| #include <glm/gtc/round.hpp> |
| #include <glm/gtc/type_precision.hpp> |
| #include <glm/gtc/vec1.hpp> |
| #include <glm/gtc/epsilon.hpp> |
| #include <vector> |
| #include <ctime> |
| #include <cstdio> |
| |
| namespace isPowerOfTwo |
| { |
| template <typename genType> |
| struct type |
| { |
| genType Value; |
| bool Return; |
| }; |
| |
| int test_int16() |
| { |
| type<glm::int16> const Data[] = |
| { |
| {0x0001, true}, |
| {0x0002, true}, |
| {0x0004, true}, |
| {0x0080, true}, |
| {0x0000, true}, |
| {0x0003, false} |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) |
| { |
| bool Result = glm::isPowerOfTwo(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_uint16() |
| { |
| type<glm::uint16> const Data[] = |
| { |
| {0x0001, true}, |
| {0x0002, true}, |
| {0x0004, true}, |
| {0x0000, true}, |
| {0x0000, true}, |
| {0x0003, false} |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) |
| { |
| bool Result = glm::isPowerOfTwo(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_int32() |
| { |
| type<int> const Data[] = |
| { |
| {0x00000001, true}, |
| {0x00000002, true}, |
| {0x00000004, true}, |
| {0x0000000f, false}, |
| {0x00000000, true}, |
| {0x00000003, false} |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
| { |
| bool Result = glm::isPowerOfTwo(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
| { |
| glm::bvec1 Result = glm::isPowerOfTwo(glm::ivec1(Data[i].Value)); |
| Error += glm::all(glm::equal(glm::bvec1(Data[i].Return), Result)) ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
| { |
| glm::bvec2 Result = glm::isPowerOfTwo(glm::ivec2(Data[i].Value)); |
| Error += glm::all(glm::equal(glm::bvec2(Data[i].Return), Result)) ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
| { |
| glm::bvec3 Result = glm::isPowerOfTwo(glm::ivec3(Data[i].Value)); |
| Error += glm::all(glm::equal(glm::bvec3(Data[i].Return), Result)) ? 0 : 1; |
| } |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
| { |
| glm::bvec4 Result = glm::isPowerOfTwo(glm::ivec4(Data[i].Value)); |
| Error += glm::all(glm::equal(glm::bvec4(Data[i].Return), Result)) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_uint32() |
| { |
| type<glm::uint> const Data[] = |
| { |
| {0x00000001, true}, |
| {0x00000002, true}, |
| {0x00000004, true}, |
| {0x80000000, true}, |
| {0x00000000, true}, |
| {0x00000003, false} |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) |
| { |
| bool Result = glm::isPowerOfTwo(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test() |
| { |
| int Error(0); |
| |
| Error += test_int16(); |
| Error += test_uint16(); |
| Error += test_int32(); |
| Error += test_uint32(); |
| |
| return Error; |
| } |
| }//isPowerOfTwo |
| |
| namespace ceilPowerOfTwo_advanced |
| { |
| template <typename genIUType> |
| GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) |
| { |
| genIUType tmp = Value; |
| genIUType result = genIUType(0); |
| while(tmp) |
| { |
| result = (tmp & (~tmp + 1)); // grab lowest bit |
| tmp &= ~result; // clear lowest bit |
| } |
| return result; |
| } |
| |
| template <typename genType> |
| GLM_FUNC_QUALIFIER genType ceilPowerOfTwo_loop(genType value) |
| { |
| return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; |
| } |
| |
| template <typename genType> |
| struct type |
| { |
| genType Value; |
| genType Return; |
| }; |
| |
| int test_int32() |
| { |
| type<glm::int32> const Data[] = |
| { |
| {0x0000ffff, 0x00010000}, |
| {-3, -4}, |
| {-8, -8}, |
| {0x00000001, 0x00000001}, |
| {0x00000002, 0x00000002}, |
| {0x00000004, 0x00000004}, |
| {0x00000007, 0x00000008}, |
| {0x0000fff0, 0x00010000}, |
| {0x0000f000, 0x00010000}, |
| {0x08000000, 0x08000000}, |
| {0x00000000, 0x00000000}, |
| {0x00000003, 0x00000004} |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i) |
| { |
| glm::int32 Result = glm::ceilPowerOfTwo(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_uint32() |
| { |
| type<glm::uint32> const Data[] = |
| { |
| {0x00000001, 0x00000001}, |
| {0x00000002, 0x00000002}, |
| {0x00000004, 0x00000004}, |
| {0x00000007, 0x00000008}, |
| {0x0000ffff, 0x00010000}, |
| {0x0000fff0, 0x00010000}, |
| {0x0000f000, 0x00010000}, |
| {0x80000000, 0x80000000}, |
| {0x00000000, 0x00000000}, |
| {0x00000003, 0x00000004} |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i) |
| { |
| glm::uint32 Result = glm::ceilPowerOfTwo(Data[i].Value); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int perf() |
| { |
| int Error(0); |
| |
| std::vector<glm::uint> v; |
| v.resize(100000000); |
| |
| std::clock_t Timestramp0 = std::clock(); |
| |
| for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) |
| v[i] = ceilPowerOfTwo_loop(i); |
| |
| std::clock_t Timestramp1 = std::clock(); |
| |
| for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) |
| v[i] = glm::ceilPowerOfTwo(i); |
| |
| std::clock_t Timestramp2 = std::clock(); |
| |
| std::printf("ceilPowerOfTwo_loop: %d clocks\n", static_cast<unsigned int>(Timestramp1 - Timestramp0)); |
| std::printf("glm::ceilPowerOfTwo: %d clocks\n", static_cast<unsigned int>(Timestramp2 - Timestramp1)); |
| |
| return Error; |
| } |
| |
| int test() |
| { |
| int Error(0); |
| |
| Error += test_int32(); |
| Error += test_uint32(); |
| |
| return Error; |
| } |
| }//namespace ceilPowerOfTwo_advanced |
| |
| namespace roundPowerOfTwo |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| glm::uint32 const A = glm::roundPowerOfTwo(7u); |
| Error += A == 8u ? 0 : 1; |
| |
| glm::uint32 const B = glm::roundPowerOfTwo(15u); |
| Error += B == 16u ? 0 : 1; |
| |
| glm::uint32 const C = glm::roundPowerOfTwo(31u); |
| Error += C == 32u ? 0 : 1; |
| |
| glm::uint32 const D = glm::roundPowerOfTwo(9u); |
| Error += D == 8u ? 0 : 1; |
| |
| glm::uint32 const E = glm::roundPowerOfTwo(17u); |
| Error += E == 16u ? 0 : 1; |
| |
| glm::uint32 const F = glm::roundPowerOfTwo(33u); |
| Error += F == 32u ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace roundPowerOfTwo |
| |
| namespace floorPowerOfTwo |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| glm::uint32 const A = glm::floorPowerOfTwo(7u); |
| Error += A == 4u ? 0 : 1; |
| |
| glm::uint32 const B = glm::floorPowerOfTwo(15u); |
| Error += B == 8u ? 0 : 1; |
| |
| glm::uint32 const C = glm::floorPowerOfTwo(31u); |
| Error += C == 16u ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace floorPowerOfTwo |
| |
| namespace ceilPowerOfTwo |
| { |
| int test() |
| { |
| int Error = 0; |
| |
| glm::uint32 const A = glm::ceilPowerOfTwo(7u); |
| Error += A == 8u ? 0 : 1; |
| |
| glm::uint32 const B = glm::ceilPowerOfTwo(15u); |
| Error += B == 16u ? 0 : 1; |
| |
| glm::uint32 const C = glm::ceilPowerOfTwo(31u); |
| Error += C == 32u ? 0 : 1; |
| |
| return Error; |
| } |
| }//namespace ceilPowerOfTwo |
| |
| namespace floorMultiple |
| { |
| template <typename genType> |
| struct type |
| { |
| genType Source; |
| genType Multiple; |
| genType Return; |
| genType Epsilon; |
| }; |
| |
| int test_float() |
| { |
| type<glm::float64> const Data[] = |
| { |
| {3.4, 0.3, 3.3, 0.0001}, |
| {-1.4, 0.3, -1.5, 0.0001}, |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i) |
| { |
| glm::float64 Result = glm::floorMultiple(Data[i].Source, Data[i].Multiple); |
| Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test() |
| { |
| int Error(0); |
| |
| Error += test_float(); |
| |
| return Error; |
| } |
| }//namespace floorMultiple |
| |
| namespace ceilMultiple |
| { |
| template <typename genType> |
| struct type |
| { |
| genType Source; |
| genType Multiple; |
| genType Return; |
| genType Epsilon; |
| }; |
| |
| int test_float() |
| { |
| type<glm::float64> const Data[] = |
| { |
| {3.4, 0.3, 3.6, 0.0001}, |
| {-1.4, 0.3, -1.2, 0.0001}, |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i) |
| { |
| glm::float64 Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple); |
| Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test_int() |
| { |
| type<int> const Data[] = |
| { |
| {3, 4, 4, 0}, |
| {7, 4, 8, 0}, |
| {5, 4, 8, 0}, |
| {1, 4, 4, 0}, |
| {1, 3, 3, 0}, |
| {4, 3, 6, 0}, |
| {4, 1, 4, 0}, |
| {1, 1, 1, 0}, |
| {7, 1, 7, 0}, |
| }; |
| |
| int Error(0); |
| |
| for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
| { |
| int Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple); |
| Error += Data[i].Return == Result ? 0 : 1; |
| } |
| |
| return Error; |
| } |
| |
| int test() |
| { |
| int Error(0); |
| |
| Error += test_int(); |
| Error += test_float(); |
| |
| return Error; |
| } |
| }//namespace ceilMultiple |
| |
| int main() |
| { |
| int Error(0); |
| |
| Error += isPowerOfTwo::test(); |
| Error += floorPowerOfTwo::test(); |
| Error += roundPowerOfTwo::test(); |
| Error += ceilPowerOfTwo::test(); |
| Error += ceilPowerOfTwo_advanced::test(); |
| |
| # ifdef NDEBUG |
| Error += ceilPowerOfTwo_advanced::perf(); |
| # endif//NDEBUG |
| |
| Error += floorMultiple::test(); |
| Error += ceilMultiple::test(); |
| |
| return Error; |
| } |