| // Copyright 2011 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Author: Jyrki Alakuijala (jyrki@google.com) |
| // |
| // Entropy encoding (Huffman) for webp lossless. |
| |
| #if defined(STARBOARD) |
| #include "starboard/log.h" |
| #include "starboard/memory.h" |
| #else |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #endif |
| |
| #include "./huffman_encode.h" |
| #include "../utils/utils.h" |
| #include "../webp/format_constants.h" |
| |
| // ----------------------------------------------------------------------------- |
| // Util function to optimize the symbol map for RLE coding |
| |
| // Heuristics for selecting the stride ranges to collapse. |
| static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) { |
| return abs(a - b) < 4; |
| } |
| |
| // Change the population counts in a way that the consequent |
| // Hufmann tree compression, especially its RLE-part, give smaller output. |
| static int OptimizeHuffmanForRle(int length, int* const counts) { |
| uint8_t* good_for_rle; |
| // 1) Let's make the Huffman code more compatible with rle encoding. |
| int i; |
| for (; length >= 0; --length) { |
| if (length == 0) { |
| return 1; // All zeros. |
| } |
| if (counts[length - 1] != 0) { |
| // Now counts[0..length - 1] does not have trailing zeros. |
| break; |
| } |
| } |
| // 2) Let's mark all population counts that already can be encoded |
| // with an rle code. |
| good_for_rle = (uint8_t*)SbMemoryCalloc(length, 1); |
| if (good_for_rle == NULL) { |
| return 0; |
| } |
| { |
| // Let's not spoil any of the existing good rle codes. |
| // Mark any seq of 0's that is longer as 5 as a good_for_rle. |
| // Mark any seq of non-0's that is longer as 7 as a good_for_rle. |
| int symbol = counts[0]; |
| int stride = 0; |
| for (i = 0; i < length + 1; ++i) { |
| if (i == length || counts[i] != symbol) { |
| if ((symbol == 0 && stride >= 5) || |
| (symbol != 0 && stride >= 7)) { |
| int k; |
| for (k = 0; k < stride; ++k) { |
| good_for_rle[i - k - 1] = 1; |
| } |
| } |
| stride = 1; |
| if (i != length) { |
| symbol = counts[i]; |
| } |
| } else { |
| ++stride; |
| } |
| } |
| } |
| // 3) Let's replace those population counts that lead to more rle codes. |
| { |
| int stride = 0; |
| int limit = counts[0]; |
| int sum = 0; |
| for (i = 0; i < length + 1; ++i) { |
| if (i == length || good_for_rle[i] || |
| (i != 0 && good_for_rle[i - 1]) || |
| !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) { |
| if (stride >= 4 || (stride >= 3 && sum == 0)) { |
| int k; |
| // The stride must end, collapse what we have, if we have enough (4). |
| int count = (sum + stride / 2) / stride; |
| if (count < 1) { |
| count = 1; |
| } |
| if (sum == 0) { |
| // Don't make an all zeros stride to be upgraded to ones. |
| count = 0; |
| } |
| for (k = 0; k < stride; ++k) { |
| // We don't want to change value at counts[i], |
| // that is already belonging to the next stride. Thus - 1. |
| counts[i - k - 1] = count; |
| } |
| } |
| stride = 0; |
| sum = 0; |
| if (i < length - 3) { |
| // All interesting strides have a count of at least 4, |
| // at least when non-zeros. |
| limit = (counts[i] + counts[i + 1] + |
| counts[i + 2] + counts[i + 3] + 2) / 4; |
| } else if (i < length) { |
| limit = counts[i]; |
| } else { |
| limit = 0; |
| } |
| } |
| ++stride; |
| if (i != length) { |
| sum += counts[i]; |
| if (stride >= 4) { |
| limit = (sum + stride / 2) / stride; |
| } |
| } |
| } |
| } |
| SbMemoryDeallocate(good_for_rle); |
| return 1; |
| } |
| |
| typedef struct { |
| int total_count_; |
| int value_; |
| int pool_index_left_; |
| int pool_index_right_; |
| } HuffmanTree; |
| |
| // A comparer function for two Huffman trees: sorts first by 'total count' |
| // (more comes first), and then by 'value' (more comes first). |
| static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) { |
| const HuffmanTree* const t1 = (const HuffmanTree*)ptr1; |
| const HuffmanTree* const t2 = (const HuffmanTree*)ptr2; |
| if (t1->total_count_ > t2->total_count_) { |
| return -1; |
| } else if (t1->total_count_ < t2->total_count_) { |
| return 1; |
| } else { |
| SB_DCHECK(t1->value_ != t2->value_); |
| return (t1->value_ < t2->value_) ? -1 : 1; |
| } |
| } |
| |
| static void SetBitDepths(const HuffmanTree* const tree, |
| const HuffmanTree* const pool, |
| uint8_t* const bit_depths, int level) { |
| if (tree->pool_index_left_ >= 0) { |
| SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1); |
| SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1); |
| } else { |
| bit_depths[tree->value_] = level; |
| } |
| } |
| |
| // Create an optimal Huffman tree. |
| // |
| // (data,length): population counts. |
| // tree_limit: maximum bit depth (inclusive) of the codes. |
| // bit_depths[]: how many bits are used for the symbol. |
| // |
| // Returns 0 when an error has occurred. |
| // |
| // The catch here is that the tree cannot be arbitrarily deep |
| // |
| // count_limit is the value that is to be faked as the minimum value |
| // and this minimum value is raised until the tree matches the |
| // maximum length requirement. |
| // |
| // This algorithm is not of excellent performance for very long data blocks, |
| // especially when population counts are longer than 2**tree_limit, but |
| // we are not planning to use this with extremely long blocks. |
| // |
| // See http://en.wikipedia.org/wiki/Huffman_coding |
| static int GenerateOptimalTree(const int* const histogram, int histogram_size, |
| int tree_depth_limit, |
| uint8_t* const bit_depths) { |
| int count_min; |
| HuffmanTree* tree_pool; |
| HuffmanTree* tree; |
| int tree_size_orig = 0; |
| int i; |
| |
| for (i = 0; i < histogram_size; ++i) { |
| if (histogram[i] != 0) { |
| ++tree_size_orig; |
| } |
| } |
| |
| if (tree_size_orig == 0) { // pretty optimal already! |
| return 1; |
| } |
| |
| // 3 * tree_size is enough to cover all the nodes representing a |
| // population and all the inserted nodes combining two existing nodes. |
| // The tree pool needs 2 * (tree_size_orig - 1) entities, and the |
| // tree needs exactly tree_size_orig entities. |
| tree = (HuffmanTree*)WebPSafeMalloc(3ULL * tree_size_orig, sizeof(*tree)); |
| if (tree == NULL) return 0; |
| tree_pool = tree + tree_size_orig; |
| |
| // For block sizes with less than 64k symbols we never need to do a |
| // second iteration of this loop. |
| // If we actually start running inside this loop a lot, we would perhaps |
| // be better off with the Katajainen algorithm. |
| SB_DCHECK(tree_size_orig <= (1 << (tree_depth_limit - 1))); |
| for (count_min = 1; ; count_min *= 2) { |
| int tree_size = tree_size_orig; |
| // We need to pack the Huffman tree in tree_depth_limit bits. |
| // So, we try by faking histogram entries to be at least 'count_min'. |
| int idx = 0; |
| int j; |
| for (j = 0; j < histogram_size; ++j) { |
| if (histogram[j] != 0) { |
| const int count = |
| (histogram[j] < count_min) ? count_min : histogram[j]; |
| tree[idx].total_count_ = count; |
| tree[idx].value_ = j; |
| tree[idx].pool_index_left_ = -1; |
| tree[idx].pool_index_right_ = -1; |
| ++idx; |
| } |
| } |
| |
| // Build the Huffman tree. |
| SbSystemSort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees); |
| |
| if (tree_size > 1) { // Normal case. |
| int tree_pool_size = 0; |
| while (tree_size > 1) { // Finish when we have only one root. |
| int count; |
| tree_pool[tree_pool_size++] = tree[tree_size - 1]; |
| tree_pool[tree_pool_size++] = tree[tree_size - 2]; |
| count = tree_pool[tree_pool_size - 1].total_count_ + |
| tree_pool[tree_pool_size - 2].total_count_; |
| tree_size -= 2; |
| { |
| // Search for the insertion point. |
| int k; |
| for (k = 0; k < tree_size; ++k) { |
| if (tree[k].total_count_ <= count) { |
| break; |
| } |
| } |
| SbMemoryMove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree)); |
| tree[k].total_count_ = count; |
| tree[k].value_ = -1; |
| |
| tree[k].pool_index_left_ = tree_pool_size - 1; |
| tree[k].pool_index_right_ = tree_pool_size - 2; |
| tree_size = tree_size + 1; |
| } |
| } |
| SetBitDepths(&tree[0], tree_pool, bit_depths, 0); |
| } else if (tree_size == 1) { // Trivial case: only one element. |
| bit_depths[tree[0].value_] = 1; |
| } |
| |
| { |
| // Test if this Huffman tree satisfies our 'tree_depth_limit' criteria. |
| int max_depth = bit_depths[0]; |
| for (j = 1; j < histogram_size; ++j) { |
| if (max_depth < bit_depths[j]) { |
| max_depth = bit_depths[j]; |
| } |
| } |
| if (max_depth <= tree_depth_limit) { |
| break; |
| } |
| } |
| } |
| SbMemoryDeallocate(tree); |
| return 1; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Coding of the Huffman tree values |
| |
| static HuffmanTreeToken* CodeRepeatedValues(int repetitions, |
| HuffmanTreeToken* tokens, |
| int value, int prev_value) { |
| SB_DCHECK(value <= MAX_ALLOWED_CODE_LENGTH); |
| if (value != prev_value) { |
| tokens->code = value; |
| tokens->extra_bits = 0; |
| ++tokens; |
| --repetitions; |
| } |
| while (repetitions >= 1) { |
| if (repetitions < 3) { |
| int i; |
| for (i = 0; i < repetitions; ++i) { |
| tokens->code = value; |
| tokens->extra_bits = 0; |
| ++tokens; |
| } |
| break; |
| } else if (repetitions < 7) { |
| tokens->code = 16; |
| tokens->extra_bits = repetitions - 3; |
| ++tokens; |
| break; |
| } else { |
| tokens->code = 16; |
| tokens->extra_bits = 3; |
| ++tokens; |
| repetitions -= 6; |
| } |
| } |
| return tokens; |
| } |
| |
| static HuffmanTreeToken* CodeRepeatedZeros(int repetitions, |
| HuffmanTreeToken* tokens) { |
| while (repetitions >= 1) { |
| if (repetitions < 3) { |
| int i; |
| for (i = 0; i < repetitions; ++i) { |
| tokens->code = 0; // 0-value |
| tokens->extra_bits = 0; |
| ++tokens; |
| } |
| break; |
| } else if (repetitions < 11) { |
| tokens->code = 17; |
| tokens->extra_bits = repetitions - 3; |
| ++tokens; |
| break; |
| } else if (repetitions < 139) { |
| tokens->code = 18; |
| tokens->extra_bits = repetitions - 11; |
| ++tokens; |
| break; |
| } else { |
| tokens->code = 18; |
| tokens->extra_bits = 0x7f; // 138 repeated 0s |
| ++tokens; |
| repetitions -= 138; |
| } |
| } |
| return tokens; |
| } |
| |
| int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree, |
| HuffmanTreeToken* tokens, int max_tokens) { |
| HuffmanTreeToken* const starting_token = tokens; |
| HuffmanTreeToken* const ending_token = tokens + max_tokens; |
| const int depth_size = tree->num_symbols; |
| int prev_value = 8; // 8 is the initial value for rle. |
| int i = 0; |
| SB_DCHECK(tokens != NULL); |
| while (i < depth_size) { |
| const int value = tree->code_lengths[i]; |
| int k = i + 1; |
| int runs; |
| while (k < depth_size && tree->code_lengths[k] == value) ++k; |
| runs = k - i; |
| if (value == 0) { |
| tokens = CodeRepeatedZeros(runs, tokens); |
| } else { |
| tokens = CodeRepeatedValues(runs, tokens, value, prev_value); |
| prev_value = value; |
| } |
| i += runs; |
| SB_DCHECK(tokens <= ending_token); |
| } |
| (void)ending_token; // suppress 'unused variable' warning |
| return (int)(tokens - starting_token); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| // Pre-reversed 4-bit values. |
| static const uint8_t kReversedBits[16] = { |
| 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
| 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
| }; |
| |
| static uint32_t ReverseBits(int num_bits, uint32_t bits) { |
| uint32_t retval = 0; |
| int i = 0; |
| while (i < num_bits) { |
| i += 4; |
| retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i); |
| bits >>= 4; |
| } |
| retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits); |
| return retval; |
| } |
| |
| // Get the actual bit values for a tree of bit depths. |
| static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) { |
| // 0 bit-depth means that the symbol does not exist. |
| int i; |
| int len; |
| uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1]; |
| int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
| |
| SB_DCHECK(tree != NULL); |
| len = tree->num_symbols; |
| for (i = 0; i < len; ++i) { |
| const int code_length = tree->code_lengths[i]; |
| SB_DCHECK(code_length <= MAX_ALLOWED_CODE_LENGTH); |
| ++depth_count[code_length]; |
| } |
| depth_count[0] = 0; // ignore unused symbol |
| next_code[0] = 0; |
| { |
| uint32_t code = 0; |
| for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) { |
| code = (code + depth_count[i - 1]) << 1; |
| next_code[i] = code; |
| } |
| } |
| for (i = 0; i < len; ++i) { |
| const int code_length = tree->code_lengths[i]; |
| tree->codes[i] = ReverseBits(code_length, next_code[code_length]++); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Main entry point |
| |
| int VP8LCreateHuffmanTree(int* const histogram, int tree_depth_limit, |
| HuffmanTreeCode* const tree) { |
| const int num_symbols = tree->num_symbols; |
| if (!OptimizeHuffmanForRle(num_symbols, histogram)) { |
| return 0; |
| } |
| if (!GenerateOptimalTree(histogram, num_symbols, |
| tree_depth_limit, tree->code_lengths)) { |
| return 0; |
| } |
| // Create the actual bit codes for the bit lengths. |
| ConvertBitDepthsToSymbols(tree); |
| return 1; |
| } |