blob: 19ea4df8c35ab175d7dd6bc5c48c2e2eb37c769a [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrDrawState_DEFINED
#define GrDrawState_DEFINED
#include "GrBlend.h"
#include "GrDrawTargetCaps.h"
#include "GrGpuResourceRef.h"
#include "GrRODrawState.h"
#include "effects/GrSimpleTextureEffect.h"
class GrOptDrawState;
/**
* Modifiable subclass derived from GrRODrawState. The majority of the data that represents a draw
* state is stored in the parent class. GrDrawState contains methods for setting, adding to, etc.
* various data members of the draw state. This class is used to configure the state used when
* issuing draws via GrDrawTarget.
*/
class GrDrawState : public GrRODrawState {
public:
SK_DECLARE_INST_COUNT(GrDrawState)
GrDrawState() : fCachedOptState(NULL) {
SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
this->reset();
}
GrDrawState(const SkMatrix& initialViewMatrix) : fCachedOptState(NULL) {
SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
this->reset(initialViewMatrix);
}
/**
* Copies another draw state.
**/
GrDrawState(const GrDrawState& state) : INHERITED(), fCachedOptState(NULL) {
SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
*this = state;
}
/**
* Copies another draw state with a preconcat to the view matrix.
**/
GrDrawState(const GrDrawState& state, const SkMatrix& preConcatMatrix);
virtual ~GrDrawState();
/**
* Resets to the default state. GrProcessors will be removed from all stages.
*/
void reset() { this->onReset(NULL); }
void reset(const SkMatrix& initialViewMatrix) { this->onReset(&initialViewMatrix); }
/**
* Initializes the GrDrawState based on a GrPaint, view matrix and render target. Note that
* GrDrawState encompasses more than GrPaint. Aspects of GrDrawState that have no GrPaint
* equivalents are set to default values with the exception of vertex attribute state which
* is unmodified by this function and clipping which will be enabled.
*/
void setFromPaint(const GrPaint& , const SkMatrix& viewMatrix, GrRenderTarget*);
///////////////////////////////////////////////////////////////////////////
/// @name Vertex Attributes
////
/**
* The format of vertices is represented as an array of GrVertexAttribs, with each representing
* the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in
* GrTypesPriv.h).
*
* The mapping of attributes with kEffect bindings to GrProcessor inputs is specified when
* setEffect is called.
*/
/**
* Sets vertex attributes for next draw. The object driving the templatization
* should be a global GrVertexAttrib array that is never changed.
*
* @param count the number of attributes being set, limited to kMaxVertexAttribCnt.
* @param stride the number of bytes between successive vertex data.
*/
template <const GrVertexAttrib A[]> void setVertexAttribs(int count, size_t stride) {
this->internalSetVertexAttribs(A, count, stride);
}
/**
* Sets default vertex attributes for next draw. The default is a single attribute:
* {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType}
*/
void setDefaultVertexAttribs();
/**
* Helper to save/restore vertex attribs
*/
class AutoVertexAttribRestore {
public:
AutoVertexAttribRestore(GrDrawState* drawState);
~AutoVertexAttribRestore() { fDrawState->internalSetVertexAttribs(fVAPtr, fVACount,
fVAStride); }
private:
GrDrawState* fDrawState;
const GrVertexAttrib* fVAPtr;
int fVACount;
size_t fVAStride;
};
/// @}
/**
* Depending on features available in the underlying 3D API and the color blend mode requested
* it may or may not be possible to correctly blend with fractional pixel coverage generated by
* the fragment shader.
*
* This function considers the current draw state and the draw target's capabilities to
* determine whether coverage can be handled correctly. This function assumes that the caller
* intends to specify fractional pixel coverage (via setCoverage(), through a coverage vertex
* attribute, or a coverage effect) but may not have specified it yet.
*/
bool couldApplyCoverage(const GrDrawTargetCaps& caps) const;
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Color
////
/**
* Sets color for next draw to a premultiplied-alpha color.
*
* @param color the color to set.
*/
void setColor(GrColor color) {
if (color != fColor) {
fColor = color;
this->invalidateOptState();
}
}
/**
* Sets the color to be used for the next draw to be
* (r,g,b,a) = (alpha, alpha, alpha, alpha).
*
* @param alpha The alpha value to set as the color.
*/
void setAlpha(uint8_t a) { this->setColor((a << 24) | (a << 16) | (a << 8) | a); }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Coverage
////
/**
* Sets a constant fractional coverage to be applied to the draw. The
* initial value (after construction or reset()) is 0xff. The constant
* coverage is ignored when per-vertex coverage is provided.
*/
void setCoverage(uint8_t coverage) {
if (coverage != fCoverage) {
fCoverage = coverage;
this->invalidateOptState();
}
}
/// @}
/**
* The geometry processor is the sole element of the skia pipeline which can use the vertex,
* geometry, and tesselation shaders. The GP may also compute a coverage in its fragment shader
* but is never put in the color processing pipeline.
*/
const GrGeometryProcessor* setGeometryProcessor(const GrGeometryProcessor* geometryProcessor) {
SkASSERT(geometryProcessor);
SkASSERT(!this->hasGeometryProcessor());
fGeometryProcessor.reset(new GrGeometryStage(geometryProcessor));
this->invalidateOptState();
return geometryProcessor;
}
///////////////////////////////////////////////////////////////////////////
/// @name Effect Stages
/// Each stage hosts a GrProcessor. The effect produces an output color or coverage in the
/// fragment shader. Its inputs are the output from the previous stage as well as some variables
/// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color,
/// the fragment position, local coordinates).
///
/// The stages are divided into two sets, color-computing and coverage-computing. The final
/// color stage produces the final pixel color. The coverage-computing stages function exactly
/// as the color-computing but the output of the final coverage stage is treated as a fractional
/// pixel coverage rather than as input to the src/dst color blend step.
///
/// The input color to the first color-stage is either the constant color or interpolated
/// per-vertex colors. The input to the first coverage stage is either a constant coverage
/// (usually full-coverage) or interpolated per-vertex coverage.
///
/// See the documentation of kCoverageDrawing_StateBit for information about disabling the
/// the color / coverage distinction.
////
const GrFragmentProcessor* addColorProcessor(const GrFragmentProcessor* effect) {
SkASSERT(effect);
SkNEW_APPEND_TO_TARRAY(&fColorStages, GrFragmentStage, (effect));
this->invalidateOptState();
return effect;
}
const GrFragmentProcessor* addCoverageProcessor(const GrFragmentProcessor* effect) {
SkASSERT(effect);
SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrFragmentStage, (effect));
this->invalidateOptState();
return effect;
}
/**
* Creates a GrSimpleTextureEffect that uses local coords as texture coordinates.
*/
void addColorTextureProcessor(GrTexture* texture, const SkMatrix& matrix) {
this->addColorProcessor(GrSimpleTextureEffect::Create(texture, matrix))->unref();
}
void addCoverageTextureProcessor(GrTexture* texture, const SkMatrix& matrix) {
this->addCoverageProcessor(GrSimpleTextureEffect::Create(texture, matrix))->unref();
}
void addColorTextureProcessor(GrTexture* texture,
const SkMatrix& matrix,
const GrTextureParams& params) {
this->addColorProcessor(GrSimpleTextureEffect::Create(texture, matrix, params))->unref();
}
void addCoverageTextureProcessor(GrTexture* texture,
const SkMatrix& matrix,
const GrTextureParams& params) {
this->addCoverageProcessor(GrSimpleTextureEffect::Create(texture, matrix, params))->unref();
}
/**
* When this object is destroyed it will remove any color/coverage effects from the draw state
* that were added after its constructor.
*
* This class has strange behavior around geometry processor. If there is a GP on the draw state
* it will assert that the GP is not modified until after the destructor of the ARE. If the
* draw state has a NULL GP when the ARE is constructed then it will reset it to null in the
* destructor.
*
* TODO: We'd prefer for the ARE to just save and restore the GP. However, this would add
* significant complexity to the multi-ref architecture for deferred drawing. Once GrDrawState
* and GrOptDrawState are fully separated then GrDrawState will never be in the deferred
* execution state and GrOptDrawState always will be (and will be immutable and therefore
* unable to have an ARE). At this point we can restore sanity and have the ARE save and restore
* the GP.
*/
class AutoRestoreEffects : public ::SkNoncopyable {
public:
AutoRestoreEffects()
: fDrawState(NULL)
, fOriginalGPID(SK_InvalidUniqueID)
, fColorEffectCnt(0)
, fCoverageEffectCnt(0) {}
AutoRestoreEffects(GrDrawState* ds)
: fDrawState(NULL)
, fOriginalGPID(SK_InvalidUniqueID)
, fColorEffectCnt(0)
, fCoverageEffectCnt(0) {
this->set(ds);
}
~AutoRestoreEffects() { this->set(NULL); }
void set(GrDrawState* ds);
bool isSet() const { return SkToBool(fDrawState); }
private:
GrDrawState* fDrawState;
uint32_t fOriginalGPID;
int fColorEffectCnt;
int fCoverageEffectCnt;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Blending
////
/**
* Sets the blending function coefficients.
*
* The blend function will be:
* D' = sat(S*srcCoef + D*dstCoef)
*
* where D is the existing destination color, S is the incoming source
* color, and D' is the new destination color that will be written. sat()
* is the saturation function.
*
* @param srcCoef coefficient applied to the src color.
* @param dstCoef coefficient applied to the dst color.
*/
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
if (srcCoeff != fSrcBlend || dstCoeff != fDstBlend) {
fSrcBlend = srcCoeff;
fDstBlend = dstCoeff;
this->invalidateOptState();
}
#ifdef SK_DEBUG
if (GrBlendCoeffRefsDst(dstCoeff)) {
GrPrintf("Unexpected dst blend coeff. Won't work correctly with coverage stages.\n");
}
if (GrBlendCoeffRefsSrc(srcCoeff)) {
GrPrintf("Unexpected src blend coeff. Won't work correctly with coverage stages.\n");
}
#endif
}
/**
* Sets the blending function constant referenced by the following blending
* coefficients:
* kConstC_GrBlendCoeff
* kIConstC_GrBlendCoeff
* kConstA_GrBlendCoeff
* kIConstA_GrBlendCoeff
*
* @param constant the constant to set
*/
void setBlendConstant(GrColor constant) {
if (constant != fBlendConstant) {
fBlendConstant = constant;
this->invalidateOptState();
}
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name View Matrix
////
/**
* Sets the view matrix to identity and updates any installed effects to compensate for the
* coord system change.
*/
bool setIdentityViewMatrix();
////////////////////////////////////////////////////////////////////////////
/**
* Preconcats the current view matrix and restores the previous view matrix in the destructor.
* Effect matrices are automatically adjusted to compensate and adjusted back in the destructor.
*/
class AutoViewMatrixRestore : public ::SkNoncopyable {
public:
AutoViewMatrixRestore() : fDrawState(NULL) {}
AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix) {
fDrawState = NULL;
this->set(ds, preconcatMatrix);
}
~AutoViewMatrixRestore() { this->restore(); }
/**
* Can be called prior to destructor to restore the original matrix.
*/
void restore();
void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix);
/** Sets the draw state's matrix to identity. This can fail because the current view matrix
is not invertible. */
bool setIdentity(GrDrawState* drawState);
private:
void doEffectCoordChanges(const SkMatrix& coordChangeMatrix);
GrDrawState* fDrawState;
SkMatrix fViewMatrix;
int fNumColorStages;
bool fHasGeometryProcessor;
SkAutoSTArray<8, GrProcessorStage::SavedCoordChange> fSavedCoordChanges;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Render Target
////
/**
* Sets the render-target used at the next drawing call
*
* @param target The render target to set.
*/
void setRenderTarget(GrRenderTarget* target) {
fRenderTarget.set(SkSafeRef(target), GrIORef::kWrite_IOType);
this->invalidateOptState();
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Stencil
////
/**
* Sets the stencil settings to use for the next draw.
* Changing the clip has the side-effect of possibly zeroing
* out the client settable stencil bits. So multipass algorithms
* using stencil should not change the clip between passes.
* @param settings the stencil settings to use.
*/
void setStencil(const GrStencilSettings& settings) {
if (settings != fStencilSettings) {
fStencilSettings = settings;
this->invalidateOptState();
}
}
/**
* Shortcut to disable stencil testing and ops.
*/
void disableStencil() {
if (!fStencilSettings.isDisabled()) {
fStencilSettings.setDisabled();
this->invalidateOptState();
}
}
GrStencilSettings* stencil() { return &fStencilSettings; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name State Flags
////
void resetStateFlags() {
if (0 != fFlagBits) {
fFlagBits = 0;
this->invalidateOptState();
}
}
/**
* Enable render state settings.
*
* @param stateBits bitfield of StateBits specifying the states to enable
*/
void enableState(uint32_t stateBits) {
if (stateBits & ~fFlagBits) {
fFlagBits |= stateBits;
this->invalidateOptState();
}
}
/**
* Disable render state settings.
*
* @param stateBits bitfield of StateBits specifying the states to disable
*/
void disableState(uint32_t stateBits) {
if (stateBits & fFlagBits) {
fFlagBits &= ~(stateBits);
this->invalidateOptState();
}
}
/**
* Enable or disable stateBits based on a boolean.
*
* @param stateBits bitfield of StateBits to enable or disable
* @param enable if true enable stateBits, otherwise disable
*/
void setState(uint32_t stateBits, bool enable) {
if (enable) {
this->enableState(stateBits);
} else {
this->disableState(stateBits);
}
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Face Culling
////
/**
* Controls whether clockwise, counterclockwise, or both faces are drawn.
* @param face the face(s) to draw.
*/
void setDrawFace(DrawFace face) {
SkASSERT(kInvalid_DrawFace != face);
fDrawFace = face;
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Hints
/// Hints that when provided can enable optimizations.
////
void setHint(Hints hint, bool value) { fHints = value ? (fHints | hint) : (fHints & ~hint); }
/// @}
///////////////////////////////////////////////////////////////////////////
/** Return type for CombineIfPossible. */
enum CombinedState {
/** The GrDrawStates cannot be combined. */
kIncompatible_CombinedState,
/** Either draw state can be used in place of the other. */
kAOrB_CombinedState,
/** Use the first draw state. */
kA_CombinedState,
/** Use the second draw state. */
kB_CombinedState,
};
/** This function determines whether the GrDrawStates used for two draws can be combined into
a single GrDrawState. This is used to avoid storing redundant GrDrawStates and to determine
if draws can be batched. The return value indicates whether combining is possible and, if
so, which of the two inputs should be used. */
static CombinedState CombineIfPossible(const GrDrawState& a, const GrDrawState& b,
const GrDrawTargetCaps& caps);
GrDrawState& operator= (const GrDrawState& that);
/**
* Returns a snapshot of the current optimized state. If the current drawState has a valid
* cached optimiezed state it will simply return a pointer to it otherwise it will create a new
* GrOptDrawState. In all cases the GrOptDrawState is reffed and ownership is given to the
* caller.
*/
GrOptDrawState* createOptState(const GrDrawTargetCaps&) const;
private:
void invalidateOptState() const;
void onReset(const SkMatrix* initialViewMatrix);
// Some of the auto restore objects assume that no effects are removed during their lifetime.
// This is used to assert that this condition holds.
SkDEBUGCODE(int fBlockEffectRemovalCnt;)
void internalSetVertexAttribs(const GrVertexAttrib attribs[], int count, size_t stride);
mutable GrOptDrawState* fCachedOptState;
mutable uint32_t fCachedCapsID;
typedef GrRODrawState INHERITED;
};
#endif