blob: 8d7a3a69aa35c739e0c37e85c689e28a493f2e00 [file] [log] [blame]
/*
* Copyright (C) 2009, 2010 Apple Inc. All rights reserved.
* Copyright (C) 2010 University of Szeged
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MacroAssemblerARMv7_h
#define MacroAssemblerARMv7_h
#if ENABLE(ASSEMBLER)
#include "ARMv7Assembler.h"
#include "AbstractMacroAssembler.h"
namespace JSC {
class MacroAssemblerARMv7 : public AbstractMacroAssembler<ARMv7Assembler> {
// FIXME: switch dataTempRegister & addressTempRegister, or possibly use r7?
// - dTR is likely used more than aTR, and we'll get better instruction
// encoding if it's in the low 8 registers.
static const RegisterID dataTempRegister = ARMRegisters::ip;
static const RegisterID addressTempRegister = ARMRegisters::r3;
static const ARMRegisters::FPDoubleRegisterID fpTempRegister = ARMRegisters::d7;
inline ARMRegisters::FPSingleRegisterID fpTempRegisterAsSingle() { return ARMRegisters::asSingle(fpTempRegister); }
public:
MacroAssemblerARMv7()
: m_makeJumpPatchable(false)
{
}
typedef ARMv7Assembler::LinkRecord LinkRecord;
typedef ARMv7Assembler::JumpType JumpType;
typedef ARMv7Assembler::JumpLinkType JumpLinkType;
static bool isCompactPtrAlignedAddressOffset(ptrdiff_t value)
{
return value >= -255 && value <= 255;
}
Vector<LinkRecord>& jumpsToLink() { return m_assembler.jumpsToLink(); }
void* unlinkedCode() { return m_assembler.unlinkedCode(); }
bool canCompact(JumpType jumpType) { return m_assembler.canCompact(jumpType); }
JumpLinkType computeJumpType(JumpType jumpType, const uint8_t* from, const uint8_t* to) { return m_assembler.computeJumpType(jumpType, from, to); }
JumpLinkType computeJumpType(LinkRecord& record, const uint8_t* from, const uint8_t* to) { return m_assembler.computeJumpType(record, from, to); }
void recordLinkOffsets(int32_t regionStart, int32_t regionEnd, int32_t offset) {return m_assembler.recordLinkOffsets(regionStart, regionEnd, offset); }
int jumpSizeDelta(JumpType jumpType, JumpLinkType jumpLinkType) { return m_assembler.jumpSizeDelta(jumpType, jumpLinkType); }
void link(LinkRecord& record, uint8_t* from, uint8_t* to) { return m_assembler.link(record, from, to); }
struct ArmAddress {
enum AddressType {
HasOffset,
HasIndex,
} type;
RegisterID base;
union {
int32_t offset;
struct {
RegisterID index;
Scale scale;
};
} u;
explicit ArmAddress(RegisterID base, int32_t offset = 0)
: type(HasOffset)
, base(base)
{
u.offset = offset;
}
explicit ArmAddress(RegisterID base, RegisterID index, Scale scale = TimesOne)
: type(HasIndex)
, base(base)
{
u.index = index;
u.scale = scale;
}
};
public:
typedef ARMRegisters::FPDoubleRegisterID FPRegisterID;
static const Scale ScalePtr = TimesFour;
enum RelationalCondition {
Equal = ARMv7Assembler::ConditionEQ,
NotEqual = ARMv7Assembler::ConditionNE,
Above = ARMv7Assembler::ConditionHI,
AboveOrEqual = ARMv7Assembler::ConditionHS,
Below = ARMv7Assembler::ConditionLO,
BelowOrEqual = ARMv7Assembler::ConditionLS,
GreaterThan = ARMv7Assembler::ConditionGT,
GreaterThanOrEqual = ARMv7Assembler::ConditionGE,
LessThan = ARMv7Assembler::ConditionLT,
LessThanOrEqual = ARMv7Assembler::ConditionLE
};
enum ResultCondition {
Overflow = ARMv7Assembler::ConditionVS,
Signed = ARMv7Assembler::ConditionMI,
Zero = ARMv7Assembler::ConditionEQ,
NonZero = ARMv7Assembler::ConditionNE
};
enum DoubleCondition {
// These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN.
DoubleEqual = ARMv7Assembler::ConditionEQ,
DoubleNotEqual = ARMv7Assembler::ConditionVC, // Not the right flag! check for this & handle differently.
DoubleGreaterThan = ARMv7Assembler::ConditionGT,
DoubleGreaterThanOrEqual = ARMv7Assembler::ConditionGE,
DoubleLessThan = ARMv7Assembler::ConditionLO,
DoubleLessThanOrEqual = ARMv7Assembler::ConditionLS,
// If either operand is NaN, these conditions always evaluate to true.
DoubleEqualOrUnordered = ARMv7Assembler::ConditionVS, // Not the right flag! check for this & handle differently.
DoubleNotEqualOrUnordered = ARMv7Assembler::ConditionNE,
DoubleGreaterThanOrUnordered = ARMv7Assembler::ConditionHI,
DoubleGreaterThanOrEqualOrUnordered = ARMv7Assembler::ConditionHS,
DoubleLessThanOrUnordered = ARMv7Assembler::ConditionLT,
DoubleLessThanOrEqualOrUnordered = ARMv7Assembler::ConditionLE,
};
static const RegisterID stackPointerRegister = ARMRegisters::sp;
static const RegisterID linkRegister = ARMRegisters::lr;
// Integer arithmetic operations:
//
// Operations are typically two operand - operation(source, srcDst)
// For many operations the source may be an TrustedImm32, the srcDst operand
// may often be a memory location (explictly described using an Address
// object).
void add32(RegisterID src, RegisterID dest)
{
m_assembler.add(dest, dest, src);
}
void add32(TrustedImm32 imm, RegisterID dest)
{
add32(imm, dest, dest);
}
void add32(AbsoluteAddress src, RegisterID dest)
{
load32(src.m_ptr, dataTempRegister);
add32(dataTempRegister, dest);
}
void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.add(dest, src, armImm);
else {
move(imm, dataTempRegister);
m_assembler.add(dest, src, dataTempRegister);
}
}
void add32(TrustedImm32 imm, Address address)
{
load32(address, dataTempRegister);
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.add(dataTempRegister, dataTempRegister, armImm);
else {
// Hrrrm, since dataTempRegister holds the data loaded,
// use addressTempRegister to hold the immediate.
move(imm, addressTempRegister);
m_assembler.add(dataTempRegister, dataTempRegister, addressTempRegister);
}
store32(dataTempRegister, address);
}
void add32(Address src, RegisterID dest)
{
load32(src, dataTempRegister);
add32(dataTempRegister, dest);
}
void add32(TrustedImm32 imm, AbsoluteAddress address)
{
load32(address.m_ptr, dataTempRegister);
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.add(dataTempRegister, dataTempRegister, armImm);
else {
// Hrrrm, since dataTempRegister holds the data loaded,
// use addressTempRegister to hold the immediate.
move(imm, addressTempRegister);
m_assembler.add(dataTempRegister, dataTempRegister, addressTempRegister);
}
store32(dataTempRegister, address.m_ptr);
}
void add64(TrustedImm32 imm, AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), addressTempRegister);
m_assembler.ldr(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt12(0));
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.add_S(dataTempRegister, dataTempRegister, armImm);
else {
move(imm, addressTempRegister);
m_assembler.add_S(dataTempRegister, dataTempRegister, addressTempRegister);
move(TrustedImmPtr(address.m_ptr), addressTempRegister);
}
m_assembler.str(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt12(0));
m_assembler.ldr(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt12(4));
m_assembler.adc(dataTempRegister, dataTempRegister, ARMThumbImmediate::makeEncodedImm(imm.m_value >> 31));
m_assembler.str(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt12(4));
}
void and32(RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.ARM_and(dest, op1, op2);
}
void and32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.ARM_and(dest, src, armImm);
else {
move(imm, dataTempRegister);
m_assembler.ARM_and(dest, src, dataTempRegister);
}
}
void and32(RegisterID src, RegisterID dest)
{
and32(dest, src, dest);
}
void and32(TrustedImm32 imm, RegisterID dest)
{
and32(imm, dest, dest);
}
void countLeadingZeros32(RegisterID src, RegisterID dest)
{
m_assembler.clz(dest, src);
}
void lshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
// Clamp the shift to the range 0..31
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(0x1f);
ASSERT(armImm.isValid());
m_assembler.ARM_and(dataTempRegister, shiftAmount, armImm);
m_assembler.lsl(dest, src, dataTempRegister);
}
void lshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.lsl(dest, src, imm.m_value & 0x1f);
}
void lshift32(RegisterID shiftAmount, RegisterID dest)
{
lshift32(dest, shiftAmount, dest);
}
void lshift32(TrustedImm32 imm, RegisterID dest)
{
lshift32(dest, imm, dest);
}
void mul32(RegisterID src, RegisterID dest)
{
m_assembler.smull(dest, dataTempRegister, dest, src);
}
void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
move(imm, dataTempRegister);
m_assembler.smull(dest, dataTempRegister, src, dataTempRegister);
}
void neg32(RegisterID srcDest)
{
m_assembler.neg(srcDest, srcDest);
}
void or32(RegisterID src, RegisterID dest)
{
m_assembler.orr(dest, dest, src);
}
void or32(RegisterID src, AbsoluteAddress dest)
{
move(TrustedImmPtr(dest.m_ptr), addressTempRegister);
load32(addressTempRegister, dataTempRegister);
or32(src, dataTempRegister);
store32(dataTempRegister, addressTempRegister);
}
void or32(TrustedImm32 imm, RegisterID dest)
{
or32(imm, dest, dest);
}
void or32(RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.orr(dest, op1, op2);
}
void or32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.orr(dest, src, armImm);
else {
move(imm, dataTempRegister);
m_assembler.orr(dest, src, dataTempRegister);
}
}
void rshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
// Clamp the shift to the range 0..31
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(0x1f);
ASSERT(armImm.isValid());
m_assembler.ARM_and(dataTempRegister, shiftAmount, armImm);
m_assembler.asr(dest, src, dataTempRegister);
}
void rshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.asr(dest, src, imm.m_value & 0x1f);
}
void rshift32(RegisterID shiftAmount, RegisterID dest)
{
rshift32(dest, shiftAmount, dest);
}
void rshift32(TrustedImm32 imm, RegisterID dest)
{
rshift32(dest, imm, dest);
}
void urshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
// Clamp the shift to the range 0..31
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(0x1f);
ASSERT(armImm.isValid());
m_assembler.ARM_and(dataTempRegister, shiftAmount, armImm);
m_assembler.lsr(dest, src, dataTempRegister);
}
void urshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.lsr(dest, src, imm.m_value & 0x1f);
}
void urshift32(RegisterID shiftAmount, RegisterID dest)
{
urshift32(dest, shiftAmount, dest);
}
void urshift32(TrustedImm32 imm, RegisterID dest)
{
urshift32(dest, imm, dest);
}
void sub32(RegisterID src, RegisterID dest)
{
m_assembler.sub(dest, dest, src);
}
void sub32(TrustedImm32 imm, RegisterID dest)
{
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.sub(dest, dest, armImm);
else {
move(imm, dataTempRegister);
m_assembler.sub(dest, dest, dataTempRegister);
}
}
void sub32(TrustedImm32 imm, Address address)
{
load32(address, dataTempRegister);
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.sub(dataTempRegister, dataTempRegister, armImm);
else {
// Hrrrm, since dataTempRegister holds the data loaded,
// use addressTempRegister to hold the immediate.
move(imm, addressTempRegister);
m_assembler.sub(dataTempRegister, dataTempRegister, addressTempRegister);
}
store32(dataTempRegister, address);
}
void sub32(Address src, RegisterID dest)
{
load32(src, dataTempRegister);
sub32(dataTempRegister, dest);
}
void sub32(TrustedImm32 imm, AbsoluteAddress address)
{
load32(address.m_ptr, dataTempRegister);
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12OrEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.sub(dataTempRegister, dataTempRegister, armImm);
else {
// Hrrrm, since dataTempRegister holds the data loaded,
// use addressTempRegister to hold the immediate.
move(imm, addressTempRegister);
m_assembler.sub(dataTempRegister, dataTempRegister, addressTempRegister);
}
store32(dataTempRegister, address.m_ptr);
}
void xor32(RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.eor(dest, op1, op2);
}
void xor32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (imm.m_value == -1) {
m_assembler.mvn(dest, src);
return;
}
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.eor(dest, src, armImm);
else {
move(imm, dataTempRegister);
m_assembler.eor(dest, src, dataTempRegister);
}
}
void xor32(RegisterID src, RegisterID dest)
{
xor32(dest, src, dest);
}
void xor32(TrustedImm32 imm, RegisterID dest)
{
if (imm.m_value == -1)
m_assembler.mvn(dest, dest);
else
xor32(imm, dest, dest);
}
// Memory access operations:
//
// Loads are of the form load(address, destination) and stores of the form
// store(source, address). The source for a store may be an TrustedImm32. Address
// operand objects to loads and store will be implicitly constructed if a
// register is passed.
private:
void load32(ArmAddress address, RegisterID dest)
{
if (address.type == ArmAddress::HasIndex)
m_assembler.ldr(dest, address.base, address.u.index, address.u.scale);
else if (address.u.offset >= 0) {
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset);
ASSERT(armImm.isValid());
m_assembler.ldr(dest, address.base, armImm);
} else {
ASSERT(address.u.offset >= -255);
m_assembler.ldr(dest, address.base, address.u.offset, true, false);
}
}
void load16(ArmAddress address, RegisterID dest)
{
if (address.type == ArmAddress::HasIndex)
m_assembler.ldrh(dest, address.base, address.u.index, address.u.scale);
else if (address.u.offset >= 0) {
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset);
ASSERT(armImm.isValid());
m_assembler.ldrh(dest, address.base, armImm);
} else {
ASSERT(address.u.offset >= -255);
m_assembler.ldrh(dest, address.base, address.u.offset, true, false);
}
}
void load16Signed(ArmAddress address, RegisterID dest)
{
ASSERT(address.type == ArmAddress::HasIndex);
m_assembler.ldrsh(dest, address.base, address.u.index, address.u.scale);
}
void load8(ArmAddress address, RegisterID dest)
{
if (address.type == ArmAddress::HasIndex)
m_assembler.ldrb(dest, address.base, address.u.index, address.u.scale);
else if (address.u.offset >= 0) {
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset);
ASSERT(armImm.isValid());
m_assembler.ldrb(dest, address.base, armImm);
} else {
ASSERT(address.u.offset >= -255);
m_assembler.ldrb(dest, address.base, address.u.offset, true, false);
}
}
void load8Signed(ArmAddress address, RegisterID dest)
{
ASSERT(address.type == ArmAddress::HasIndex);
m_assembler.ldrsb(dest, address.base, address.u.index, address.u.scale);
}
protected:
void store32(RegisterID src, ArmAddress address)
{
if (address.type == ArmAddress::HasIndex)
m_assembler.str(src, address.base, address.u.index, address.u.scale);
else if (address.u.offset >= 0) {
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset);
ASSERT(armImm.isValid());
m_assembler.str(src, address.base, armImm);
} else {
ASSERT(address.u.offset >= -255);
m_assembler.str(src, address.base, address.u.offset, true, false);
}
}
private:
void store8(RegisterID src, ArmAddress address)
{
if (address.type == ArmAddress::HasIndex)
m_assembler.strb(src, address.base, address.u.index, address.u.scale);
else if (address.u.offset >= 0) {
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset);
ASSERT(armImm.isValid());
m_assembler.strb(src, address.base, armImm);
} else {
ASSERT(address.u.offset >= -255);
m_assembler.strb(src, address.base, address.u.offset, true, false);
}
}
void store16(RegisterID src, ArmAddress address)
{
if (address.type == ArmAddress::HasIndex)
m_assembler.strh(src, address.base, address.u.index, address.u.scale);
else if (address.u.offset >= 0) {
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.u.offset);
ASSERT(armImm.isValid());
m_assembler.strh(src, address.base, armImm);
} else {
ASSERT(address.u.offset >= -255);
m_assembler.strh(src, address.base, address.u.offset, true, false);
}
}
public:
void load32(ImplicitAddress address, RegisterID dest)
{
load32(setupArmAddress(address), dest);
}
void load32(BaseIndex address, RegisterID dest)
{
load32(setupArmAddress(address), dest);
}
void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
{
load32(setupArmAddress(address), dest);
}
void load16Unaligned(BaseIndex address, RegisterID dest)
{
load16(setupArmAddress(address), dest);
}
void load32(const void* address, RegisterID dest)
{
move(TrustedImmPtr(address), addressTempRegister);
m_assembler.ldr(dest, addressTempRegister, ARMThumbImmediate::makeUInt16(0));
}
ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
{
ConvertibleLoadLabel result(this);
ASSERT(address.offset >= 0 && address.offset <= 255);
m_assembler.ldrWide8BitImmediate(dest, address.base, address.offset);
return result;
}
void load8(ImplicitAddress address, RegisterID dest)
{
load8(setupArmAddress(address), dest);
}
void load8Signed(ImplicitAddress, RegisterID)
{
UNREACHABLE_FOR_PLATFORM();
}
void load8(BaseIndex address, RegisterID dest)
{
load8(setupArmAddress(address), dest);
}
void load8Signed(BaseIndex address, RegisterID dest)
{
load8Signed(setupArmAddress(address), dest);
}
DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
{
DataLabel32 label = moveWithPatch(TrustedImm32(address.offset), dataTempRegister);
load32(ArmAddress(address.base, dataTempRegister), dest);
return label;
}
DataLabelCompact load32WithCompactAddressOffsetPatch(Address address, RegisterID dest)
{
padBeforePatch();
RegisterID base = address.base;
DataLabelCompact label(this);
ASSERT(isCompactPtrAlignedAddressOffset(address.offset));
m_assembler.ldr(dest, base, address.offset, true, false);
return label;
}
void load16(BaseIndex address, RegisterID dest)
{
m_assembler.ldrh(dest, makeBaseIndexBase(address), address.index, address.scale);
}
void load16Signed(BaseIndex address, RegisterID dest)
{
load16Signed(setupArmAddress(address), dest);
}
void load16(ImplicitAddress address, RegisterID dest)
{
ARMThumbImmediate armImm = ARMThumbImmediate::makeUInt12(address.offset);
if (armImm.isValid())
m_assembler.ldrh(dest, address.base, armImm);
else {
move(TrustedImm32(address.offset), dataTempRegister);
m_assembler.ldrh(dest, address.base, dataTempRegister);
}
}
void load16Signed(ImplicitAddress, RegisterID)
{
UNREACHABLE_FOR_PLATFORM();
}
DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
{
DataLabel32 label = moveWithPatch(TrustedImm32(address.offset), dataTempRegister);
store32(src, ArmAddress(address.base, dataTempRegister));
return label;
}
void store32(RegisterID src, ImplicitAddress address)
{
store32(src, setupArmAddress(address));
}
void store32(RegisterID src, BaseIndex address)
{
store32(src, setupArmAddress(address));
}
void store32(TrustedImm32 imm, ImplicitAddress address)
{
move(imm, dataTempRegister);
store32(dataTempRegister, setupArmAddress(address));
}
void store32(TrustedImm32 imm, BaseIndex address)
{
move(imm, dataTempRegister);
store32(dataTempRegister, setupArmAddress(address));
}
void store32(RegisterID src, const void* address)
{
move(TrustedImmPtr(address), addressTempRegister);
m_assembler.str(src, addressTempRegister, ARMThumbImmediate::makeUInt16(0));
}
void store32(TrustedImm32 imm, const void* address)
{
move(imm, dataTempRegister);
store32(dataTempRegister, address);
}
void store8(RegisterID src, BaseIndex address)
{
store8(src, setupArmAddress(address));
}
void store8(RegisterID src, void* address)
{
move(TrustedImmPtr(address), addressTempRegister);
store8(src, ArmAddress(addressTempRegister, 0));
}
void store8(TrustedImm32 imm, void* address)
{
move(imm, dataTempRegister);
store8(dataTempRegister, address);
}
void store16(RegisterID src, BaseIndex address)
{
store16(src, setupArmAddress(address));
}
// Possibly clobbers src, but not on this architecture.
void moveDoubleToInts(FPRegisterID src, RegisterID dest1, RegisterID dest2)
{
m_assembler.vmov(dest1, dest2, src);
}
void moveIntsToDouble(RegisterID src1, RegisterID src2, FPRegisterID dest, FPRegisterID scratch)
{
UNUSED_PARAM(scratch);
m_assembler.vmov(dest, src1, src2);
}
#if ENABLE(JIT_CONSTANT_BLINDING)
static bool shouldBlindForSpecificArch(uint32_t value)
{
ARMThumbImmediate immediate = ARMThumbImmediate::makeEncodedImm(value);
// Couldn't be encoded as an immediate, so assume it's untrusted.
if (!immediate.isValid())
return true;
// If we can encode the immediate, we have less than 16 attacker
// controlled bits.
if (immediate.isEncodedImm())
return false;
// Don't let any more than 12 bits of an instruction word
// be controlled by an attacker.
return !immediate.isUInt12();
}
#endif
// Floating-point operations:
static bool supportsFloatingPoint() { return true; }
static bool supportsFloatingPointTruncate() { return true; }
static bool supportsFloatingPointSqrt() { return true; }
static bool supportsFloatingPointAbs() { return true; }
void loadDouble(ImplicitAddress address, FPRegisterID dest)
{
RegisterID base = address.base;
int32_t offset = address.offset;
// Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2.
if ((offset & 3) || (offset > (255 * 4)) || (offset < -(255 * 4))) {
add32(TrustedImm32(offset), base, addressTempRegister);
base = addressTempRegister;
offset = 0;
}
m_assembler.vldr(dest, base, offset);
}
void loadFloat(ImplicitAddress address, FPRegisterID dest)
{
RegisterID base = address.base;
int32_t offset = address.offset;
// Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2.
if ((offset & 3) || (offset > (255 * 4)) || (offset < -(255 * 4))) {
add32(TrustedImm32(offset), base, addressTempRegister);
base = addressTempRegister;
offset = 0;
}
m_assembler.flds(ARMRegisters::asSingle(dest), base, offset);
}
void loadDouble(BaseIndex address, FPRegisterID dest)
{
move(address.index, addressTempRegister);
lshift32(TrustedImm32(address.scale), addressTempRegister);
add32(address.base, addressTempRegister);
loadDouble(Address(addressTempRegister, address.offset), dest);
}
void loadFloat(BaseIndex address, FPRegisterID dest)
{
move(address.index, addressTempRegister);
lshift32(TrustedImm32(address.scale), addressTempRegister);
add32(address.base, addressTempRegister);
loadFloat(Address(addressTempRegister, address.offset), dest);
}
void moveDouble(FPRegisterID src, FPRegisterID dest)
{
if (src != dest)
m_assembler.vmov(dest, src);
}
void loadDouble(const void* address, FPRegisterID dest)
{
move(TrustedImmPtr(address), addressTempRegister);
m_assembler.vldr(dest, addressTempRegister, 0);
}
void storeDouble(FPRegisterID src, ImplicitAddress address)
{
RegisterID base = address.base;
int32_t offset = address.offset;
// Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2.
if ((offset & 3) || (offset > (255 * 4)) || (offset < -(255 * 4))) {
add32(TrustedImm32(offset), base, addressTempRegister);
base = addressTempRegister;
offset = 0;
}
m_assembler.vstr(src, base, offset);
}
void storeFloat(FPRegisterID src, ImplicitAddress address)
{
RegisterID base = address.base;
int32_t offset = address.offset;
// Arm vfp addresses can be offset by a 9-bit ones-comp immediate, left shifted by 2.
if ((offset & 3) || (offset > (255 * 4)) || (offset < -(255 * 4))) {
add32(TrustedImm32(offset), base, addressTempRegister);
base = addressTempRegister;
offset = 0;
}
m_assembler.fsts(ARMRegisters::asSingle(src), base, offset);
}
void storeDouble(FPRegisterID src, const void* address)
{
move(TrustedImmPtr(address), addressTempRegister);
storeDouble(src, addressTempRegister);
}
void storeDouble(FPRegisterID src, BaseIndex address)
{
move(address.index, addressTempRegister);
lshift32(TrustedImm32(address.scale), addressTempRegister);
add32(address.base, addressTempRegister);
storeDouble(src, Address(addressTempRegister, address.offset));
}
void storeFloat(FPRegisterID src, BaseIndex address)
{
move(address.index, addressTempRegister);
lshift32(TrustedImm32(address.scale), addressTempRegister);
add32(address.base, addressTempRegister);
storeFloat(src, Address(addressTempRegister, address.offset));
}
void addDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.vadd(dest, dest, src);
}
void addDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
addDouble(fpTempRegister, dest);
}
void addDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.vadd(dest, op1, op2);
}
void addDouble(AbsoluteAddress address, FPRegisterID dest)
{
loadDouble(address.m_ptr, fpTempRegister);
m_assembler.vadd(dest, dest, fpTempRegister);
}
void divDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.vdiv(dest, dest, src);
}
void divDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.vdiv(dest, op1, op2);
}
void subDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.vsub(dest, dest, src);
}
void subDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
subDouble(fpTempRegister, dest);
}
void subDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.vsub(dest, op1, op2);
}
void mulDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.vmul(dest, dest, src);
}
void mulDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
mulDouble(fpTempRegister, dest);
}
void mulDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.vmul(dest, op1, op2);
}
void sqrtDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.vsqrt(dest, src);
}
void absDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.vabs(dest, src);
}
void negateDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.vneg(dest, src);
}
void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.vmov(fpTempRegister, src, src);
m_assembler.vcvt_signedToFloatingPoint(dest, fpTempRegisterAsSingle());
}
void convertInt32ToDouble(Address address, FPRegisterID dest)
{
// Fixme: load directly into the fpr!
load32(address, dataTempRegister);
m_assembler.vmov(fpTempRegister, dataTempRegister, dataTempRegister);
m_assembler.vcvt_signedToFloatingPoint(dest, fpTempRegisterAsSingle());
}
void convertInt32ToDouble(AbsoluteAddress address, FPRegisterID dest)
{
// Fixme: load directly into the fpr!
load32(address.m_ptr, dataTempRegister);
m_assembler.vmov(fpTempRegister, dataTempRegister, dataTempRegister);
m_assembler.vcvt_signedToFloatingPoint(dest, fpTempRegisterAsSingle());
}
void convertFloatToDouble(FPRegisterID src, FPRegisterID dst)
{
m_assembler.vcvtds(dst, ARMRegisters::asSingle(src));
}
void convertDoubleToFloat(FPRegisterID src, FPRegisterID dst)
{
m_assembler.vcvtsd(ARMRegisters::asSingle(dst), src);
}
Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
{
m_assembler.vcmp(left, right);
m_assembler.vmrs();
if (cond == DoubleNotEqual) {
// ConditionNE jumps if NotEqual *or* unordered - force the unordered cases not to jump.
Jump unordered = makeBranch(ARMv7Assembler::ConditionVS);
Jump result = makeBranch(ARMv7Assembler::ConditionNE);
unordered.link(this);
return result;
}
if (cond == DoubleEqualOrUnordered) {
Jump unordered = makeBranch(ARMv7Assembler::ConditionVS);
Jump notEqual = makeBranch(ARMv7Assembler::ConditionNE);
unordered.link(this);
// We get here if either unordered or equal.
Jump result = jump();
notEqual.link(this);
return result;
}
return makeBranch(cond);
}
enum BranchTruncateType { BranchIfTruncateFailed, BranchIfTruncateSuccessful };
Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
{
// Convert into dest.
m_assembler.vcvt_floatingPointToSigned(fpTempRegisterAsSingle(), src);
m_assembler.vmov(dest, fpTempRegisterAsSingle());
// Calculate 2x dest. If the value potentially underflowed, it will have
// clamped to 0x80000000, so 2x dest is zero in this case. In the case of
// overflow the result will be equal to -2.
Jump underflow = branchAdd32(Zero, dest, dest, dataTempRegister);
Jump noOverflow = branch32(NotEqual, dataTempRegister, TrustedImm32(-2));
// For BranchIfTruncateSuccessful, we branch if 'noOverflow' jumps.
underflow.link(this);
if (branchType == BranchIfTruncateSuccessful)
return noOverflow;
// We'll reach the current point in the code on failure, so plant a
// jump here & link the success case.
Jump failure = jump();
noOverflow.link(this);
return failure;
}
Jump branchTruncateDoubleToUint32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
{
m_assembler.vcvt_floatingPointToSigned(fpTempRegisterAsSingle(), src);
m_assembler.vmov(dest, fpTempRegisterAsSingle());
Jump overflow = branch32(Equal, dest, TrustedImm32(0x7fffffff));
Jump success = branch32(GreaterThanOrEqual, dest, TrustedImm32(0));
overflow.link(this);
if (branchType == BranchIfTruncateSuccessful)
return success;
Jump failure = jump();
success.link(this);
return failure;
}
// Result is undefined if the value is outside of the integer range.
void truncateDoubleToInt32(FPRegisterID src, RegisterID dest)
{
m_assembler.vcvt_floatingPointToSigned(fpTempRegisterAsSingle(), src);
m_assembler.vmov(dest, fpTempRegisterAsSingle());
}
void truncateDoubleToUint32(FPRegisterID src, RegisterID dest)
{
m_assembler.vcvt_floatingPointToUnsigned(fpTempRegisterAsSingle(), src);
m_assembler.vmov(dest, fpTempRegisterAsSingle());
}
// Convert 'src' to an integer, and places the resulting 'dest'.
// If the result is not representable as a 32 bit value, branch.
// May also branch for some values that are representable in 32 bits
// (specifically, in this case, 0).
void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID)
{
m_assembler.vcvt_floatingPointToSigned(fpTempRegisterAsSingle(), src);
m_assembler.vmov(dest, fpTempRegisterAsSingle());
// Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump.
m_assembler.vcvt_signedToFloatingPoint(fpTempRegister, fpTempRegisterAsSingle());
failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, fpTempRegister));
// If the result is zero, it might have been -0.0, and the double comparison won't catch this!
failureCases.append(branchTest32(Zero, dest));
}
Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID)
{
m_assembler.vcmpz(reg);
m_assembler.vmrs();
Jump unordered = makeBranch(ARMv7Assembler::ConditionVS);
Jump result = makeBranch(ARMv7Assembler::ConditionNE);
unordered.link(this);
return result;
}
Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID)
{
m_assembler.vcmpz(reg);
m_assembler.vmrs();
Jump unordered = makeBranch(ARMv7Assembler::ConditionVS);
Jump notEqual = makeBranch(ARMv7Assembler::ConditionNE);
unordered.link(this);
// We get here if either unordered or equal.
Jump result = jump();
notEqual.link(this);
return result;
}
// Stack manipulation operations:
//
// The ABI is assumed to provide a stack abstraction to memory,
// containing machine word sized units of data. Push and pop
// operations add and remove a single register sized unit of data
// to or from the stack. Peek and poke operations read or write
// values on the stack, without moving the current stack position.
void pop(RegisterID dest)
{
// store postindexed with writeback
m_assembler.ldr(dest, ARMRegisters::sp, sizeof(void*), false, true);
}
void push(RegisterID src)
{
// store preindexed with writeback
m_assembler.str(src, ARMRegisters::sp, -sizeof(void*), true, true);
}
void push(Address address)
{
load32(address, dataTempRegister);
push(dataTempRegister);
}
void push(TrustedImm32 imm)
{
move(imm, dataTempRegister);
push(dataTempRegister);
}
// Register move operations:
//
// Move values in registers.
void move(TrustedImm32 imm, RegisterID dest)
{
uint32_t value = imm.m_value;
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(value);
if (armImm.isValid())
m_assembler.mov(dest, armImm);
else if ((armImm = ARMThumbImmediate::makeEncodedImm(~value)).isValid())
m_assembler.mvn(dest, armImm);
else {
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(value));
if (value & 0xffff0000)
m_assembler.movt(dest, ARMThumbImmediate::makeUInt16(value >> 16));
}
}
void move(RegisterID src, RegisterID dest)
{
if (src != dest)
m_assembler.mov(dest, src);
}
void move(TrustedImmPtr imm, RegisterID dest)
{
move(TrustedImm32(imm), dest);
}
void swap(RegisterID reg1, RegisterID reg2)
{
move(reg1, dataTempRegister);
move(reg2, reg1);
move(dataTempRegister, reg2);
}
void signExtend32ToPtr(RegisterID src, RegisterID dest)
{
move(src, dest);
}
void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
{
move(src, dest);
}
// Invert a relational condition, e.g. == becomes !=, < becomes >=, etc.
static RelationalCondition invert(RelationalCondition cond)
{
return static_cast<RelationalCondition>(cond ^ 1);
}
void nop()
{
m_assembler.nop();
}
static void replaceWithJump(CodeLocationLabel instructionStart, CodeLocationLabel destination)
{
ARMv7Assembler::replaceWithJump(instructionStart.dataLocation(), destination.dataLocation());
}
static ptrdiff_t maxJumpReplacementSize()
{
return ARMv7Assembler::maxJumpReplacementSize();
}
// Forwards / external control flow operations:
//
// This set of jump and conditional branch operations return a Jump
// object which may linked at a later point, allow forwards jump,
// or jumps that will require external linkage (after the code has been
// relocated).
//
// For branches, signed <, >, <= and >= are denoted as l, g, le, and ge
// respecitvely, for unsigned comparisons the names b, a, be, and ae are
// used (representing the names 'below' and 'above').
//
// Operands to the comparision are provided in the expected order, e.g.
// jle32(reg1, TrustedImm32(5)) will branch if the value held in reg1, when
// treated as a signed 32bit value, is less than or equal to 5.
//
// jz and jnz test whether the first operand is equal to zero, and take
// an optional second operand of a mask under which to perform the test.
private:
// Should we be using TEQ for equal/not-equal?
void compare32(RegisterID left, TrustedImm32 right)
{
int32_t imm = right.m_value;
if (!imm)
m_assembler.tst(left, left);
else {
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm);
if (armImm.isValid())
m_assembler.cmp(left, armImm);
else if ((armImm = ARMThumbImmediate::makeEncodedImm(-imm)).isValid())
m_assembler.cmn(left, armImm);
else {
move(TrustedImm32(imm), dataTempRegister);
m_assembler.cmp(left, dataTempRegister);
}
}
}
void test32(RegisterID reg, TrustedImm32 mask)
{
int32_t imm = mask.m_value;
if (imm == -1)
m_assembler.tst(reg, reg);
else {
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm);
if (armImm.isValid())
m_assembler.tst(reg, armImm);
else {
move(mask, dataTempRegister);
m_assembler.tst(reg, dataTempRegister);
}
}
}
public:
Jump branch32(RelationalCondition cond, RegisterID left, RegisterID right)
{
m_assembler.cmp(left, right);
return Jump(makeBranch(cond));
}
Jump branch32(RelationalCondition cond, RegisterID left, TrustedImm32 right)
{
compare32(left, right);
return Jump(makeBranch(cond));
}
Jump branch32(RelationalCondition cond, RegisterID left, Address right)
{
load32(right, dataTempRegister);
return branch32(cond, left, dataTempRegister);
}
Jump branch32(RelationalCondition cond, Address left, RegisterID right)
{
load32(left, dataTempRegister);
return branch32(cond, dataTempRegister, right);
}
Jump branch32(RelationalCondition cond, Address left, TrustedImm32 right)
{
// use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/
load32(left, addressTempRegister);
return branch32(cond, addressTempRegister, right);
}
Jump branch32(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
// use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/
load32(left, addressTempRegister);
return branch32(cond, addressTempRegister, right);
}
Jump branch32WithUnalignedHalfWords(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
// use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/
load32WithUnalignedHalfWords(left, addressTempRegister);
return branch32(cond, addressTempRegister, right);
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
load32(left.m_ptr, dataTempRegister);
return branch32(cond, dataTempRegister, right);
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
// use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/
load32(left.m_ptr, addressTempRegister);
return branch32(cond, addressTempRegister, right);
}
Jump branch8(RelationalCondition cond, RegisterID left, TrustedImm32 right)
{
compare32(left, right);
return Jump(makeBranch(cond));
}
Jump branch8(RelationalCondition cond, Address left, TrustedImm32 right)
{
ASSERT(!(0xffffff00 & right.m_value));
// use addressTempRegister incase the branch8 we call uses dataTempRegister. :-/
load8(left, addressTempRegister);
return branch8(cond, addressTempRegister, right);
}
Jump branch8(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
ASSERT(!(0xffffff00 & right.m_value));
// use addressTempRegister incase the branch32 we call uses dataTempRegister. :-/
load8(left, addressTempRegister);
return branch32(cond, addressTempRegister, right);
}
Jump branchTest32(ResultCondition cond, RegisterID reg, RegisterID mask)
{
m_assembler.tst(reg, mask);
return Jump(makeBranch(cond));
}
Jump branchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
test32(reg, mask);
return Jump(makeBranch(cond));
}
Jump branchTest32(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
// use addressTempRegister incase the branchTest32 we call uses dataTempRegister. :-/
load32(address, addressTempRegister);
return branchTest32(cond, addressTempRegister, mask);
}
Jump branchTest32(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
// use addressTempRegister incase the branchTest32 we call uses dataTempRegister. :-/
load32(address, addressTempRegister);
return branchTest32(cond, addressTempRegister, mask);
}
Jump branchTest8(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
// use addressTempRegister incase the branchTest8 we call uses dataTempRegister. :-/
load8(address, addressTempRegister);
return branchTest32(cond, addressTempRegister, mask);
}
Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
// use addressTempRegister incase the branchTest8 we call uses dataTempRegister. :-/
move(TrustedImmPtr(address.m_ptr), addressTempRegister);
load8(Address(addressTempRegister), addressTempRegister);
return branchTest32(cond, addressTempRegister, mask);
}
void jump(RegisterID target)
{
m_assembler.bx(target);
}
// Address is a memory location containing the address to jump to
void jump(Address address)
{
load32(address, dataTempRegister);
m_assembler.bx(dataTempRegister);
}
void jump(AbsoluteAddress address)
{
move(TrustedImmPtr(address.m_ptr), dataTempRegister);
load32(Address(dataTempRegister), dataTempRegister);
m_assembler.bx(dataTempRegister);
}
// Arithmetic control flow operations:
//
// This set of conditional branch operations branch based
// on the result of an arithmetic operation. The operation
// is performed as normal, storing the result.
//
// * jz operations branch if the result is zero.
// * jo operations branch if the (signed) arithmetic
// operation caused an overflow to occur.
Jump branchAdd32(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.add_S(dest, op1, op2);
return Jump(makeBranch(cond));
}
Jump branchAdd32(ResultCondition cond, RegisterID op1, TrustedImm32 imm, RegisterID dest)
{
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.add_S(dest, op1, armImm);
else {
move(imm, dataTempRegister);
m_assembler.add_S(dest, op1, dataTempRegister);
}
return Jump(makeBranch(cond));
}
Jump branchAdd32(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchAdd32(cond, dest, src, dest);
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchAdd32(cond, dest, imm, dest);
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress dest)
{
// Move the high bits of the address into addressTempRegister,
// and load the value into dataTempRegister.
move(TrustedImmPtr(dest.m_ptr), addressTempRegister);
m_assembler.ldr(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt16(0));
// Do the add.
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.add_S(dataTempRegister, dataTempRegister, armImm);
else {
// If the operand does not fit into an immediate then load it temporarily
// into addressTempRegister; since we're overwriting addressTempRegister
// we'll need to reload it with the high bits of the address afterwards.
move(imm, addressTempRegister);
m_assembler.add_S(dataTempRegister, dataTempRegister, addressTempRegister);
move(TrustedImmPtr(dest.m_ptr), addressTempRegister);
}
// Store the result.
m_assembler.str(dataTempRegister, addressTempRegister, ARMThumbImmediate::makeUInt16(0));
return Jump(makeBranch(cond));
}
Jump branchMul32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
{
m_assembler.smull(dest, dataTempRegister, src1, src2);
if (cond == Overflow) {
m_assembler.asr(addressTempRegister, dest, 31);
return branch32(NotEqual, addressTempRegister, dataTempRegister);
}
return branchTest32(cond, dest);
}
Jump branchMul32(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchMul32(cond, src, dest, dest);
}
Jump branchMul32(ResultCondition cond, TrustedImm32 imm, RegisterID src, RegisterID dest)
{
move(imm, dataTempRegister);
return branchMul32(cond, dataTempRegister, src, dest);
}
Jump branchNeg32(ResultCondition cond, RegisterID srcDest)
{
ARMThumbImmediate zero = ARMThumbImmediate::makeUInt12(0);
m_assembler.sub_S(srcDest, zero, srcDest);
return Jump(makeBranch(cond));
}
Jump branchOr32(ResultCondition cond, RegisterID src, RegisterID dest)
{
m_assembler.orr_S(dest, dest, src);
return Jump(makeBranch(cond));
}
Jump branchSub32(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.sub_S(dest, op1, op2);
return Jump(makeBranch(cond));
}
Jump branchSub32(ResultCondition cond, RegisterID op1, TrustedImm32 imm, RegisterID dest)
{
ARMThumbImmediate armImm = ARMThumbImmediate::makeEncodedImm(imm.m_value);
if (armImm.isValid())
m_assembler.sub_S(dest, op1, armImm);
else {
move(imm, dataTempRegister);
m_assembler.sub_S(dest, op1, dataTempRegister);
}
return Jump(makeBranch(cond));
}
Jump branchSub32(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchSub32(cond, dest, src, dest);
}
Jump branchSub32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchSub32(cond, dest, imm, dest);
}
void relativeTableJump(RegisterID index, int scale)
{
ASSERT(scale >= 0 && scale <= 31);
// dataTempRegister will point after the jump if index register contains zero
move(ARMRegisters::pc, dataTempRegister);
m_assembler.add(dataTempRegister, dataTempRegister, ARMThumbImmediate::makeEncodedImm(9));
ShiftTypeAndAmount shift(SRType_LSL, scale);
m_assembler.add(dataTempRegister, dataTempRegister, index, shift);
jump(dataTempRegister);
}
// Miscellaneous operations:
void breakpoint(uint8_t imm = 0)
{
m_assembler.bkpt(imm);
}
ALWAYS_INLINE Call nearCall()
{
moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister);
return Call(m_assembler.blx(dataTempRegister), Call::LinkableNear);
}
ALWAYS_INLINE Call call()
{
moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister);
return Call(m_assembler.blx(dataTempRegister), Call::Linkable);
}
ALWAYS_INLINE Call call(RegisterID target)
{
return Call(m_assembler.blx(target), Call::None);
}
ALWAYS_INLINE Call call(Address address)
{
load32(address, dataTempRegister);
return Call(m_assembler.blx(dataTempRegister), Call::None);
}
ALWAYS_INLINE void ret()
{
m_assembler.bx(linkRegister);
}
void compare32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmp(left, right);
m_assembler.it(armV7Condition(cond), false);
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(1));
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(0));
}
void compare32(RelationalCondition cond, Address left, RegisterID right, RegisterID dest)
{
load32(left, dataTempRegister);
compare32(cond, dataTempRegister, right, dest);
}
void compare8(RelationalCondition cond, Address left, TrustedImm32 right, RegisterID dest)
{
load8(left, addressTempRegister);
compare32(cond, addressTempRegister, right, dest);
}
void compare32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
compare32(left, right);
m_assembler.it(armV7Condition(cond), false);
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(1));
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(0));
}
// FIXME:
// The mask should be optional... paerhaps the argument order should be
// dest-src, operations always have a dest? ... possibly not true, considering
// asm ops like test, or pseudo ops like pop().
void test32(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
{
load32(address, dataTempRegister);
test32(dataTempRegister, mask);
m_assembler.it(armV7Condition(cond), false);
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(1));
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(0));
}
void test8(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
{
load8(address, dataTempRegister);
test32(dataTempRegister, mask);
m_assembler.it(armV7Condition(cond), false);
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(1));
m_assembler.mov(dest, ARMThumbImmediate::makeUInt16(0));
}
ALWAYS_INLINE DataLabel32 moveWithPatch(TrustedImm32 imm, RegisterID dst)
{
padBeforePatch();
moveFixedWidthEncoding(imm, dst);
return DataLabel32(this);
}
ALWAYS_INLINE DataLabelPtr moveWithPatch(TrustedImmPtr imm, RegisterID dst)
{
padBeforePatch();
moveFixedWidthEncoding(TrustedImm32(imm), dst);
return DataLabelPtr(this);
}
ALWAYS_INLINE Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, dataTempRegister);
return branch32(cond, left, dataTempRegister);
}
ALWAYS_INLINE Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
load32(left, addressTempRegister);
dataLabel = moveWithPatch(initialRightValue, dataTempRegister);
return branch32(cond, addressTempRegister, dataTempRegister);
}
PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(0))
{
m_makeJumpPatchable = true;
Jump result = branch32(cond, left, TrustedImm32(right));
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
m_makeJumpPatchable = true;
Jump result = branchTest32(cond, reg, mask);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm)
{
m_makeJumpPatchable = true;
Jump result = branch32(cond, reg, imm);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
m_makeJumpPatchable = true;
Jump result = branchPtrWithPatch(cond, left, dataLabel, initialRightValue);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableJump()
{
padBeforePatch();
m_makeJumpPatchable = true;
Jump result = jump();
m_makeJumpPatchable = false;
return PatchableJump(result);
}
ALWAYS_INLINE DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
{
DataLabelPtr label = moveWithPatch(initialValue, dataTempRegister);
store32(dataTempRegister, address);
return label;
}
ALWAYS_INLINE DataLabelPtr storePtrWithPatch(ImplicitAddress address) { return storePtrWithPatch(TrustedImmPtr(0), address); }
ALWAYS_INLINE Call tailRecursiveCall()
{
// Like a normal call, but don't link.
moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister);
return Call(m_assembler.bx(dataTempRegister), Call::Linkable);
}
ALWAYS_INLINE Call makeTailRecursiveCall(Jump oldJump)
{
oldJump.link(this);
return tailRecursiveCall();
}
int executableOffsetFor(int location)
{
return m_assembler.executableOffsetFor(location);
}
static FunctionPtr readCallTarget(CodeLocationCall call)
{
return FunctionPtr(reinterpret_cast<void(*)()>(ARMv7Assembler::readCallTarget(call.dataLocation())));
}
static bool canJumpReplacePatchableBranchPtrWithPatch() { return false; }
static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label)
{
const unsigned twoWordOpSize = 4;
return label.labelAtOffset(-twoWordOpSize * 2);
}
static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue)
{
ARMv7Assembler::revertJumpTo_movT3(instructionStart.dataLocation(), dataTempRegister, ARMThumbImmediate::makeUInt16(reinterpret_cast<uintptr_t>(initialValue) & 0xffff));
}
static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr)
{
UNREACHABLE_FOR_PLATFORM();
return CodeLocationLabel();
}
static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel, Address, void*)
{
UNREACHABLE_FOR_PLATFORM();
}
protected:
ALWAYS_INLINE Jump jump()
{
m_assembler.label(); // Force nop-padding if we're in the middle of a watchpoint.
moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister);
return Jump(m_assembler.bx(dataTempRegister), m_makeJumpPatchable ? ARMv7Assembler::JumpNoConditionFixedSize : ARMv7Assembler::JumpNoCondition);
}
ALWAYS_INLINE Jump makeBranch(ARMv7Assembler::Condition cond)
{
m_assembler.label(); // Force nop-padding if we're in the middle of a watchpoint.
m_assembler.it(cond, true, true);
moveFixedWidthEncoding(TrustedImm32(0), dataTempRegister);
return Jump(m_assembler.bx(dataTempRegister), m_makeJumpPatchable ? ARMv7Assembler::JumpConditionFixedSize : ARMv7Assembler::JumpCondition, cond);
}
ALWAYS_INLINE Jump makeBranch(RelationalCondition cond) { return makeBranch(armV7Condition(cond)); }
ALWAYS_INLINE Jump makeBranch(ResultCondition cond) { return makeBranch(armV7Condition(cond)); }
ALWAYS_INLINE Jump makeBranch(DoubleCondition cond) { return makeBranch(armV7Condition(cond)); }
ArmAddress setupArmAddress(BaseIndex address)
{
if (address.offset) {
ARMThumbImmediate imm = ARMThumbImmediate::makeUInt12OrEncodedImm(address.offset);
if (imm.isValid())
m_assembler.add(addressTempRegister, address.base, imm);
else {
move(TrustedImm32(address.offset), addressTempRegister);
m_assembler.add(addressTempRegister, addressTempRegister, address.base);
}
return ArmAddress(addressTempRegister, address.index, address.scale);
} else
return ArmAddress(address.base, address.index, address.scale);
}
ArmAddress setupArmAddress(Address address)
{
if ((address.offset >= -0xff) && (address.offset <= 0xfff))
return ArmAddress(address.base, address.offset);
move(TrustedImm32(address.offset), addressTempRegister);
return ArmAddress(address.base, addressTempRegister);
}
ArmAddress setupArmAddress(ImplicitAddress address)
{
if ((address.offset >= -0xff) && (address.offset <= 0xfff))
return ArmAddress(address.base, address.offset);
move(TrustedImm32(address.offset), addressTempRegister);
return ArmAddress(address.base, addressTempRegister);
}
RegisterID makeBaseIndexBase(BaseIndex address)
{
if (!address.offset)
return address.base;
ARMThumbImmediate imm = ARMThumbImmediate::makeUInt12OrEncodedImm(address.offset);
if (imm.isValid())
m_assembler.add(addressTempRegister, address.base, imm);
else {
move(TrustedImm32(address.offset), addressTempRegister);
m_assembler.add(addressTempRegister, addressTempRegister, address.base);
}
return addressTempRegister;
}
void moveFixedWidthEncoding(TrustedImm32 imm, RegisterID dst)
{
uint32_t value = imm.m_value;
m_assembler.movT3(dst, ARMThumbImmediate::makeUInt16(value & 0xffff));
m_assembler.movt(dst, ARMThumbImmediate::makeUInt16(value >> 16));
}
ARMv7Assembler::Condition armV7Condition(RelationalCondition cond)
{
return static_cast<ARMv7Assembler::Condition>(cond);
}
ARMv7Assembler::Condition armV7Condition(ResultCondition cond)
{
return static_cast<ARMv7Assembler::Condition>(cond);
}
ARMv7Assembler::Condition armV7Condition(DoubleCondition cond)
{
return static_cast<ARMv7Assembler::Condition>(cond);
}
private:
friend class LinkBuffer;
friend class RepatchBuffer;
static void linkCall(void* code, Call call, FunctionPtr function)
{
ARMv7Assembler::linkCall(code, call.m_label, function.value());
}
static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
{
ARMv7Assembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
static void repatchCall(CodeLocationCall call, FunctionPtr destination)
{
ARMv7Assembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
bool m_makeJumpPatchable;
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)
#endif // MacroAssemblerARMv7_h