blob: 230ceffd583883e5eeb1da640bc134b52032e997 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ctypes/CTypes.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/StandardInteger.h"
#include <limits>
#include <math.h>
#if defined(XP_WIN) || defined(XP_OS2)
#include <float.h>
#endif
#if defined(SOLARIS)
#include <ieeefp.h>
#endif
#ifdef HAVE_SSIZE_T
#include <sys/types.h>
#endif
#if defined(XP_UNIX)
#include <errno.h>
#elif defined(XP_WIN)
#include <windows.h>
#endif
#include "jscompartment.h"
#include "jsnum.h"
#include "jsprf.h"
#include "jstypedarray.h"
#include "ctypes/Library.h"
using namespace std;
namespace js {
namespace ctypes {
size_t
GetDeflatedUTF8StringLength(JSContext *maybecx, const jschar *chars,
size_t nchars)
{
size_t nbytes;
const jschar *end;
unsigned c, c2;
char buffer[10];
nbytes = nchars;
for (end = chars + nchars; chars != end; chars++) {
c = *chars;
if (c < 0x80)
continue;
if (0xD800 <= c && c <= 0xDFFF) {
/* Surrogate pair. */
chars++;
/* nbytes sets 1 length since this is surrogate pair. */
nbytes--;
if (c >= 0xDC00 || chars == end)
goto bad_surrogate;
c2 = *chars;
if (c2 < 0xDC00 || c2 > 0xDFFF)
goto bad_surrogate;
c = ((c - 0xD800) << 10) + (c2 - 0xDC00) + 0x10000;
}
c >>= 11;
nbytes++;
while (c) {
c >>= 5;
nbytes++;
}
}
return nbytes;
bad_surrogate:
if (maybecx) {
JS_snprintf(buffer, 10, "0x%x", c);
JS_ReportErrorFlagsAndNumber(maybecx, JSREPORT_ERROR, js_GetErrorMessage,
NULL, JSMSG_BAD_SURROGATE_CHAR, buffer);
}
return (size_t) -1;
}
bool
DeflateStringToUTF8Buffer(JSContext *maybecx, const jschar *src, size_t srclen,
char *dst, size_t *dstlenp)
{
size_t i, utf8Len;
jschar c, c2;
uint32_t v;
uint8_t utf8buf[6];
size_t dstlen = *dstlenp;
size_t origDstlen = dstlen;
while (srclen) {
c = *src++;
srclen--;
if (c >= 0xDC00 && c <= 0xDFFF)
goto badSurrogate;
if (c < 0xD800 || c > 0xDBFF) {
v = c;
} else {
if (srclen < 1)
goto badSurrogate;
c2 = *src;
if ((c2 < 0xDC00) || (c2 > 0xDFFF))
goto badSurrogate;
src++;
srclen--;
v = ((c - 0xD800) << 10) + (c2 - 0xDC00) + 0x10000;
}
if (v < 0x0080) {
/* no encoding necessary - performance hack */
if (dstlen == 0)
goto bufferTooSmall;
*dst++ = (char) v;
utf8Len = 1;
} else {
utf8Len = js_OneUcs4ToUtf8Char(utf8buf, v);
if (utf8Len > dstlen)
goto bufferTooSmall;
for (i = 0; i < utf8Len; i++)
*dst++ = (char) utf8buf[i];
}
dstlen -= utf8Len;
}
*dstlenp = (origDstlen - dstlen);
return JS_TRUE;
badSurrogate:
*dstlenp = (origDstlen - dstlen);
/* Delegate error reporting to the measurement function. */
if (maybecx)
GetDeflatedUTF8StringLength(maybecx, src - 1, srclen + 1);
return JS_FALSE;
bufferTooSmall:
*dstlenp = (origDstlen - dstlen);
if (maybecx) {
JS_ReportErrorNumber(maybecx, js_GetErrorMessage, NULL,
JSMSG_BUFFER_TOO_SMALL);
}
return JS_FALSE;
}
/*******************************************************************************
** JSAPI function prototypes
*******************************************************************************/
static JSBool ConstructAbstract(JSContext* cx, unsigned argc, jsval* vp);
namespace CType {
static JSBool ConstructData(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructBasic(JSContext* cx, HandleObject obj, const CallArgs& args);
static void Trace(JSTracer* trc, JSObject* obj);
static void Finalize(JSFreeOp *fop, JSObject* obj);
static void FinalizeProtoClass(JSFreeOp *fop, JSObject* obj);
static JSBool PrototypeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool NameGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool SizeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool PtrGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp);
static JSBool CreateArray(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToString(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
static JSBool HasInstance(JSContext* cx, HandleObject obj, MutableHandleValue v, JSBool* bp);
/*
* Get the global "ctypes" object.
*
* |obj| must be a CType object.
*
* This function never returns NULL.
*/
static JSObject* GetGlobalCTypes(JSContext* cx, JSObject* obj);
}
namespace ABI {
bool IsABI(JSObject* obj);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
}
namespace PointerType {
static JSBool Create(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructData(JSContext* cx, HandleObject obj, const CallArgs& args);
static JSBool TargetTypeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ContentsGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ContentsSetter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict,
MutableHandleValue vp);
static JSBool IsNull(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Increment(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Decrement(JSContext* cx, unsigned argc, jsval* vp);
// The following is not an instance function, since we don't want to expose arbitrary
// pointer arithmetic at this moment.
static JSBool OffsetBy(JSContext* cx, const CallArgs& args, int offset);
}
namespace ArrayType {
static JSBool Create(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructData(JSContext* cx, HandleObject obj, const CallArgs& args);
static JSBool ElementTypeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool LengthGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool Getter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp);
static JSBool Setter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict, MutableHandleValue vp);
static JSBool AddressOfElement(JSContext* cx, unsigned argc, jsval* vp);
}
namespace StructType {
static JSBool Create(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructData(JSContext* cx, HandleObject obj, const CallArgs& args);
static JSBool FieldsArrayGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool FieldGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool FieldSetter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict,
MutableHandleValue vp);
static JSBool AddressOfField(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Define(JSContext* cx, unsigned argc, jsval* vp);
}
namespace FunctionType {
static JSBool Create(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ConstructData(JSContext* cx, HandleObject typeObj,
HandleObject dataObj, HandleObject fnObj, HandleObject thisObj, jsval errVal);
static JSBool Call(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ArgTypesGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ReturnTypeGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ABIGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp);
static JSBool IsVariadicGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
}
namespace CClosure {
static void Trace(JSTracer* trc, JSObject* obj);
static void Finalize(JSFreeOp *fop, JSObject* obj);
// libffi callback
static void ClosureStub(ffi_cif* cif, void* result, void** args,
void* userData);
}
namespace CData {
static void Finalize(JSFreeOp *fop, JSObject* obj);
static JSBool ValueGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
static JSBool ValueSetter(JSContext* cx, HandleObject obj, HandleId idval,
JSBool strict, MutableHandleValue vp);
static JSBool Address(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ReadString(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ReadStringReplaceMalformed(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
static JSString *GetSourceString(JSContext *cx, HandleObject typeObj,
void *data);
static JSBool ErrnoGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
#if defined(XP_WIN)
static JSBool LastErrorGetter(JSContext* cx, HandleObject obj, HandleId idval,
MutableHandleValue vp);
#endif // defined(XP_WIN)
}
namespace CDataFinalizer {
/*
* Attach a C function as a finalizer to a JS object.
*
* This function is available from JS as |ctypes.withFinalizer|.
*
* JavaScript signature:
* function(CData, CData): CDataFinalizer
* value finalizer finalizable
*
* Where |finalizer| is a one-argument function taking a value
* with the same type as |value|.
*/
static JSBool Construct(JSContext* cx, unsigned argc, jsval *vp);
/*
* Private data held by |CDataFinalizer|.
*
* See also |enum CDataFinalizerSlot| for the slots of
* |CDataFinalizer|.
*
* Note: the private data may be NULL, if |dispose|, |forget| or the
* finalizer has already been called.
*/
struct Private {
/*
* The C data to pass to the code.
* Finalization/|dispose|/|forget| release this memory.
*/
void *cargs;
/*
* The total size of the buffer pointed by |cargs|
*/
size_t cargs_size;
/*
* Low-level signature information.
* Finalization/|dispose|/|forget| release this memory.
*/
ffi_cif CIF;
/*
* The C function to invoke during finalization.
* Do not deallocate this.
*/
uintptr_t code;
/*
* A buffer for holding the return value.
* Finalization/|dispose|/|forget| release this memory.
*/
void *rvalue;
};
/*
* Methods of instances of |CDataFinalizer|
*/
namespace Methods {
static JSBool Dispose(JSContext* cx, unsigned argc, jsval *vp);
static JSBool Forget(JSContext* cx, unsigned argc, jsval *vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval *vp);
static JSBool ToString(JSContext* cx, unsigned argc, jsval *vp);
}
/*
* Utility functions
*
* @return true if |obj| is a CDataFinalizer, false otherwise.
*/
static bool IsCDataFinalizer(JSObject *obj);
/*
* Clean up the finalization information of a CDataFinalizer.
*
* Used by |Finalize|, |Dispose| and |Forget|.
*
* @param p The private information of the CDataFinalizer. If NULL,
* this function does nothing.
* @param obj Either NULL, if the object should not be cleaned up (i.e.
* during finalization) or a CDataFinalizer JSObject. Always use NULL
* if you are calling from a finalizer.
*/
static void Cleanup(Private *p, JSObject *obj);
/*
* Perform the actual call to the finalizer code.
*/
static void CallFinalizer(CDataFinalizer::Private *p,
int* errnoStatus,
int32_t* lastErrorStatus);
/*
* Return the CType of a CDataFinalizer object, or NULL if the object
* has been cleaned-up already.
*/
static JSObject *GetCType(JSContext *cx, JSObject *obj);
/*
* Perform finalization of a |CDataFinalizer|
*/
static void Finalize(JSFreeOp *fop, JSObject *obj);
/*
* Return the jsval contained by this finalizer.
*
* Note that the jsval is actually not recorded, but converted back from C.
*/
static bool GetValue(JSContext *cx, JSObject *obj, jsval *result);
static JSObject* GetCData(JSContext *cx, JSObject *obj);
}
// Int64Base provides functions common to Int64 and UInt64.
namespace Int64Base {
JSObject* Construct(JSContext* cx, HandleObject proto, uint64_t data,
bool isUnsigned);
uint64_t GetInt(JSObject* obj);
JSBool ToString(JSContext* cx, JSObject* obj, const CallArgs& args,
bool isUnsigned);
JSBool ToSource(JSContext* cx, JSObject* obj, const CallArgs& args,
bool isUnsigned);
static void Finalize(JSFreeOp *fop, JSObject* obj);
}
namespace Int64 {
static JSBool Construct(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToString(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Compare(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Lo(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Hi(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Join(JSContext* cx, unsigned argc, jsval* vp);
}
namespace UInt64 {
static JSBool Construct(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToString(JSContext* cx, unsigned argc, jsval* vp);
static JSBool ToSource(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Compare(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Lo(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Hi(JSContext* cx, unsigned argc, jsval* vp);
static JSBool Join(JSContext* cx, unsigned argc, jsval* vp);
}
/*******************************************************************************
** JSClass definitions and initialization functions
*******************************************************************************/
// Class representing the 'ctypes' object itself. This exists to contain the
// JSCTypesCallbacks set of function pointers.
static JSClass sCTypesGlobalClass = {
"ctypes",
JSCLASS_HAS_RESERVED_SLOTS(CTYPESGLOBAL_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
static JSClass sCABIClass = {
"CABI",
JSCLASS_HAS_RESERVED_SLOTS(CABI_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
// Class representing ctypes.{C,Pointer,Array,Struct,Function}Type.prototype.
// This exists to give said prototypes a class of "CType", and to provide
// reserved slots for stashing various other prototype objects.
static JSClass sCTypeProtoClass = {
"CType",
JSCLASS_HAS_RESERVED_SLOTS(CTYPEPROTO_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CType::FinalizeProtoClass,
NULL, ConstructAbstract, NULL, ConstructAbstract
};
// Class representing ctypes.CData.prototype and the 'prototype' properties
// of CTypes. This exists to give said prototypes a class of "CData".
static JSClass sCDataProtoClass = {
"CData",
0,
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
static JSClass sCTypeClass = {
"CType",
JSCLASS_IMPLEMENTS_BARRIERS | JSCLASS_HAS_RESERVED_SLOTS(CTYPE_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CType::Finalize,
NULL, CType::ConstructData, CType::HasInstance, CType::ConstructData,
CType::Trace
};
static JSClass sCDataClass = {
"CData",
JSCLASS_HAS_RESERVED_SLOTS(CDATA_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, ArrayType::Getter, ArrayType::Setter,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CData::Finalize,
NULL, FunctionType::Call, NULL, FunctionType::Call
};
static JSClass sCClosureClass = {
"CClosure",
JSCLASS_IMPLEMENTS_BARRIERS | JSCLASS_HAS_RESERVED_SLOTS(CCLOSURE_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CClosure::Finalize,
NULL, NULL, NULL, NULL, CClosure::Trace
};
/*
* Class representing the prototype of CDataFinalizer.
*/
static JSClass sCDataFinalizerProtoClass = {
"CDataFinalizer",
0,
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
/*
* Class representing instances of CDataFinalizer.
*
* Instances of CDataFinalizer have both private data (with type
* |CDataFinalizer::Private|) and slots (see |CDataFinalizerSlots|).
*/
static JSClass sCDataFinalizerClass = {
"CDataFinalizer",
JSCLASS_HAS_PRIVATE | JSCLASS_HAS_RESERVED_SLOTS(CDATAFINALIZER_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, CDataFinalizer::Finalize,
};
#define CTYPESFN_FLAGS \
(JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT)
#define CTYPESCTOR_FLAGS \
(CTYPESFN_FLAGS | JSFUN_CONSTRUCTOR)
#define CTYPESPROP_FLAGS \
(JSPROP_SHARED | JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT)
#define CABIFN_FLAGS \
(JSPROP_READONLY | JSPROP_PERMANENT)
#define CDATAFN_FLAGS \
(JSPROP_READONLY | JSPROP_PERMANENT)
#define CDATAFINALIZERFN_FLAGS \
(JSPROP_READONLY | JSPROP_PERMANENT)
static const JSPropertySpec sCTypeProps[] = {
{ "name", 0, CTYPESPROP_FLAGS, JSOP_WRAPPER(CType::NameGetter), JSOP_NULLWRAPPER },
{ "size", 0, CTYPESPROP_FLAGS, JSOP_WRAPPER(CType::SizeGetter), JSOP_NULLWRAPPER },
{ "ptr", 0, CTYPESPROP_FLAGS, JSOP_WRAPPER(CType::PtrGetter), JSOP_NULLWRAPPER },
{ "prototype", 0, CTYPESPROP_FLAGS, JSOP_WRAPPER(CType::PrototypeGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sCTypeFunctions[] = {
JS_FN("array", CType::CreateArray, 0, CTYPESFN_FLAGS),
JS_FN("toString", CType::ToString, 0, CTYPESFN_FLAGS),
JS_FN("toSource", CType::ToSource, 0, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sCABIFunctions[] = {
JS_FN("toSource", ABI::ToSource, 0, CABIFN_FLAGS),
JS_FN("toString", ABI::ToSource, 0, CABIFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sCDataProps[] = {
{ "value", 0, JSPROP_SHARED | JSPROP_PERMANENT,
JSOP_WRAPPER(CData::ValueGetter), JSOP_WRAPPER(CData::ValueSetter) },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sCDataFunctions[] = {
JS_FN("address", CData::Address, 0, CDATAFN_FLAGS),
JS_FN("readString", CData::ReadString, 0, CDATAFN_FLAGS),
JS_FN("readStringReplaceMalformed", CData::ReadStringReplaceMalformed, 0, CDATAFN_FLAGS),
JS_FN("toSource", CData::ToSource, 0, CDATAFN_FLAGS),
JS_FN("toString", CData::ToSource, 0, CDATAFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sCDataFinalizerProps[] = {
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sCDataFinalizerFunctions[] = {
JS_FN("dispose", CDataFinalizer::Methods::Dispose, 0, CDATAFINALIZERFN_FLAGS),
JS_FN("forget", CDataFinalizer::Methods::Forget, 0, CDATAFINALIZERFN_FLAGS),
JS_FN("readString",CData::ReadString, 0, CDATAFINALIZERFN_FLAGS),
JS_FN("toString", CDataFinalizer::Methods::ToString, 0, CDATAFINALIZERFN_FLAGS),
JS_FN("toSource", CDataFinalizer::Methods::ToSource, 0, CDATAFINALIZERFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sPointerFunction =
JS_FN("PointerType", PointerType::Create, 1, CTYPESCTOR_FLAGS);
static const JSPropertySpec sPointerProps[] = {
{ "targetType", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(PointerType::TargetTypeGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sPointerInstanceFunctions[] = {
JS_FN("isNull", PointerType::IsNull, 0, CTYPESFN_FLAGS),
JS_FN("increment", PointerType::Increment, 0, CTYPESFN_FLAGS),
JS_FN("decrement", PointerType::Decrement, 0, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sPointerInstanceProps[] = {
{ "contents", 0, JSPROP_SHARED | JSPROP_PERMANENT,
JSOP_WRAPPER(PointerType::ContentsGetter),
JSOP_WRAPPER(PointerType::ContentsSetter) },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sArrayFunction =
JS_FN("ArrayType", ArrayType::Create, 1, CTYPESCTOR_FLAGS);
static const JSPropertySpec sArrayProps[] = {
{ "elementType", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(ArrayType::ElementTypeGetter), JSOP_NULLWRAPPER },
{ "length", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(ArrayType::LengthGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sArrayInstanceFunctions[] = {
JS_FN("addressOfElement", ArrayType::AddressOfElement, 1, CDATAFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sArrayInstanceProps[] = {
{ "length", 0, JSPROP_SHARED | JSPROP_READONLY | JSPROP_PERMANENT,
JSOP_WRAPPER(ArrayType::LengthGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sStructFunction =
JS_FN("StructType", StructType::Create, 2, CTYPESCTOR_FLAGS);
static const JSPropertySpec sStructProps[] = {
{ "fields", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(StructType::FieldsArrayGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sStructFunctions[] = {
JS_FN("define", StructType::Define, 1, CDATAFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sStructInstanceFunctions[] = {
JS_FN("addressOfField", StructType::AddressOfField, 1, CDATAFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sFunctionFunction =
JS_FN("FunctionType", FunctionType::Create, 2, CTYPESCTOR_FLAGS);
static const JSPropertySpec sFunctionProps[] = {
{ "argTypes", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(FunctionType::ArgTypesGetter), JSOP_NULLWRAPPER },
{ "returnType", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(FunctionType::ReturnTypeGetter), JSOP_NULLWRAPPER },
{ "abi", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(FunctionType::ABIGetter), JSOP_NULLWRAPPER },
{ "isVariadic", 0, CTYPESPROP_FLAGS,
JSOP_WRAPPER(FunctionType::IsVariadicGetter), JSOP_NULLWRAPPER },
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sFunctionInstanceFunctions[] = {
JS_FN("call", js_fun_call, 1, CDATAFN_FLAGS),
JS_FN("apply", js_fun_apply, 2, CDATAFN_FLAGS),
JS_FS_END
};
static JSClass sInt64ProtoClass = {
"Int64",
0,
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
static JSClass sUInt64ProtoClass = {
"UInt64",
0,
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub
};
static JSClass sInt64Class = {
"Int64",
JSCLASS_HAS_RESERVED_SLOTS(INT64_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, Int64Base::Finalize
};
static JSClass sUInt64Class = {
"UInt64",
JSCLASS_HAS_RESERVED_SLOTS(INT64_SLOTS),
JS_PropertyStub, JS_DeletePropertyStub, JS_PropertyStub, JS_StrictPropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, Int64Base::Finalize
};
static const JSFunctionSpec sInt64StaticFunctions[] = {
JS_FN("compare", Int64::Compare, 2, CTYPESFN_FLAGS),
JS_FN("lo", Int64::Lo, 1, CTYPESFN_FLAGS),
JS_FN("hi", Int64::Hi, 1, CTYPESFN_FLAGS),
JS_FN("join", Int64::Join, 2, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sUInt64StaticFunctions[] = {
JS_FN("compare", UInt64::Compare, 2, CTYPESFN_FLAGS),
JS_FN("lo", UInt64::Lo, 1, CTYPESFN_FLAGS),
JS_FN("hi", UInt64::Hi, 1, CTYPESFN_FLAGS),
JS_FN("join", UInt64::Join, 2, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sInt64Functions[] = {
JS_FN("toString", Int64::ToString, 0, CTYPESFN_FLAGS),
JS_FN("toSource", Int64::ToSource, 0, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSFunctionSpec sUInt64Functions[] = {
JS_FN("toString", UInt64::ToString, 0, CTYPESFN_FLAGS),
JS_FN("toSource", UInt64::ToSource, 0, CTYPESFN_FLAGS),
JS_FS_END
};
static const JSPropertySpec sModuleProps[] = {
{ "errno", 0, JSPROP_SHARED | JSPROP_PERMANENT,
JSOP_WRAPPER(CData::ErrnoGetter), JSOP_NULLWRAPPER },
#if defined(XP_WIN)
{ "winLastError", 0, JSPROP_SHARED | JSPROP_PERMANENT,
JSOP_WRAPPER(CData::LastErrorGetter), JSOP_NULLWRAPPER },
#endif // defined(XP_WIN)
{ 0, 0, 0, JSOP_NULLWRAPPER, JSOP_NULLWRAPPER }
};
static const JSFunctionSpec sModuleFunctions[] = {
JS_FN("CDataFinalizer", CDataFinalizer::Construct, 2, CTYPESFN_FLAGS),
JS_FN("open", Library::Open, 1, CTYPESFN_FLAGS),
JS_FN("cast", CData::Cast, 2, CTYPESFN_FLAGS),
JS_FN("getRuntime", CData::GetRuntime, 1, CTYPESFN_FLAGS),
JS_FN("libraryName", Library::Name, 1, CTYPESFN_FLAGS),
JS_FS_END
};
JS_ALWAYS_INLINE JSString*
NewUCString(JSContext* cx, const AutoString& from)
{
return JS_NewUCStringCopyN(cx, from.begin(), from.length());
}
/*
* Return a size rounded up to a multiple of a power of two.
*
* Note: |align| must be a power of 2.
*/
JS_ALWAYS_INLINE size_t
Align(size_t val, size_t align)
{
// Ensure that align is a power of two.
MOZ_ASSERT(align != 0 && (align & (align - 1)) == 0);
return ((val - 1) | (align - 1)) + 1;
}
static ABICode
GetABICode(JSObject* obj)
{
// make sure we have an object representing a CABI class,
// and extract the enumerated class type from the reserved slot.
if (JS_GetClass(obj) != &sCABIClass)
return INVALID_ABI;
jsval result = JS_GetReservedSlot(obj, SLOT_ABICODE);
return ABICode(JSVAL_TO_INT(result));
}
JSErrorFormatString ErrorFormatString[CTYPESERR_LIMIT] = {
#define MSG_DEF(name, number, count, exception, format) \
{ format, count, exception } ,
#include "ctypes.msg"
#undef MSG_DEF
};
const JSErrorFormatString*
GetErrorMessage(void* userRef, const char* locale, const unsigned errorNumber)
{
if (0 < errorNumber && errorNumber < CTYPESERR_LIMIT)
return &ErrorFormatString[errorNumber];
return NULL;
}
JSBool
TypeError(JSContext* cx, const char* expected, jsval actual)
{
JSString* str = JS_ValueToSource(cx, actual);
JSAutoByteString bytes;
const char* src;
if (str) {
src = bytes.encodeLatin1(cx, str);
if (!src)
return false;
} else {
JS_ClearPendingException(cx);
src = "<<error converting value to string>>";
}
JS_ReportErrorNumber(cx, GetErrorMessage, NULL,
CTYPESMSG_TYPE_ERROR, expected, src);
return false;
}
static JSObject*
InitCTypeClass(JSContext* cx, HandleObject parent)
{
JSFunction *fun = JS_DefineFunction(cx, parent, "CType", ConstructAbstract, 0,
CTYPESCTOR_FLAGS);
if (!fun)
return NULL;
RootedObject ctor(cx, JS_GetFunctionObject(fun));
RootedObject fnproto(cx);
if (!JS_GetPrototype(cx, ctor, fnproto.address()))
return NULL;
JS_ASSERT(ctor);
JS_ASSERT(fnproto);
// Set up ctypes.CType.prototype.
RootedObject prototype(cx, JS_NewObject(cx, &sCTypeProtoClass, fnproto, parent));
if (!prototype)
return NULL;
if (!JS_DefineProperty(cx, ctor, "prototype", OBJECT_TO_JSVAL(prototype),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
if (!JS_DefineProperty(cx, prototype, "constructor", OBJECT_TO_JSVAL(ctor),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
// Define properties and functions common to all CTypes.
if (!JS_DefineProperties(cx, prototype, sCTypeProps) ||
!JS_DefineFunctions(cx, prototype, sCTypeFunctions))
return NULL;
if (!JS_FreezeObject(cx, ctor) || !JS_FreezeObject(cx, prototype))
return NULL;
return prototype;
}
static JSObject*
InitABIClass(JSContext* cx, JSObject* parent)
{
RootedObject obj(cx, JS_NewObject(cx, NULL, NULL, NULL));
if (!obj)
return NULL;
if (!JS_DefineFunctions(cx, obj, sCABIFunctions))
return NULL;
return obj;
}
static JSObject*
InitCDataClass(JSContext* cx, HandleObject parent, HandleObject CTypeProto)
{
JSFunction* fun = JS_DefineFunction(cx, parent, "CData", ConstructAbstract, 0,
CTYPESCTOR_FLAGS);
if (!fun)
return NULL;
RootedObject ctor(cx, JS_GetFunctionObject(fun));
JS_ASSERT(ctor);
// Set up ctypes.CData.__proto__ === ctypes.CType.prototype.
// (Note that 'ctypes.CData instanceof Function' is still true, thanks to the
// prototype chain.)
if (!JS_SetPrototype(cx, ctor, CTypeProto))
return NULL;
// Set up ctypes.CData.prototype.
RootedObject prototype(cx, JS_NewObject(cx, &sCDataProtoClass, NULL, parent));
if (!prototype)
return NULL;
if (!JS_DefineProperty(cx, ctor, "prototype", OBJECT_TO_JSVAL(prototype),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
if (!JS_DefineProperty(cx, prototype, "constructor", OBJECT_TO_JSVAL(ctor),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
// Define properties and functions common to all CDatas.
if (!JS_DefineProperties(cx, prototype, sCDataProps) ||
!JS_DefineFunctions(cx, prototype, sCDataFunctions))
return NULL;
if (//!JS_FreezeObject(cx, prototype) || // XXX fixme - see bug 541212!
!JS_FreezeObject(cx, ctor))
return NULL;
return prototype;
}
static JSBool
DefineABIConstant(JSContext* cx,
HandleObject parent,
const char* name,
ABICode code,
HandleObject prototype)
{
RootedObject obj(cx, JS_DefineObject(cx, parent, name, &sCABIClass, prototype,
JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT));
if (!obj)
return false;
JS_SetReservedSlot(obj, SLOT_ABICODE, INT_TO_JSVAL(code));
return JS_FreezeObject(cx, obj);
}
// Set up a single type constructor for
// ctypes.{Pointer,Array,Struct,Function}Type.
static JSBool
InitTypeConstructor(JSContext* cx,
HandleObject parent,
HandleObject CTypeProto,
HandleObject CDataProto,
const JSFunctionSpec spec,
const JSFunctionSpec* fns,
const JSPropertySpec* props,
const JSFunctionSpec* instanceFns,
const JSPropertySpec* instanceProps,
MutableHandleObject typeProto,
MutableHandleObject dataProto)
{
JSFunction* fun = js::DefineFunctionWithReserved(cx, parent, spec.name, spec.call.op,
spec.nargs, spec.flags);
if (!fun)
return false;
RootedObject obj(cx, JS_GetFunctionObject(fun));
if (!obj)
return false;
// Set up the .prototype and .prototype.constructor properties.
typeProto.set(JS_NewObject(cx, &sCTypeProtoClass, CTypeProto, parent));
if (!typeProto)
return false;
// Define property before proceeding, for GC safety.
if (!JS_DefineProperty(cx, obj, "prototype", OBJECT_TO_JSVAL(typeProto),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
if (fns && !JS_DefineFunctions(cx, typeProto, fns))
return false;
if (!JS_DefineProperties(cx, typeProto, props))
return false;
if (!JS_DefineProperty(cx, typeProto, "constructor", OBJECT_TO_JSVAL(obj),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
// Stash ctypes.{Pointer,Array,Struct}Type.prototype on a reserved slot of
// the type constructor, for faster lookup.
js::SetFunctionNativeReserved(obj, SLOT_FN_CTORPROTO, OBJECT_TO_JSVAL(typeProto));
// Create an object to serve as the common ancestor for all CData objects
// created from the given type constructor. This has ctypes.CData.prototype
// as its prototype, such that it inherits the properties and functions
// common to all CDatas.
dataProto.set(JS_NewObject(cx, &sCDataProtoClass, CDataProto, parent));
if (!dataProto)
return false;
// Define functions and properties on the 'dataProto' object that are common
// to all CData objects created from this type constructor. (These will
// become functions and properties on CData objects created from this type.)
if (instanceFns && !JS_DefineFunctions(cx, dataProto, instanceFns))
return false;
if (instanceProps && !JS_DefineProperties(cx, dataProto, instanceProps))
return false;
// Link the type prototype to the data prototype.
JS_SetReservedSlot(typeProto, SLOT_OURDATAPROTO, OBJECT_TO_JSVAL(dataProto));
if (!JS_FreezeObject(cx, obj) ||
//!JS_FreezeObject(cx, dataProto) || // XXX fixme - see bug 541212!
!JS_FreezeObject(cx, typeProto))
return false;
return true;
}
JSObject*
InitInt64Class(JSContext* cx,
HandleObject parent,
JSClass* clasp,
JSNative construct,
const JSFunctionSpec* fs,
const JSFunctionSpec* static_fs)
{
// Init type class and constructor
RootedObject prototype(cx, JS_InitClass(cx, parent, NULL, clasp, construct,
0, NULL, fs, NULL, static_fs));
if (!prototype)
return NULL;
RootedObject ctor(cx, JS_GetConstructor(cx, prototype));
if (!ctor)
return NULL;
if (!JS_FreezeObject(cx, ctor))
return NULL;
// Redefine the 'join' function as an extended native and stash
// ctypes.{Int64,UInt64}.prototype in a reserved slot of the new function.
JS_ASSERT(clasp == &sInt64ProtoClass || clasp == &sUInt64ProtoClass);
JSNative native = (clasp == &sInt64ProtoClass) ? Int64::Join : UInt64::Join;
JSFunction* fun = js::DefineFunctionWithReserved(cx, ctor, "join", native,
2, CTYPESFN_FLAGS);
if (!fun)
return NULL;
js::SetFunctionNativeReserved(fun, SLOT_FN_INT64PROTO,
OBJECT_TO_JSVAL(prototype));
if (!JS_FreezeObject(cx, prototype))
return NULL;
return prototype;
}
static void
AttachProtos(JSObject* proto, const AutoObjectVector& protos)
{
// For a given 'proto' of [[Class]] "CTypeProto", attach each of the 'protos'
// to the appropriate CTypeProtoSlot. (SLOT_CTYPES is the last slot
// of [[Class]] "CTypeProto" that we fill in this automated manner.)
for (uint32_t i = 0; i <= SLOT_CTYPES; ++i)
JS_SetReservedSlot(proto, i, OBJECT_TO_JSVAL(protos[i]));
}
JSBool
InitTypeClasses(JSContext* cx, HandleObject parent)
{
// Initialize the ctypes.CType class. This acts as an abstract base class for
// the various types, and provides the common API functions. It has:
// * [[Class]] "Function"
// * __proto__ === Function.prototype
// * A constructor that throws a TypeError. (You can't construct an
// abstract type!)
// * 'prototype' property:
// * [[Class]] "CTypeProto"
// * __proto__ === Function.prototype
// * A constructor that throws a TypeError. (You can't construct an
// abstract type instance!)
// * 'constructor' property === ctypes.CType
// * Provides properties and functions common to all CTypes.
RootedObject CTypeProto(cx, InitCTypeClass(cx, parent));
if (!CTypeProto)
return false;
// Initialize the ctypes.CData class. This acts as an abstract base class for
// instances of the various types, and provides the common API functions.
// It has:
// * [[Class]] "Function"
// * __proto__ === Function.prototype
// * A constructor that throws a TypeError. (You can't construct an
// abstract type instance!)
// * 'prototype' property:
// * [[Class]] "CDataProto"
// * 'constructor' property === ctypes.CData
// * Provides properties and functions common to all CDatas.
RootedObject CDataProto(cx, InitCDataClass(cx, parent, CTypeProto));
if (!CDataProto)
return false;
// Link CTypeProto to CDataProto.
JS_SetReservedSlot(CTypeProto, SLOT_OURDATAPROTO, OBJECT_TO_JSVAL(CDataProto));
// Create and attach the special class constructors: ctypes.PointerType,
// ctypes.ArrayType, ctypes.StructType, and ctypes.FunctionType.
// Each of these constructors 'c' has, respectively:
// * [[Class]] "Function"
// * __proto__ === Function.prototype
// * A constructor that creates a user-defined type.
// * 'prototype' property:
// * [[Class]] "CTypeProto"
// * __proto__ === ctypes.CType.prototype
// * 'constructor' property === 'c'
// We also construct an object 'p' to serve, given a type object 't'
// constructed from one of these type constructors, as
// 't.prototype.__proto__'. This object has:
// * [[Class]] "CDataProto"
// * __proto__ === ctypes.CData.prototype
// * Properties and functions common to all CDatas.
// Therefore an instance 't' of ctypes.{Pointer,Array,Struct,Function}Type
// will have, resp.:
// * [[Class]] "CType"
// * __proto__ === ctypes.{Pointer,Array,Struct,Function}Type.prototype
// * A constructor which creates and returns a CData object, containing
// binary data of the given type.
// * 'prototype' property:
// * [[Class]] "CDataProto"
// * __proto__ === 'p', the prototype object from above
// * 'constructor' property === 't'
AutoObjectVector protos(cx);
protos.resize(CTYPEPROTO_SLOTS);
if (!InitTypeConstructor(cx, parent, CTypeProto, CDataProto,
sPointerFunction, NULL, sPointerProps,
sPointerInstanceFunctions, sPointerInstanceProps,
protos.handleAt(SLOT_POINTERPROTO), protos.handleAt(SLOT_POINTERDATAPROTO)))
return false;
if (!InitTypeConstructor(cx, parent, CTypeProto, CDataProto,
sArrayFunction, NULL, sArrayProps,
sArrayInstanceFunctions, sArrayInstanceProps,
protos.handleAt(SLOT_ARRAYPROTO), protos.handleAt(SLOT_ARRAYDATAPROTO)))
return false;
if (!InitTypeConstructor(cx, parent, CTypeProto, CDataProto,
sStructFunction, sStructFunctions, sStructProps,
sStructInstanceFunctions, NULL,
protos.handleAt(SLOT_STRUCTPROTO), protos.handleAt(SLOT_STRUCTDATAPROTO)))
return false;
if (!InitTypeConstructor(cx, parent, CTypeProto, protos.handleAt(SLOT_POINTERDATAPROTO),
sFunctionFunction, NULL, sFunctionProps, sFunctionInstanceFunctions, NULL,
protos.handleAt(SLOT_FUNCTIONPROTO), protos.handleAt(SLOT_FUNCTIONDATAPROTO)))
return false;
protos[SLOT_CDATAPROTO] = CDataProto;
// Create and attach the ctypes.{Int64,UInt64} constructors.
// Each of these has, respectively:
// * [[Class]] "Function"
// * __proto__ === Function.prototype
// * A constructor that creates a ctypes.{Int64,UInt64} object, respectively.
// * 'prototype' property:
// * [[Class]] {"Int64Proto","UInt64Proto"}
// * 'constructor' property === ctypes.{Int64,UInt64}
protos[SLOT_INT64PROTO] = InitInt64Class(cx, parent, &sInt64ProtoClass,
Int64::Construct, sInt64Functions, sInt64StaticFunctions);
if (!protos[SLOT_INT64PROTO])
return false;
protos[SLOT_UINT64PROTO] = InitInt64Class(cx, parent, &sUInt64ProtoClass,
UInt64::Construct, sUInt64Functions, sUInt64StaticFunctions);
if (!protos[SLOT_UINT64PROTO])
return false;
// Finally, store a pointer to the global ctypes object.
// Note that there is no other reliable manner of locating this object.
protos[SLOT_CTYPES] = parent;
// Attach the prototypes just created to each of ctypes.CType.prototype,
// and the special type constructors, so we can access them when constructing
// instances of those types.
AttachProtos(CTypeProto, protos);
AttachProtos(protos[SLOT_POINTERPROTO], protos);
AttachProtos(protos[SLOT_ARRAYPROTO], protos);
AttachProtos(protos[SLOT_STRUCTPROTO], protos);
AttachProtos(protos[SLOT_FUNCTIONPROTO], protos);
RootedObject ABIProto(cx, InitABIClass(cx, parent));
if (!ABIProto)
return false;
// Attach objects representing ABI constants.
if (!DefineABIConstant(cx, parent, "default_abi", ABI_DEFAULT, ABIProto) ||
!DefineABIConstant(cx, parent, "stdcall_abi", ABI_STDCALL, ABIProto) ||
!DefineABIConstant(cx, parent, "winapi_abi", ABI_WINAPI, ABIProto))
return false;
// Create objects representing the builtin types, and attach them to the
// ctypes object. Each type object 't' has:
// * [[Class]] "CType"
// * __proto__ === ctypes.CType.prototype
// * A constructor which creates and returns a CData object, containing
// binary data of the given type.
// * 'prototype' property:
// * [[Class]] "CDataProto"
// * __proto__ === ctypes.CData.prototype
// * 'constructor' property === 't'
#define DEFINE_TYPE(name, type, ffiType) \
RootedObject typeObj_##name(cx, \
CType::DefineBuiltin(cx, parent, #name, CTypeProto, CDataProto, #name, \
TYPE_##name, INT_TO_JSVAL(sizeof(type)), \
INT_TO_JSVAL(ffiType.alignment), &ffiType)); \
if (!typeObj_##name) \
return false;
#include "typedefs.h"
// Alias 'ctypes.unsigned' as 'ctypes.unsigned_int', since they represent
// the same type in C.
if (!JS_DefineProperty(cx, parent, "unsigned",
OBJECT_TO_JSVAL(typeObj_unsigned_int), NULL, NULL,
JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
// Create objects representing the special types void_t and voidptr_t.
RootedObject typeObj(cx,
CType::DefineBuiltin(cx, parent, "void_t", CTypeProto, CDataProto, "void",
TYPE_void_t, JSVAL_VOID, JSVAL_VOID, &ffi_type_void));
if (!typeObj)
return false;
typeObj = PointerType::CreateInternal(cx, typeObj);
if (!typeObj)
return false;
if (!JS_DefineProperty(cx, parent, "voidptr_t", OBJECT_TO_JSVAL(typeObj),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
return true;
}
bool
IsCTypesGlobal(JSObject* obj)
{
return JS_GetClass(obj) == &sCTypesGlobalClass;
}
// Get the JSCTypesCallbacks struct from the 'ctypes' object 'obj'.
JSCTypesCallbacks*
GetCallbacks(JSObject* obj)
{
JS_ASSERT(IsCTypesGlobal(obj));
jsval result = JS_GetReservedSlot(obj, SLOT_CALLBACKS);
if (JSVAL_IS_VOID(result))
return NULL;
return static_cast<JSCTypesCallbacks*>(JSVAL_TO_PRIVATE(result));
}
// Utility function to access a property of an object as an object
// returns false and sets the error if the property does not exist
// or is not an object
bool GetObjectProperty(JSContext *cx, HandleObject obj,
const char *property, MutableHandleObject result)
{
RootedValue val(cx);
if (!JS_GetProperty(cx, obj, property, val.address())) {
return false;
}
if (JSVAL_IS_PRIMITIVE(val)) {
JS_ReportError(cx, "missing or non-object field");
return false;
}
result.set(JSVAL_TO_OBJECT(val));
return true;
}
} /* namespace ctypes */
} /* namespace js */
using namespace js;
using namespace js::ctypes;
JS_PUBLIC_API(JSBool)
JS_InitCTypesClass(JSContext* cx, JSObject *globalArg)
{
RootedObject global(cx, globalArg);
// attach ctypes property to global object
RootedObject ctypes(cx, JS_NewObject(cx, &sCTypesGlobalClass, NULL, NULL));
if (!ctypes)
return false;
if (!JS_DefineProperty(cx, global, "ctypes", OBJECT_TO_JSVAL(ctypes),
JS_PropertyStub, JS_StrictPropertyStub, JSPROP_READONLY | JSPROP_PERMANENT)){
return false;
}
if (!InitTypeClasses(cx, ctypes))
return false;
// attach API functions and properties
if (!JS_DefineFunctions(cx, ctypes, sModuleFunctions) ||
!JS_DefineProperties(cx, ctypes, sModuleProps))
return false;
// Set up ctypes.CDataFinalizer.prototype.
RootedObject ctor(cx);
if (!GetObjectProperty(cx, ctypes, "CDataFinalizer", &ctor))
return false;
RootedObject prototype(cx, JS_NewObject(cx, &sCDataFinalizerProtoClass, NULL, ctypes));
if (!prototype)
return false;
if (!JS_DefineProperties(cx, prototype, sCDataFinalizerProps) ||
!JS_DefineFunctions(cx, prototype, sCDataFinalizerFunctions))
return false;
if (!JS_DefineProperty(cx, ctor, "prototype", OBJECT_TO_JSVAL(prototype),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
if (!JS_DefineProperty(cx, prototype, "constructor", OBJECT_TO_JSVAL(ctor),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
// Seal the ctypes object, to prevent modification.
return JS_FreezeObject(cx, ctypes);
}
JS_PUBLIC_API(void)
JS_SetCTypesCallbacks(JSObject *ctypesObj, JSCTypesCallbacks* callbacks)
{
JS_ASSERT(callbacks);
JS_ASSERT(IsCTypesGlobal(ctypesObj));
// Set the callbacks on a reserved slot.
JS_SetReservedSlot(ctypesObj, SLOT_CALLBACKS, PRIVATE_TO_JSVAL(callbacks));
}
namespace js {
JS_FRIEND_API(size_t)
SizeOfDataIfCDataObject(JSMallocSizeOfFun mallocSizeOf, JSObject *obj)
{
if (!CData::IsCData(obj))
return 0;
size_t n = 0;
jsval slot = JS_GetReservedSlot(obj, ctypes::SLOT_OWNS);
if (!JSVAL_IS_VOID(slot)) {
JSBool owns = JSVAL_TO_BOOLEAN(slot);
slot = JS_GetReservedSlot(obj, ctypes::SLOT_DATA);
if (!JSVAL_IS_VOID(slot)) {
char** buffer = static_cast<char**>(JSVAL_TO_PRIVATE(slot));
n += mallocSizeOf(buffer);
if (owns)
n += mallocSizeOf(*buffer);
}
}
return n;
}
namespace ctypes {
/*******************************************************************************
** Type conversion functions
*******************************************************************************/
// Enforce some sanity checks on type widths and properties.
// Where the architecture is 64-bit, make sure it's LP64 or LLP64. (ctypes.int
// autoconverts to a primitive JS number; to support ILP64 architectures, it
// would need to autoconvert to an Int64 object instead. Therefore we enforce
// this invariant here.)
JS_STATIC_ASSERT(sizeof(bool) == 1 || sizeof(bool) == 4);
JS_STATIC_ASSERT(sizeof(char) == 1);
JS_STATIC_ASSERT(sizeof(short) == 2);
JS_STATIC_ASSERT(sizeof(int) == 4);
JS_STATIC_ASSERT(sizeof(unsigned) == 4);
JS_STATIC_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
JS_STATIC_ASSERT(sizeof(long long) == 8);
JS_STATIC_ASSERT(sizeof(size_t) == sizeof(uintptr_t));
JS_STATIC_ASSERT(sizeof(float) == 4);
JS_STATIC_ASSERT(sizeof(PRFuncPtr) == sizeof(void*));
JS_STATIC_ASSERT(numeric_limits<double>::is_signed);
// Templated helper to convert FromType to TargetType, for the default case
// where the trivial POD constructor will do.
template<class TargetType, class FromType>
struct ConvertImpl {
static JS_ALWAYS_INLINE TargetType Convert(FromType d) {
return TargetType(d);
}
};
#ifdef _MSC_VER
// MSVC can't perform double to unsigned __int64 conversion when the
// double is greater than 2^63 - 1. Help it along a little.
template<>
struct ConvertImpl<uint64_t, double> {
static JS_ALWAYS_INLINE uint64_t Convert(double d) {
return d > 0x7fffffffffffffffui64 ?
uint64_t(d - 0x8000000000000000ui64) + 0x8000000000000000ui64 :
uint64_t(d);
}
};
#endif
// C++ doesn't guarantee that exact values are the only ones that will
// round-trip. In fact, on some platforms, including SPARC, there are pairs of
// values, a uint64_t and a double, such that neither value is exactly
// representable in the other type, but they cast to each other.
#ifdef SPARC
// Simulate x86 overflow behavior
template<>
struct ConvertImpl<uint64_t, double> {
static JS_ALWAYS_INLINE uint64_t Convert(double d) {
return d >= 0xffffffffffffffff ?
0x8000000000000000 : uint64_t(d);
}
};
template<>
struct ConvertImpl<int64_t, double> {
static JS_ALWAYS_INLINE int64_t Convert(double d) {
return d >= 0x7fffffffffffffff ?
0x8000000000000000 : int64_t(d);
}
};
#endif
template<class TargetType, class FromType>
static JS_ALWAYS_INLINE TargetType Convert(FromType d)
{
return ConvertImpl<TargetType, FromType>::Convert(d);
}
template<class TargetType, class FromType>
static JS_ALWAYS_INLINE bool IsAlwaysExact()
{
// Return 'true' if TargetType can always exactly represent FromType.
// This means that:
// 1) TargetType must be the same or more bits wide as FromType. For integers
// represented in 'n' bits, unsigned variants will have 'n' digits while
// signed will have 'n - 1'. For floating point types, 'digits' is the
// mantissa width.
// 2) If FromType is signed, TargetType must also be signed. (Floating point
// types are always signed.)
// 3) If TargetType is an exact integral type, FromType must be also.
if (numeric_limits<TargetType>::digits < numeric_limits<FromType>::digits)
return false;
if (numeric_limits<FromType>::is_signed &&
!numeric_limits<TargetType>::is_signed)
return false;
if (!numeric_limits<FromType>::is_exact &&
numeric_limits<TargetType>::is_exact)
return false;
return true;
}
// Templated helper to determine if FromType 'i' converts losslessly to
// TargetType 'j'. Default case where both types are the same signedness.
template<class TargetType, class FromType, bool TargetSigned, bool FromSigned>
struct IsExactImpl {
static JS_ALWAYS_INLINE bool Test(FromType i, TargetType j) {
JS_STATIC_ASSERT(numeric_limits<TargetType>::is_exact);
return FromType(j) == i;
}
};
// Specialization where TargetType is unsigned, FromType is signed.
template<class TargetType, class FromType>
struct IsExactImpl<TargetType, FromType, false, true> {
static JS_ALWAYS_INLINE bool Test(FromType i, TargetType j) {
JS_STATIC_ASSERT(numeric_limits<TargetType>::is_exact);
return i >= 0 && FromType(j) == i;
}
};
// Specialization where TargetType is signed, FromType is unsigned.
template<class TargetType, class FromType>
struct IsExactImpl<TargetType, FromType, true, false> {
static JS_ALWAYS_INLINE bool Test(FromType i, TargetType j) {
JS_STATIC_ASSERT(numeric_limits<TargetType>::is_exact);
return TargetType(i) >= 0 && FromType(j) == i;
}
};
// Convert FromType 'i' to TargetType 'result', returning true iff 'result'
// is an exact representation of 'i'.
template<class TargetType, class FromType>
static JS_ALWAYS_INLINE bool ConvertExact(FromType i, TargetType* result)
{
// Require that TargetType is integral, to simplify conversion.
JS_STATIC_ASSERT(numeric_limits<TargetType>::is_exact);
*result = Convert<TargetType>(i);
// See if we can avoid a dynamic check.
if (IsAlwaysExact<TargetType, FromType>())
return true;
// Return 'true' if 'i' is exactly representable in 'TargetType'.
return IsExactImpl<TargetType,
FromType,
numeric_limits<TargetType>::is_signed,
numeric_limits<FromType>::is_signed>::Test(i, *result);
}
// Templated helper to determine if Type 'i' is negative. Default case
// where IntegerType is unsigned.
template<class Type, bool IsSigned>
struct IsNegativeImpl {
static JS_ALWAYS_INLINE bool Test(Type i) {
return false;
}
};
// Specialization where Type is signed.
template<class Type>
struct IsNegativeImpl<Type, true> {
static JS_ALWAYS_INLINE bool Test(Type i) {
return i < 0;
}
};
// Determine whether Type 'i' is negative.
template<class Type>
static JS_ALWAYS_INLINE bool IsNegative(Type i)
{
return IsNegativeImpl<Type, numeric_limits<Type>::is_signed>::Test(i);
}
// Implicitly convert val to bool, allowing JSBool, int, and double
// arguments numerically equal to 0 or 1.
static bool
jsvalToBool(JSContext* cx, jsval val, bool* result)
{
if (JSVAL_IS_BOOLEAN(val)) {
*result = JSVAL_TO_BOOLEAN(val) != JS_FALSE;
return true;
}
if (JSVAL_IS_INT(val)) {
int32_t i = JSVAL_TO_INT(val);
*result = i != 0;
return i == 0 || i == 1;
}
if (JSVAL_IS_DOUBLE(val)) {
double d = JSVAL_TO_DOUBLE(val);
*result = d != 0;
// Allow -0.
return d == 1 || d == 0;
}
// Don't silently convert null to bool. It's probably a mistake.
return false;
}
// Implicitly convert val to IntegerType, allowing JSBool, int, double,
// Int64, UInt64, and CData integer types 't' where all values of 't' are
// representable by IntegerType.
template<class IntegerType>
static bool
jsvalToInteger(JSContext* cx, jsval val, IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
if (JSVAL_IS_INT(val)) {
// Make sure the integer fits in the alotted precision, and has the right
// sign.
int32_t i = JSVAL_TO_INT(val);
return ConvertExact(i, result);
}
if (JSVAL_IS_DOUBLE(val)) {
// Don't silently lose bits here -- check that val really is an
// integer value, and has the right sign.
double d = JSVAL_TO_DOUBLE(val);
return ConvertExact(d, result);
}
if (!JSVAL_IS_PRIMITIVE(val)) {
JSObject* obj = JSVAL_TO_OBJECT(val);
if (CData::IsCData(obj)) {
JSObject* typeObj = CData::GetCType(obj);
void* data = CData::GetData(obj);
// Check whether the source type is always representable, with exact
// precision, by the target type. If it is, convert the value.
switch (CType::GetTypeCode(typeObj)) {
#define DEFINE_INT_TYPE(name, fromType, ffiType) \
case TYPE_##name: \
if (!IsAlwaysExact<IntegerType, fromType>()) \
return false; \
*result = IntegerType(*static_cast<fromType*>(data)); \
return true;
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#include "typedefs.h"
case TYPE_void_t:
case TYPE_bool:
case TYPE_float:
case TYPE_double:
case TYPE_float32_t:
case TYPE_float64_t:
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char:
case TYPE_jschar:
case TYPE_pointer:
case TYPE_function:
case TYPE_array:
case TYPE_struct:
// Not a compatible number type.
return false;
}
}
if (Int64::IsInt64(obj)) {
// Make sure the integer fits in IntegerType.
int64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (UInt64::IsUInt64(obj)) {
// Make sure the integer fits in IntegerType.
uint64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (CDataFinalizer::IsCDataFinalizer(obj)) {
RootedValue innerData(cx);
if (!CDataFinalizer::GetValue(cx, obj, innerData.address())) {
return false; // Nothing to convert
}
return jsvalToInteger(cx, innerData, result);
}
return false;
}
if (JSVAL_IS_BOOLEAN(val)) {
// Implicitly promote boolean values to 0 or 1, like C.
*result = JSVAL_TO_BOOLEAN(val);
JS_ASSERT(*result == 0 || *result == 1);
return true;
}
// Don't silently convert null to an integer. It's probably a mistake.
return false;
}
// Implicitly convert val to FloatType, allowing int, double,
// Int64, UInt64, and CData numeric types 't' where all values of 't' are
// representable by FloatType.
template<class FloatType>
static bool
jsvalToFloat(JSContext *cx, jsval val, FloatType* result)
{
JS_STATIC_ASSERT(!numeric_limits<FloatType>::is_exact);
// The following casts may silently throw away some bits, but there's
// no good way around it. Sternly requiring that the 64-bit double
// argument be exactly representable as a 32-bit float is
// unrealistic: it would allow 1/2 to pass but not 1/3.
if (JSVAL_IS_INT(val)) {
*result = FloatType(JSVAL_TO_INT(val));
return true;
}
if (JSVAL_IS_DOUBLE(val)) {
*result = FloatType(JSVAL_TO_DOUBLE(val));
return true;
}
if (!JSVAL_IS_PRIMITIVE(val)) {
JSObject* obj = JSVAL_TO_OBJECT(val);
if (CData::IsCData(obj)) {
JSObject* typeObj = CData::GetCType(obj);
void* data = CData::GetData(obj);
// Check whether the source type is always representable, with exact
// precision, by the target type. If it is, convert the value.
switch (CType::GetTypeCode(typeObj)) {
#define DEFINE_FLOAT_TYPE(name, fromType, ffiType) \
case TYPE_##name: \
if (!IsAlwaysExact<FloatType, fromType>()) \
return false; \
*result = FloatType(*static_cast<fromType*>(data)); \
return true;
#define DEFINE_INT_TYPE(x, y, z) DEFINE_FLOAT_TYPE(x, y, z)
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#include "typedefs.h"
case TYPE_void_t:
case TYPE_bool:
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char:
case TYPE_jschar:
case TYPE_pointer:
case TYPE_function:
case TYPE_array:
case TYPE_struct:
// Not a compatible number type.
return false;
}
}
}
// Don't silently convert true to 1.0 or false to 0.0, even though C/C++
// does it. It's likely to be a mistake.
return false;
}
template<class IntegerType>
static bool
StringToInteger(JSContext* cx, JSString* string, IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
const jschar* cp = string->getChars(NULL);
if (!cp)
return false;
const jschar* end = cp + string->length();
if (cp == end)
return false;
IntegerType sign = 1;
if (cp[0] == '-') {
if (!numeric_limits<IntegerType>::is_signed)
return false;
sign = -1;
++cp;
}
// Assume base-10, unless the string begins with '0x' or '0X'.
IntegerType base = 10;
if (end - cp > 2 && cp[0] == '0' && (cp[1] == 'x' || cp[1] == 'X')) {
cp += 2;
base = 16;
}
// Scan the string left to right and build the number,
// checking for valid characters 0 - 9, a - f, A - F and overflow.
IntegerType i = 0;
while (cp != end) {
jschar c = *cp++;
if (c >= '0' && c <= '9')
c -= '0';
else if (base == 16 && c >= 'a' && c <= 'f')
c = c - 'a' + 10;
else if (base == 16 && c >= 'A' && c <= 'F')
c = c - 'A' + 10;
else
return false;
IntegerType ii = i;
i = ii * base + sign * c;
if (i / base != ii) // overflow
return false;
}
*result = i;
return true;
}
// Implicitly convert val to IntegerType, allowing int, double,
// Int64, UInt64, and optionally a decimal or hexadecimal string argument.
// (This is common code shared by jsvalToSize and the Int64/UInt64 constructors.)
template<class IntegerType>
static bool
jsvalToBigInteger(JSContext* cx,
jsval val,
bool allowString,
IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
if (JSVAL_IS_INT(val)) {
// Make sure the integer fits in the alotted precision, and has the right
// sign.
int32_t i = JSVAL_TO_INT(val);
return ConvertExact(i, result);
}
if (JSVAL_IS_DOUBLE(val)) {
// Don't silently lose bits here -- check that val really is an
// integer value, and has the right sign.
double d = JSVAL_TO_DOUBLE(val);
return ConvertExact(d, result);
}
if (allowString && JSVAL_IS_STRING(val)) {
// Allow conversion from base-10 or base-16 strings, provided the result
// fits in IntegerType. (This allows an Int64 or UInt64 object to be passed
// to the JS array element operator, which will automatically call
// toString() on the object for us.)
return StringToInteger(cx, JSVAL_TO_STRING(val), result);
}
if (!JSVAL_IS_PRIMITIVE(val)) {
// Allow conversion from an Int64 or UInt64 object directly.
JSObject* obj = JSVAL_TO_OBJECT(val);
if (UInt64::IsUInt64(obj)) {
// Make sure the integer fits in IntegerType.
uint64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (Int64::IsInt64(obj)) {
// Make sure the integer fits in IntegerType.
int64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (CDataFinalizer::IsCDataFinalizer(obj)) {
RootedValue innerData(cx);
if (!CDataFinalizer::GetValue(cx, obj, innerData.address())) {
return false; // Nothing to convert
}
return jsvalToBigInteger(cx, innerData, allowString, result);
}
}
return false;
}
// Implicitly convert val to a size value, where the size value is represented
// by size_t but must also fit in a double.
static bool
jsvalToSize(JSContext* cx, jsval val, bool allowString, size_t* result)
{
if (!jsvalToBigInteger(cx, val, allowString, result))
return false;
// Also check that the result fits in a double.
return Convert<size_t>(double(*result)) == *result;
}
// Implicitly convert val to IntegerType, allowing int, double,
// Int64, UInt64, and optionally a decimal or hexadecimal string argument.
// (This is common code shared by jsvalToSize and the Int64/UInt64 constructors.)
template<class IntegerType>
static bool
jsidToBigInteger(JSContext* cx,
jsid val,
bool allowString,
IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
if (JSID_IS_INT(val)) {
// Make sure the integer fits in the alotted precision, and has the right
// sign.
int32_t i = JSID_TO_INT(val);
return ConvertExact(i, result);
}
if (allowString && JSID_IS_STRING(val)) {
// Allow conversion from base-10 or base-16 strings, provided the result
// fits in IntegerType. (This allows an Int64 or UInt64 object to be passed
// to the JS array element operator, which will automatically call
// toString() on the object for us.)
return StringToInteger(cx, JSID_TO_STRING(val), result);
}
if (JSID_IS_OBJECT(val)) {
// Allow conversion from an Int64 or UInt64 object directly.
JSObject* obj = JSID_TO_OBJECT(val);
if (UInt64::IsUInt64(obj)) {
// Make sure the integer fits in IntegerType.
uint64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
if (Int64::IsInt64(obj)) {
// Make sure the integer fits in IntegerType.
int64_t i = Int64Base::GetInt(obj);
return ConvertExact(i, result);
}
}
return false;
}
// Implicitly convert val to a size value, where the size value is represented
// by size_t but must also fit in a double.
static bool
jsidToSize(JSContext* cx, jsid val, bool allowString, size_t* result)
{
if (!jsidToBigInteger(cx, val, allowString, result))
return false;
// Also check that the result fits in a double.
return Convert<size_t>(double(*result)) == *result;
}
// Implicitly convert a size value to a jsval, ensuring that the size_t value
// fits in a double.
static JSBool
SizeTojsval(JSContext* cx, size_t size, jsval* result)
{
if (Convert<size_t>(double(size)) != size) {
JS_ReportError(cx, "size overflow");
return false;
}
*result = JS_NumberValue(double(size));
return true;
}
// Forcefully convert val to IntegerType when explicitly requested.
template<class IntegerType>
static bool
jsvalToIntegerExplicit(jsval val, IntegerType* result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
if (JSVAL_IS_DOUBLE(val)) {
// Convert -Inf, Inf, and NaN to 0; otherwise, convert by C-style cast.
double d = JSVAL_TO_DOUBLE(val);
*result = mozilla::IsFinite(d) ? IntegerType(d) : 0;
return true;
}
if (!JSVAL_IS_PRIMITIVE(val)) {
// Convert Int64 and UInt64 values by C-style cast.
JSObject* obj = JSVAL_TO_OBJECT(val);
if (Int64::IsInt64(obj)) {
int64_t i = Int64Base::GetInt(obj);
*result = IntegerType(i);
return true;
}
if (UInt64::IsUInt64(obj)) {
uint64_t i = Int64Base::GetInt(obj);
*result = IntegerType(i);
return true;
}
}
return false;
}
// Forcefully convert val to a pointer value when explicitly requested.
static bool
jsvalToPtrExplicit(JSContext* cx, jsval val, uintptr_t* result)
{
if (JSVAL_IS_INT(val)) {
// int32_t always fits in intptr_t. If the integer is negative, cast through
// an intptr_t intermediate to sign-extend.
int32_t i = JSVAL_TO_INT(val);
*result = i < 0 ? uintptr_t(intptr_t(i)) : uintptr_t(i);
return true;
}
if (JSVAL_IS_DOUBLE(val)) {
double d = JSVAL_TO_DOUBLE(val);
if (d < 0) {
// Cast through an intptr_t intermediate to sign-extend.
intptr_t i = Convert<intptr_t>(d);
if (double(i) != d)
return false;
*result = uintptr_t(i);
return true;
}
// Don't silently lose bits here -- check that val really is an
// integer value, and has the right sign.
*result = Convert<uintptr_t>(d);
return double(*result) == d;
}
if (!JSVAL_IS_PRIMITIVE(val)) {
JSObject* obj = JSVAL_TO_OBJECT(val);
if (Int64::IsInt64(obj)) {
int64_t i = Int64Base::GetInt(obj);
intptr_t p = intptr_t(i);
// Make sure the integer fits in the alotted precision.
if (int64_t(p) != i)
return false;
*result = uintptr_t(p);
return true;
}
if (UInt64::IsUInt64(obj)) {
uint64_t i = Int64Base::GetInt(obj);
// Make sure the integer fits in the alotted precision.
*result = uintptr_t(i);
return uint64_t(*result) == i;
}
}
return false;
}
template<class IntegerType, class CharType, size_t N, class AP>
void
IntegerToString(IntegerType i, int radix, Vector<CharType, N, AP>& result)
{
JS_STATIC_ASSERT(numeric_limits<IntegerType>::is_exact);
// The buffer must be big enough for all the bits of IntegerType to fit,
// in base-2, including '-'.
CharType buffer[sizeof(IntegerType) * 8 + 1];
CharType* end = buffer + sizeof(buffer) / sizeof(CharType);
CharType* cp = end;
// Build the string in reverse. We use multiplication and subtraction
// instead of modulus because that's much faster.
const bool isNegative = IsNegative(i);
size_t sign = isNegative ? -1 : 1;
do {
IntegerType ii = i / IntegerType(radix);
size_t index = sign * size_t(i - ii * IntegerType(radix));
*--cp = "0123456789abcdefghijklmnopqrstuvwxyz"[index];
i = ii;
} while (i != 0);
if (isNegative)
*--cp = '-';
JS_ASSERT(cp >= buffer);
result.append(cp, end);
}
template<class CharType>
static size_t
strnlen(const CharType* begin, size_t max)
{
for (const CharType* s = begin; s != begin + max; ++s)
if (*s == 0)
return s - begin;
return max;
}
// Convert C binary value 'data' of CType 'typeObj' to a JS primitive, where
// possible; otherwise, construct and return a CData object. The following
// semantics apply when constructing a CData object for return:
// * If 'wantPrimitive' is true, the caller indicates that 'result' must be
// a JS primitive, and ConvertToJS will fail if 'result' would be a CData
// object. Otherwise:
// * If a CData object 'parentObj' is supplied, the new CData object is
// dependent on the given parent and its buffer refers to a slice of the
// parent's buffer.
// * If 'parentObj' is null, the new CData object may or may not own its
// resulting buffer depending on the 'ownResult' argument.
JSBool
ConvertToJS(JSContext* cx,
HandleObject typeObj,
HandleObject parentObj,
void* data,
bool wantPrimitive,
bool ownResult,
jsval* result)
{
JS_ASSERT(!parentObj || CData::IsCData(parentObj));
JS_ASSERT(!parentObj || !ownResult);
JS_ASSERT(!wantPrimitive || !ownResult);
TypeCode typeCode = CType::GetTypeCode(typeObj);
switch (typeCode) {
case TYPE_void_t:
*result = JSVAL_VOID;
break;
case TYPE_bool:
*result = *static_cast<bool*>(data) ? JSVAL_TRUE : JSVAL_FALSE;
break;
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
type value = *static_cast<type*>(data); \
if (sizeof(type) < 4) \
*result = INT_TO_JSVAL(int32_t(value)); \
else \
*result = JS_NumberValue(double(value)); \
break; \
}
#define DEFINE_WRAPPED_INT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Return an Int64 or UInt64 object - do not convert to a JS number. */ \
uint64_t value; \
RootedObject proto(cx); \
if (!numeric_limits<type>::is_signed) { \
value = *static_cast<type*>(data); \
/* Get ctypes.UInt64.prototype from ctypes.CType.prototype. */ \
proto = CType::GetProtoFromType(cx, typeObj, SLOT_UINT64PROTO); \
if (!proto) \
return false; \
} else { \
value = int64_t(*static_cast<type*>(data)); \
/* Get ctypes.Int64.prototype from ctypes.CType.prototype. */ \
proto = CType::GetProtoFromType(cx, typeObj, SLOT_INT64PROTO); \
if (!proto) \
return false; \
} \
\
JSObject* obj = Int64Base::Construct(cx, proto, value, \
!numeric_limits<type>::is_signed); \
if (!obj) \
return false; \
*result = OBJECT_TO_JSVAL(obj); \
break; \
}
#define DEFINE_FLOAT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
type value = *static_cast<type*>(data); \
*result = JS_NumberValue(double(value)); \
break; \
}
#define DEFINE_CHAR_TYPE(name, type, ffiType) \
case TYPE_##name: \
/* Convert to an integer. We have no idea what character encoding to */ \
/* use, if any. */ \
*result = INT_TO_JSVAL(*static_cast<type*>(data)); \
break;
#include "typedefs.h"
case TYPE_jschar: {
// Convert the jschar to a 1-character string.
JSString* str = JS_NewUCStringCopyN(cx, static_cast<jschar*>(data), 1);
if (!str)
return false;
*result = STRING_TO_JSVAL(str);
break;
}
case TYPE_pointer:
case TYPE_array:
case TYPE_struct: {
// We're about to create a new CData object to return. If the caller doesn't
// want this, return early.
if (wantPrimitive) {
JS_ReportError(cx, "cannot convert to primitive value");
return false;
}
JSObject* obj = CData::Create(cx, typeObj, parentObj, data, ownResult);
if (!obj)
return false;
*result = OBJECT_TO_JSVAL(obj);
break;
}
case TYPE_function:
JS_NOT_REACHED("cannot return a FunctionType");
}
return true;
}
// Determine if the contents of a typed array can be converted without
// ambiguity to a C type. Elements of a Int8Array are converted to
// ctypes.int8_t, UInt8Array to ctypes.uint8_t, etc.
bool CanConvertTypedArrayItemTo(JSObject *baseType, JSObject *valObj, JSContext *cx) {
TypeCode baseTypeCode = CType::GetTypeCode(baseType);
if (baseTypeCode == TYPE_void_t) {
return true;
}
TypeCode elementTypeCode;
switch (JS_GetArrayBufferViewType(valObj)) {
case TypedArray::TYPE_INT8:
elementTypeCode = TYPE_int8_t;
break;
case TypedArray::TYPE_UINT8:
case TypedArray::TYPE_UINT8_CLAMPED:
elementTypeCode = TYPE_uint8_t;
break;
case TypedArray::TYPE_INT16:
elementTypeCode = TYPE_int16_t;
break;
case TypedArray::TYPE_UINT16:
elementTypeCode = TYPE_uint16_t;
break;
case TypedArray::TYPE_INT32:
elementTypeCode = TYPE_int32_t;
break;
case TypedArray::TYPE_UINT32:
elementTypeCode = TYPE_uint32_t;
break;
case TypedArray::TYPE_FLOAT32:
elementTypeCode = TYPE_float32_t;
break;
case TypedArray::TYPE_FLOAT64:
elementTypeCode = TYPE_float64_t;
break;
default:
return false;
}
return elementTypeCode == baseTypeCode;
}
// Implicitly convert jsval 'val' to a C binary representation of CType
// 'targetType', storing the result in 'buffer'. Adequate space must be
// provided in 'buffer' by the caller. This function generally does minimal
// coercion between types. There are two cases in which this function is used:
// 1) The target buffer is internal to a CData object; we simply write data
// into it.
// 2) We are converting an argument for an ffi call, in which case 'isArgument'
// will be true. This allows us to handle a special case: if necessary,
// we can autoconvert a JS string primitive to a pointer-to-character type.
// In this case, ownership of the allocated string is handed off to the
// caller; 'freePointer' will be set to indicate this.
JSBool
ImplicitConvert(JSContext* cx,
HandleValue val,
JSObject* targetType_,
void* buffer,
bool isArgument,
bool* freePointer)
{
RootedObject targetType(cx, targetType_);
JS_ASSERT(CType::IsSizeDefined(targetType));
// First, check if val is either a CData object or a CDataFinalizer
// of type targetType.
JSObject* sourceData = NULL;
JSObject* sourceType = NULL;
RootedObject valObj(cx, NULL);
if (!JSVAL_IS_PRIMITIVE(val)) {
valObj = JSVAL_TO_OBJECT(val);
if (CData::IsCData(valObj)) {
sourceData = valObj;
sourceType = CData::GetCType(sourceData);
// If the types are equal, copy the buffer contained within the CData.
// (Note that the buffers may overlap partially or completely.)
if (CType::TypesEqual(sourceType, targetType)) {
size_t size = CType::GetSize(sourceType);
memmove(buffer, CData::GetData(sourceData), size);
return true;
}
} else if (CDataFinalizer::IsCDataFinalizer(valObj)) {
sourceData = valObj;
sourceType = CDataFinalizer::GetCType(cx, sourceData);
CDataFinalizer::Private *p = (CDataFinalizer::Private *)
JS_GetPrivate(sourceData);
if (!p) {
// We have called |dispose| or |forget| already.
JS_ReportError(cx, "Attempting to convert an empty CDataFinalizer");
return JS_FALSE;
}
// If the types are equal, copy the buffer contained within the CData.
if (CType::TypesEqual(sourceType, targetType)) {
memmove(buffer, p->cargs, p->cargs_size);
return true;
}
}
}
TypeCode targetCode = CType::GetTypeCode(targetType);
switch (targetCode) {
case TYPE_bool: {
// Do not implicitly lose bits, but allow the values 0, 1, and -0.
// Programs can convert explicitly, if needed, using `Boolean(v)` or `!!v`.
bool result;
if (!jsvalToBool(cx, val, &result))
return TypeError(cx, "boolean", val);
*static_cast<bool*>(buffer) = result;
break;
}
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Do not implicitly lose bits. */ \
type result; \
if (!jsvalToInteger(cx, val, &result)) \
return TypeError(cx, #name, val); \
*static_cast<type*>(buffer) = result; \
break; \
}
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_FLOAT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
type result; \
if (!jsvalToFloat(cx, val, &result)) \
return TypeError(cx, #name, val); \
*static_cast<type*>(buffer) = result; \
break; \
}
#define DEFINE_CHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_JSCHAR_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Convert from a 1-character string, regardless of encoding, */ \
/* or from an integer, provided the result fits in 'type'. */ \
type result; \
if (JSVAL_IS_STRING(val)) { \
JSString* str = JSVAL_TO_STRING(val); \
if (str->length() != 1) \
return TypeError(cx, #name, val); \
const jschar *chars = str->getChars(cx); \
if (!chars) \
return false; \
result = chars[0]; \
} else if (!jsvalToInteger(cx, val, &result)) { \
return TypeError(cx, #name, val); \
} \
*static_cast<type*>(buffer) = result; \
break; \
}
#include "typedefs.h"
case TYPE_pointer: {
if (JSVAL_IS_NULL(val)) {
// Convert to a null pointer.
*static_cast<void**>(buffer) = NULL;
break;
}
JS::Rooted<JSObject*> baseType(cx, PointerType::GetBaseType(targetType));
if (sourceData) {
// First, determine if the targetType is ctypes.void_t.ptr.
TypeCode sourceCode = CType::GetTypeCode(sourceType);
void* sourceBuffer = CData::GetData(sourceData);
bool voidptrTarget = CType::GetTypeCode(baseType) == TYPE_void_t;
if (sourceCode == TYPE_pointer && voidptrTarget) {
// Autoconvert if targetType is ctypes.voidptr_t.
*static_cast<void**>(buffer) = *static_cast<void**>(sourceBuffer);
break;
}
if (sourceCode == TYPE_array) {
// Autoconvert an array to a ctypes.void_t.ptr or to
// sourceType.elementType.ptr, just like C.
JSObject* elementType = ArrayType::GetBaseType(sourceType);
if (voidptrTarget || CType::TypesEqual(baseType, elementType)) {
*static_cast<void**>(buffer) = sourceBuffer;
break;
}
}
} else if (isArgument && JSVAL_IS_STRING(val)) {
// Convert the string for the ffi call. This requires allocating space
// which the caller assumes ownership of.
// TODO: Extend this so we can safely convert strings at other times also.
JSString* sourceString = JSVAL_TO_STRING(val);
size_t sourceLength = sourceString->length();
const jschar* sourceChars = sourceString->getChars(cx);
if (!sourceChars)
return false;
switch (CType::GetTypeCode(baseType)) {
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char: {
// Convert from UTF-16 to UTF-8.
size_t nbytes =
GetDeflatedUTF8StringLength(cx, sourceChars, sourceLength);
if (nbytes == (size_t) -1)
return false;
char** charBuffer = static_cast<char**>(buffer);
*charBuffer = cx->pod_malloc<char>(nbytes + 1);
if (!*charBuffer) {
JS_ReportAllocationOverflow(cx);
return false;
}
ASSERT_OK(DeflateStringToUTF8Buffer(cx, sourceChars, sourceLength,
*charBuffer, &nbytes));
(*charBuffer)[nbytes] = 0;
*freePointer = true;
break;
}
case TYPE_jschar: {
// Copy the jschar string data. (We could provide direct access to the
// JSString's buffer, but this approach is safer if the caller happens
// to modify the string.)
jschar** jscharBuffer = static_cast<jschar**>(buffer);
*jscharBuffer = cx->pod_malloc<jschar>(sourceLength + 1);
if (!*jscharBuffer) {
JS_ReportAllocationOverflow(cx);
return false;
}
*freePointer = true;
memcpy(*jscharBuffer, sourceChars, sourceLength * sizeof(jschar));
(*jscharBuffer)[sourceLength] = 0;
break;
}
default:
return TypeError(cx, "string pointer", val);
}
break;
} else if (!JSVAL_IS_PRIMITIVE(val) && JS_IsArrayBufferObject(valObj)) {
// Convert ArrayBuffer to pointer without any copy.
// Just as with C arrays, we make no effort to
// keep the ArrayBuffer alive.
*static_cast<void**>(buffer) = JS_GetArrayBufferData(valObj);
break;
} if (!JSVAL_IS_PRIMITIVE(val) && JS_IsTypedArrayObject(valObj)) {
if(!CanConvertTypedArrayItemTo(baseType, valObj, cx)) {
return TypeError(cx, "typed array with the appropriate type", val);
}
// Convert TypedArray to pointer without any copy.
// Just as with C arrays, we make no effort to
// keep the TypedArray alive.
*static_cast<void**>(buffer) = JS_GetArrayBufferViewData(valObj);
break;
}
return TypeError(cx, "pointer", val);
}
case TYPE_array: {
RootedObject baseType(cx, ArrayType::GetBaseType(targetType));
size_t targetLength = ArrayType::GetLength(targetType);
if (JSVAL_IS_STRING(val)) {
JSString* sourceString = JSVAL_TO_STRING(val);
size_t sourceLength = sourceString->length();
const jschar* sourceChars = sourceString->getChars(cx);
if (!sourceChars)
return false;
switch (CType::GetTypeCode(baseType)) {
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char: {
// Convert from UTF-16 to UTF-8.
size_t nbytes =
GetDeflatedUTF8StringLength(cx, sourceChars, sourceLength);
if (nbytes == (size_t) -1)
return false;
if (targetLength < nbytes) {
JS_ReportError(cx, "ArrayType has insufficient length");
return false;
}
char* charBuffer = static_cast<char*>(buffer);
ASSERT_OK(DeflateStringToUTF8Buffer(cx, sourceChars, sourceLength,
charBuffer, &nbytes));
if (targetLength > nbytes)
charBuffer[nbytes] = 0;
break;
}
case TYPE_jschar: {
// Copy the string data, jschar for jschar, including the terminator
// if there's space.
if (targetLength < sourceLength) {
JS_ReportError(cx, "ArrayType has insufficient length");
return false;
}
memcpy(buffer, sourceChars, sourceLength * sizeof(jschar));
if (targetLength > sourceLength)
static_cast<jschar*>(buffer)[sourceLength] = 0;
break;
}
default:
return TypeError(cx, "array", val);
}
} else if (!JSVAL_IS_PRIMITIVE(val) && JS_IsArrayObject(cx, valObj)) {
// Convert each element of the array by calling ImplicitConvert.
uint32_t sourceLength;
if (!JS_GetArrayLength(cx, valObj, &sourceLength) ||
targetLength != size_t(sourceLength)) {
JS_ReportError(cx, "ArrayType length does not match source array length");
return false;
}
// Convert into an intermediate, in case of failure.
size_t elementSize = CType::GetSize(baseType);
size_t arraySize = elementSize * targetLength;
AutoPtr<char> intermediate(cx->pod_malloc<char>(arraySize));
if (!intermediate) {
JS_ReportAllocationOverflow(cx);
return false;
}
for (uint32_t i = 0; i < sourceLength; ++i) {
RootedValue item(cx);
if (!JS_GetElement(cx, valObj, i, item.address()))
return false;
char* data = intermediate.get() + elementSize * i;
if (!ImplicitConvert(cx, item, baseType, data, false, NULL))
return false;
}
memcpy(buffer, intermediate.get(), arraySize);
} else if (!JSVAL_IS_PRIMITIVE(val) &&
JS_IsArrayBufferObject(valObj)) {
// Check that array is consistent with type, then
// copy the array.
uint32_t sourceLength = JS_GetArrayBufferByteLength(valObj);
size_t elementSize = CType::GetSize(baseType);
size_t arraySize = elementSize * targetLength;
if (arraySize != size_t(sourceLength)) {
JS_ReportError(cx, "ArrayType length does not match source ArrayBuffer length");
return false;
}
memcpy(buffer, JS_GetArrayBufferData(valObj), sourceLength);
break;
} else if (!JSVAL_IS_PRIMITIVE(val) &&
JS_IsTypedArrayObject(valObj)) {
// Check that array is consistent with type, then
// copy the array.
if(!CanConvertTypedArrayItemTo(baseType, valObj, cx)) {
return TypeError(cx, "typed array with the appropriate type", val);
}
uint32_t sourceLength = JS_GetTypedArrayByteLength(valObj);
size_t elementSize = CType::GetSize(baseType);
size_t arraySize = elementSize * targetLength;
if (arraySize != size_t(sourceLength)) {
JS_ReportError(cx, "typed array length does not match source TypedArray length");
return false;
}
memcpy(buffer, JS_GetArrayBufferViewData(valObj), sourceLength);
break;
} else {
// Don't implicitly convert to string. Users can implicitly convert
// with `String(x)` or `""+x`.
return TypeError(cx, "array", val);
}
break;
}
case TYPE_struct: {
if (!JSVAL_IS_PRIMITIVE(val) && !sourceData) {
// Enumerate the properties of the object; if they match the struct
// specification, convert the fields.
RootedObject iter(cx, JS_NewPropertyIterator(cx, valObj));
if (!iter)
return false;
// Convert into an intermediate, in case of failure.
size_t structSize = CType::GetSize(targetType);
AutoPtr<char> intermediate(cx->pod_malloc<char>(structSize));
if (!intermediate) {
JS_ReportAllocationOverflow(cx);
return false;
}
RootedId id(cx);
size_t i = 0;
while (1) {
if (!JS_NextProperty(cx, iter, id.address()))
return false;
if (JSID_IS_VOID(id))
break;
if (!JSID_IS_STRING(id)) {
JS_ReportError(cx, "property name is not a string");
return false;
}
JSFlatString *name = JSID_TO_FLAT_STRING(id);
const FieldInfo* field = StructType::LookupField(cx, targetType, name);
if (!field)
return false;
RootedValue prop(cx);
if (!JS_GetPropertyById(cx, valObj, id, prop.address()))
return false;
// Convert the field via ImplicitConvert().
char* fieldData = intermediate.get() + field->mOffset;
if (!ImplicitConvert(cx, prop, field->mType, fieldData, false, NULL))
return false;
++i;
}
const FieldInfoHash* fields = StructType::GetFieldInfo(targetType);
if (i != fields->count()) {
JS_ReportError(cx, "missing fields");
return false;
}
memcpy(buffer, intermediate.get(), structSize);
break;
}
return TypeError(cx, "struct", val);
}
case TYPE_void_t:
case TYPE_function:
JS_NOT_REACHED("invalid type");
return false;
}
return true;
}
// Convert jsval 'val' to a C binary representation of CType 'targetType',
// storing the result in 'buffer'. This function is more forceful than
// ImplicitConvert.
JSBool
ExplicitConvert(JSContext* cx, HandleValue val, HandleObject targetType, void* buffer)
{
// If ImplicitConvert succeeds, use that result.
if (ImplicitConvert(cx, val, targetType, buffer, false, NULL))
return true;
// If ImplicitConvert failed, and there is no pending exception, then assume
// hard failure (out of memory, or some other similarly serious condition).
// We store any pending exception in case we need to re-throw it.
RootedValue ex(cx);
if (!JS_GetPendingException(cx, ex.address()))
return false;
// Otherwise, assume soft failure. Clear the pending exception so that we
// can throw a different one as required.
JS_ClearPendingException(cx);
TypeCode type = CType::GetTypeCode(targetType);
switch (type) {
case TYPE_bool: {
// Convert according to the ECMAScript ToBoolean() function.
JSBool result;
ASSERT_OK(JS_ValueToBoolean(cx, val, &result));
*static_cast<bool*>(buffer) = result != JS_FALSE;
break;
}
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Convert numeric values with a C-style cast, and */ \
/* allow conversion from a base-10 or base-16 string. */ \
type result; \
if (!jsvalToIntegerExplicit(val, &result) && \
(!JSVAL_IS_STRING(val) || \
!StringToInteger(cx, JSVAL_TO_STRING(val), &result))) \
return TypeError(cx, #name, val); \
*static_cast<type*>(buffer) = result; \
break; \
}
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_CHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_JSCHAR_TYPE(x, y, z) DEFINE_CHAR_TYPE(x, y, z)
#include "typedefs.h"
case TYPE_pointer: {
// Convert a number, Int64 object, or UInt64 object to a pointer.
uintptr_t result;
if (!jsvalToPtrExplicit(cx, val, &result))
return TypeError(cx, "pointer", val);
*static_cast<uintptr_t*>(buffer) = result;
break;
}
case TYPE_float32_t:
case TYPE_float64_t:
case TYPE_float:
case TYPE_double:
case TYPE_array:
case TYPE_struct:
// ImplicitConvert is sufficient. Re-throw the exception it generated.
JS_SetPendingException(cx, ex);
return false;
case TYPE_void_t:
case TYPE_function:
JS_NOT_REACHED("invalid type");
return false;
}
return true;
}
// Given a CType 'typeObj', generate a string describing the C type declaration
// corresponding to 'typeObj'. For instance, the CType constructed from
// 'ctypes.int32_t.ptr.array(4).ptr.ptr' will result in the type string
// 'int32_t*(**)[4]'.
static JSString*
BuildTypeName(JSContext* cx, JSObject* typeObj_)
{
AutoString result;
RootedObject typeObj(cx, typeObj_);
// Walk the hierarchy of types, outermost to innermost, building up the type
// string. This consists of the base type, which goes on the left.
// Derived type modifiers (* and []) build from the inside outward, with
// pointers on the left and arrays on the right. An excellent description
// of the rules for building C type declarations can be found at:
// http://unixwiz.net/techtips/reading-cdecl.html
TypeCode prevGrouping = CType::GetTypeCode(typeObj), currentGrouping;
while (1) {
currentGrouping = CType::GetTypeCode(typeObj);
switch (currentGrouping) {
case TYPE_pointer: {
// Pointer types go on the left.
PrependString(result, "*");
typeObj = PointerType::GetBaseType(typeObj);
prevGrouping = currentGrouping;
continue;
}
case TYPE_array: {
if (prevGrouping == TYPE_pointer) {
// Outer type is pointer, inner type is array. Grouping is required.
PrependString(result, "(");
AppendString(result, ")");
}
// Array types go on the right.
AppendString(result, "[");
size_t length;
if (ArrayType::GetSafeLength(typeObj, &length))
IntegerToString(length, 10, result);
AppendString(result, "]");
typeObj = ArrayType::GetBaseType(typeObj);
prevGrouping = currentGrouping;
continue;
}
case TYPE_function: {
FunctionInfo* fninfo = FunctionType::GetFunctionInfo(typeObj);
// Add in the calling convention, if it's not cdecl.
// There's no trailing or leading space needed here, as none of the
// modifiers can produce a string beginning with an identifier ---
// except for TYPE_function itself, which is fine because functions
// can't return functions.
ABICode abi = GetABICode(fninfo->mABI);
if (abi == ABI_STDCALL)
PrependString(result, "__stdcall");
else if (abi == ABI_WINAPI)
PrependString(result, "WINAPI");
// Function application binds more tightly than dereferencing, so
// wrap pointer types in parens. Functions can't return functions
// (only pointers to them), and arrays can't hold functions
// (similarly), so we don't need to address those cases.
if (prevGrouping == TYPE_pointer) {
PrependString(result, "(");
AppendString(result, ")");
}
// Argument list goes on the right.
AppendString(result, "(");
for (size_t i = 0; i < fninfo->mArgTypes.length(); ++i) {
RootedObject argType(cx, fninfo->mArgTypes[i]);
JSString* argName = CType::GetName(cx, argType);
AppendString(result, argName);
if (i != fninfo->mArgTypes.length() - 1 ||
fninfo->mIsVariadic)
AppendString(result, ", ");
}
if (fninfo->mIsVariadic)
AppendString(result, "...");
AppendString(result, ")");
// Set 'typeObj' to the return type, and let the loop process it.
// 'prevGrouping' doesn't matter here, because functions cannot return
// arrays -- thus the parenthetical rules don't get tickled.
typeObj = fninfo->mReturnType;
continue;
}
default:
// Either a basic or struct type. Use the type's name as the base type.
break;
}
break;
}
// If prepending the base type name directly would splice two
// identifiers, insert a space.
if (('a' <= result[0] && result[0] <= 'z') ||
('A' <= result[0] && result[0] <= 'Z') ||
(result[0] == '_'))
PrependString(result, " ");
// Stick the base type and derived type parts together.
JSString* baseName = CType::GetName(cx, typeObj);
PrependString(result, baseName);
return NewUCString(cx, result);
}
// Given a CType 'typeObj', generate a string 'result' such that 'eval(result)'
// would construct the same CType. If 'makeShort' is true, assume that any
// StructType 't' is bound to an in-scope variable of name 't.name', and use
// that variable in place of generating a string to construct the type 't'.
// (This means the type comparison function CType::TypesEqual will return true
// when comparing the input and output of BuildTypeSource, since struct
// equality is determined by strict JSObject pointer equality.)
static void
BuildTypeSource(JSContext* cx,
JSObject* typeObj_,
bool makeShort,
AutoString& result)
{
RootedObject typeObj(cx, typeObj_);
// Walk the types, building up the toSource() string.
switch (CType::GetTypeCode(typeObj)) {
case TYPE_void_t:
#define DEFINE_TYPE(name, type, ffiType) \
case TYPE_##name:
#include "typedefs.h"
{
AppendString(result, "ctypes.");
JSString* nameStr = CType::GetName(cx, typeObj);
AppendString(result, nameStr);
break;
}
case TYPE_pointer: {
RootedObject baseType(cx, PointerType::GetBaseType(typeObj));
// Specialcase ctypes.voidptr_t.
if (CType::GetTypeCode(baseType) == TYPE_void_t) {
AppendString(result, "ctypes.voidptr_t");
break;
}
// Recursively build the source string, and append '.ptr'.
BuildTypeSource(cx, baseType, makeShort, result);
AppendString(result, ".ptr");
break;
}
case TYPE_function: {
FunctionInfo* fninfo = FunctionType::GetFunctionInfo(typeObj);
AppendString(result, "ctypes.FunctionType(");
switch (GetABICode(fninfo->mABI)) {
case ABI_DEFAULT:
AppendString(result, "ctypes.default_abi, ");
break;
case ABI_STDCALL:
AppendString(result, "ctypes.stdcall_abi, ");
break;
case ABI_WINAPI:
AppendString(result, "ctypes.winapi_abi, ");
break;
case INVALID_ABI:
JS_NOT_REACHED("invalid abi");
break;
}
// Recursively build the source string describing the function return and
// argument types.
BuildTypeSource(cx, fninfo->mReturnType, true, result);
if (fninfo->mArgTypes.length() > 0) {
AppendString(result, ", [");
for (size_t i = 0; i < fninfo->mArgTypes.length(); ++i) {
BuildTypeSource(cx, fninfo->mArgTypes[i], true, result);
if (i != fninfo->mArgTypes.length() - 1 ||
fninfo->mIsVariadic)
AppendString(result, ", ");
}
if (fninfo->mIsVariadic)
AppendString(result, "\"...\"");
AppendString(result, "]");
}
AppendString(result, ")");
break;
}
case TYPE_array: {
// Recursively build the source string, and append '.array(n)',
// where n is the array length, or the empty string if the array length
// is undefined.
JSObject* baseType = ArrayType::GetBaseType(typeObj);
BuildTypeSource(cx, baseType, makeShort, result);
AppendString(result, ".array(");
size_t length;
if (ArrayType::GetSafeLength(typeObj, &length))
IntegerToString(length, 10, result);
AppendString(result, ")");
break;
}
case TYPE_struct: {
JSString* name = CType::GetName(cx, typeObj);
if (makeShort) {
// Shorten the type declaration by assuming that StructType 't' is bound
// to an in-scope variable of name 't.name'.
AppendString(result, name);
break;
}
// Write the full struct declaration.
AppendString(result, "ctypes.StructType(\"");
AppendString(result, name);
AppendString(result, "\"");
// If it's an opaque struct, we're done.
if (!CType::IsSizeDefined(typeObj)) {
AppendString(result, ")");
break;
}
AppendString(result, ", [");
const FieldInfoHash* fields = StructType::GetFieldInfo(typeObj);
size_t length = fields->count();
Array<const FieldInfoHash::Entry*, 64> fieldsArray;
if (!fieldsArray.resize(length))
break;
for (FieldInfoHash::Range r = fields->all(); !r.empty(); r.popFront())
fieldsArray[r.front().value.mIndex] = &r.front();
for (size_t i = 0; i < length; ++i) {
const FieldInfoHash::Entry* entry = fieldsArray[i];
AppendString(result, "{ \"");
AppendString(result, entry->key);
AppendString(result, "\": ");
BuildTypeSource(cx, entry->value.mType, true, result);
AppendString(result, " }");
if (i != length - 1)
AppendString(result, ", ");
}
AppendString(result, "])");
break;
}
}
}
// Given a CData object of CType 'typeObj' with binary value 'data', generate a
// string 'result' such that 'eval(result)' would construct a CData object with
// the same CType and containing the same binary value. This assumes that any
// StructType 't' is bound to an in-scope variable of name 't.name'. (This means
// the type comparison function CType::TypesEqual will return true when
// comparing the types, since struct equality is determined by strict JSObject
// pointer equality.) Further, if 'isImplicit' is true, ensure that the
// resulting string can ImplicitConvert successfully if passed to another data
// constructor. (This is important when called recursively, since fields of
// structs and arrays are converted with ImplicitConvert.)
static JSBool
BuildDataSource(JSContext* cx,
HandleObject typeObj,
void* data,
bool isImplicit,
AutoString& result)
{
TypeCode type = CType::GetTypeCode(typeObj);
switch (type) {
case TYPE_bool:
if (*static_cast<bool*>(data))
AppendString(result, "true");
else
AppendString(result, "false");
break;
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: \
/* Serialize as a primitive decimal integer. */ \
IntegerToString(*static_cast<type*>(data), 10, result); \
break;
#define DEFINE_WRAPPED_INT_TYPE(name, type, ffiType) \
case TYPE_##name: \
/* Serialize as a wrapped decimal integer. */ \
if (!numeric_limits<type>::is_signed) \
AppendString(result, "ctypes.UInt64(\""); \
else \
AppendString(result, "ctypes.Int64(\""); \
\
IntegerToString(*static_cast<type*>(data), 10, result); \
AppendString(result, "\")"); \
break;
#define DEFINE_FLOAT_TYPE(name, type, ffiType) \
case TYPE_##name: { \
/* Serialize as a primitive double. */ \
double fp = *static_cast<type*>(data); \
ToCStringBuf cbuf; \
char* str = NumberToCString(cx, &cbuf, fp); \
if (!str) { \
JS_ReportOutOfMemory(cx); \
return false; \
} \
\
result.append(str, strlen(str)); \
break; \
}
#define DEFINE_CHAR_TYPE(name, type, ffiType) \
case TYPE_##name: \
/* Serialize as an integer. */ \
IntegerToString(*static_cast<type*>(data), 10, result); \
break;
#include "typedefs.h"
case TYPE_jschar: {
// Serialize as a 1-character JS string.
JSString* str = JS_NewUCStringCopyN(cx, static_cast<jschar*>(data), 1);
if (!str)
return false;
// Escape characters, and quote as necessary.
JSString* src = JS_ValueToSource(cx, STRING_TO_JSVAL(str));
if (!src)
return false;
AppendString(result, src);
break;
}
case TYPE_pointer:
case TYPE_function: {
if (isImplicit) {
// The result must be able to ImplicitConvert successfully.
// Wrap in a type constructor, then serialize for ExplicitConvert.
BuildTypeSource(cx, typeObj, true, result);
AppendString(result, "(");
}
// Serialize the pointer value as a wrapped hexadecimal integer.
uintptr_t ptr = *static_cast<uintptr_t*>(data);
AppendString(result, "ctypes.UInt64(\"0x");
IntegerToString(ptr, 16, result);
AppendString(result, "\")");
if (isImplicit)
AppendString(result, ")");
break;
}
case TYPE_array: {
// Serialize each element of the array recursively. Each element must
// be able to ImplicitConvert successfully.
RootedObject baseType(cx, ArrayType::GetBaseType(typeObj));
AppendString(result, "[");
size_t length = ArrayType::GetLength(typeObj);
size_t elementSize = CType::GetSize(baseType);
for (size_t i = 0; i < length; ++i) {
char* element = static_cast<char*>(data) + elementSize * i;
if (!BuildDataSource(cx, baseType, element, true, result))
return false;
if (i + 1 < length)
AppendString(result, ", ");
}
AppendString(result, "]");
break;
}
case TYPE_struct: {
if (isImplicit) {
// The result must be able to ImplicitConvert successfully.
// Serialize the data as an object with properties, rather than
// a sequence of arguments to the StructType constructor.
AppendString(result, "{");
}
// Serialize each field of the struct recursively. Each field must
// be able to ImplicitConvert successfully.
const FieldInfoHash* fields = StructType::GetFieldInfo(typeObj);
size_t length = fields->count();
Array<const FieldInfoHash::Entry*, 64> fieldsArray;
if (!fieldsArray.resize(length))
return false;
for (FieldInfoHash::Range r = fields->all(); !r.empty(); r.popFront())
fieldsArray[r.front().value.mIndex] = &r.front();
for (size_t i = 0; i < length; ++i) {
const FieldInfoHash::Entry* entry = fieldsArray[i];
if (isImplicit) {
AppendString(result, "\"");
AppendString(result, entry->key);
AppendString(result, "\": ");
}
char* fieldData = static_cast<char*>(data) + entry->value.mOffset;
RootedObject entryType(cx, entry->value.mType);
if (!BuildDataSource(cx, entryType, fieldData, true, result))
return false;
if (i + 1 != length)
AppendString(result, ", ");
}
if (isImplicit)
AppendString(result, "}");
break;
}
case TYPE_void_t:
JS_NOT_REACHED("invalid type");
break;
}
return true;
}
/*******************************************************************************
** JSAPI callback function implementations
*******************************************************************************/
JSBool
ConstructAbstract(JSContext* cx,
unsigned argc,
jsval* vp)
{
// Calling an abstract base class constructor is disallowed.
JS_ReportError(cx, "cannot construct from abstract type");
return JS_FALSE;
}
/*******************************************************************************
** CType implementation
*******************************************************************************/
JSBool
CType::ConstructData(JSContext* cx,
unsigned argc,
jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// get the callee object...
RootedObject obj(cx, &args.callee());
if (!CType::IsCType(obj)) {
JS_ReportError(cx, "not a CType");
return JS_FALSE;
}
// How we construct the CData object depends on what type we represent.
// An instance 'd' of a CData object of type 't' has:
// * [[Class]] "CData"
// * __proto__ === t.prototype
switch (GetTypeCode(obj)) {
case TYPE_void_t:
JS_ReportError(cx, "cannot construct from void_t");
return JS_FALSE;
case TYPE_function:
JS_ReportError(cx, "cannot construct from FunctionType; use FunctionType.ptr instead");
return JS_FALSE;
case TYPE_pointer:
return PointerType::ConstructData(cx, obj, args);
case TYPE_array:
return ArrayType::ConstructData(cx, obj, args);
case TYPE_struct:
return StructType::ConstructData(cx, obj, args);
default:
return ConstructBasic(cx, obj, args);
}
}
JSBool
CType::ConstructBasic(JSContext* cx,
HandleObject obj,
const CallArgs& args)
{
if (args.length() > 1) {
JS_ReportError(cx, "CType constructor takes zero or one argument");
return JS_FALSE;
}
// construct a CData object
RootedObject result(cx, CData::Create(cx, obj, NullPtr(), NULL, true));
if (!result)
return JS_FALSE;
if (args.length() == 1) {
if (!ExplicitConvert(cx, args.handleAt(0), obj, CData::GetData(result)))
return JS_FALSE;
}
args.rval().setObject(*result);
return JS_TRUE;
}
JSObject*
CType::Create(JSContext* cx,
HandleObject typeProto,
HandleObject dataProto,
TypeCode type,
JSString* name_,
jsval size_,
jsval align_,
ffi_type* ffiType)
{
RootedString name(cx, name_);
RootedValue size(cx, size_);
RootedValue align(cx, align_);
RootedObject parent(cx, JS_GetParent(typeProto));
JS_ASSERT(parent);
// Create a CType object with the properties and slots common to all CTypes.
// Each type object 't' has:
// * [[Class]] "CType"
// * __proto__ === 'typeProto'; one of ctypes.{CType,PointerType,ArrayType,
// StructType}.prototype
// * A constructor which creates and returns a CData object, containing
// binary data of the given type.
// * 'prototype' property:
// * [[Class]] "CDataProto"
// * __proto__ === 'dataProto'; an object containing properties and
// functions common to all CData objects of types derived from
// 'typeProto'. (For instance, this could be ctypes.CData.prototype
// for simple types, or something representing structs for StructTypes.)
// * 'constructor' property === 't'
// * Additional properties specified by 'ps', as appropriate for the
// specific type instance 't'.
RootedObject typeObj(cx, JS_NewObject(cx, &sCTypeClass, typeProto, parent));
if (!typeObj)
return NULL;
// Set up the reserved slots.
JS_SetReservedSlot(typeObj, SLOT_TYPECODE, INT_TO_JSVAL(type));
if (ffiType)
JS_SetReservedSlot(typeObj, SLOT_FFITYPE, PRIVATE_TO_JSVAL(ffiType));
if (name)
JS_SetReservedSlot(typeObj, SLOT_NAME, STRING_TO_JSVAL(name));
JS_SetReservedSlot(typeObj, SLOT_SIZE, size);
JS_SetReservedSlot(typeObj, SLOT_ALIGN, align);
if (dataProto) {
// Set up the 'prototype' and 'prototype.constructor' properties.
RootedObject prototype(cx, JS_NewObject(cx, &sCDataProtoClass, dataProto, parent));
if (!prototype)
return NULL;
if (!JS_DefineProperty(cx, prototype, "constructor", OBJECT_TO_JSVAL(typeObj),
NULL, NULL, JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
// Set the 'prototype' object.
//if (!JS_FreezeObject(cx, prototype)) // XXX fixme - see bug 541212!
// return NULL;
JS_SetReservedSlot(typeObj, SLOT_PROTO, OBJECT_TO_JSVAL(prototype));
}
if (!JS_FreezeObject(cx, typeObj))
return NULL;
// Assert a sanity check on size and alignment: size % alignment should always
// be zero.
JS_ASSERT_IF(IsSizeDefined(typeObj),
GetSize(typeObj) % GetAlignment(typeObj) == 0);
return typeObj;
}
JSObject*
CType::DefineBuiltin(JSContext* cx,
JSObject* parent_,
const char* propName,
JSObject* typeProto_,
JSObject* dataProto_,
const char* name,
TypeCode type,
jsval size_,
jsval align_,
ffi_type* ffiType)
{
RootedObject parent(cx, parent_);
RootedObject typeProto(cx, typeProto_);
RootedObject dataProto(cx, dataProto_);
RootedValue size(cx, size_);
RootedValue align(cx, align_);
RootedString nameStr(cx, JS_NewStringCopyZ(cx, name));
if (!nameStr)
return NULL;
// Create a new CType object with the common properties and slots.
RootedObject typeObj(cx, Create(cx, typeProto, dataProto, type, nameStr, size, align, ffiType));
if (!typeObj)
return NULL;
// Define the CType as a 'propName' property on 'parent'.
if (!JS_DefineProperty(cx, parent, propName, OBJECT_TO_JSVAL(typeObj),
NULL, NULL, JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return NULL;
return typeObj;
}
void
CType::Finalize(JSFreeOp *fop, JSObject* obj)
{
// Make sure our TypeCode slot is legit. If it's not, bail.
jsval slot = JS_GetReservedSlot(obj, SLOT_TYPECODE);
if (JSVAL_IS_VOID(slot))
return;
// The contents of our slots depends on what kind of type we are.
switch (TypeCode(JSVAL_TO_INT(slot))) {
case TYPE_function: {
// Free the FunctionInfo.
slot = JS_GetReservedSlot(obj, SLOT_FNINFO);
if (!JSVAL_IS_VOID(slot))
FreeOp::get(fop)->delete_(static_cast<FunctionInfo*>(JSVAL_TO_PRIVATE(slot)));
break;
}
case TYPE_struct: {
// Free the FieldInfoHash table.
slot = JS_GetReservedSlot(obj, SLOT_FIELDINFO);
if (!JSVAL_IS_VOID(slot)) {
void* info = JSVAL_TO_PRIVATE(slot);
FreeOp::get(fop)->delete_(static_cast<FieldInfoHash*>(info));
}
}
// Fall through.
case TYPE_array: {
// Free the ffi_type info.
slot = JS_GetReservedSlot(obj, SLOT_FFITYPE);
if (!JSVAL_IS_VOID(slot)) {
ffi_type* ffiType = static_cast<ffi_type*>(JSVAL_TO_PRIVATE(slot));
FreeOp::get(fop)->free_(ffiType->elements);
FreeOp::get(fop)->delete_(ffiType);
}
break;
}
default:
// Nothing to do here.
break;
}
}
void
CType::FinalizeProtoClass(JSFreeOp *fop, JSObject* obj)
{
// Finalize the CTypeProto class. The only important bit here is our
// SLOT_CLOSURECX -- it contains the JSContext that was (lazily) instantiated
// for use with FunctionType closures. And if we're here, in this finalizer,
// we're guaranteed to not need it anymore. Note that this slot will only
// be set for the object (of class CTypeProto) ctypes.FunctionType.prototype.
jsval slot = JS_GetReservedSlot(obj, SLOT_CLOSURECX);
if (JSVAL_IS_VOID(slot))
return;
JSContext* closureCx = static_cast<JSContext*>(JSVAL_TO_PRIVATE(slot));
JS_DestroyContextNoGC(closureCx);
}
void
CType::Trace(JSTracer* trc, JSObject* obj)
{
// Make sure our TypeCode slot is legit. If it's not, bail.
jsval slot = obj->getSlot(SLOT_TYPECODE);
if (JSVAL_IS_VOID(slot))
return;
// The contents of our slots depends on what kind of type we are.
switch (TypeCode(JSVAL_TO_INT(slot))) {
case TYPE_struct: {
slot = obj->getReservedSlot(SLOT_FIELDINFO);
if (JSVAL_IS_VOID(slot))
return;
FieldInfoHash* fields =
static_cast<FieldInfoHash*>(JSVAL_TO_PRIVATE(slot));
for (FieldInfoHash::Range r = fields->all(); !r.empty(); r.popFront()) {
JSString *key = r.front().key;
JS_CallStringTracer(trc, &key, "fieldName");
JS_ASSERT(key == r.front().key);
JS_CallObjectTracer(trc, &r.front().value.mType, "fieldType");
}
break;
}
case TYPE_function: {
// Check if we have a FunctionInfo.
slot = obj->getReservedSlot(SLOT_FNINFO);
if (JSVAL_IS_VOID(slot))
return;
FunctionInfo* fninfo = static_cast<FunctionInfo*>(JSVAL_TO_PRIVATE(slot));
JS_ASSERT(fninfo);
// Identify our objects to the tracer.
JS_CallObjectTracer(trc, &fninfo->mABI, "abi");
JS_CallObjectTracer(trc, &fninfo->mReturnType, "returnType");
for (size_t i = 0; i < fninfo->mArgTypes.length(); ++i)
JS_CallObjectTracer(trc, &fninfo->mArgTypes[i], "argType");
break;
}
default:
// Nothing to do here.
break;
}
}
bool
CType::IsCType(JSObject* obj)
{
return JS_GetClass(obj) == &sCTypeClass;
}
bool
CType::IsCTypeProto(JSObject* obj)
{
return JS_GetClass(obj) == &sCTypeProtoClass;
}
TypeCode
CType::GetTypeCode(JSObject* typeObj)
{
JS_ASSERT(IsCType(typeObj));
jsval result = JS_GetReservedSlot(typeObj, SLOT_TYPECODE);
return TypeCode(JSVAL_TO_INT(result));
}
bool
CType::TypesEqual(JSObject* t1, JSObject* t2)
{
JS_ASSERT(IsCType(t1) && IsCType(t2));
// Fast path: check for object equality.
if (t1 == t2)
return true;
// First, perform shallow comparison.
TypeCode c1 = GetTypeCode(t1);
TypeCode c2 = GetTypeCode(t2);
if (c1 != c2)
return false;
// Determine whether the types require shallow or deep comparison.
switch (c1) {
case TYPE_pointer: {
// Compare base types.
JSObject* b1 = PointerType::GetBaseType(t1);
JSObject* b2 = PointerType::GetBaseType(t2);
return TypesEqual(b1, b2);
}
case TYPE_function: {
FunctionInfo* f1 = FunctionType::GetFunctionInfo(t1);
FunctionInfo* f2 = FunctionType::GetFunctionInfo(t2);
// Compare abi, return type, and argument types.
if (f1->mABI != f2->mABI)
return false;
if (!TypesEqual(f1->mReturnType, f2->mReturnType))
return false;
if (f1->mArgTypes.length() != f2->mArgTypes.length())
return false;
if (f1->mIsVariadic != f2->mIsVariadic)
return false;
for (size_t i = 0; i < f1->mArgTypes.length(); ++i) {
if (!TypesEqual(f1->mArgTypes[i], f2->mArgTypes[i]))
return false;
}
return true;
}
case TYPE_array: {
// Compare length, then base types.
// An undefined length array matches other undefined length arrays.
size_t s1 = 0, s2 = 0;
bool d1 = ArrayType::GetSafeLength(t1, &s1);
bool d2 = ArrayType::GetSafeLength(t2, &s2);
if (d1 != d2 || (d1 && s1 != s2))
return false;
JSObject* b1 = ArrayType::GetBaseType(t1);
JSObject* b2 = ArrayType::GetBaseType(t2);
return TypesEqual(b1, b2);
}
case TYPE_struct:
// Require exact type object equality.
return false;
default:
// Shallow comparison is sufficient.
return true;
}
}
bool
CType::GetSafeSize(JSObject* obj, size_t* result)
{
JS_ASSERT(CType::IsCType(obj));
jsval size = JS_GetReservedSlot(obj, SLOT_SIZE);
// The "size" property can be an int, a double, or JSVAL_VOID
// (for arrays of undefined length), and must always fit in a size_t.
if (JSVAL_IS_INT(size)) {
*result = JSVAL_TO_INT(size);
return true;
}
if (JSVAL_IS_DOUBLE(size)) {
*result = Convert<size_t>(JSVAL_TO_DOUBLE(size));
return true;
}
JS_ASSERT(JSVAL_IS_VOID(size));
return false;
}
size_t
CType::GetSize(JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
jsval size = JS_GetReservedSlot(obj, SLOT_SIZE);
JS_ASSERT(!JSVAL_IS_VOID(size));
// The "size" property can be an int, a double, or JSVAL_VOID
// (for arrays of undefined length), and must always fit in a size_t.
// For callers who know it can never be JSVAL_VOID, return a size_t directly.
if (JSVAL_IS_INT(size))
return JSVAL_TO_INT(size);
return Convert<size_t>(JSVAL_TO_DOUBLE(size));
}
bool
CType::IsSizeDefined(JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
jsval size = JS_GetReservedSlot(obj, SLOT_SIZE);
// The "size" property can be an int, a double, or JSVAL_VOID
// (for arrays of undefined length), and must always fit in a size_t.
JS_ASSERT(JSVAL_IS_INT(size) || JSVAL_IS_DOUBLE(size) || JSVAL_IS_VOID(size));
return !JSVAL_IS_VOID(size);
}
size_t
CType::GetAlignment(JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
jsval slot = JS_GetReservedSlot(obj, SLOT_ALIGN);
return static_cast<size_t>(JSVAL_TO_INT(slot));
}
ffi_type*
CType::GetFFIType(JSContext* cx, JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
jsval slot = JS_GetReservedSlot(obj, SLOT_FFITYPE);
if (!JSVAL_IS_VOID(slot)) {
return static_cast<ffi_type*>(JSVAL_TO_PRIVATE(slot));
}
AutoPtr<ffi_type> result;
switch (CType::GetTypeCode(obj)) {
case TYPE_array:
result = ArrayType::BuildFFIType(cx, obj);
break;
case TYPE_struct:
result = StructType::BuildFFIType(cx, obj);
break;
default:
JS_NOT_REACHED("simple types must have an ffi_type");
}
if (!result)
return NULL;
JS_SetReservedSlot(obj, SLOT_FFITYPE, PRIVATE_TO_JSVAL(result.get()));
return result.forget();
}
JSString*
CType::GetName(JSContext* cx, HandleObject obj)
{
JS_ASSERT(CType::IsCType(obj));
jsval string = JS_GetReservedSlot(obj, SLOT_NAME);
if (!JSVAL_IS_VOID(string))
return JSVAL_TO_STRING(string);
// Build the type name lazily.
JSString* name = BuildTypeName(cx, obj);
if (!name)
return NULL;
JS_SetReservedSlot(obj, SLOT_NAME, STRING_TO_JSVAL(name));
return name;
}
JSObject*
CType::GetProtoFromCtor(JSObject* obj, CTypeProtoSlot slot)
{
// Get ctypes.{Pointer,Array,Struct}Type.prototype from a reserved slot
// on the type constructor.
jsval protoslot = js::GetFunctionNativeReserved(obj, SLOT_FN_CTORPROTO);
JSObject* proto = &protoslot.toObject();
JS_ASSERT(proto);
JS_ASSERT(CType::IsCTypeProto(proto));
// Get the desired prototype.
jsval result = JS_GetReservedSlot(proto, slot);
return &result.toObject();
}
JSObject*
CType::GetProtoFromType(JSContext* cx, JSObject* obj, CTypeProtoSlot slot)
{
JS_ASSERT(IsCType(obj));
// Get the prototype of the type object.
RootedObject proto(cx);
if (!JS_GetPrototype(cx, obj, proto.address()))
return NULL;
JS_ASSERT(proto);
JS_ASSERT(CType::IsCTypeProto(proto));
// Get the requested ctypes.{Pointer,Array,Struct,Function}Type.prototype.
jsval result = JS_GetReservedSlot(proto, slot);
JS_ASSERT(!JSVAL_IS_PRIMITIVE(result));
return JSVAL_TO_OBJECT(result);
}
JSBool
CType::PrototypeGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!(CType::IsCType(obj) || CType::IsCTypeProto(obj))) {
JS_ReportError(cx, "not a CType or CTypeProto");
return JS_FALSE;
}
unsigned slot = CType::IsCTypeProto(obj) ? (unsigned) SLOT_OURDATAPROTO
: (unsigned) SLOT_PROTO;
vp.set(JS_GetReservedSlot(obj, slot));
JS_ASSERT(!JSVAL_IS_PRIMITIVE(vp) || JSVAL_IS_VOID(vp));
return JS_TRUE;
}
JSBool
CType::NameGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CType::IsCType(obj)) {
JS_ReportError(cx, "not a CType");
return JS_FALSE;
}
JSString* name = CType::GetName(cx, obj);
if (!name)
return JS_FALSE;
vp.setString(name);
return JS_TRUE;
}
JSBool
CType::SizeGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CType::IsCType(obj)) {
JS_ReportError(cx, "not a CType");
return JS_FALSE;
}
vp.set(JS_GetReservedSlot(obj, SLOT_SIZE));
JS_ASSERT(JSVAL_IS_NUMBER(vp) || JSVAL_IS_VOID(vp));
return JS_TRUE;
}
JSBool
CType::PtrGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CType::IsCType(obj)) {
JS_ReportError(cx, "not a CType");
return JS_FALSE;
}
JSObject* pointerType = PointerType::CreateInternal(cx, obj);
if (!pointerType)
return JS_FALSE;
vp.setObject(*pointerType);
return JS_TRUE;
}
JSBool
CType::CreateArray(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject baseType(cx, JS_THIS_OBJECT(cx, vp));
if (!baseType)
return JS_FALSE;
if (!CType::IsCType(baseType)) {
JS_ReportError(cx, "not a CType");
return JS_FALSE;
}
// Construct and return a new ArrayType object.
if (args.length() > 1) {
JS_ReportError(cx, "array takes zero or one argument");
return JS_FALSE;
}
// Convert the length argument to a size_t.
size_t length = 0;
if (args.length() == 1 && !jsvalToSize(cx, args[0], false, &length)) {
JS_ReportError(cx, "argument must be a nonnegative integer");
return JS_FALSE;
}
JSObject* result = ArrayType::CreateInternal(cx, baseType, length, args.length() == 1);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
JSBool
CType::ToString(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, JS_THIS_OBJECT(cx, vp));
if (!obj)
return JS_FALSE;
if (!CType::IsCType(obj) && !CType::IsCTypeProto(obj)) {
JS_ReportError(cx, "not a CType");
return JS_FALSE;
}
// Create the appropriate string depending on whether we're sCTypeClass or
// sCTypeProtoClass.
JSString* result;
if (CType::IsCType(obj)) {
AutoString type;
AppendString(type, "type ");
AppendString(type, GetName(cx, obj));
result = NewUCString(cx, type);
}
else {
result = JS_NewStringCopyZ(cx, "[CType proto object]");
}
if (!result)
return JS_FALSE;
args.rval().setString(result);
return JS_TRUE;
}
JSBool
CType::ToSource(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject* obj = JS_THIS_OBJECT(cx, vp);
if (!obj)
return JS_FALSE;
if (!CType::IsCType(obj) && !CType::IsCTypeProto(obj))
{
JS_ReportError(cx, "not a CType");
return JS_FALSE;
}
// Create the appropriate string depending on whether we're sCTypeClass or
// sCTypeProtoClass.
JSString* result;
if (CType::IsCType(obj)) {
AutoString source;
BuildTypeSource(cx, obj, false, source);
result = NewUCString(cx, source);
} else {
result = JS_NewStringCopyZ(cx, "[CType proto object]");
}
if (!result)
return JS_FALSE;
args.rval().setString(result);
return JS_TRUE;
}
JSBool
CType::HasInstance(JSContext* cx, HandleObject obj, MutableHandleValue v, JSBool* bp)
{
JS_ASSERT(CType::IsCType(obj));
jsval slot = JS_GetReservedSlot(obj, SLOT_PROTO);
JS::Rooted<JSObject*> prototype(cx, &slot.toObject());
JS_ASSERT(prototype);
JS_ASSERT(CData::IsCDataProto(prototype));
*bp = JS_FALSE;
if (JSVAL_IS_PRIMITIVE(v))
return JS_TRUE;
RootedObject proto(cx, &v.toObject());
for (;;) {
if (!JS_GetPrototype(cx, proto, proto.address()))
return JS_FALSE;
if (!proto)
break;
if (proto == prototype) {
*bp = JS_TRUE;
break;
}
}
return JS_TRUE;
}
static JSObject*
CType::GetGlobalCTypes(JSContext* cx, JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
RootedObject objTypeProto(cx);
if (!JS_GetPrototype(cx, obj, objTypeProto.address()))
return NULL;
JS_ASSERT(objTypeProto);
JS_ASSERT(CType::IsCTypeProto(objTypeProto));
jsval valCTypes = JS_GetReservedSlot(objTypeProto, SLOT_CTYPES);
JS_ASSERT(!JSVAL_IS_PRIMITIVE(valCTypes));
JS_ASSERT(!JSVAL_IS_PRIMITIVE(valCTypes));
return &valCTypes.toObject();
}
/*******************************************************************************
** ABI implementation
*******************************************************************************/
bool
ABI::IsABI(JSObject* obj)
{
return JS_GetClass(obj) == &sCABIClass;
}
JSBool
ABI::ToSource(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 0) {
JS_ReportError(cx, "toSource takes zero arguments");
return JS_FALSE;
}
JSObject* obj = JS_THIS_OBJECT(cx, vp);
if (!obj)
return JS_FALSE;
if (!ABI::IsABI(obj)) {
JS_ReportError(cx, "not an ABI");
return JS_FALSE;
}
JSString* result;
switch (GetABICode(obj)) {
case ABI_DEFAULT:
result = JS_NewStringCopyZ(cx, "ctypes.default_abi");
break;
case ABI_STDCALL:
result = JS_NewStringCopyZ(cx, "ctypes.stdcall_abi");
break;
case ABI_WINAPI:
result = JS_NewStringCopyZ(cx, "ctypes.winapi_abi");
break;
default:
JS_ReportError(cx, "not a valid ABICode");
return JS_FALSE;
}
if (!result)
return JS_FALSE;
args.rval().setString(result);
return JS_TRUE;
}
/*******************************************************************************
** PointerType implementation
*******************************************************************************/
JSBool
PointerType::Create(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Construct and return a new PointerType object.
if (args.length() != 1) {
JS_ReportError(cx, "PointerType takes one argument");
return JS_FALSE;
}
jsval arg = args[0];
RootedObject obj(cx);
if (JSVAL_IS_PRIMITIVE(arg) || !CType::IsCType(obj = &arg.toObject())) {
JS_ReportError(cx, "first argument must be a CType");
return JS_FALSE;
}
JSObject* result = CreateInternal(cx, obj);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
JSObject*
PointerType::CreateInternal(JSContext* cx, HandleObject baseType)
{
// check if we have a cached PointerType on our base CType.
jsval slot = JS_GetReservedSlot(baseType, SLOT_PTR);
if (!slot.isUndefined())
return &slot.toObject();
// Get ctypes.PointerType.prototype and the common prototype for CData objects
// of this type, or ctypes.FunctionType.prototype for function pointers.
CTypeProtoSlot slotId = CType::GetTypeCode(baseType) == TYPE_function ?
SLOT_FUNCTIONDATAPROTO : SLOT_POINTERDATAPROTO;
RootedObject dataProto(cx, CType::GetProtoFromType(cx, baseType, slotId));
if (!dataProto)
return NULL;
RootedObject typeProto(cx, CType::GetProtoFromType(cx, baseType, SLOT_POINTERPROTO));
if (!typeProto)
return NULL;
// Create a new CType object with the common properties and slots.
JSObject* typeObj = CType::Create(cx, typeProto, dataProto, TYPE_pointer,
NULL, INT_TO_JSVAL(sizeof(void*)),
INT_TO_JSVAL(ffi_type_pointer.alignment),
&ffi_type_pointer);
if (!typeObj)
return NULL;
// Set the target type. (This will be 'null' for an opaque pointer type.)
JS_SetReservedSlot(typeObj, SLOT_TARGET_T, OBJECT_TO_JSVAL(baseType));
// Finally, cache our newly-created PointerType on our pointed-to CType.
JS_SetReservedSlot(baseType, SLOT_PTR, OBJECT_TO_JSVAL(typeObj));
return typeObj;
}
JSBool
PointerType::ConstructData(JSContext* cx,
HandleObject obj,
const CallArgs& args)
{
if (!CType::IsCType(obj) || CType::GetTypeCode(obj) != TYPE_pointer) {
JS_ReportError(cx, "not a PointerType");
return JS_FALSE;
}
if (args.length() > 3) {
JS_ReportError(cx, "constructor takes 0, 1, 2, or 3 arguments");
return JS_FALSE;
}
RootedObject result(cx, CData::Create(cx, obj, NullPtr(), NULL, true));
if (!result)
return JS_FALSE;
// Set return value early, must not observe *vp after
args.rval().setObject(*result);
// There are 3 things that we might be creating here:
// 1 - A null pointer (no arguments)
// 2 - An initialized pointer (1 argument)
// 3 - A closure (1-3 arguments)
//
// The API doesn't give us a perfect way to distinguish 2 and 3, but the
// heuristics we use should be fine.
//
// Case 1 - Null pointer
//
if (args.length() == 0)
return JS_TRUE;
// Analyze the arguments a bit to decide what to do next.
RootedObject baseObj(cx, PointerType::GetBaseType(obj));
bool looksLikeClosure = CType::GetTypeCode(baseObj) == TYPE_function &&
args[0].isObject() &&
JS_ObjectIsCallable(cx, &args[0].toObject());
//
// Case 2 - Initialized pointer
//
if (!looksLikeClosure) {
if (args.length() != 1) {
JS_ReportError(cx, "first argument must be a function");
return JS_FALSE;
}
return ExplicitConvert(cx, args.handleAt(0), obj, CData::GetData(result));
}
//
// Case 3 - Closure
//
// The second argument is an optional 'this' parameter with which to invoke
// the given js function. Callers may leave this blank, or pass null if they
// wish to pass the third argument.
RootedObject thisObj(cx, NULL);
if (args.length() >= 2) {
if (args[1].isNull()) {
thisObj = NULL;
} else if (!JSVAL_IS_PRIMITIVE(args[1])) {
thisObj = &args[1].toObject();
} else if (!JS_ValueToObject(cx, args[1], thisObj.address())) {
return JS_FALSE;
}
}
// The third argument is an optional error sentinel that js-ctypes will return
// if an exception is raised while executing the closure. The type must match
// the return type of the callback.
jsval errVal = JSVAL_VOID;
if (args.length() == 3)
errVal = args[2];
RootedObject fnObj(cx, &args[0].toObject());
return FunctionType::ConstructData(cx, baseObj, result, fnObj, thisObj, errVal);
}
JSObject*
PointerType::GetBaseType(JSObject* obj)
{
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_pointer);
jsval type = JS_GetReservedSlot(obj, SLOT_TARGET_T);
JS_ASSERT(!type.isNull());
return &type.toObject();
}
JSBool
PointerType::TargetTypeGetter(JSContext* cx,
HandleObject obj,
HandleId idval,
MutableHandleValue vp)
{
if (!CType::IsCType(obj) || CType::GetTypeCode(obj) != TYPE_pointer) {
JS_ReportError(cx, "not a PointerType");
return JS_FALSE;
}
vp.set(JS_GetReservedSlot(obj, SLOT_TARGET_T));
JS_ASSERT(vp.isObject());
return JS_TRUE;
}
JSBool
PointerType::IsNull(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject* obj = JS_THIS_OBJECT(cx, vp);
if (!obj)
return JS_FALSE;
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
// Get pointer type and base type.
JSObject* typeObj = CData::GetCType(obj);
if (CType::GetTypeCode(typeObj) != TYPE_pointer) {
JS_ReportError(cx, "not a PointerType");
return JS_FALSE;
}
void* data = *static_cast<void**>(CData::GetData(obj));
args.rval().setBoolean(data == NULL);
return JS_TRUE;
}
JSBool
PointerType::OffsetBy(JSContext* cx, const CallArgs& args, int offset)
{
JSObject* obj = JS_THIS_OBJECT(cx, args.base());
if (!obj)
return JS_FALSE;
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
RootedObject typeObj(cx, CData::GetCType(obj));
if (CType::GetTypeCode(typeObj) != TYPE_pointer) {
JS_ReportError(cx, "not a PointerType");
return JS_FALSE;
}
RootedObject baseType(cx, PointerType::GetBaseType(typeObj));
if (!CType::IsSizeDefined(baseType)) {
JS_ReportError(cx, "cannot modify pointer of undefined size");
return JS_FALSE;
}
size_t elementSize = CType::GetSize(baseType);
char* data = static_cast<char*>(*static_cast<void**>(CData::GetData(obj)));
void* address = data + offset * elementSize;
// Create a PointerType CData object containing the new address.
JSObject* result = CData::Create(cx, typeObj, NullPtr(), &address, true);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
JSBool
PointerType::Increment(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return OffsetBy(cx, args, 1);
}
JSBool
PointerType::Decrement(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
return OffsetBy(cx, args, -1);
}
JSBool
PointerType::ContentsGetter(JSContext* cx,
HandleObject obj,
HandleId idval,
MutableHandleValue vp)
{
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
// Get pointer type and base type.
JSObject* typeObj = CData::GetCType(obj);
if (CType::GetTypeCode(typeObj) != TYPE_pointer) {
JS_ReportError(cx, "not a PointerType");
return JS_FALSE;
}
RootedObject baseType(cx, GetBaseType(typeObj));
if (!CType::IsSizeDefined(baseType)) {
JS_ReportError(cx, "cannot get contents of undefined size");
return JS_FALSE;
}
void* data = *static_cast<void**>(CData::GetData(obj));
if (data == NULL) {
JS_ReportError(cx, "cannot read contents of null pointer");
return JS_FALSE;
}
RootedValue result(cx);
if (!ConvertToJS(cx, baseType, NullPtr(), data, false, false, result.address()))
return JS_FALSE;
vp.set(result);
return JS_TRUE;
}
JSBool
PointerType::ContentsSetter(JSContext* cx,
HandleObject obj,
HandleId idval,
JSBool strict,
MutableHandleValue vp)
{
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
// Get pointer type and base type.
JSObject* typeObj = CData::GetCType(obj);
if (CType::GetTypeCode(typeObj) != TYPE_pointer) {
JS_ReportError(cx, "not a PointerType");
return JS_FALSE;
}
JSObject* baseType = GetBaseType(typeObj);
if (!CType::IsSizeDefined(baseType)) {
JS_ReportError(cx, "cannot set contents of undefined size");
return JS_FALSE;
}
void* data = *static_cast<void**>(CData::GetData(obj));
if (data == NULL) {
JS_ReportError(cx, "cannot write contents to null pointer");
return JS_FALSE;
}
return ImplicitConvert(cx, vp, baseType, data, false, NULL);
}
/*******************************************************************************
** ArrayType implementation
*******************************************************************************/
JSBool
ArrayType::Create(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Construct and return a new ArrayType object.
if (args.length() < 1 || args.length() > 2) {
JS_ReportError(cx, "ArrayType takes one or two arguments");
return JS_FALSE;
}
if (JSVAL_IS_PRIMITIVE(args[0]) ||
!CType::IsCType(&args[0].toObject())) {
JS_ReportError(cx, "first argument must be a CType");
return JS_FALSE;
}
// Convert the length argument to a size_t.
size_t length = 0;
if (args.length() == 2 && !jsvalToSize(cx, args[1], false, &length)) {
JS_ReportError(cx, "second argument must be a nonnegative integer");
return JS_FALSE;
}
RootedObject baseType(cx, &args[0].toObject());
JSObject* result = CreateInternal(cx, baseType, length, args.length() == 2);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
JSObject*
ArrayType::CreateInternal(JSContext* cx,
HandleObject baseType,
size_t length,
bool lengthDefined)
{
// Get ctypes.ArrayType.prototype and the common prototype for CData objects
// of this type, from ctypes.CType.prototype.
RootedObject typeProto(cx, CType::GetProtoFromType(cx, baseType, SLOT_ARRAYPROTO));
if (!typeProto)
return NULL;
RootedObject dataProto(cx, CType::GetProtoFromType(cx, baseType, SLOT_ARRAYDATAPROTO));
if (!dataProto)
return NULL;
// Determine the size of the array from the base type, if possible.
// The size of the base type must be defined.
// If our length is undefined, both our size and length will be undefined.
size_t baseSize;
if (!CType::GetSafeSize(baseType, &baseSize)) {
JS_ReportError(cx, "base size must be defined");
return NULL;
}
RootedValue sizeVal(cx, JSVAL_VOID);
RootedValue lengthVal(cx, JSVAL_VOID);
if (lengthDefined) {
// Check for overflow, and convert to an int or double as required.
size_t size = length * baseSize;
if (length > 0 && size / length != baseSize) {
JS_ReportError(cx, "size overflow");
return NULL;
}
if (!SizeTojsval(cx, size, sizeVal.address()) ||
!SizeTojsval(cx, length, lengthVal.address()))
return NULL;
}
size_t align = CType::GetAlignment(baseType);
// Create a new CType object with the common properties and slots.
JSObject* typeObj = CType::Create(cx, typeProto, dataProto, TYPE_array, NULL,
sizeVal, INT_TO_JSVAL(align), NULL);
if (!typeObj)
return NULL;
// Set the element type.
JS_SetReservedSlot(typeObj, SLOT_ELEMENT_T, OBJECT_TO_JSVAL(baseType));
// Set the length.
JS_SetReservedSlot(typeObj, SLOT_LENGTH, lengthVal);
return typeObj;
}
JSBool
ArrayType::ConstructData(JSContext* cx,
HandleObject obj_,
const CallArgs& args)
{
RootedObject obj(cx, obj_); // Make a mutable version
if (!CType::IsCType(obj) || CType::GetTypeCode(obj) != TYPE_array) {
JS_ReportError(cx, "not an ArrayType");
return JS_FALSE;
}
// Decide whether we have an object to initialize from. We'll override this
// if we get a length argument instead.
bool convertObject = args.length() == 1;
// Check if we're an array of undefined length. If we are, allow construction
// with a length argument, or with an actual JS array.
if (CType::IsSizeDefined(obj)) {
if (args.length() > 1) {
JS_ReportError(cx, "constructor takes zero or one argument");
return JS_FALSE;
}
} else {
if (args.length() != 1) {
JS_ReportError(cx, "constructor takes one argument");
return JS_FALSE;
}
RootedObject baseType(cx, GetBaseType(obj));
size_t length;
if (jsvalToSize(cx, args[0], false, &length)) {
// Have a length, rather than an object to initialize from.
convertObject = false;
} else if (!JSVAL_IS_PRIMITIVE(args[0])) {
// We were given an object with a .length property.
// This could be a JS array, or a CData array.
RootedObject arg(cx, &args[0].toObject());
RootedValue lengthVal(cx);
if (!JS_GetProperty(cx, arg, "length", lengthVal.address()) ||
!jsvalToSize(cx, lengthVal, false, &length)) {
JS_ReportError(cx, "argument must be an array object or length");
return JS_FALSE;
}
} else if (args[0].isString()) {
// We were given a string. Size the array to the appropriate length,
// including space for the terminator.
JSString* sourceString = args[0].toString();
size_t sourceLength = sourceString->length();
const jschar* sourceChars = sourceString->getChars(cx);
if (!sourceChars)
return false;
switch (CType::GetTypeCode(baseType)) {
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char: {
// Determine the UTF-8 length.
length = GetDeflatedUTF8StringLength(cx, sourceChars, sourceLength);
if (length == (size_t) -1)
return false;
++length;
break;
}
case TYPE_jschar:
length = sourceLength + 1;
break;
default:
return TypeError(cx, "array", args[0]);
}
} else {
JS_ReportError(cx, "argument must be an array object or length");
return JS_FALSE;
}
// Construct a new ArrayType of defined length, for the new CData object.
obj = CreateInternal(cx, baseType, length, true);
if (!obj)
return JS_FALSE;
}
JSObject* result = CData::Create(cx, obj, NullPtr(), NULL, true);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
if (convertObject) {
if (!ExplicitConvert(cx, args.handleAt(0), obj, CData::GetData(result)))
return JS_FALSE;
}
return JS_TRUE;
}
JSObject*
ArrayType::GetBaseType(JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_array);
jsval type = JS_GetReservedSlot(obj, SLOT_ELEMENT_T);
JS_ASSERT(!JSVAL_IS_NULL(type));
return &type.toObject();
}
bool
ArrayType::GetSafeLength(JSObject* obj, size_t* result)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_array);
jsval length = JS_GetReservedSlot(obj, SLOT_LENGTH);
// The "length" property can be an int, a double, or JSVAL_VOID
// (for arrays of undefined length), and must always fit in a size_t.
if (length.isInt32()) {
*result = length.toInt32();;
return true;
}
if (length.isDouble()) {
*result = Convert<size_t>(length.toDouble());
return true;
}
JS_ASSERT(length.isUndefined());
return false;
}
size_t
ArrayType::GetLength(JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_array);
jsval length = JS_GetReservedSlot(obj, SLOT_LENGTH);
JS_ASSERT(!length.isUndefined());
// The "length" property can be an int, a double, or JSVAL_VOID
// (for arrays of undefined length), and must always fit in a size_t.
// For callers who know it can never be JSVAL_VOID, return a size_t directly.
if (length.isInt32())
return length.toInt32();;
return Convert<size_t>(length.toDouble());
}
ffi_type*
ArrayType::BuildFFIType(JSContext* cx, JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_array);
JS_ASSERT(CType::IsSizeDefined(obj));
JSObject* baseType = ArrayType::GetBaseType(obj);
ffi_type* ffiBaseType = CType::GetFFIType(cx, baseType);
if (!ffiBaseType)
return NULL;
size_t length = ArrayType::GetLength(obj);
// Create an ffi_type to represent the array. This is necessary for the case
// where the array is part of a struct. Since libffi has no intrinsic
// support for array types, we approximate it by creating a struct type
// with elements of type 'baseType' and with appropriate size and alignment
// values. It would be nice to not do all the work of setting up 'elements',
// but some libffi platforms currently require that it be meaningful. I'm
// looking at you, x86_64.
AutoPtr<ffi_type> ffiType(cx->new_<ffi_type>());
if (!ffiType) {
JS_ReportOutOfMemory(cx);
return NULL;
}
ffiType->type = FFI_TYPE_STRUCT;
ffiType->size = CType::GetSize(obj);
ffiType->alignment = CType::GetAlignment(obj);
ffiType->elements = cx->pod_malloc<ffi_type*>(length + 1);
if (!ffiType->elements) {
JS_ReportAllocationOverflow(cx);
return NULL;
}
for (size_t i = 0; i < length; ++i)
ffiType->elements[i] = ffiBaseType;
ffiType->elements[length] = NULL;
return ffiType.forget();
}
JSBool
ArrayType::ElementTypeGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CType::IsCType(obj) || CType::GetTypeCode(obj) != TYPE_array) {
JS_ReportError(cx, "not an ArrayType");
return JS_FALSE;
}
vp.set(JS_GetReservedSlot(obj, SLOT_ELEMENT_T));
JS_ASSERT(!JSVAL_IS_PRIMITIVE(vp));
return JS_TRUE;
}
JSBool
ArrayType::LengthGetter(JSContext* cx, HandleObject obj_, HandleId idval, MutableHandleValue vp)
{
JSObject *obj = obj_;
// This getter exists for both CTypes and CDatas of the ArrayType persuasion.
// If we're dealing with a CData, get the CType from it.
if (CData::IsCData(obj))
obj = CData::GetCType(obj);
if (!CType::IsCType(obj) || CType::GetTypeCode(obj) != TYPE_array) {
JS_ReportError(cx, "not an ArrayType");
return JS_FALSE;
}
vp.set(JS_GetReservedSlot(obj, SLOT_LENGTH));
JS_ASSERT(vp.isNumber() || vp.isUndefined());
return JS_TRUE;
}
JSBool
ArrayType::Getter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
// This should never happen, but we'll check to be safe.
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
// Bail early if we're not an ArrayType. (This setter is present for all
// CData, regardless of CType.)
JSObject* typeObj = CData::GetCType(obj);
if (CType::GetTypeCode(typeObj) != TYPE_array)
return JS_TRUE;
// Convert the index to a size_t and bounds-check it.
size_t index;
size_t length = GetLength(typeObj);
bool ok = jsidToSize(cx, idval, true, &index);
int32_t dummy;
if (!ok && JSID_IS_STRING(idval) && !StringToInteger(cx, JSID_TO_STRING(idval), &dummy)) {
// String either isn't a number, or doesn't fit in size_t.
// Chances are it's a regular property lookup, so return.
return JS_TRUE;
}
if (!ok || index >= length) {
JS_ReportError(cx, "invalid index");
return JS_FALSE;
}
RootedObject baseType(cx, GetBaseType(typeObj));
size_t elementSize = CType::GetSize(baseType);
char* data = static_cast<char*>(CData::GetData(obj)) + elementSize * index;
return ConvertToJS(cx, baseType, obj, data, false, false, vp.address());
}
JSBool
ArrayType::Setter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict, MutableHandleValue vp)
{
// This should never happen, but we'll check to be safe.
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
// Bail early if we're not an ArrayType. (This setter is present for all
// CData, regardless of CType.)
JSObject* typeObj = CData::GetCType(obj);
if (CType::GetTypeCode(typeObj) != TYPE_array)
return JS_TRUE;
// Convert the index to a size_t and bounds-check it.
size_t index;
size_t length = GetLength(typeObj);
bool ok = jsidToSize(cx, idval, true, &index);
int32_t dummy;
if (!ok && JSID_IS_STRING(idval) && !StringToInteger(cx, JSID_TO_STRING(idval), &dummy)) {
// String either isn't a number, or doesn't fit in size_t.
// Chances are it's a regular property lookup, so return.
return JS_TRUE;
}
if (!ok || index >= length) {
JS_ReportError(cx, "invalid index");
return JS_FALSE;
}
JSObject* baseType = GetBaseType(typeObj);
size_t elementSize = CType::GetSize(baseType);
char* data = static_cast<char*>(CData::GetData(obj)) + elementSize * index;
return ImplicitConvert(cx, vp, baseType, data, false, NULL);
}
JSBool
ArrayType::AddressOfElement(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, JS_THIS_OBJECT(cx, vp));
if (!obj)
return JS_FALSE;
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
RootedObject typeObj(cx, CData::GetCType(obj));
if (CType::GetTypeCode(typeObj) != TYPE_array) {
JS_ReportError(cx, "not an ArrayType");
return JS_FALSE;
}
if (args.length() != 1) {
JS_ReportError(cx, "addressOfElement takes one argument");
return JS_FALSE;
}
RootedObject baseType(cx, GetBaseType(typeObj));
RootedObject pointerType(cx, PointerType::CreateInternal(cx, baseType));
if (!pointerType)
return JS_FALSE;
// Create a PointerType CData object containing null.
RootedObject result(cx, CData::Create(cx, pointerType, NullPtr(), NULL, true));
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
// Convert the index to a size_t and bounds-check it.
size_t index;
size_t length = GetLength(typeObj);
if (!jsvalToSize(cx, args[0], false, &index) ||
index >= length) {
JS_ReportError(cx, "invalid index");
return JS_FALSE;
}
// Manually set the pointer inside the object, so we skip the conversion step.
void** data = static_cast<void**>(CData::GetData(result));
size_t elementSize = CType::GetSize(baseType);
*data = static_cast<char*>(CData::GetData(obj)) + elementSize * index;
return JS_TRUE;
}
/*******************************************************************************
** StructType implementation
*******************************************************************************/
// For a struct field descriptor 'val' of the form { name : type }, extract
// 'name' and 'type'.
static JSFlatString*
ExtractStructField(JSContext* cx, jsval val, JSObject** typeObj)
{
if (JSVAL_IS_PRIMITIVE(val)) {
JS_ReportError(cx, "struct field descriptors require a valid name and type");
return NULL;
}
RootedObject obj(cx, JSVAL_TO_OBJECT(val));
RootedObject iter(cx, JS_NewPropertyIterator(cx, obj));
if (!iter)
return NULL;
RootedId nameid(cx);
if (!JS_NextProperty(cx, iter, nameid.address()))
return NULL;
if (JSID_IS_VOID(nameid)) {
JS_ReportError(cx, "struct field descriptors require a valid name and type");
return NULL;
}
if (!JSID_IS_STRING(nameid)) {
JS_ReportError(cx, "struct field descriptors require a valid name and type");
return NULL;
}
// make sure we have one, and only one, property
jsid id;
if (!JS_NextProperty(cx, iter, &id))
return NULL;
if (!JSID_IS_VOID(id)) {
JS_ReportError(cx, "struct field descriptors must contain one property");
return NULL;
}
RootedValue propVal(cx);
if (!JS_GetPropertyById(cx, obj, nameid, propVal.address()))
return NULL;
if (propVal.isPrimitive() || !CType::IsCType(&propVal.toObject())) {
JS_ReportError(cx, "struct field descriptors require a valid name and type");
return NULL;
}
// Undefined size or zero size struct members are illegal.
// (Zero-size arrays are legal as struct members in C++, but libffi will
// choke on a zero-size struct, so we disallow them.)
*typeObj = &propVal.toObject();
size_t size;
if (!CType::GetSafeSize(*typeObj, &size) || size == 0) {
JS_ReportError(cx, "struct field types must have defined and nonzero size");
return NULL;
}
return JSID_TO_FLAT_STRING(nameid);
}
// For a struct field with 'name' and 'type', add an element of the form
// { name : type }.
static JSBool
AddFieldToArray(JSContext* cx,
jsval* element,
JSFlatString* name_,
JSObject* typeObj_)
{
RootedObject typeObj(cx, typeObj_);
Rooted<JSFlatString*> name(cx, name_);
RootedObject fieldObj(cx, JS_NewObject(cx, NULL, NULL, NULL));
if (!fieldObj)
return false;
*element = OBJECT_TO_JSVAL(fieldObj);
if (!JS_DefineUCProperty(cx, fieldObj,
name->chars(), name->length(),
OBJECT_TO_JSVAL(typeObj), NULL, NULL,
JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT))
return false;
return JS_FreezeObject(cx, fieldObj);
}
JSBool
StructType::Create(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Construct and return a new StructType object.
if (args.length() < 1 || args.length() > 2) {
JS_ReportError(cx, "StructType takes one or two arguments");
return JS_FALSE;
}
jsval name = args[0];
if (!name.isString()) {
JS_ReportError(cx, "first argument must be a string");
return JS_FALSE;
}
// Get ctypes.StructType.prototype from the ctypes.StructType constructor.
RootedObject typeProto(cx, CType::GetProtoFromCtor(&args.callee(), SLOT_STRUCTPROTO));
// Create a simple StructType with no defined fields. The result will be
// non-instantiable as CData, will have no 'prototype' property, and will
// have undefined size and alignment and no ffi_type.
RootedObject result(cx, CType::Create(cx, typeProto, NullPtr(), TYPE_struct,
JSVAL_TO_STRING(name), JSVAL_VOID, JSVAL_VOID, NULL));
if (!result)
return JS_FALSE;
if (args.length() == 2) {
RootedObject arr(cx, JSVAL_IS_PRIMITIVE(args[1]) ? NULL : &args[1].toObject());
if (!arr || !JS_IsArrayObject(cx, arr)) {
JS_ReportError(cx, "second argument must be an array");
return JS_FALSE;
}
// Define the struct fields.
if (!DefineInternal(cx, result, arr))
return JS_FALSE;
}
args.rval().setObject(*result);
return JS_TRUE;
}
JSBool
StructType::DefineInternal(JSContext* cx, JSObject* typeObj_, JSObject* fieldsObj_)
{
RootedObject typeObj(cx, typeObj_);
RootedObject fieldsObj(cx, fieldsObj_);
uint32_t len;
ASSERT_OK(JS_GetArrayLength(cx, fieldsObj, &len));
// Get the common prototype for CData objects of this type from
// ctypes.CType.prototype.
RootedObject dataProto(cx, CType::GetProtoFromType(cx, typeObj, SLOT_STRUCTDATAPROTO));
if (!dataProto)
return JS_FALSE;
// Set up the 'prototype' and 'prototype.constructor' properties.
// The prototype will reflect the struct fields as properties on CData objects
// created from this type.
RootedObject prototype(cx, JS_NewObject(cx, &sCDataProtoClass, dataProto, NULL));
if (!prototype)
return JS_FALSE;
if (!JS_DefineProperty(cx, prototype, "constructor", OBJECT_TO_JSVAL(typeObj),
NULL, NULL, JSPROP_READONLY | JSPROP_PERMANENT))
return JS_FALSE;
// Create a FieldInfoHash to stash on the type object, and an array to root
// its constituents. (We cannot simply stash the hash in a reserved slot now
// to get GC safety for free, since if anything in this function fails we
// do not want to mutate 'typeObj'.)
AutoPtr<FieldInfoHash> fields(cx->new_<FieldInfoHash>());
if (!fields || !fields->init(len)) {
JS_ReportOutOfMemory(cx);
return JS_FALSE;
}
JS::AutoValueVector fieldRoots(cx);
if (!fieldRoots.resize(len))
return false;
// Process the field types.
size_t structSize, structAlign;
if (len != 0) {
structSize = 0;
structAlign = 0;
for (uint32_t i = 0; i < len; ++i) {
RootedValue item(cx);
if (!JS_GetElement(cx, fieldsObj, i, item.address()))
return JS_FALSE;
RootedObject fieldType(cx, NULL);
JSFlatString* flat = ExtractStructField(cx, item, fieldType.address());
if (!flat)
return JS_FALSE;
Rooted<JSStableString*> name(cx, flat->ensureStable(cx));
if (!name)
return JS_FALSE;
fieldRoots[i] = OBJECT_TO_JSVAL(fieldType);
// Make sure each field name is unique
FieldInfoHash::AddPtr entryPtr = fields->lookupForAdd(name);
if (entryPtr) {
JS_ReportError(cx, "struct fields must have unique names");
return JS_FALSE;
}
// Add the field to the StructType's 'prototype' property.
if (!JS_DefineUCProperty(cx, prototype,
name->chars().get(), name->length(), JSVAL_VOID,
StructType::FieldGetter, StructType::FieldSetter,
JSPROP_SHARED | JSPROP_ENUMERATE | JSPROP_PERMANENT))
return JS_FALSE;
size_t fieldSize = CType::GetSize(fieldType);
size_t fieldAlign = CType::GetAlignment(fieldType);
size_t fieldOffset = Align(structSize, fieldAlign);
// Check for overflow. Since we hold invariant that fieldSize % fieldAlign
// be zero, we can safely check fieldOffset + fieldSize without first
// checking fieldOffset for overflow.
if (fieldOffset + fieldSize < structSize) {
JS_ReportError(cx, "size overflow");
return JS_FALSE;
}
// Add field name to the hash
FieldInfo info;
info.mType = fieldType;
info.mIndex = i;
info.mOffset = fieldOffset;
ASSERT_OK(fields->add(entryPtr, name, info));
structSize = fieldOffset + fieldSize;
if (fieldAlign > structAlign)
structAlign = fieldAlign;
}
// Pad the struct tail according to struct alignment.
size_t structTail = Align(structSize, structAlign);
if (structTail < structSize) {
JS_ReportError(cx, "size overflow");
return JS_FALSE;
}
structSize = structTail;
} else {
// Empty structs are illegal in C, but are legal and have a size of
// 1 byte in C++. We're going to allow them, and trick libffi into
// believing this by adding a char member. The resulting struct will have
// no getters or setters, and will be initialized to zero.
structSize = 1;
structAlign = 1;
}
RootedValue sizeVal(cx);
if (!SizeTojsval(cx, structSize, sizeVal.address()))
return JS_FALSE;
JS_SetReservedSlot(typeObj, SLOT_FIELDINFO, PRIVATE_TO_JSVAL(fields.forget()));
JS_SetReservedSlot(typeObj, SLOT_SIZE, sizeVal);
JS_SetReservedSlot(typeObj, SLOT_ALIGN, INT_TO_JSVAL(structAlign));
//if (!JS_FreezeObject(cx, prototype)0 // XXX fixme - see bug 541212!
// return false;
JS_SetReservedSlot(typeObj, SLOT_PROTO, OBJECT_TO_JSVAL(prototype));
return JS_TRUE;
}
ffi_type*
StructType::BuildFFIType(JSContext* cx, JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_struct);
JS_ASSERT(CType::IsSizeDefined(obj));
const FieldInfoHash* fields = GetFieldInfo(obj);
size_t len = fields->count();
size_t structSize = CType::GetSize(obj);
size_t structAlign = CType::GetAlignment(obj);
AutoPtr<ffi_type> ffiType(cx->new_<ffi_type>());
if (!ffiType) {
JS_ReportOutOfMemory(cx);
return NULL;
}
ffiType->type = FFI_TYPE_STRUCT;
AutoPtr<ffi_type*> elements;
if (len != 0) {
elements = cx->pod_malloc<ffi_type*>(len + 1);
if (!elements) {
JS_ReportOutOfMemory(cx);
return NULL;
}
elements[len] = NULL;
for (FieldInfoHash::Range r = fields->all(); !r.empty(); r.popFront()) {
const FieldInfoHash::Entry& entry = r.front();
ffi_type* fieldType = CType::GetFFIType(cx, entry.value.mType);
if (!fieldType)
return NULL;
elements[entry.value.mIndex] = fieldType;
}
} else {
// Represent an empty struct as having a size of 1 byte, just like C++.
JS_ASSERT(structSize == 1);
JS_ASSERT(structAlign == 1);
elements = cx->pod_malloc<ffi_type*>(2);
if (!elements) {
JS_ReportOutOfMemory(cx);
return NULL;
}
elements[0] = &ffi_type_uint8;
elements[1] = NULL;
}
ffiType->elements = elements.get();
#ifdef DEBUG
// Perform a sanity check: the result of our struct size and alignment
// calculations should match libffi's. We force it to do this calculation
// by calling ffi_prep_cif.
ffi_cif cif;
ffiType->size = 0;
ffiType->alignment = 0;
ffi_status status = ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 0, ffiType.get(), NULL);
JS_ASSERT(status == FFI_OK);
JS_ASSERT(structSize == ffiType->size);
JS_ASSERT(structAlign == ffiType->alignment);
#else
// Fill in the ffi_type's size and align fields. This makes libffi treat the
// type as initialized; it will not recompute the values. (We assume
// everything agrees; if it doesn't, we really want to know about it, which
// is the purpose of the above debug-only check.)
ffiType->size = structSize;
ffiType->alignment = structAlign;
#endif
elements.forget();
return ffiType.forget();
}
JSBool
StructType::Define(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, JS_THIS_OBJECT(cx, vp));
if (!obj)
return JS_FALSE;
if (!CType::IsCType(obj) ||
CType::GetTypeCode(obj) != TYPE_struct) {
JS_ReportError(cx, "not a StructType");
return JS_FALSE;
}
if (CType::IsSizeDefined(obj)) {
JS_ReportError(cx, "StructType has already been defined");
return JS_FALSE;
}
if (args.length() != 1) {
JS_ReportError(cx, "define takes one argument");
return JS_FALSE;
}
jsval arg = args[0];
if (JSVAL_IS_PRIMITIVE(arg)) {
JS_ReportError(cx, "argument must be an array");
return JS_FALSE;
}
RootedObject arr(cx, JSVAL_TO_OBJECT(arg));
if (!JS_IsArrayObject(cx, arr)) {
JS_ReportError(cx, "argument must be an array");
return JS_FALSE;
}
return DefineInternal(cx, obj, arr);
}
JSBool
StructType::ConstructData(JSContext* cx,
HandleObject obj,
const CallArgs& args)
{
if (!CType::IsCType(obj) || CType::GetTypeCode(obj) != TYPE_struct) {
JS_ReportError(cx, "not a StructType");
return JS_FALSE;
}
if (!CType::IsSizeDefined(obj)) {
JS_ReportError(cx, "cannot construct an opaque StructType");
return JS_FALSE;
}
JSObject* result = CData::Create(cx, obj, NullPtr(), NULL, true);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
if (args.length() == 0)
return JS_TRUE;
char* buffer = static_cast<char*>(CData::GetData(result));
const FieldInfoHash* fields = GetFieldInfo(obj);
if (args.length() == 1) {
// There are two possible interpretations of the argument:
// 1) It may be an object '{ ... }' with properties representing the
// struct fields intended to ExplicitConvert wholesale to our StructType.
// 2) If the struct contains one field, the arg may be intended to
// ImplicitConvert directly to that arg's CType.
// Thankfully, the conditions for these two possibilities to succeed
// are mutually exclusive, so we can pick the right one.
// Try option 1) first.
if (ExplicitConvert(cx, args.handleAt(0), obj, buffer))
return JS_TRUE;
if (fields->count() != 1)
return JS_FALSE;
// If ExplicitConvert failed, and there is no pending exception, then assume
// hard failure (out of memory, or some other similarly serious condition).
if (!JS_IsExceptionPending(cx))
return JS_FALSE;
// Otherwise, assume soft failure, and clear the pending exception so that we
// can throw a different one as required.
JS_ClearPendingException(cx);
// Fall through to try option 2).
}
// We have a type constructor of the form 'ctypes.StructType(a, b, c, ...)'.
// ImplicitConvert each field.
if (args.length() == fields->count()) {
for (FieldInfoHash::Range r = fields->all(); !r.empty(); r.popFront()) {
const FieldInfo& field = r.front().value;
STATIC_ASSUME(field.mIndex < fields->count()); /* Quantified invariant */
if (!ImplicitConvert(cx, args.handleAt(field.mIndex), field.mType,
buffer + field.mOffset,
false, NULL))
return JS_FALSE;
}
return JS_TRUE;
}
JS_ReportError(cx, "constructor takes 0, 1, or %u arguments",
fields->count());
return JS_FALSE;
}
const FieldInfoHash*
StructType::GetFieldInfo(JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_struct);
jsval slot = JS_GetReservedSlot(obj, SLOT_FIELDINFO);
JS_ASSERT(!JSVAL_IS_VOID(slot) && JSVAL_TO_PRIVATE(slot));
return static_cast<const FieldInfoHash*>(JSVAL_TO_PRIVATE(slot));
}
const FieldInfo*
StructType::LookupField(JSContext* cx, JSObject* obj, JSFlatString *name)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_struct);
FieldInfoHash::Ptr ptr = GetFieldInfo(obj)->lookup(name);
if (ptr)
return &ptr->value;
JSAutoByteString bytes(cx, name);
if (!bytes)
return NULL;
JS_ReportError(cx, "%s does not name a field", bytes.ptr());
return NULL;
}
JSObject*
StructType::BuildFieldsArray(JSContext* cx, JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_struct);
JS_ASSERT(CType::IsSizeDefined(obj));
const FieldInfoHash* fields = GetFieldInfo(obj);
size_t len = fields->count();
// Prepare a new array for the 'fields' property of the StructType.
JS::AutoValueVector fieldsVec(cx);
if (!fieldsVec.resize(len))
return NULL;
for (FieldInfoHash::Range r = fields->all(); !r.empty(); r.popFront()) {
const FieldInfoHash::Entry& entry = r.front();
// Add the field descriptor to the array.
if (!AddFieldToArray(cx, &fieldsVec[entry.value.mIndex],
entry.key, entry.value.mType))
return NULL;
}
RootedObject fieldsProp(cx, JS_NewArrayObject(cx, len, fieldsVec.begin()));
if (!fieldsProp)
return NULL;
// Seal the fields array.
if (!JS_FreezeObject(cx, fieldsProp))
return NULL;
return fieldsProp;
}
JSBool
StructType::FieldsArrayGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CType::IsCType(obj) || CType::GetTypeCode(obj) != TYPE_struct) {
JS_ReportError(cx, "not a StructType");
return JS_FALSE;
}
vp.set(JS_GetReservedSlot(obj, SLOT_FIELDS));
if (!CType::IsSizeDefined(obj)) {
JS_ASSERT(JSVAL_IS_VOID(vp));
return JS_TRUE;
}
if (JSVAL_IS_VOID(vp)) {
// Build the 'fields' array lazily.
JSObject* fields = BuildFieldsArray(cx, obj);
if (!fields)
return JS_FALSE;
JS_SetReservedSlot(obj, SLOT_FIELDS, OBJECT_TO_JSVAL(fields));
vp.setObject(*fields);
}
JS_ASSERT(!JSVAL_IS_PRIMITIVE(vp) &&
JS_IsArrayObject(cx, JSVAL_TO_OBJECT(vp)));
return JS_TRUE;
}
JSBool
StructType::FieldGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
JSObject* typeObj = CData::GetCType(obj);
if (CType::GetTypeCode(typeObj) != TYPE_struct) {
JS_ReportError(cx, "not a StructType");
return JS_FALSE;
}
const FieldInfo* field = LookupField(cx, typeObj, JSID_TO_FLAT_STRING(idval));
if (!field)
return JS_FALSE;
char* data = static_cast<char*>(CData::GetData(obj)) + field->mOffset;
RootedObject fieldType(cx, field->mType);
return ConvertToJS(cx, fieldType, obj, data, false, false, vp.address());
}
JSBool
StructType::FieldSetter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict, MutableHandleValue vp)
{
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
JSObject* typeObj = CData::GetCType(obj);
if (CType::GetTypeCode(typeObj) != TYPE_struct) {
JS_ReportError(cx, "not a StructType");
return JS_FALSE;
}
const FieldInfo* field = LookupField(cx, typeObj, JSID_TO_FLAT_STRING(idval));
if (!field)
return JS_FALSE;
char* data = static_cast<char*>(CData::GetData(obj)) + field->mOffset;
return ImplicitConvert(cx, vp, field->mType, data, false, NULL);
}
JSBool
StructType::AddressOfField(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, JS_THIS_OBJECT(cx, vp));
if (!obj)
return JS_FALSE;
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
JSObject* typeObj = CData::GetCType(obj);
if (CType::GetTypeCode(typeObj) != TYPE_struct) {
JS_ReportError(cx, "not a StructType");
return JS_FALSE;
}
if (args.length() != 1) {
JS_ReportError(cx, "addressOfField takes one argument");
return JS_FALSE;
}
JSFlatString *str = JS_FlattenString(cx, args[0].toString());
if (!str)
return JS_FALSE;
const FieldInfo* field = LookupField(cx, typeObj, str);
if (!field)
return JS_FALSE;
RootedObject baseType(cx, field->mType);
RootedObject pointerType(cx, PointerType::CreateInternal(cx, baseType));
if (!pointerType)
return JS_FALSE;
// Create a PointerType CData object containing null.
JSObject* result = CData::Create(cx, pointerType, NullPtr(), NULL, true);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
// Manually set the pointer inside the object, so we skip the conversion step.
void** data = static_cast<void**>(CData::GetData(result));
*data = static_cast<char*>(CData::GetData(obj)) + field->mOffset;
return JS_TRUE;
}
/*******************************************************************************
** FunctionType implementation
*******************************************************************************/
// Helper class for handling allocation of function arguments.
struct AutoValue
{
AutoValue() : mData(NULL) { }
~AutoValue()
{
js_free(mData);
}
bool SizeToType(JSContext* cx, JSObject* type)
{
// Allocate a minimum of sizeof(ffi_arg) to handle small integers.
size_t size = Align(CType::GetSize(type), sizeof(ffi_arg));
mData = js_malloc(size);
if (mData)
memset(mData, 0, size);
return mData != NULL;
}
void* mData;
};
static bool
GetABI(JSContext* cx, jsval abiType, ffi_abi* result)
{
if (JSVAL_IS_PRIMITIVE(abiType))
return false;
ABICode abi = GetABICode(JSVAL_TO_OBJECT(abiType));
// determine the ABI from the subset of those available on the
// given platform. ABI_DEFAULT specifies the default
// C calling convention (cdecl) on each platform.
switch (abi) {
case ABI_DEFAULT:
*result = FFI_DEFAULT_ABI;
return true;
case ABI_STDCALL:
case ABI_WINAPI:
#if (defined(_WIN32) && !defined(_WIN64)) || defined(_OS2)
*result = FFI_STDCALL;
return true;
#elif (defined(_WIN64))
// We'd like the same code to work across Win32 and Win64, so stdcall_api
// and winapi_abi become aliases to the lone Win64 ABI.
*result = FFI_WIN64;
return true;
#endif
case INVALID_ABI:
break;
}
return false;
}
static JSObject*
PrepareType(JSContext* cx, jsval type)
{
if (JSVAL_IS_PRIMITIVE(type) ||
!CType::IsCType(JSVAL_TO_OBJECT(type))) {
JS_ReportError(cx, "not a ctypes type");
return NULL;
}
JSObject* result = JSVAL_TO_OBJECT(type);
TypeCode typeCode = CType::GetTypeCode(result);
if (typeCode == TYPE_array) {
// convert array argument types to pointers, just like C.
// ImplicitConvert will do the same, when passing an array as data.
RootedObject baseType(cx, ArrayType::GetBaseType(result));
result = PointerType::CreateInternal(cx, baseType);
if (!result)
return NULL;
} else if (typeCode == TYPE_void_t || typeCode == TYPE_function) {
// disallow void or function argument types
JS_ReportError(cx, "Cannot have void or function argument type");
return NULL;
}
if (!CType::IsSizeDefined(result)) {
JS_ReportError(cx, "Argument type must have defined size");
return NULL;
}
// libffi cannot pass types of zero size by value.
JS_ASSERT(CType::GetSize(result) != 0);
return result;
}
static JSObject*
PrepareReturnType(JSContext* cx, jsval type)
{
if (JSVAL_IS_PRIMITIVE(type) ||
!CType::IsCType(JSVAL_TO_OBJECT(type))) {
JS_ReportError(cx, "not a ctypes type");
return NULL;
}
JSObject* result = JSVAL_TO_OBJECT(type);
TypeCode typeCode = CType::GetTypeCode(result);
// Arrays and functions can never be return types.
if (typeCode == TYPE_array || typeCode == TYPE_function) {
JS_ReportError(cx, "Return type cannot be an array or function");
return NULL;
}
if (typeCode != TYPE_void_t && !CType::IsSizeDefined(result)) {
JS_ReportError(cx, "Return type must have defined size");
return NULL;
}
// libffi cannot pass types of zero size by value.
JS_ASSERT(typeCode == TYPE_void_t || CType::GetSize(result) != 0);
return result;
}
static JS_ALWAYS_INLINE JSBool
IsEllipsis(JSContext* cx, jsval v, bool* isEllipsis)
{
*isEllipsis = false;
if (!JSVAL_IS_STRING(v))
return true;
JSString* str = JSVAL_TO_STRING(v);
if (str->length() != 3)
return true;
const jschar* chars = str->getChars(cx);
if (!chars)
return false;
jschar dot = '.';
*isEllipsis = (chars[0] == dot &&
chars[1] == dot &&
chars[2] == dot);
return true;
}
static JSBool
PrepareCIF(JSContext* cx,
FunctionInfo* fninfo)
{
ffi_abi abi;
if (!GetABI(cx, OBJECT_TO_JSVAL(fninfo->mABI), &abi)) {
JS_ReportError(cx, "Invalid ABI specification");
return false;
}
ffi_type* rtype = CType::GetFFIType(cx, fninfo->mReturnType);
if (!rtype)
return false;
ffi_status status =
ffi_prep_cif(&fninfo->mCIF,
abi,
fninfo->mFFITypes.length(),
rtype,
fninfo->mFFITypes.begin());
switch (status) {
case FFI_OK:
return true;
case FFI_BAD_ABI:
JS_ReportError(cx, "Invalid ABI specification");
return false;
case FFI_BAD_TYPEDEF:
JS_ReportError(cx, "Invalid type specification");
return false;
default:
JS_ReportError(cx, "Unknown libffi error");
return false;
}
}
void
FunctionType::BuildSymbolName(JSString* name,
JSObject* typeObj,
AutoCString& result)
{
FunctionInfo* fninfo = GetFunctionInfo(typeObj);
switch (GetABICode(fninfo->mABI)) {
case ABI_DEFAULT:
case ABI_WINAPI:
// For cdecl or WINAPI functions, no mangling is necessary.
AppendString(result, name);
break;
case ABI_STDCALL: {
#if (defined(_WIN32) && !defined(_WIN64)) || defined(_OS2)
// On WIN32, stdcall functions look like:
// _foo@40
// where 'foo' is the function name, and '40' is the aligned size of the
// arguments.
AppendString(result, "_");
AppendString(result, name);
AppendString(result, "@");
// Compute the suffix by aligning each argument to sizeof(ffi_arg).
size_t size = 0;
for (size_t i = 0; i < fninfo->mArgTypes.length(); ++i) {
JSObject* argType = fninfo->mArgTypes[i];
size += Align(CType::GetSize(argType), sizeof(ffi_arg));
}
IntegerToString(size, 10, result);
#elif defined(_WIN64)
// On Win64, stdcall is an alias to the default ABI for compatibility, so no
// mangling is done.
AppendString(result, name);
#endif
break;
}
case INVALID_ABI:
JS_NOT_REACHED("invalid abi");
break;
}
}
static FunctionInfo*
NewFunctionInfo(JSContext* cx,
jsval abiType,
jsval returnType,
jsval* argTypes,
unsigned argLength)
{
AutoPtr<FunctionInfo> fninfo(cx->new_<FunctionInfo>());
if (!fninfo) {
JS_ReportOutOfMemory(cx);
return NULL;
}
ffi_abi abi;
if (!GetABI(cx, abiType, &abi)) {
JS_ReportError(cx, "Invalid ABI specification");
return NULL;
}
fninfo->mABI = JSVAL_TO_OBJECT(abiType);
// prepare the result type
fninfo->mReturnType = PrepareReturnType(cx, returnType);
if (!fninfo->mReturnType)
return NULL;
// prepare the argument types
if (!fninfo->mArgTypes.reserve(argLength) ||
!fninfo->mFFITypes.reserve(argLength)) {
JS_ReportOutOfMemory(cx);
return NULL;
}
fninfo->mIsVariadic = false;
for (uint32_t i = 0; i < argLength; ++i) {
bool isEllipsis;
if (!IsEllipsis(cx, argTypes[i], &isEllipsis))
return NULL;
if (isEllipsis) {
fninfo->mIsVariadic = true;
if (i < 1) {
JS_ReportError(cx, "\"...\" may not be the first and only parameter "
"type of a variadic function declaration");
return NULL;
}
if (i < argLength - 1) {
JS_ReportError(cx, "\"...\" must be the last parameter type of a "
"variadic function declaration");
return NULL;
}
if (GetABICode(fninfo->mABI) != ABI_DEFAULT) {
JS_ReportError(cx, "Variadic functions must use the __cdecl calling "
"convention");
return NULL;
}
break;
}
JSObject* argType = PrepareType(cx, argTypes[i]);
if (!argType)
return NULL;
ffi_type* ffiType = CType::GetFFIType(cx, argType);
if (!ffiType)
return NULL;
fninfo->mArgTypes.infallibleAppend(argType);
fninfo->mFFITypes.infallibleAppend(ffiType);
}
if (fninfo->mIsVariadic)
// wait to PrepareCIF until function is called
return fninfo.forget();
if (!PrepareCIF(cx, fninfo.get()))
return NULL;
return fninfo.forget();
}
JSBool
FunctionType::Create(JSContext* cx, unsigned argc, jsval* vp)
{
// Construct and return a new FunctionType object.
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() < 2 || args.length() > 3) {
JS_ReportError(cx, "FunctionType takes two or three arguments");
return JS_FALSE;
}
JS::AutoValueVector argTypes(cx);
RootedObject arrayObj(cx, NULL);
if (args.length() == 3) {
// Prepare an array of jsvals for the arguments.
if (!JSVAL_IS_PRIMITIVE(args[2]))
arrayObj = &args[2].toObject();
if (!arrayObj || !JS_IsArrayObject(cx, arrayObj)) {
JS_ReportError(cx, "third argument must be an array");
return JS_FALSE;
}
uint32_t len;
ASSERT_OK(JS_GetArrayLength(cx, arrayObj, &len));
if (!argTypes.resize(len))
return JS_FALSE;
}
// Pull out the argument types from the array, if any.
JS_ASSERT(!argTypes.length() || arrayObj);
for (uint32_t i = 0; i < argTypes.length(); ++i) {
if (!JS_GetElement(cx, arrayObj, i, &argTypes[i]))
return JS_FALSE;
}
JSObject* result = CreateInternal(cx, args[0], args[1],
argTypes.begin(), argTypes.length());
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
JSObject*
FunctionType::CreateInternal(JSContext* cx,
jsval abi,
jsval rtype,
jsval* argtypes,
unsigned arglen)
{
// Determine and check the types, and prepare the function CIF.
AutoPtr<FunctionInfo> fninfo(NewFunctionInfo(cx, abi, rtype, argtypes, arglen));
if (!fninfo)
return NULL;
// Get ctypes.FunctionType.prototype and the common prototype for CData objects
// of this type, from ctypes.CType.prototype.
RootedObject typeProto(cx, CType::GetProtoFromType(cx, fninfo->mReturnType,
SLOT_FUNCTIONPROTO));
if (!typeProto)
return NULL;
RootedObject dataProto(cx, CType::GetProtoFromType(cx, fninfo->mReturnType,
SLOT_FUNCTIONDATAPROTO));
if (!dataProto)
return NULL;
// Create a new CType object with the common properties and slots.
JSObject* typeObj = CType::Create(cx, typeProto, dataProto, TYPE_function,
NULL, JSVAL_VOID, JSVAL_VOID, NULL);
if (!typeObj)
return NULL;
// Stash the FunctionInfo in a reserved slot.
JS_SetReservedSlot(typeObj, SLOT_FNINFO, PRIVATE_TO_JSVAL(fninfo.forget()));
return typeObj;
}
// Construct a function pointer to a JS function (see CClosure::Create()).
// Regular function pointers are constructed directly in
// PointerType::ConstructData().
JSBool
FunctionType::ConstructData(JSContext* cx,
HandleObject typeObj,
HandleObject dataObj,
HandleObject fnObj,
HandleObject thisObj,
jsval errVal)
{
JS_ASSERT(CType::GetTypeCode(typeObj) == TYPE_function);
PRFuncPtr* data = static_cast<PRFuncPtr*>(CData::GetData(dataObj));
FunctionInfo* fninfo = FunctionType::GetFunctionInfo(typeObj);
if (fninfo->mIsVariadic) {
JS_ReportError(cx, "Can't declare a variadic callback function");
return JS_FALSE;
}
if (GetABICode(fninfo->mABI) == ABI_WINAPI) {
JS_ReportError(cx, "Can't declare a ctypes.winapi_abi callback function, "
"use ctypes.stdcall_abi instead");
return JS_FALSE;
}
RootedObject closureObj(cx, CClosure::Create(cx, typeObj, fnObj, thisObj, errVal, data));
if (!closureObj)
return JS_FALSE;
// Set the closure object as the referent of the new CData object.
JS_SetReservedSlot(dataObj, SLOT_REFERENT, OBJECT_TO_JSVAL(closureObj));
// Seal the CData object, to prevent modification of the function pointer.
// This permanently associates this object with the closure, and avoids
// having to do things like reset SLOT_REFERENT when someone tries to
// change the pointer value.
// XXX This will need to change when bug 541212 is fixed -- CData::ValueSetter
// could be called on a frozen object.
return JS_FreezeObject(cx, dataObj);
}
typedef Array<AutoValue, 16> AutoValueAutoArray;
static JSBool
ConvertArgument(JSContext* cx,
HandleValue arg,
JSObject* type,
AutoValue* value,
AutoValueAutoArray* strings)
{
if (!value->SizeToType(cx, type)) {
JS_ReportAllocationOverflow(cx);
return false;
}
bool freePointer = false;
if (!ImplicitConvert(cx, arg, type, value->mData, true, &freePointer))
return false;
if (freePointer) {
// ImplicitConvert converted a string for us, which we have to free.
// Keep track of it.
if (!strings->growBy(1)) {
JS_ReportOutOfMemory(cx);
return false;
}
strings->back().mData = *static_cast<char**>(value->mData);
}
return true;
}
JSBool
FunctionType::Call(JSContext* cx,
unsigned argc,
jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// get the callee object...
RootedObject obj(cx, &args.callee());
if (!CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return false;
}
RootedObject typeObj(cx, CData::GetCType(obj));
if (CType::GetTypeCode(typeObj) != TYPE_pointer) {
JS_ReportError(cx, "not a FunctionType.ptr");
return false;
}
typeObj = PointerType::GetBaseType(typeObj);
if (CType::GetTypeCode(typeObj) != TYPE_function) {
JS_ReportError(cx, "not a FunctionType.ptr");
return false;
}
FunctionInfo* fninfo = GetFunctionInfo(typeObj);
uint32_t argcFixed = fninfo->mArgTypes.length();
if ((!fninfo->mIsVariadic && args.length() != argcFixed) ||
(fninfo->mIsVariadic && args.length() < argcFixed)) {
JS_ReportError(cx, "Number of arguments does not match declaration");
return false;
}
// Check if we have a Library object. If we do, make sure it's open.
jsval slot = JS_GetReservedSlot(obj, SLOT_REFERENT);
if (!slot.isUndefined() && Library::IsLibrary(&slot.toObject())) {
PRLibrary* library = Library::GetLibrary(&slot.toObject());
if (!library) {
JS_ReportError(cx, "library is not open");
return false;
}
}
// prepare the values for each argument
AutoValueAutoArray values;
AutoValueAutoArray strings;
if (!values.resize(args.length())) {
JS_ReportOutOfMemory(cx);
return false;
}
for (unsigned i = 0; i < argcFixed; ++i)
if (!ConvertArgument(cx, args.handleAt(i), fninfo->mArgTypes[i], &values[i], &strings))
return false;
if (fninfo->mIsVariadic) {
if (!fninfo->mFFITypes.resize(args.length())) {
JS_ReportOutOfMemory(cx);
return false;
}
RootedObject obj(cx); // Could reuse obj instead of declaring a second
RootedObject type(cx); // RootedObject, but readability would suffer.
for (uint32_t i = argcFixed; i < args.length(); ++i) {
if (JSVAL_IS_PRIMITIVE(args[i]) ||
!CData::IsCData(obj = &args[i].toObject())) {
// Since we know nothing about the CTypes of the ... arguments,
// they absolutely must be CData objects already.
JS_ReportError(cx, "argument %d of type %s is not a CData object",
i, JS_GetTypeName(cx, JS_TypeOfValue(cx, args[i])));
return false;
}
if (!(type = CData::GetCType(obj)) ||
!(type = PrepareType(cx, OBJECT_TO_JSVAL(type))) ||
// Relying on ImplicitConvert only for the limited purpose of
// converting one CType to another (e.g., T[] to T*).
!ConvertArgument(cx, args.handleAt(i), type, &values[i], &strings) ||
!(fninfo->mFFITypes[i] = CType::GetFFIType(cx, type))) {
// These functions report their own errors.
return false;
}
}
if (!PrepareCIF(cx, fninfo))
return false;
}
// initialize a pointer to an appropriate location, for storing the result
AutoValue returnValue;
TypeCode typeCode = CType::GetTypeCode(fninfo->mReturnType);
if (typeCode != TYPE_void_t &&
!returnValue.SizeToType(cx, fninfo->mReturnType)) {
JS_ReportAllocationOverflow(cx);
return false;
}
// Let the runtime callback know that we are about to call into C.
js::AutoCTypesActivityCallback autoCallback(cx, js::CTYPES_CALL_BEGIN, js::CTYPES_CALL_END);
uintptr_t fn = *reinterpret_cast<uintptr_t*>(CData::GetData(obj));
#if defined(XP_WIN)
int32_t lastErrorStatus; // The status as defined by |GetLastError|
int32_t savedLastError = GetLastError();
SetLastError(0);
#endif //defined(XP_WIN)
int errnoStatus; // The status as defined by |errno|
int savedErrno = errno;
errno = 0;
ffi_call(&fninfo->mCIF, FFI_FN(fn), returnValue.mData,
reinterpret_cast<void**>(values.begin()));
// Save error value.
// We need to save it before leaving the scope of |suspend| as destructing
// |suspend| has the side-effect of clearing |GetLastError|
// (see bug 684017).
errnoStatus = errno;
#if defined(XP_WIN)
lastErrorStatus = GetLastError();
SetLastError(savedLastError);
#endif // defined(XP_WIN)
errno = savedErrno;
// We're no longer calling into C.
autoCallback.DoEndCallback();
// Store the error value for later consultation with |ctypes.getStatus|
JSObject *objCTypes = CType::GetGlobalCTypes(cx, typeObj);
if (!objCTypes)
return false;
JS_SetReservedSlot(objCTypes, SLOT_ERRNO, INT_TO_JSVAL(errnoStatus));
#if defined(XP_WIN)
JS_SetReservedSlot(objCTypes, SLOT_LASTERROR, INT_TO_JSVAL(lastErrorStatus));
#endif // defined(XP_WIN)
// Small integer types get returned as a word-sized ffi_arg. Coerce it back
// into the correct size for ConvertToJS.
switch (typeCode) {
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: \
if (sizeof(type) < sizeof(ffi_arg)) { \
ffi_arg data = *static_cast<ffi_arg*>(returnValue.mData); \
*static_cast<type*>(returnValue.mData) = static_cast<type>(data); \
} \
break;
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_BOOL_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_CHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_JSCHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#include "typedefs.h"
default:
break;
}
// prepare a JS object from the result
RootedObject returnType(cx, fninfo->mReturnType);
return ConvertToJS(cx, returnType, NullPtr(), returnValue.mData, false, true, vp);
}
FunctionInfo*
FunctionType::GetFunctionInfo(JSObject* obj)
{
JS_ASSERT(CType::IsCType(obj));
JS_ASSERT(CType::GetTypeCode(obj) == TYPE_function);
jsval slot = JS_GetReservedSlot(obj, SLOT_FNINFO);
JS_ASSERT(!JSVAL_IS_VOID(slot) && JSVAL_TO_PRIVATE(slot));
return static_cast<FunctionInfo*>(JSVAL_TO_PRIVATE(slot));
}
static JSBool
CheckFunctionType(JSContext* cx, JSObject* obj)
{
if (!CType::IsCType(obj) || CType::GetTypeCode(obj) != TYPE_function) {
JS_ReportError(cx, "not a FunctionType");
return JS_FALSE;
}
return JS_TRUE;
}
JSBool
FunctionType::ArgTypesGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CheckFunctionType(cx, obj))
return JS_FALSE;
// Check if we have a cached argTypes array.
vp.set(JS_GetReservedSlot(obj, SLOT_ARGS_T));
if (!JSVAL_IS_VOID(vp))
return JS_TRUE;
FunctionInfo* fninfo = GetFunctionInfo(obj);
size_t len = fninfo->mArgTypes.length();
// Prepare a new array.
JS::AutoValueVector vec(cx);
if (!vec.resize(len))
return JS_FALSE;
for (size_t i = 0; i < len; ++i)
vec[i] = OBJECT_TO_JSVAL(fninfo->mArgTypes[i]);
RootedObject argTypes(cx, JS_NewArrayObject(cx, len, vec.begin()));
if (!argTypes)
return JS_FALSE;
// Seal and cache it.
if (!JS_FreezeObject(cx, argTypes))
return JS_FALSE;
JS_SetReservedSlot(obj, SLOT_ARGS_T, OBJECT_TO_JSVAL(argTypes));
vp.setObject(*argTypes);
return JS_TRUE;
}
JSBool
FunctionType::ReturnTypeGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CheckFunctionType(cx, obj))
return JS_FALSE;
// Get the returnType object from the FunctionInfo.
vp.setObject(*GetFunctionInfo(obj)->mReturnType);
return JS_TRUE;
}
JSBool
FunctionType::ABIGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CheckFunctionType(cx, obj))
return JS_FALSE;
// Get the abi object from the FunctionInfo.
vp.setObject(*GetFunctionInfo(obj)->mABI);
return JS_TRUE;
}
JSBool
FunctionType::IsVariadicGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!CheckFunctionType(cx, obj))
return JS_FALSE;
vp.setBoolean(GetFunctionInfo(obj)->mIsVariadic);
return JS_TRUE;
}
/*******************************************************************************
** CClosure implementation
*******************************************************************************/
JSObject*
CClosure::Create(JSContext* cx,
HandleObject typeObj,
HandleObject fnObj,
HandleObject thisObj,
jsval errVal_,
PRFuncPtr* fnptr)
{
RootedValue errVal(cx, errVal_);
JS_ASSERT(fnObj);
RootedObject result(cx, JS_NewObject(cx, &sCClosureClass, NULL, NULL));
if (!result)
return NULL;
// Get the FunctionInfo from the FunctionType.
FunctionInfo* fninfo = FunctionType::GetFunctionInfo(typeObj);
JS_ASSERT(!fninfo->mIsVariadic);
JS_ASSERT(GetABICode(fninfo->mABI) != ABI_WINAPI);
AutoPtr<ClosureInfo> cinfo(cx->new_<ClosureInfo>(JS_GetRuntime(cx)));
if (!cinfo) {
JS_ReportOutOfMemory(cx);
return NULL;
}
// Get the prototype of the FunctionType object, of class CTypeProto,
// which stores our JSContext for use with the closure.
RootedObject proto(cx);
if (!JS_GetPrototype(cx, typeObj, proto.address()))
return NULL;
JS_ASSERT(proto);
JS_ASSERT(CType::IsCTypeProto(proto));
// Get a JSContext for use with the closure.
jsval slot = JS_GetReservedSlot(proto, SLOT_CLOSURECX);
if (!JSVAL_IS_VOID(slot)) {
// Use the existing JSContext.
cinfo->cx = static_cast<JSContext*>(JSVAL_TO_PRIVATE(slot));
JS_ASSERT(cinfo->cx);
} else {
// Lazily instantiate a new JSContext, and stash it on
// ctypes.FunctionType.prototype.
JSRuntime* runtime = JS_GetRuntime(cx);
cinfo->cx = JS_NewContext(runtime, 8192);
if (!cinfo->cx) {
JS_ReportOutOfMemory(cx);
return NULL;
}
JS_SetReservedSlot(proto, SLOT_CLOSURECX, PRIVATE_TO_JSVAL(cinfo->cx));
}
// Prepare the error sentinel value. It's important to do this now, because
// we might be unable to convert the value to the proper type. If so, we want
// the caller to know about it _now_, rather than some uncertain time in the
// future when the error sentinel is actually needed.
if (!JSVAL_IS_VOID(errVal)) {
// Make sure the callback returns something.
if (CType::GetTypeCode(fninfo->mReturnType) == TYPE_void_t) {
JS_ReportError(cx, "A void callback can't pass an error sentinel");
return NULL;
}
// With the exception of void, the FunctionType constructor ensures that
// the return type has a defined size.
JS_ASSERT(CType::IsSizeDefined(fninfo->mReturnType));
// Allocate a buffer for the return value.
size_t rvSize = CType::GetSize(fninfo->mReturnType);
cinfo->errResult = cx->malloc_(rvSize);
if (!cinfo->errResult)
return NULL;
// Do the value conversion. This might fail, in which case we throw.
if (!ImplicitConvert(cx, errVal, fninfo->mReturnType, cinfo->errResult,
false, NULL))
return NULL;
} else {
cinfo->errResult = NULL;
}
// Copy the important bits of context into cinfo.
cinfo->closureObj = result;
cinfo->typeObj = typeObj;
cinfo->thisObj = thisObj;
cinfo->jsfnObj = fnObj;
// Create an ffi_closure object and initialize it.
void* code;
cinfo->closure =
static_cast<ffi_closure*>(ffi_closure_alloc(sizeof(ffi_closure), &code));
if (!cinfo->closure || !code) {
JS_ReportError(cx, "couldn't create closure - libffi error");
return NULL;
}
ffi_status status = ffi_prep_closure_loc(cinfo->closure, &fninfo->mCIF,
CClosure::ClosureStub, cinfo.get(), code);
if (status != FFI_OK) {
JS_ReportError(cx, "couldn't create closure - libffi error");
return NULL;
}
// Stash the ClosureInfo struct on our new object.
JS_SetReservedSlot(result, SLOT_CLOSUREINFO, PRIVATE_TO_JSVAL(cinfo.forget()));
// Casting between void* and a function pointer is forbidden in C and C++.
// Do it via an integral type.
*fnptr = reinterpret_cast<PRFuncPtr>(reinterpret_cast<uintptr_t>(code));
return result;
}
void
CClosure::Trace(JSTracer* trc, JSObject* obj)
{
// Make sure our ClosureInfo slot is legit. If it's not, bail.
jsval slot = JS_GetReservedSlot(obj, SLOT_CLOSUREINFO);
if (JSVAL_IS_VOID(slot))
return;
ClosureInfo* cinfo = static_cast<ClosureInfo*>(JSVAL_TO_PRIVATE(slot));
// Identify our objects to the tracer. (There's no need to identify
// 'closureObj', since that's us.)
JS_CallObjectTracer(trc, &cinfo->typeObj, "typeObj");
JS_CallObjectTracer(trc, &cinfo->jsfnObj, "jsfnObj");
if (cinfo->thisObj)
JS_CallObjectTracer(trc, &cinfo->thisObj, "thisObj");
}
void
CClosure::Finalize(JSFreeOp *fop, JSObject* obj)
{
// Make sure our ClosureInfo slot is legit. If it's not, bail.
jsval slot = JS_GetReservedSlot(obj, SLOT_CLOSUREINFO);
if (JSVAL_IS_VOID(slot))
return;
ClosureInfo* cinfo = static_cast<ClosureInfo*>(JSVAL_TO_PRIVATE(slot));
FreeOp::get(fop)->delete_(cinfo);
}
void
CClosure::ClosureStub(ffi_cif* cif, void* result, void** args, void* userData)
{
JS_ASSERT(cif);
JS_ASSERT(result);
JS_ASSERT(args);
JS_ASSERT(userData);
// Retrieve the essentials from our closure object.
ClosureInfo* cinfo = static_cast<ClosureInfo*>(userData);
JSContext* cx = cinfo->cx;
// Let the runtime callback know that we are about to call into JS again. The end callback will
// fire automatically when we exit this function.
js::AutoCTypesActivityCallback autoCallback(cx, js::CTYPES_CALLBACK_BEGIN,
js::CTYPES_CALLBACK_END);
RootedObject typeObj(cx, cinfo->typeObj);
RootedObject thisObj(cx, cinfo->thisObj);
RootedObject jsfnObj(cx, cinfo->jsfnObj);
JS_AbortIfWrongThread(JS_GetRuntime(cx));
JSAutoRequest ar(cx);
JSAutoCompartment ac(cx, jsfnObj);
// Assert that our CIFs agree.
FunctionInfo* fninfo = FunctionType::GetFunctionInfo(typeObj);
JS_ASSERT(cif == &fninfo->mCIF);
TypeCode typeCode = CType::GetTypeCode(fninfo->mReturnType);
// Initialize the result to zero, in case something fails. Small integer types
// are promoted to a word-sized ffi_arg, so we must be careful to zero the
// whole word.
size_t rvSize = 0;
if (cif->rtype != &ffi_type_void) {
rvSize = cif->rtype->size;
switch (typeCode) {
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name:
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_BOOL_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_CHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_JSCHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#include "typedefs.h"
rvSize = Align(rvSize, sizeof(ffi_arg));
break;
default:
break;
}
memset(result, 0, rvSize);
}
// Set up an array for converted arguments.
JS::AutoValueVector argv(cx);
if (!argv.resize(cif->nargs))
return;
for (uint32_t i = 0; i < cif->nargs; ++i) {
// Convert each argument, and have any CData objects created depend on
// the existing buffers.
RootedObject argType(cx, fninfo->mArgTypes[i]);
if (!ConvertToJS(cx, argType, NullPtr(), args[i], false, false, &argv[i]))
return;
}
// Call the JS function. 'thisObj' may be NULL, in which case the JS engine
// will find an appropriate object to use.
RootedValue rval(cx);
JSBool success = JS_CallFunctionValue(cx, thisObj, OBJECT_TO_JSVAL(jsfnObj),
cif->nargs, argv.begin(), rval.address());
// Convert the result. Note that we pass 'isArgument = false', such that
// ImplicitConvert will *not* autoconvert a JS string into a pointer-to-char
// type, which would require an allocation that we can't track. The JS
// function must perform this conversion itself and return a PointerType
// CData; thusly, the burden of freeing the data is left to the user.
if (success && cif->rtype != &ffi_type_void)
success = ImplicitConvert(cx, rval, fninfo->mReturnType, result, false,
NULL);
if (!success) {
// Something failed. The callee may have thrown, or it may not have
// returned a value that ImplicitConvert() was happy with. Depending on how
// prudent the consumer has been, we may or may not have a recovery plan.
// In any case, a JS exception cannot be passed to C code, so report the
// exception if any and clear it from the cx.
if (JS_IsExceptionPending(cx))
JS_ReportPendingException(cx);
if (cinfo->errResult) {
// Good case: we have a sentinel that we can return. Copy it in place of
// the actual return value, and then proceed.
// The buffer we're returning might be larger than the size of the return
// type, due to libffi alignment issues (see above). But it should never
// be smaller.
size_t copySize = CType::GetSize(fninfo->mReturnType);
JS_ASSERT(copySize <= rvSize);
memcpy(result, cinfo->errResult, copySize);
} else {
// Bad case: not much we can do here. The rv is already zeroed out, so we
// just report (another) error and hope for the best. JS_ReportError will
// actually throw an exception here, so then we have to report it. Again.
// Ugh.
JS_ReportError(cx, "JavaScript callback failed, and an error sentinel "
"was not specified.");
if (JS_IsExceptionPending(cx))
JS_ReportPendingException(cx);
return;
}
}
// Small integer types must be returned as a word-sized ffi_arg. Coerce it
// back into the size libffi expects.
switch (typeCode) {
#define DEFINE_INT_TYPE(name, type, ffiType) \
case TYPE_##name: \
if (sizeof(type) < sizeof(ffi_arg)) { \
ffi_arg data = *static_cast<type*>(result); \
*static_cast<ffi_arg*>(result) = data; \
} \
break;
#define DEFINE_WRAPPED_INT_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_BOOL_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_CHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#define DEFINE_JSCHAR_TYPE(x, y, z) DEFINE_INT_TYPE(x, y, z)
#include "typedefs.h"
default:
break;
}
}
/*******************************************************************************
** CData implementation
*******************************************************************************/
// Create a new CData object of type 'typeObj' containing binary data supplied
// in 'source', optionally with a referent object 'refObj'.
//
// * 'typeObj' must be a CType of defined (but possibly zero) size.
//
// * If an object 'refObj' is supplied, the new CData object stores the
// referent object in a reserved slot for GC safety, such that 'refObj' will
// be held alive by the resulting CData object. 'refObj' may or may not be
// a CData object; merely an object we want to keep alive.
// * If 'refObj' is a CData object, 'ownResult' must be false.
// * Otherwise, 'refObj' is a Library or CClosure object, and 'ownResult'
// may be true or false.
// * Otherwise 'refObj' is NULL. In this case, 'ownResult' may be true or false.
//
// * If 'ownResult' is true, the CData object will allocate an appropriately
// sized buffer, and free it upon finalization. If 'source' data is
// supplied, the data will be copied from 'source' into the buffer;
// otherwise, the entirety of the new buffer will be initialized to zero.
// * If 'ownResult' is false, the new CData's buffer refers to a slice of
// another buffer kept alive by 'refObj'. 'source' data must be provided,
// and the new CData's buffer will refer to 'source'.
JSObject*
CData::Create(JSContext* cx,
HandleObject typeObj,
HandleObject refObj,
void* source,
bool ownResult)
{
JS_ASSERT(typeObj);
JS_ASSERT(CType::IsCType(typeObj));
JS_ASSERT(CType::IsSizeDefined(typeObj));
JS_ASSERT(ownResult || source);
JS_ASSERT_IF(refObj && CData::IsCData(refObj), !ownResult);
// Get the 'prototype' property from the type.
jsval slot = JS_GetReservedSlot(typeObj, SLOT_PROTO);
JS_ASSERT(!JSVAL_IS_PRIMITIVE(slot));
RootedObject proto(cx, JSVAL_TO_OBJECT(slot));
RootedObject parent(cx, JS_GetParent(typeObj));
JS_ASSERT(parent);
RootedObject dataObj(cx, JS_NewObject(cx, &sCDataClass, proto, parent));
if (!dataObj)
return NULL;
// set the CData's associated type
JS_SetReservedSlot(dataObj, SLOT_CTYPE, OBJECT_TO_JSVAL(typeObj));
// Stash the referent object, if any, for GC safety.
if (refObj)
JS_SetReservedSlot(dataObj, SLOT_REFERENT, OBJECT_TO_JSVAL(refObj));
// Set our ownership flag.
JS_SetReservedSlot(dataObj, SLOT_OWNS, BOOLEAN_TO_JSVAL(ownResult));
// attach the buffer. since it might not be 2-byte aligned, we need to
// allocate an aligned space for it and store it there. :(
char** buffer = cx->new_<char*>();
if (!buffer) {
JS_ReportOutOfMemory(cx);
return NULL;
}
char* data;
if (!ownResult) {
data = static_cast<char*>(source);
} else {
// Initialize our own buffer.
size_t size = CType::GetSize(typeObj);
data = (char*)cx->malloc_(size);
if (!data) {
// Report a catchable allocation error.
JS_ReportAllocationOverflow(cx);
js_free(buffer);
return NULL;
}
if (!source)
memset(data, 0, size);
else
memcpy(data, source, size);
}
*buffer = data;
JS_SetReservedSlot(dataObj, SLOT_DATA, PRIVATE_TO_JSVAL(buffer));
return dataObj;
}
void
CData::Finalize(JSFreeOp *fop, JSObject* obj)
{
// Delete our buffer, and the data it contains if we own it.
jsval slot = JS_GetReservedSlot(obj, SLOT_OWNS);
if (JSVAL_IS_VOID(slot))
return;
JSBool owns = JSVAL_TO_BOOLEAN(slot);
slot = JS_GetReservedSlot(obj, SLOT_DATA);
if (JSVAL_IS_VOID(slot))
return;
char** buffer = static_cast<char**>(JSVAL_TO_PRIVATE(slot));
if (owns)
FreeOp::get(fop)->free_(*buffer);
FreeOp::get(fop)->delete_(buffer);
}
JSObject*
CData::GetCType(JSObject* dataObj)
{
JS_ASSERT(CData::IsCData(dataObj));
jsval slot = JS_GetReservedSlot(dataObj, SLOT_CTYPE);
JSObject* typeObj = JSVAL_TO_OBJECT(slot);
JS_ASSERT(CType::IsCType(typeObj));
return typeObj;
}
void*
CData::GetData(JSObject* dataObj)
{
JS_ASSERT(CData::IsCData(dataObj));
jsval slot = JS_GetReservedSlot(dataObj, SLOT_DATA);
void** buffer = static_cast<void**>(JSVAL_TO_PRIVATE(slot));
JS_ASSERT(buffer);
JS_ASSERT(*buffer);
return *buffer;
}
bool
CData::IsCData(JSObject* obj)
{
return JS_GetClass(obj) == &sCDataClass;
}
bool
CData::IsCDataProto(JSObject* obj)
{
return JS_GetClass(obj) == &sCDataProtoClass;
}
JSBool
CData::ValueGetter(JSContext* cx, HandleObject obj, HandleId idval, MutableHandleValue vp)
{
if (!IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
// Convert the value to a primitive; do not create a new CData object.
RootedObject ctype(cx, GetCType(obj));
if (!ConvertToJS(cx, ctype, NullPtr(), GetData(obj), true, false, vp.address()))
return JS_FALSE;
return JS_TRUE;
}
JSBool
CData::ValueSetter(JSContext* cx, HandleObject obj, HandleId idval, JSBool strict, MutableHandleValue vp)
{
if (!IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
return ImplicitConvert(cx, vp, GetCType(obj), GetData(obj), false, NULL);
}
JSBool
CData::Address(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 0) {
JS_ReportError(cx, "address takes zero arguments");
return JS_FALSE;
}
RootedObject obj(cx, JS_THIS_OBJECT(cx, vp));
if (!obj)
return JS_FALSE;
if (!IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
RootedObject typeObj(cx, CData::GetCType(obj));
RootedObject pointerType(cx, PointerType::CreateInternal(cx, typeObj));
if (!pointerType)
return JS_FALSE;
// Create a PointerType CData object containing null.
JSObject* result = CData::Create(cx, pointerType, NullPtr(), NULL, true);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
// Manually set the pointer inside the object, so we skip the conversion step.
void** data = static_cast<void**>(GetData(result));
*data = GetData(obj);
return JS_TRUE;
}
JSBool
CData::Cast(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 2) {
JS_ReportError(cx, "cast takes two arguments");
return JS_FALSE;
}
if (JSVAL_IS_PRIMITIVE(args[0]) ||
!CData::IsCData(&args[0].toObject())) {
JS_ReportError(cx, "first argument must be a CData");
return JS_FALSE;
}
RootedObject sourceData(cx, &args[0].toObject());
JSObject* sourceType = CData::GetCType(sourceData);
if (JSVAL_IS_PRIMITIVE(args[1]) ||
!CType::IsCType(&args[1].toObject())) {
JS_ReportError(cx, "second argument must be a CType");
return JS_FALSE;
}
RootedObject targetType(cx, &args[1].toObject());
size_t targetSize;
if (!CType::GetSafeSize(targetType, &targetSize) ||
targetSize > CType::GetSize(sourceType)) {
JS_ReportError(cx,
"target CType has undefined or larger size than source CType");
return JS_FALSE;
}
// Construct a new CData object with a type of 'targetType' and a referent
// of 'sourceData'.
void* data = CData::GetData(sourceData);
JSObject* result = CData::Create(cx, targetType, sourceData, data, false);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
JSBool
CData::GetRuntime(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 1) {
JS_ReportError(cx, "getRuntime takes one argument");
return JS_FALSE;
}
if (JSVAL_IS_PRIMITIVE(args[0]) ||
!CType::IsCType(&args[0].toObject())) {
JS_ReportError(cx, "first argument must be a CType");
return JS_FALSE;
}
RootedObject targetType(cx, &args[0].toObject());
size_t targetSize;
if (!CType::GetSafeSize(targetType, &targetSize) ||
targetSize != sizeof(void*)) {
JS_ReportError(cx, "target CType has non-pointer size");
return JS_FALSE;
}
void* data = static_cast<void*>(cx->runtime());
JSObject* result = CData::Create(cx, targetType, NullPtr(), &data, true);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
typedef bool (*InflateUTF8Method)(JSContext *, const char *, size_t,
jschar *, size_t *);
template <InflateUTF8Method InflateUTF8>
static JSBool
ReadStringCommon(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 0) {
JS_ReportError(cx, "readString takes zero arguments");
return JS_FALSE;
}
JSObject* obj = CDataFinalizer::GetCData(cx, JS_THIS_OBJECT(cx, vp));
if (!obj || !CData::IsCData(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
// Make sure we are a pointer to, or an array of, an 8-bit or 16-bit
// character or integer type.
JSObject* baseType;
JSObject* typeObj = CData::GetCType(obj);
TypeCode typeCode = CType::GetTypeCode(typeObj);
void* data;
size_t maxLength = -1;
switch (typeCode) {
case TYPE_pointer:
baseType = PointerType::GetBaseType(typeObj);
data = *static_cast<void**>(CData::GetData(obj));
if (data == NULL) {
JS_ReportError(cx, "cannot read contents of null pointer");
return JS_FALSE;
}
break;
case TYPE_array:
baseType = ArrayType::GetBaseType(typeObj);
data = CData::GetData(obj);
maxLength = ArrayType::GetLength(typeObj);
break;
default:
JS_ReportError(cx, "not a PointerType or ArrayType");
return JS_FALSE;
}
// Convert the string buffer, taking care to determine the correct string
// length in the case of arrays (which may contain embedded nulls).
JSString* result;
switch (CType::GetTypeCode(baseType)) {
case TYPE_int8_t:
case TYPE_uint8_t:
case TYPE_char:
case TYPE_signed_char:
case TYPE_unsigned_char: {
char* bytes = static_cast<char*>(data);
size_t length = strnlen(bytes, maxLength);
// Determine the length.
size_t dstlen;
if (!InflateUTF8(cx, bytes, length, NULL, &dstlen))
return JS_FALSE;
jschar* dst =
static_cast<jschar*>(JS_malloc(cx, (dstlen + 1) * sizeof(jschar)));
if (!dst)
return JS_FALSE;
ASSERT_OK(InflateUTF8(cx, bytes, length, dst, &dstlen));
dst[dstlen] = 0;
result = JS_NewUCString(cx, dst, dstlen);
break;
}
case TYPE_int16_t:
case TYPE_uint16_t:
case TYPE_short:
case TYPE_unsigned_short:
case TYPE_jschar: {
jschar* chars = static_cast<jschar*>(data);
size_t length = strnlen(chars, maxLength);
result = JS_NewUCStringCopyN(cx, chars, length);
break;
}
default:
JS_ReportError(cx,
"base type is not an 8-bit or 16-bit integer or character type");
return JS_FALSE;
}
if (!result)
return JS_FALSE;
args.rval().setString(result);
return JS_TRUE;
}
JSBool
CData::ReadString(JSContext* cx, unsigned argc, jsval* vp)
{
return ReadStringCommon<InflateUTF8StringToBuffer>(cx, argc, vp);
}
JSBool
CData::ReadStringReplaceMalformed(JSContext* cx, unsigned argc, jsval* vp)
{
return ReadStringCommon<InflateUTF8StringToBufferReplaceInvalid>(cx, argc, vp);
}
JSString *
CData::GetSourceString(JSContext *cx, HandleObject typeObj, void *data)
{
// Walk the types, building up the toSource() string.
// First, we build up the type expression:
// 't.ptr' for pointers;
// 't.array([n])' for arrays;
// 'n' for structs, where n = t.name, the struct's name. (We assume this is
// bound to a variable in the current scope.)
AutoString source;
BuildTypeSource(cx, typeObj, true, source);
AppendString(source, "(");
if (!BuildDataSource(cx, typeObj, data, false, source))
return NULL;
AppendString(source, ")");
return NewUCString(cx, source);
}
JSBool
CData::ToSource(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 0) {
JS_ReportError(cx, "toSource takes zero arguments");
return JS_FALSE;
}
JSObject* obj = JS_THIS_OBJECT(cx, vp);
if (!obj)
return JS_FALSE;
if (!CData::IsCData(obj) && !CData::IsCDataProto(obj)) {
JS_ReportError(cx, "not a CData");
return JS_FALSE;
}
JSString* result;
if (CData::IsCData(obj)) {
RootedObject typeObj(cx, CData::GetCType(obj));
void* data = CData::GetData(obj);
result = CData::GetSourceString(cx, typeObj, data);
} else {
result = JS_NewStringCopyZ(cx, "[CData proto object]");
}
if (!result)
return JS_FALSE;
args.rval().setString(result);
return JS_TRUE;
}
JSBool
CData::ErrnoGetter(JSContext* cx, HandleObject obj, HandleId, MutableHandleValue vp)
{
if (!IsCTypesGlobal(obj)) {
JS_ReportError(cx, "this is not not global object ctypes");
return JS_FALSE;
}
vp.set(JS_GetReservedSlot(obj, SLOT_ERRNO));
return JS_TRUE;
}
#if defined(XP_WIN)
JSBool
CData::LastErrorGetter(JSContext* cx, HandleObject obj, HandleId, MutableHandleValue vp)
{
if (!IsCTypesGlobal(obj)) {
JS_ReportError(cx, "not global object ctypes");
return JS_FALSE;
}
vp.set(JS_GetReservedSlot(obj, SLOT_LASTERROR));
return JS_TRUE;
}
#endif // defined(XP_WIN)
JSBool
CDataFinalizer::Methods::ToSource(JSContext *cx, unsigned argc, jsval *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject objThis(cx, JS_THIS_OBJECT(cx, vp));
if (!objThis)
return JS_FALSE;
if (!CDataFinalizer::IsCDataFinalizer(objThis)) {
JS_ReportError(cx, "not a CDataFinalizer");
return JS_FALSE;
}
CDataFinalizer::Private *p = (CDataFinalizer::Private *)
JS_GetPrivate(objThis);
JSString *strMessage;
if (!p) {
strMessage = JS_NewStringCopyZ(cx, "ctypes.CDataFinalizer()");
} else {
RootedObject objType(cx, CDataFinalizer::GetCType(cx, objThis));
if (!objType) {
JS_ReportError(cx, "CDataFinalizer has no type");
return JS_FALSE;
}
AutoString source;
AppendString(source, "ctypes.CDataFinalizer(");
JSString *srcValue = CData::GetSourceString(cx, objType, p->cargs);
if (!srcValue) {
return JS_FALSE;
}
AppendString(source, srcValue);
AppendString(source, ", ");
jsval valCodePtrType = JS_GetReservedSlot(objThis,
SLOT_DATAFINALIZER_CODETYPE);
if (JSVAL_IS_PRIMITIVE(valCodePtrType)) {
return JS_FALSE;
}
RootedObject typeObj(cx, JSVAL_TO_OBJECT(valCodePtrType));
JSString *srcDispose = CData::GetSourceString(cx, typeObj, &(p->code));
if (!srcDispose) {
return JS_FALSE;
}
AppendString(source, srcDispose);
AppendString(source, ")");
strMessage = NewUCString(cx, source);
}
if (!strMessage) {
// This is a memory issue, no error message
return JS_FALSE;
}
args.rval().setString(strMessage);
return JS_TRUE;
}
JSBool
CDataFinalizer::Methods::ToString(JSContext *cx, unsigned argc, jsval *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject* objThis = JS_THIS_OBJECT(cx, vp);
if (!objThis)
return JS_FALSE;
if (!CDataFinalizer::IsCDataFinalizer(objThis)) {
JS_ReportError(cx, "not a CDataFinalizer");
return JS_FALSE;
}
JSString *strMessage;
RootedValue value(cx);
if (!JS_GetPrivate(objThis)) {
// Pre-check whether CDataFinalizer::GetValue can fail
// to avoid reporting an error when not appropriate.
strMessage = JS_NewStringCopyZ(cx, "[CDataFinalizer - empty]");
if (!strMessage) {
return JS_FALSE;
}
} else if (!CDataFinalizer::GetValue(cx, objThis, value.address())) {
JS_NOT_REACHED("Could not convert an empty CDataFinalizer");
} else {
strMessage = JS_ValueToString(cx, value);
if (!strMessage) {
return JS_FALSE;
}
}
args.rval().setString(strMessage);
return JS_TRUE;
}
bool
CDataFinalizer::IsCDataFinalizer(JSObject *obj)
{
return JS_GetClass(obj) == &sCDataFinalizerClass;
}
JSObject *
CDataFinalizer::GetCType(JSContext *cx, JSObject *obj)
{
MOZ_ASSERT(IsCDataFinalizer(obj));
jsval valData = JS_GetReservedSlot(obj,
SLOT_DATAFINALIZER_VALTYPE);
if (JSVAL_IS_VOID(valData)) {
return NULL;
}
return JSVAL_TO_OBJECT(valData);
}
JSObject*
CDataFinalizer::GetCData(JSContext *cx, JSObject *obj)
{
if (!obj) {
JS_ReportError(cx, "No C data");
return NULL;
}
if (CData::IsCData(obj)) {
return obj;
}
if (!CDataFinalizer::IsCDataFinalizer(obj)) {
JS_ReportError(cx, "Not C data");
return NULL;
}
RootedValue val(cx);
if (!CDataFinalizer::GetValue(cx, obj, val.address()) || JSVAL_IS_PRIMITIVE(val)) {
JS_ReportError(cx, "Empty CDataFinalizer");
return NULL;
}
return JSVAL_TO_OBJECT(val);
}
bool
CDataFinalizer::GetValue(JSContext *cx, JSObject *obj, jsval *aResult)
{
MOZ_ASSERT(IsCDataFinalizer(obj));
CDataFinalizer::Private *p = (CDataFinalizer::Private *)
JS_GetPrivate(obj);
if (!p) {
JS_ReportError(cx, "Attempting to get the value of an empty CDataFinalizer");
return false; // We have called |dispose| or |forget| already.
}
RootedObject ctype(cx, GetCType(cx, obj));
return ConvertToJS(cx, ctype, /*parent*/NullPtr(), p -> cargs, false, true, aResult);
}
/*
* Attach a C function as a finalizer to a JS object.
*
* Pseudo-JS signature:
* function(CData<T>, CData<T -> U>): CDataFinalizer<T>
* value, finalizer
*
* This function attaches strong references to the following values:
* - the CType of |value|
*
* Note: This function takes advantage of the fact that non-variadic
* CData functions are initialized during creation.
*/
JSBool
CDataFinalizer::Construct(JSContext* cx, unsigned argc, jsval *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject objSelf(cx, &args.callee());
RootedObject objProto(cx);
if (!GetObjectProperty(cx, objSelf, "prototype", &objProto)) {
JS_ReportError(cx, "CDataFinalizer.prototype does not exist");
return JS_FALSE;
}
// Get arguments
if (args.length() == 0) { // Special case: the empty (already finalized) object
JSObject *objResult = JS_NewObject(cx, &sCDataFinalizerClass, objProto, NULL);
args.rval().setObject(*objResult);
return JS_TRUE;
}
if (args.length() != 2) {
JS_ReportError(cx, "CDataFinalizer takes 2 arguments");
return JS_FALSE;
}
JS::Value valCodePtr = args[1];
if (!valCodePtr.isObject()) {
return TypeError(cx, "_a CData object_ of a function pointer type",
valCodePtr);
}
JSObject *objCodePtr = &valCodePtr.toObject();
//Note: Using a custom argument formatter here would be awkward (requires
//a destructor just to uninstall the formatter).
// 2. Extract argument type of |objCodePtr|
if (!CData::IsCData(objCodePtr)) {
return TypeError(cx, "a _CData_ object of a function pointer type",
valCodePtr);
}
RootedObject objCodePtrType(cx, CData::GetCType(objCodePtr));
MOZ_ASSERT(objCodePtrType);
TypeCode typCodePtr = CType::GetTypeCode(objCodePtrType);
if (typCodePtr != TYPE_pointer) {
return TypeError(cx, "a CData object of a function _pointer_ type",
OBJECT_TO_JSVAL(objCodePtrType));
}
JSObject *objCodeType = PointerType::GetBaseType(objCodePtrType);
MOZ_ASSERT(objCodeType);
TypeCode typCode = CType::GetTypeCode(objCodeType);
if (typCode != TYPE_function) {
return TypeError(cx, "a CData object of a _function_ pointer type",
OBJECT_TO_JSVAL(objCodePtrType));
}
uintptr_t code = *reinterpret_cast<uintptr_t*>(CData::GetData(objCodePtr));
if (!code) {
return TypeError(cx, "a CData object of a _non-NULL_ function pointer type",
OBJECT_TO_JSVAL(objCodePtrType));
}
FunctionInfo* funInfoFinalizer =
FunctionType::GetFunctionInfo(objCodeType);
MOZ_ASSERT(funInfoFinalizer);
if ((funInfoFinalizer->mArgTypes.length() != 1)
|| (funInfoFinalizer->mIsVariadic)) {
return TypeError(cx, "a function accepting exactly one argument",
OBJECT_TO_JSVAL(objCodeType));
}
RootedObject objArgType(cx, funInfoFinalizer->mArgTypes[0]);
RootedObject returnType(cx, funInfoFinalizer->mReturnType);
// Invariant: At this stage, we know that funInfoFinalizer->mIsVariadic
// is |false|. Therefore, funInfoFinalizer->mCIF has already been initialized.
bool freePointer = false;
// 3. Perform dynamic cast of |args[0]| into |objType|, store it in |cargs|
size_t sizeArg;
RootedValue valData(cx, args[0]);
if (!CType::GetSafeSize(objArgType, &sizeArg)) {
return TypeError(cx, "(an object with known size)", valData);
}
ScopedJSFreePtr<void> cargs(malloc(sizeArg));
if (!ImplicitConvert(cx, valData, objArgType, cargs.get(),
false, &freePointer)) {
return TypeError(cx, "(an object that can be converted to the following type)",
OBJECT_TO_JSVAL(objArgType));
}
if (freePointer) {
// Note: We could handle that case, if necessary.
JS_ReportError(cx, "Internal Error during CDataFinalizer. Object cannot be represented");
return JS_FALSE;
}
// 4. Prepare buffer for holding return value
ScopedJSFreePtr<void> rvalue;
if (CType::GetTypeCode(returnType) != TYPE_void_t) {
rvalue = malloc(Align(CType::GetSize(returnType),
sizeof(ffi_arg)));
} //Otherwise, simply do not allocate
// 5. Create |objResult|
JSObject *objResult = JS_NewObject(cx, &sCDataFinalizerClass, objProto, NULL);
if (!objResult) {
return JS_FALSE;
}
// If our argument is a CData, it holds a type.
// This is the type that we should capture, not that
// of the function, which may be less precise.
JSObject *objBestArgType = objArgType;
if (!JSVAL_IS_PRIMITIVE(valData)) {
JSObject *objData = &valData.toObject();
if (CData::IsCData(objData)) {
objBestArgType = CData::GetCType(objData);
size_t sizeBestArg;
if (!CType::GetSafeSize(objBestArgType, &sizeBestArg)) {
JS_NOT_REACHED("object with unknown size");
}
if (sizeBestArg != sizeArg) {
return TypeError(cx, "(an object with the same size as that expected by the C finalization function)", valData);
}
}
}
// Used by GetCType
JS_SetReservedSlot(objResult,
SLOT_DATAFINALIZER_VALTYPE,
OBJECT_TO_JSVAL(objBestArgType));
// Used by ToSource
JS_SetReservedSlot(objResult,
SLOT_DATAFINALIZER_CODETYPE,
OBJECT_TO_JSVAL(objCodePtrType));
ffi_abi abi;
if (!GetABI(cx, OBJECT_TO_JSVAL(funInfoFinalizer->mABI), &abi)) {
JS_ReportError(cx, "Internal Error: "
"Invalid ABI specification in CDataFinalizer");
return false;
}
ffi_type* rtype = CType::GetFFIType(cx, funInfoFinalizer->mReturnType);
if (!rtype) {
JS_ReportError(cx, "Internal Error: "
"Could not access ffi type of CDataFinalizer");
return JS_FALSE;
}
// 7. Store C information as private
ScopedJSFreePtr<CDataFinalizer::Private>
p((CDataFinalizer::Private*)malloc(sizeof(CDataFinalizer::Private)));
memmove(&p->CIF, &funInfoFinalizer->mCIF, sizeof(ffi_cif));
p->cargs = cargs.forget();
p->rvalue = rvalue.forget();
p->cargs_size = sizeArg;
p->code = code;
JS_SetPrivate(objResult, p.forget());
args.rval().setObject(*objResult);
return JS_TRUE;
}
/*
* Actually call the finalizer. Does not perform any cleanup on the object.
*
* Preconditions: |this| must be a |CDataFinalizer|, |p| must be non-null.
* The function fails if |this| has gone through |Forget|/|Dispose|
* or |Finalize|.
*
* This function does not alter the value of |errno|/|GetLastError|.
*
* If argument |errnoStatus| is non-NULL, it receives the value of |errno|
* immediately after the call. Under Windows, if argument |lastErrorStatus|
* is non-NULL, it receives the value of |GetLastError| immediately after the
* call. On other platforms, |lastErrorStatus| is ignored.
*/
void
CDataFinalizer::CallFinalizer(CDataFinalizer::Private *p,
int* errnoStatus,
int32_t* lastErrorStatus)
{
int savedErrno = errno;
errno = 0;
#if defined(XP_WIN)
int32_t savedLastError = GetLastError();
SetLastError(0);
#endif // defined(XP_WIN)
ffi_call(&p->CIF, FFI_FN(p->code), p->rvalue, &p->cargs);
if (errnoStatus) {
*errnoStatus = errno;
}
errno = savedErrno;
#if defined(XP_WIN)
if (lastErrorStatus) {
*lastErrorStatus = GetLastError();
}
SetLastError(savedLastError);
#endif // defined(XP_WIN)
}
/*
* Forget the value.
*
* Preconditions: |this| must be a |CDataFinalizer|.
* The function fails if |this| has gone through |Forget|/|Dispose|
* or |Finalize|.
*
* Does not call the finalizer. Cleans up the Private memory and releases all
* strong references.
*/
JSBool
CDataFinalizer::Methods::Forget(JSContext* cx, unsigned argc, jsval *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 0) {
JS_ReportError(cx, "CDataFinalizer.prototype.forget takes no arguments");
return JS_FALSE;
}
JS::Rooted<JSObject*> obj(cx, args.thisv().toObjectOrNull());
if (!obj)
return JS_FALSE;
if (!CDataFinalizer::IsCDataFinalizer(obj)) {
return TypeError(cx, "a CDataFinalizer", OBJECT_TO_JSVAL(obj));
}
CDataFinalizer::Private *p = (CDataFinalizer::Private *)
JS_GetPrivate(obj);
if (!p) {
JS_ReportError(cx, "forget called on an empty CDataFinalizer");
return JS_FALSE;
}
RootedValue valJSData(cx);
RootedObject ctype(cx, GetCType(cx, obj));
if (!ConvertToJS(cx, ctype, NullPtr(), p->cargs, false, true, valJSData.address())) {
JS_ReportError(cx, "CDataFinalizer value cannot be represented");
return JS_FALSE;
}
CDataFinalizer::Cleanup(p, obj);
args.rval().set(valJSData);
return JS_TRUE;
}
/*
* Clean up the value.
*
* Preconditions: |this| must be a |CDataFinalizer|.
* The function fails if |this| has gone through |Forget|/|Dispose|
* or |Finalize|.
*
* Calls the finalizer, cleans up the Private memory and releases all
* strong references.
*/
JSBool
CDataFinalizer::Methods::Dispose(JSContext* cx, unsigned argc, jsval *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 0) {
JS_ReportError(cx, "CDataFinalizer.prototype.dispose takes no arguments");
return JS_FALSE;
}
RootedObject obj(cx, JS_THIS_OBJECT(cx, vp));
if (!obj)
return JS_FALSE;
if (!CDataFinalizer::IsCDataFinalizer(obj)) {
return TypeError(cx, "a CDataFinalizer", OBJECT_TO_JSVAL(obj));
}
CDataFinalizer::Private *p = (CDataFinalizer::Private *)
JS_GetPrivate(obj);
if (!p) {
JS_ReportError(cx, "dispose called on an empty CDataFinalizer.");
return JS_FALSE;
}
jsval valType = JS_GetReservedSlot(obj, SLOT_DATAFINALIZER_VALTYPE);
JS_ASSERT(!JSVAL_IS_PRIMITIVE(valType));
JSObject *objCTypes = CType::GetGlobalCTypes(cx, &valType.toObject());
if (!objCTypes)
return JS_FALSE;
jsval valCodePtrType = JS_GetReservedSlot(obj, SLOT_DATAFINALIZER_CODETYPE);
JS_ASSERT(!JSVAL_IS_PRIMITIVE(valCodePtrType));
JSObject *objCodePtrType = &valCodePtrType.toObject();
JSObject *objCodeType = PointerType::GetBaseType(objCodePtrType);
JS_ASSERT(objCodeType);
JS_ASSERT(CType::GetTypeCode(objCodeType) == TYPE_function);
RootedObject resultType(cx, FunctionType::GetFunctionInfo(objCodeType)->mReturnType);
RootedValue result(cx, JSVAL_VOID);
int errnoStatus;
#if defined(XP_WIN)
int32_t lastErrorStatus;
CDataFinalizer::CallFinalizer(p, &errnoStatus, &lastErrorStatus);
#else
CDataFinalizer::CallFinalizer(p, &errnoStatus, NULL);
#endif // defined(XP_WIN)
JS_SetReservedSlot(objCTypes, SLOT_ERRNO, INT_TO_JSVAL(errnoStatus));
#if defined(XP_WIN)
JS_SetReservedSlot(objCTypes, SLOT_LASTERROR, INT_TO_JSVAL(lastErrorStatus));
#endif // defined(XP_WIN)
if (ConvertToJS(cx, resultType, NullPtr(), p->rvalue, false, true, result.address())) {
CDataFinalizer::Cleanup(p, obj);
args.rval().set(result);
return true;
}
CDataFinalizer::Cleanup(p, obj);
return false;
}
/*
* Perform finalization.
*
* Preconditions: |this| must be the result of |CDataFinalizer|.
* It may have gone through |Forget|/|Dispose|.
*
* If |this| has not gone through |Forget|/|Dispose|, calls the
* finalizer, cleans up the Private memory and releases all
* strong references.
*/
void
CDataFinalizer::Finalize(JSFreeOp* fop, JSObject* obj)
{
CDataFinalizer::Private *p = (CDataFinalizer::Private *)
JS_GetPrivate(obj);
if (!p) {
return;
}
CDataFinalizer::CallFinalizer(p, NULL, NULL);
CDataFinalizer::Cleanup(p, NULL);
}
/*
* Perform cleanup of a CDataFinalizer
*
* Release strong references, cleanup |Private|.
*
* Argument |p| contains the private information of the CDataFinalizer. If NULL,
* this function does nothing.
* Argument |obj| should contain |NULL| during finalization (or in any context
* in which the object itself should not be cleaned up), or a CDataFinalizer
* object otherwise.
*/
void
CDataFinalizer::Cleanup(CDataFinalizer::Private *p, JSObject *obj)
{
if (!p) {
return; // We have already cleaned up
}
free(p->cargs);
free(p->rvalue);
free(p);
if (!obj) {
return; // No slots to clean up
}
JS_ASSERT(CDataFinalizer::IsCDataFinalizer(obj));
JS_SetPrivate(obj, NULL);
for (int i = 0; i < CDATAFINALIZER_SLOTS; ++i) {
JS_SetReservedSlot(obj, i, JSVAL_NULL);
}
}
/*******************************************************************************
** Int64 and UInt64 implementation
*******************************************************************************/
JSObject*
Int64Base::Construct(JSContext* cx,
HandleObject proto,
uint64_t data,
bool isUnsigned)
{
JSClass* clasp = isUnsigned ? &sUInt64Class : &sInt64Class;
RootedObject parent(cx, JS_GetParent(proto));
RootedObject result(cx, JS_NewObject(cx, clasp, proto, parent));
if (!result)
return NULL;
// attach the Int64's data
uint64_t* buffer = cx->new_<uint64_t>(data);
if (!buffer) {
JS_ReportOutOfMemory(cx);
return NULL;
}
JS_SetReservedSlot(result, SLOT_INT64, PRIVATE_TO_JSVAL(buffer));
if (!JS_FreezeObject(cx, result))
return NULL;
return result;
}
void
Int64Base::Finalize(JSFreeOp *fop, JSObject* obj)
{
jsval slot = JS_GetReservedSlot(obj, SLOT_INT64);
if (JSVAL_IS_VOID(slot))
return;
FreeOp::get(fop)->delete_(static_cast<uint64_t*>(JSVAL_TO_PRIVATE(slot)));
}
uint64_t
Int64Base::GetInt(JSObject* obj) {
JS_ASSERT(Int64::IsInt64(obj) || UInt64::IsUInt64(obj));
jsval slot = JS_GetReservedSlot(obj, SLOT_INT64);
return *static_cast<uint64_t*>(JSVAL_TO_PRIVATE(slot));
}
JSBool
Int64Base::ToString(JSContext* cx,
JSObject* obj,
const CallArgs& args,
bool isUnsigned)
{
if (args.length() > 1) {
JS_ReportError(cx, "toString takes zero or one argument");
return JS_FALSE;
}
int radix = 10;
if (args.length() == 1) {
jsval arg = args[0];
if (arg.isInt32())
radix = arg.toInt32();
if (!arg.isInt32() || radix < 2 || radix > 36) {
JS_ReportError(cx, "radix argument must be an integer between 2 and 36");
return JS_FALSE;
}
}
AutoString intString;
if (isUnsigned) {
IntegerToString(GetInt(obj), radix, intString);
} else {
IntegerToString(static_cast<int64_t>(GetInt(obj)), radix, intString);
}
JSString *result = NewUCString(cx, intString);
if (!result)
return JS_FALSE;
args.rval().setString(result);
return JS_TRUE;
}
JSBool
Int64Base::ToSource(JSContext* cx,
JSObject* obj,
const CallArgs& args,
bool isUnsigned)
{
if (args.length() != 0) {
JS_ReportError(cx, "toSource takes zero arguments");
return JS_FALSE;
}
// Return a decimal string suitable for constructing the number.
AutoString source;
if (isUnsigned) {
AppendString(source, "ctypes.UInt64(\"");
IntegerToString(GetInt(obj), 10, source);
} else {
AppendString(source, "ctypes.Int64(\"");
IntegerToString(static_cast<int64_t>(GetInt(obj)), 10, source);
}
AppendString(source, "\")");
JSString *result = NewUCString(cx, source);
if (!result)
return JS_FALSE;
args.rval().setString(result);
return JS_TRUE;
}
JSBool
Int64::Construct(JSContext* cx,
unsigned argc,
jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Construct and return a new Int64 object.
if (args.length() != 1) {
JS_ReportError(cx, "Int64 takes one argument");
return JS_FALSE;
}
int64_t i = 0;
if (!jsvalToBigInteger(cx, args[0], true, &i))
return TypeError(cx, "int64", args[0]);
// Get ctypes.Int64.prototype from the 'prototype' property of the ctor.
RootedValue slot(cx);
RootedObject callee(cx, &args.callee());
ASSERT_OK(JS_GetProperty(cx, callee, "prototype", slot.address()));
RootedObject proto(cx, JSVAL_TO_OBJECT(slot));
JS_ASSERT(JS_GetClass(proto) == &sInt64ProtoClass);
JSObject* result = Int64Base::Construct(cx, proto, i, false);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
bool
Int64::IsInt64(JSObject* obj)
{
return JS_GetClass(obj) == &sInt64Class;
}
JSBool
Int64::ToString(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject* obj = JS_THIS_OBJECT(cx, vp);
if (!obj)
return JS_FALSE;
if (!Int64::IsInt64(obj)) {
JS_ReportError(cx, "not an Int64");
return JS_FALSE;
}
return Int64Base::ToString(cx, obj, args, false);
}
JSBool
Int64::ToSource(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject* obj = JS_THIS_OBJECT(cx, vp);
if (!obj)
return JS_FALSE;
if (!Int64::IsInt64(obj)) {
JS_ReportError(cx, "not an Int64");
return JS_FALSE;
}
return Int64Base::ToSource(cx, obj, args, false);
}
JSBool
Int64::Compare(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 2 ||
JSVAL_IS_PRIMITIVE(args[0]) ||
JSVAL_IS_PRIMITIVE(args[1]) ||
!Int64::IsInt64(&args[0].toObject()) ||
!Int64::IsInt64(&args[1].toObject())) {
JS_ReportError(cx, "compare takes two Int64 arguments");
return JS_FALSE;
}
JSObject* obj1 = &args[0].toObject();
JSObject* obj2 = &args[1].toObject();
int64_t i1 = Int64Base::GetInt(obj1);
int64_t i2 = Int64Base::GetInt(obj2);
if (i1 == i2)
args.rval().setInt32(0);
else if (i1 < i2)
args.rval().setInt32(-1);
else
args.rval().setInt32(1);
return JS_TRUE;
}
#define LO_MASK ((uint64_t(1) << 32) - 1)
#define INT64_LO(i) ((i) & LO_MASK)
#define INT64_HI(i) ((i) >> 32)
JSBool
Int64::Lo(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 1 || JSVAL_IS_PRIMITIVE(args[0]) ||
!Int64::IsInt64(&args[0].toObject())) {
JS_ReportError(cx, "lo takes one Int64 argument");
return JS_FALSE;
}
JSObject* obj = &args[0].toObject();
int64_t u = Int64Base::GetInt(obj);
double d = uint32_t(INT64_LO(u));
args.rval().setNumber(d);
return JS_TRUE;
}
JSBool
Int64::Hi(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 1 || JSVAL_IS_PRIMITIVE(args[0]) ||
!Int64::IsInt64(&args[0].toObject())) {
JS_ReportError(cx, "hi takes one Int64 argument");
return JS_FALSE;
}
JSObject* obj = &args[0].toObject();
int64_t u = Int64Base::GetInt(obj);
double d = int32_t(INT64_HI(u));
args.rval().setDouble(d);
return JS_TRUE;
}
JSBool
Int64::Join(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 2) {
JS_ReportError(cx, "join takes two arguments");
return JS_FALSE;
}
int32_t hi;
uint32_t lo;
if (!jsvalToInteger(cx, args[0], &hi))
return TypeError(cx, "int32", args[0]);
if (!jsvalToInteger(cx, args[1], &lo))
return TypeError(cx, "uint32", args[1]);
int64_t i = (int64_t(hi) << 32) + int64_t(lo);
// Get Int64.prototype from the function's reserved slot.
JSObject* callee = &args.callee();
jsval slot = js::GetFunctionNativeReserved(callee, SLOT_FN_INT64PROTO);
RootedObject proto(cx, &slot.toObject());
JS_ASSERT(JS_GetClass(proto) == &sInt64ProtoClass);
JSObject* result = Int64Base::Construct(cx, proto, i, false);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
JSBool
UInt64::Construct(JSContext* cx,
unsigned argc,
jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// Construct and return a new UInt64 object.
if (args.length() != 1) {
JS_ReportError(cx, "UInt64 takes one argument");
return JS_FALSE;
}
uint64_t u = 0;
if (!jsvalToBigInteger(cx, args[0], true, &u))
return TypeError(cx, "uint64", args[0]);
// Get ctypes.UInt64.prototype from the 'prototype' property of the ctor.
RootedValue slot(cx);
RootedObject callee(cx, &args.callee());
ASSERT_OK(JS_GetProperty(cx, callee, "prototype", slot.address()));
RootedObject proto(cx, &slot.toObject());
JS_ASSERT(JS_GetClass(proto) == &sUInt64ProtoClass);
JSObject* result = Int64Base::Construct(cx, proto, u, true);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
bool
UInt64::IsUInt64(JSObject* obj)
{
return JS_GetClass(obj) == &sUInt64Class;
}
JSBool
UInt64::ToString(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject* obj = JS_THIS_OBJECT(cx, vp);
if (!obj)
return JS_FALSE;
if (!UInt64::IsUInt64(obj)) {
JS_ReportError(cx, "not a UInt64");
return JS_FALSE;
}
return Int64Base::ToString(cx, obj, args, true);
}
JSBool
UInt64::ToSource(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject* obj = JS_THIS_OBJECT(cx, vp);
if (!obj)
return JS_FALSE;
if (!UInt64::IsUInt64(obj)) {
JS_ReportError(cx, "not a UInt64");
return JS_FALSE;
}
return Int64Base::ToSource(cx, obj, args, true);
}
JSBool
UInt64::Compare(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 2 ||
JSVAL_IS_PRIMITIVE(args[0]) ||
JSVAL_IS_PRIMITIVE(args[1]) ||
!UInt64::IsUInt64(&args[0].toObject()) ||
!UInt64::IsUInt64(&args[1].toObject())) {
JS_ReportError(cx, "compare takes two UInt64 arguments");
return JS_FALSE;
}
JSObject* obj1 = &args[0].toObject();
JSObject* obj2 = &args[1].toObject();
uint64_t u1 = Int64Base::GetInt(obj1);
uint64_t u2 = Int64Base::GetInt(obj2);
if (u1 == u2)
args.rval().setInt32(0);
else if (u1 < u2)
args.rval().setInt32(-1);
else
args.rval().setInt32(1);
return JS_TRUE;
}
JSBool
UInt64::Lo(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 1 || JSVAL_IS_PRIMITIVE(args[0]) ||
!UInt64::IsUInt64(&args[0].toObject())) {
JS_ReportError(cx, "lo takes one UInt64 argument");
return JS_FALSE;
}
JSObject* obj = &args[0].toObject();
uint64_t u = Int64Base::GetInt(obj);
double d = uint32_t(INT64_LO(u));
args.rval().setDouble(d);
return JS_TRUE;
}
JSBool
UInt64::Hi(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 1 || JSVAL_IS_PRIMITIVE(args[0]) ||
!UInt64::IsUInt64(&args[0].toObject())) {
JS_ReportError(cx, "hi takes one UInt64 argument");
return JS_FALSE;
}
JSObject* obj = &args[0].toObject();
uint64_t u = Int64Base::GetInt(obj);
double d = uint32_t(INT64_HI(u));
args.rval().setDouble(d);
return JS_TRUE;
}
JSBool
UInt64::Join(JSContext* cx, unsigned argc, jsval* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() != 2) {
JS_ReportError(cx, "join takes two arguments");
return JS_FALSE;
}
uint32_t hi;
uint32_t lo;
if (!jsvalToInteger(cx, args[0], &hi))
return TypeError(cx, "uint32_t", args[0]);
if (!jsvalToInteger(cx, args[1], &lo))
return TypeError(cx, "uint32_t", args[1]);
uint64_t u = (uint64_t(hi) << 32) + uint64_t(lo);
// Get UInt64.prototype from the function's reserved slot.
JSObject* callee = &args.callee();
jsval slot = js::GetFunctionNativeReserved(callee, SLOT_FN_INT64PROTO);
RootedObject proto(cx, &slot.toObject());
JS_ASSERT(JS_GetClass(proto) == &sUInt64ProtoClass);
JSObject* result = Int64Base::Construct(cx, proto, u, true);
if (!result)
return JS_FALSE;
args.rval().setObject(*result);
return JS_TRUE;
}
}
}