | 
|  | } | 
|  | } | 
|  | // Finder-like pattern in columns | 
|  | for (int x = 0; x < qrsize; x++) { | 
|  | for (int y = 0, bits = 0; y < qrsize; y++) { | 
|  | bits = ((bits << 1) & 0x7FF) | (getModule(qrcode, x, y) ? 1 : 0); | 
|  | if (y >= 10 && (bits == 0x05D || bits == 0x5D0))  // Needs 11 bits accumulated | 
|  | result += PENALTY_N3; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Balance of black and white modules | 
|  | int black = 0; | 
|  | for (int y = 0; y < qrsize; y++) { | 
|  | for (int x = 0; x < qrsize; x++) { | 
|  | if (getModule(qrcode, x, y)) | 
|  | black++; | 
|  | } | 
|  | } | 
|  | int total = qrsize * qrsize; | 
|  | // Find smallest k such that (45-5k)% <= dark/total <= (55+5k)% | 
|  | for (int k = 0; black*20L < (9L-k)*total || black*20L > (11L+k)*total; k++) | 
|  | result += PENALTY_N4; | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /*---- Basic QR Code information ----*/ | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | int qrcodegen_getSize(const uint8_t qrcode[]) { | 
|  | assert(qrcode != NULL); | 
|  | int result = qrcode[0]; | 
|  | assert((qrcodegen_VERSION_MIN * 4 + 17) <= result | 
|  | && result <= (qrcodegen_VERSION_MAX * 4 + 17)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y) { | 
|  | assert(qrcode != NULL); | 
|  | int qrsize = qrcode[0]; | 
|  | return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModule(qrcode, x, y); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Gets the module at the given coordinates, which must be in bounds. | 
|  | testable bool getModule(const uint8_t qrcode[], int x, int y) { | 
|  | int qrsize = qrcode[0]; | 
|  | assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); | 
|  | int index = y * qrsize + x; | 
|  | int bitIndex = index & 7; | 
|  | int byteIndex = (index >> 3) + 1; | 
|  | return ((qrcode[byteIndex] >> bitIndex) & 1) != 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Sets the module at the given coordinates, which must be in bounds. | 
|  | testable void setModule(uint8_t qrcode[], int x, int y, bool isBlack) { | 
|  | int qrsize = qrcode[0]; | 
|  | assert(21 <= qrsize && qrsize <= 177 && 0 <= x && x < qrsize && 0 <= y && y < qrsize); | 
|  | int index = y * qrsize + x; | 
|  | int bitIndex = index & 7; | 
|  | int byteIndex = (index >> 3) + 1; | 
|  | if (isBlack) | 
|  | qrcode[byteIndex] |= 1 << bitIndex; | 
|  | else | 
|  | qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Sets the module at the given coordinates, doing nothing if out of bounds. | 
|  | testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isBlack) { | 
|  | int qrsize = qrcode[0]; | 
|  | if (0 <= x && x < qrsize && 0 <= y && y < qrsize) | 
|  | setModule(qrcode, x, y, isBlack); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /*---- Segment handling ----*/ | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | bool qrcodegen_isAlphanumeric(const char *text) { | 
|  | assert(text != NULL); | 
|  | for (; *text != '\0'; text++) { | 
|  | if (strchr(ALPHANUMERIC_CHARSET, *text) == NULL) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | bool qrcodegen_isNumeric(const char *text) { | 
|  | assert(text != NULL); | 
|  | for (; *text != '\0'; text++) { | 
|  | if (*text < '0' || *text > '9') | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | size_t qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode, size_t numChars) { | 
|  | int temp = calcSegmentBitLength(mode, numChars); | 
|  | if (temp == -1) | 
|  | return SIZE_MAX; | 
|  | assert(0 <= temp && temp <= INT16_MAX); | 
|  | return ((size_t)temp + 7) / 8; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns the number of data bits needed to represent a segment | 
|  | // containing the given number of characters using the given mode. Notes: | 
|  | // - Returns -1 on failure, i.e. numChars > INT16_MAX or | 
|  | //   the number of needed bits exceeds INT16_MAX (i.e. 32767). | 
|  | // - Otherwise, all valid results are in the range [0, INT16_MAX]. | 
|  | // - For byte mode, numChars measures the number of bytes, not Unicode code points. | 
|  | // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned. | 
|  | //   An actual ECI segment can have shorter data. For non-ECI modes, the result is exact. | 
|  | testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars) { | 
|  | const int LIMIT = INT16_MAX;  // Can be configured as high as INT_MAX | 
|  | if (numChars > (unsigned int)LIMIT) | 
|  | return -1; | 
|  | int n = (int)numChars; | 
|  |  | 
|  | int result = -2; | 
|  | if (mode == qrcodegen_Mode_NUMERIC) { | 
|  | // n * 3 + ceil(n / 3) | 
|  | if (n > LIMIT / 3) | 
|  | goto overflow; | 
|  | result = n * 3; | 
|  | int temp = n / 3 + (n % 3 == 0 ? 0 : 1); | 
|  | if (temp > LIMIT - result) | 
|  | goto overflow; | 
|  | result += temp; | 
|  | } else if (mode == qrcodegen_Mode_ALPHANUMERIC) { | 
|  | // n * 5 + ceil(n / 2) | 
|  | if (n > LIMIT / 5) | 
|  | goto overflow; | 
|  | result = n * 5; | 
|  | int temp = n / 2 + n % 2; | 
|  | if (temp > LIMIT - result) | 
|  | goto overflow; | 
|  | result += temp; | 
|  | } else if (mode == qrcodegen_Mode_BYTE) { | 
|  | if (n > LIMIT / 8) | 
|  | goto overflow; | 
|  | result = n * 8; | 
|  | } else if (mode == qrcodegen_Mode_KANJI) { | 
|  | if (n > LIMIT / 13) | 
|  | goto overflow; | 
|  | result = n * 13; | 
|  | } else if (mode == qrcodegen_Mode_ECI && numChars == 0) | 
|  | result = 3 * 8; | 
|  | assert(0 <= result && result <= LIMIT); | 
|  | return result; | 
|  | overflow: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | struct qrcodegen_Segment qrcodegen_makeBytes(const uint8_t data[], size_t len, uint8_t buf[]) { | 
|  | assert(data != NULL || len == 0); | 
|  | struct qrcodegen_Segment result; | 
|  | result.mode = qrcodegen_Mode_BYTE; | 
|  | result.bitLength = calcSegmentBitLength(result.mode, len); | 
|  | assert(result.bitLength != -1); | 
|  | result.numChars = (int)len; | 
|  | if (len > 0) | 
|  | memcpy(buf, data, len * sizeof(buf[0])); | 
|  | result.data = buf; | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | struct qrcodegen_Segment qrcodegen_makeNumeric(const char *digits, uint8_t buf[]) { | 
|  | assert(digits != NULL); | 
|  | struct qrcodegen_Segment result; | 
|  | size_t len = strlen(digits); | 
|  | result.mode = qrcodegen_Mode_NUMERIC; | 
|  | int bitLen = calcSegmentBitLength(result.mode, len); | 
|  | assert(bitLen != -1); | 
|  | result.numChars = (int)len; | 
|  | if (bitLen > 0) | 
|  | memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); | 
|  | result.bitLength = 0; | 
|  |  | 
|  | unsigned int accumData = 0; | 
|  | int accumCount = 0; | 
|  | for (; *digits != '\0'; digits++) { | 
|  | char c = *digits; | 
|  | assert('0' <= c && c <= '9'); | 
|  | accumData = accumData * 10 + (c - '0'); | 
|  | accumCount++; | 
|  | if (accumCount == 3) { | 
|  | appendBitsToBuffer(accumData, 10, buf, &result.bitLength); | 
|  | accumData = 0; | 
|  | accumCount = 0; | 
|  | } | 
|  | } | 
|  | if (accumCount > 0)  // 1 or 2 digits remaining | 
|  | appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength); | 
|  | assert(result.bitLength == bitLen); | 
|  | result.data = buf; | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | struct qrcodegen_Segment qrcodegen_makeAlphanumeric(const char *text, uint8_t buf[]) { | 
|  | assert(text != NULL); | 
|  | struct qrcodegen_Segment result; | 
|  | size_t len = strlen(text); | 
|  | result.mode = qrcodegen_Mode_ALPHANUMERIC; | 
|  | int bitLen = calcSegmentBitLength(result.mode, len); | 
|  | assert(bitLen != -1); | 
|  | result.numChars = (int)len; | 
|  | if (bitLen > 0) | 
|  | memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0])); | 
|  | result.bitLength = 0; | 
|  |  | 
|  | unsigned int accumData = 0; | 
|  | int accumCount = 0; | 
|  | for (; *text != '\0'; text++) { | 
|  | const char *temp = strchr(ALPHANUMERIC_CHARSET, *text); | 
|  | assert(temp != NULL); | 
|  | accumData = accumData * 45 + (temp - ALPHANUMERIC_CHARSET); | 
|  | accumCount++; | 
|  | if (accumCount == 2) { | 
|  | appendBitsToBuffer(accumData, 11, buf, &result.bitLength); | 
|  | accumData = 0; | 
|  | accumCount = 0; | 
|  | } | 
|  | } | 
|  | if (accumCount > 0)  // 1 character remaining | 
|  | appendBitsToBuffer(accumData, 6, buf, &result.bitLength); | 
|  | assert(result.bitLength == bitLen); | 
|  | result.data = buf; | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[]) { | 
|  | struct qrcodegen_Segment result; | 
|  | result.mode = qrcodegen_Mode_ECI; | 
|  | result.numChars = 0; | 
|  | result.bitLength = 0; | 
|  | if (0 <= assignVal && assignVal < (1 << 7)) { | 
|  | memset(buf, 0, 1 * sizeof(buf[0])); | 
|  | appendBitsToBuffer(assignVal, 8, buf, &result.bitLength); | 
|  | } else if ((1 << 7) <= assignVal && assignVal < (1 << 14)) { | 
|  | memset(buf, 0, 2 * sizeof(buf[0])); | 
|  | appendBitsToBuffer(2, 2, buf, &result.bitLength); | 
|  | appendBitsToBuffer(assignVal, 14, buf, &result.bitLength); | 
|  | } else if ((1 << 14) <= assignVal && assignVal < 1000000L) { | 
|  | memset(buf, 0, 3 * sizeof(buf[0])); | 
|  | appendBitsToBuffer(6, 3, buf, &result.bitLength); | 
|  | appendBitsToBuffer(assignVal >> 10, 11, buf, &result.bitLength); | 
|  | appendBitsToBuffer(assignVal & 0x3FF, 10, buf, &result.bitLength); | 
|  | } else | 
|  | assert(false); | 
|  | result.data = buf; | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | bool qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[], size_t len, | 
|  | enum qrcodegen_Ecc ecl, uint8_t tempBuffer[], uint8_t qrcode[]) { | 
|  | return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl, | 
|  | qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, -1, true, tempBuffer, qrcode); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Public function - see documentation comment in header file. | 
|  | bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], size_t len, enum qrcodegen_Ecc ecl, | 
|  | int minVersion, int maxVersion, int mask, bool boostEcl, uint8_t tempBuffer[], uint8_t qrcode[]) { | 
|  | assert(segs != NULL || len == 0); | 
|  | assert(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX); | 
|  | assert(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7); | 
|  |  | 
|  | // Find the minimal version number to use | 
|  | int version, dataUsedBits; | 
|  | for (version = minVersion; ; version++) { | 
|  | int dataCapacityBits = getNumDataCodewords(version, ecl) * 8;  // Number of data bits available | 
|  | dataUsedBits = getTotalBits(segs, len, version); | 
|  | if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits) | 
|  | break;  // This version number is found to be suitable | 
|  | if (version >= maxVersion) {  // All versions in the range could not fit the given data | 
|  | qrcode[0] = 0;  // Set size to invalid value for safety | 
|  | return false; | 
|  | } | 
|  | } | 
|  | assert(dataUsedBits != -1); | 
|  |  | 
|  | // Increase the error correction level while the data still fits in the current version number | 
|  | for (int i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) { | 
|  | if (boostEcl && dataUsedBits <= getNumDataCodewords(version, (enum qrcodegen_Ecc)i) * 8) | 
|  | ecl = (enum qrcodegen_Ecc)i; | 
|  | } | 
|  |  | 
|  | // Create the data bit string by concatenating all segments | 
|  | int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; | 
|  | memset(qrcode, 0, qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0])); | 
|  | int bitLen = 0; | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | const struct qrcodegen_Segment *seg = &segs[i]; | 
|  | unsigned int modeBits = 0;  // Dummy value | 
|  | switch (seg->mode) { | 
|  | case qrcodegen_Mode_NUMERIC     :  modeBits = 0x1;  break; | 
|  | case qrcodegen_Mode_ALPHANUMERIC:  modeBits = 0x2;  break; | 
|  | case qrcodegen_Mode_BYTE        :  modeBits = 0x4;  break; | 
|  | case qrcodegen_Mode_KANJI       :  modeBits = 0x8;  break; | 
|  | case qrcodegen_Mode_ECI         :  modeBits = 0x7;  break; | 
|  | default:  assert(false); | 
|  | } | 
|  | appendBitsToBuffer(modeBits, 4, qrcode, &bitLen); | 
|  | appendBitsToBuffer(seg->numChars, numCharCountBits(seg->mode, version), qrcode, &bitLen); | 
|  | for (int j = 0; j < seg->bitLength; j++) | 
|  | appendBitsToBuffer((seg->data[j >> 3] >> (7 - (j & 7))) & 1, 1, qrcode, &bitLen); | 
|  | } | 
|  |  | 
|  | // Add terminator and pad up to a byte if applicable | 
|  | int terminatorBits = dataCapacityBits - bitLen; | 
|  | if (terminatorBits > 4) | 
|  | terminatorBits = 4; | 
|  | appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen); | 
|  | appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen); | 
|  |  | 
|  | // Pad with alternate bytes until data capacity is reached | 
|  | for (uint8_t padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) | 
|  | appendBitsToBuffer(padByte, 8, qrcode, &bitLen); | 
|  | assert(bitLen % 8 == 0); | 
|  |  | 
|  | // Draw function and data codeword modules | 
|  | appendErrorCorrection(qrcode, version, ecl, tempBuffer); | 
|  | initializeFunctionModules(version, qrcode); | 
|  | drawCodewords(tempBuffer, getNumRawDataModules(version) / 8, qrcode); | 
|  | drawWhiteFunctionModules(qrcode, version); | 
|  | initializeFunctionModules(version, tempBuffer); | 
|  |  | 
|  | // Handle masking | 
|  | if (mask == qrcodegen_Mask_AUTO) {  // Automatically choose best mask | 
|  | long minPenalty = LONG_MAX; | 
|  | for (int i = 0; i < 8; i++) { | 
|  | drawFormatBits(ecl, (enum qrcodegen_Mask)i, qrcode); | 
|  | applyMask(tempBuffer, qrcode, (enum qrcodegen_Mask)i); | 
|  | long penalty = getPenaltyScore(qrcode); | 
|  | if (penalty < minPenalty) { | 
|  | mask = (enum qrcodegen_Mask)i; | 
|  | minPenalty = penalty; | 
|  | } | 
|  | applyMask(tempBuffer, qrcode, (enum qrcodegen_Mask)i);  // Undoes the mask due to XOR | 
|  | } | 
|  | } | 
|  | assert(0 <= (int)mask && (int)mask <= 7); | 
|  | drawFormatBits(ecl, mask, qrcode); | 
|  | applyMask(tempBuffer, qrcode, mask); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns the number of bits needed to encode the given list of segments at the given version. | 
|  | // The result is in the range [0, 32767] if successful. Otherwise, -1 is returned if any segment | 
|  | // has more characters than allowed by that segment's mode's character count field at the version, | 
|  | // or if the actual answer exceeds INT16_MAX. | 
|  | testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version) { | 
|  | assert(segs != NULL || len == 0); | 
|  | assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); | 
|  | int result = 0; | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | int numChars = segs[i].numChars; | 
|  | int bitLength = segs[i].bitLength; | 
|  | assert(0 <= numChars && numChars <= INT16_MAX); | 
|  | assert(0 <= bitLength && bitLength <= INT16_MAX); | 
|  | int ccbits = numCharCountBits(segs[i].mode, version); | 
|  | assert(0 <= ccbits && ccbits <= 16); | 
|  | // Fail if segment length value doesn't fit in the length field's bit-width | 
|  | if (numChars >= (1L << ccbits)) | 
|  | return -1; | 
|  | long temp = 4L + ccbits + bitLength; | 
|  | if (temp > INT16_MAX - result) | 
|  | return -1; | 
|  | result += temp; | 
|  | } | 
|  | assert(0 <= result && result <= INT16_MAX); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns the bit width of the segment character count field for the | 
|  | // given mode at the given version number. The result is in the range [0, 16]. | 
|  | static int numCharCountBits(enum qrcodegen_Mode mode, int version) { | 
|  | assert(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX); | 
|  | int i = -1;  // Dummy value | 
|  | if      ( 1 <= version && version <=  9)  i = 0; | 
|  | else if (10 <= version && version <= 26)  i = 1; | 
|  | else if (27 <= version && version <= 40)  i = 2; | 
|  | else  assert(false); | 
|  |  | 
|  | switch (mode) { | 
|  | case qrcodegen_Mode_NUMERIC     : { static const int temp[] = {10, 12, 14}; return temp[i]; } | 
|  | case qrcodegen_Mode_ALPHANUMERIC: { static const int temp[] = { 9, 11, 13}; return temp[i]; } | 
|  | case qrcodegen_Mode_BYTE        : { static const int temp[] = { 8, 16, 16}; return temp[i]; } | 
|  | case qrcodegen_Mode_KANJI       : { static const int temp[] = { 8, 10, 12}; return temp[i]; } | 
|  | case qrcodegen_Mode_ECI         : return 0; | 
|  | default:  assert(false); | 
|  | } | 
|  | return -1;  // Dummy value | 
|  | } |