blob: 6d2534fd557a5b33d747cf9103c8b492ad212f04 [file] [log] [blame]
/*
* Copyright (C) 2008, 2009, 2010, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CodeBlock.h"
#include "BytecodeGenerator.h"
#include "DFGCapabilities.h"
#include "DFGCommon.h"
#include "DFGNode.h"
#include "DFGRepatch.h"
#include "Debugger.h"
#include "Interpreter.h"
#include "JIT.h"
#include "JITStubs.h"
#include "JSActivation.h"
#include "JSFunction.h"
#include "JSNameScope.h"
#include "JSValue.h"
#include "LowLevelInterpreter.h"
#include "ReduceWhitespace.h"
#include "RepatchBuffer.h"
#include "SlotVisitorInlines.h"
#include <stdio.h>
#include <wtf/StringExtras.h>
#include <wtf/StringPrintStream.h>
#include <wtf/UnusedParam.h>
#if ENABLE(DFG_JIT)
#include "DFGOperations.h"
#endif
#define DUMP_CODE_BLOCK_STATISTICS 0
namespace JSC {
#if ENABLE(DFG_JIT)
using namespace DFG;
#endif
String CodeBlock::inferredName() const
{
switch (codeType()) {
case GlobalCode:
return "<global>";
case EvalCode:
return "<eval>";
case FunctionCode:
return jsCast<FunctionExecutable*>(ownerExecutable())->unlinkedExecutable()->inferredName().string();
default:
CRASH();
return String();
}
}
CodeBlockHash CodeBlock::hash() const
{
return CodeBlockHash(ownerExecutable()->source(), specializationKind());
}
String CodeBlock::sourceCodeForTools() const
{
if (codeType() != FunctionCode)
return ownerExecutable()->source().toString();
SourceProvider* provider = source();
FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable());
UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable();
unsigned unlinkedStartOffset = unlinked->startOffset();
unsigned linkedStartOffset = executable->source().startOffset();
int delta = linkedStartOffset - unlinkedStartOffset;
StringBuilder builder;
builder.append("function ");
builder.append(provider->getRange(
delta + unlinked->functionStartOffset(),
delta + unlinked->startOffset() + unlinked->sourceLength()));
return builder.toString();
}
String CodeBlock::sourceCodeOnOneLine() const
{
return reduceWhitespace(sourceCodeForTools());
}
void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const
{
out.print(inferredName(), "#", hash(), ":[", RawPointer(this), "->", RawPointer(ownerExecutable()), ", ", jitType, codeType());
if (codeType() == FunctionCode)
out.print(specializationKind());
out.print("]");
}
void CodeBlock::dump(PrintStream& out) const
{
dumpAssumingJITType(out, getJITType());
}
static String escapeQuotes(const String& str)
{
String result = str;
size_t pos = 0;
while ((pos = result.find('\"', pos)) != notFound) {
result = makeString(result.substringSharingImpl(0, pos), "\"\\\"\"", result.substringSharingImpl(pos + 1));
pos += 4;
}
return result;
}
static String valueToSourceString(ExecState* exec, JSValue val)
{
if (!val)
return ASCIILiteral("0");
if (val.isString())
return makeString("\"", escapeQuotes(val.toString(exec)->value(exec)), "\"");
return toString(val);
}
static CString constantName(ExecState* exec, int k, JSValue value)
{
return makeString(valueToSourceString(exec, value), "(@k", String::number(k - FirstConstantRegisterIndex), ")").utf8();
}
static CString idName(int id0, const Identifier& ident)
{
return makeString(ident.string(), "(@id", String::number(id0), ")").utf8();
}
void CodeBlock::dumpBytecodeCommentAndNewLine(PrintStream& out, int location)
{
#if ENABLE(BYTECODE_COMMENTS)
const char* comment = commentForBytecodeOffset(location);
if (comment)
out.printf("\t\t ; %s", comment);
#else
UNUSED_PARAM(location);
#endif
out.print("\n");
}
CString CodeBlock::registerName(ExecState* exec, int r) const
{
if (r == missingThisObjectMarker())
return "<null>";
if (isConstantRegisterIndex(r))
return constantName(exec, r, getConstant(r));
return makeString("r", String::number(r)).utf8();
}
static String regexpToSourceString(RegExp* regExp)
{
char postfix[5] = { '/', 0, 0, 0, 0 };
int index = 1;
if (regExp->global())
postfix[index++] = 'g';
if (regExp->ignoreCase())
postfix[index++] = 'i';
if (regExp->multiline())
postfix[index] = 'm';
return makeString("/", regExp->pattern(), postfix);
}
static CString regexpName(int re, RegExp* regexp)
{
return makeString(regexpToSourceString(regexp), "(@re", String::number(re), ")").utf8();
}
static String pointerToSourceString(void* p)
{
char buffer[2 + 2 * sizeof(void*) + 1]; // 0x [two characters per byte] \0
snprintf(buffer, sizeof(buffer), "%p", p);
return buffer;
}
NEVER_INLINE static const char* debugHookName(int debugHookID)
{
switch (static_cast<DebugHookID>(debugHookID)) {
case DidEnterCallFrame:
return "didEnterCallFrame";
case WillLeaveCallFrame:
return "willLeaveCallFrame";
case WillExecuteStatement:
return "willExecuteStatement";
case WillExecuteProgram:
return "willExecuteProgram";
case DidExecuteProgram:
return "didExecuteProgram";
case DidReachBreakpoint:
return "didReachBreakpoint";
}
ASSERT_NOT_REACHED();
return "";
}
void CodeBlock::printUnaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] %s\t\t %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data());
}
void CodeBlock::printBinaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] %s\t\t %s, %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
}
void CodeBlock::printConditionalJump(PrintStream& out, ExecState* exec, const Instruction*, const Instruction*& it, int location, const char* op)
{
int r0 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] %s\t\t %s, %d(->%d)", location, op, registerName(exec, r0).data(), offset, location + offset);
}
void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it)
{
const char* op;
switch (exec->interpreter()->getOpcodeID(it->u.opcode)) {
case op_get_by_id:
op = "get_by_id";
break;
case op_get_by_id_out_of_line:
op = "get_by_id_out_of_line";
break;
case op_get_by_id_self:
op = "get_by_id_self";
break;
case op_get_by_id_proto:
op = "get_by_id_proto";
break;
case op_get_by_id_chain:
op = "get_by_id_chain";
break;
case op_get_by_id_getter_self:
op = "get_by_id_getter_self";
break;
case op_get_by_id_getter_proto:
op = "get_by_id_getter_proto";
break;
case op_get_by_id_getter_chain:
op = "get_by_id_getter_chain";
break;
case op_get_by_id_custom_self:
op = "get_by_id_custom_self";
break;
case op_get_by_id_custom_proto:
op = "get_by_id_custom_proto";
break;
case op_get_by_id_custom_chain:
op = "get_by_id_custom_chain";
break;
case op_get_by_id_generic:
op = "get_by_id_generic";
break;
case op_get_array_length:
op = "array_length";
break;
case op_get_string_length:
op = "string_length";
break;
default:
ASSERT_NOT_REACHED();
op = 0;
}
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data());
it += 4; // Increment up to the value profiler.
}
#if ENABLE(JIT) || ENABLE(LLINT) // unused in some configurations
static void dumpStructure(PrintStream& out, const char* name, ExecState* exec, Structure* structure, Identifier& ident)
{
if (!structure)
return;
out.printf("%s = %p", name, structure);
PropertyOffset offset = structure->get(exec->globalData(), ident);
if (offset != invalidOffset)
out.printf(" (offset = %d)", offset);
}
#endif
#if ENABLE(JIT) // unused when not ENABLE(JIT), leading to silly warnings
static void dumpChain(PrintStream& out, ExecState* exec, StructureChain* chain, Identifier& ident)
{
out.printf("chain = %p: [", chain);
bool first = true;
for (WriteBarrier<Structure>* currentStructure = chain->head();
*currentStructure;
++currentStructure) {
if (first)
first = false;
else
out.printf(", ");
dumpStructure(out, "struct", exec, currentStructure->get(), ident);
}
out.printf("]");
}
#endif
void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location)
{
Instruction* instruction = instructions().begin() + location;
Identifier& ident = identifier(instruction[3].u.operand);
UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations.
#if ENABLE(LLINT)
if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length)
out.printf(" llint(array_length)");
else if (Structure* structure = instruction[4].u.structure.get()) {
out.printf(" llint(");
dumpStructure(out, "struct", exec, structure, ident);
out.printf(")");
}
#endif
#if ENABLE(JIT)
if (numberOfStructureStubInfos()) {
StructureStubInfo& stubInfo = getStubInfo(location);
if (stubInfo.seen) {
out.printf(" jit(");
Structure* baseStructure = 0;
Structure* prototypeStructure = 0;
StructureChain* chain = 0;
PolymorphicAccessStructureList* structureList = 0;
int listSize = 0;
switch (stubInfo.accessType) {
case access_get_by_id_self:
out.printf("self");
baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get();
break;
case access_get_by_id_proto:
out.printf("proto");
baseStructure = stubInfo.u.getByIdProto.baseObjectStructure.get();
prototypeStructure = stubInfo.u.getByIdProto.prototypeStructure.get();
break;
case access_get_by_id_chain:
out.printf("chain");
baseStructure = stubInfo.u.getByIdChain.baseObjectStructure.get();
chain = stubInfo.u.getByIdChain.chain.get();
break;
case access_get_by_id_self_list:
out.printf("self_list");
structureList = stubInfo.u.getByIdSelfList.structureList;
listSize = stubInfo.u.getByIdSelfList.listSize;
break;
case access_get_by_id_proto_list:
out.printf("proto_list");
structureList = stubInfo.u.getByIdProtoList.structureList;
listSize = stubInfo.u.getByIdProtoList.listSize;
break;
case access_unset:
out.printf("unset");
break;
case access_get_by_id_generic:
out.printf("generic");
break;
case access_get_array_length:
out.printf("array_length");
break;
case access_get_string_length:
out.printf("string_length");
break;
default:
ASSERT_NOT_REACHED();
break;
}
if (baseStructure) {
out.printf(", ");
dumpStructure(out, "struct", exec, baseStructure, ident);
}
if (prototypeStructure) {
out.printf(", ");
dumpStructure(out, "prototypeStruct", exec, baseStructure, ident);
}
if (chain) {
out.printf(", ");
dumpChain(out, exec, chain, ident);
}
if (structureList) {
out.printf(", list = %p: [", structureList);
for (int i = 0; i < listSize; ++i) {
if (i)
out.printf(", ");
out.printf("(");
dumpStructure(out, "base", exec, structureList->list[i].base.get(), ident);
if (structureList->list[i].isChain) {
if (structureList->list[i].u.chain.get()) {
out.printf(", ");
dumpChain(out, exec, structureList->list[i].u.chain.get(), ident);
}
} else {
if (structureList->list[i].u.proto.get()) {
out.printf(", ");
dumpStructure(out, "proto", exec, structureList->list[i].u.proto.get(), ident);
}
}
out.printf(")");
}
out.printf("]");
}
out.printf(")");
}
}
#endif
}
void CodeBlock::printCallOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode)
{
int func = (++it)->u.operand;
int argCount = (++it)->u.operand;
int registerOffset = (++it)->u.operand;
out.printf("[%4d] %s\t %s, %d, %d", location, op, registerName(exec, func).data(), argCount, registerOffset);
if (cacheDumpMode == DumpCaches) {
#if ENABLE(LLINT)
LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo;
if (callLinkInfo->lastSeenCallee) {
out.printf(
" llint(%p, exec %p)",
callLinkInfo->lastSeenCallee.get(),
callLinkInfo->lastSeenCallee->executable());
}
#endif
#if ENABLE(JIT)
if (numberOfCallLinkInfos()) {
JSFunction* target = getCallLinkInfo(location).lastSeenCallee.get();
if (target)
out.printf(" jit(%p, exec %p)", target, target->executable());
}
#endif
}
it += 2;
}
void CodeBlock::printPutByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data());
it += 5;
}
void CodeBlock::printStructure(PrintStream& out, const char* name, const Instruction* vPC, int operand)
{
unsigned instructionOffset = vPC - instructions().begin();
out.printf(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).utf8().data());
}
void CodeBlock::printStructures(PrintStream& out, const Instruction* vPC)
{
Interpreter* interpreter = m_globalData->interpreter;
unsigned instructionOffset = vPC - instructions().begin();
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id)) {
printStructure(out, "get_by_id", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) {
printStructure(out, "get_by_id_self", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) {
out.printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) {
out.printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data(), pointerToSourceString(vPC[6].u.structureChain).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) {
out.printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structureChain).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id)) {
printStructure(out, "put_by_id", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) {
printStructure(out, "put_by_id_replace", vPC, 4);
return;
}
// These m_instructions doesn't ref Structures.
ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_call) || vPC[0].u.opcode == interpreter->getOpcode(op_call_eval) || vPC[0].u.opcode == interpreter->getOpcode(op_construct));
}
void CodeBlock::dumpBytecode(PrintStream& out)
{
// We only use the ExecState* for things that don't actually lead to JS execution,
// like converting a JSString to a String. Hence the globalExec is appropriate.
ExecState* exec = m_globalObject->globalExec();
size_t instructionCount = 0;
for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)])
++instructionCount;
out.print(*this);
out.printf(
": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)",
static_cast<unsigned long>(instructions().size()),
static_cast<unsigned long>(instructions().size() * sizeof(Instruction)),
m_numParameters, m_numCalleeRegisters, m_numVars);
if (symbolTable() && symbolTable()->captureCount())
out.printf("; %d captured var(s)", symbolTable()->captureCount());
if (usesArguments()) {
out.printf(
"; uses arguments, in r%d, r%d",
argumentsRegister(),
unmodifiedArgumentsRegister(argumentsRegister()));
}
if (needsFullScopeChain() && codeType() == FunctionCode)
out.printf("; activation in r%d", activationRegister());
out.print("\n\nSource: ", sourceCodeOnOneLine(), "\n\n");
const Instruction* begin = instructions().begin();
const Instruction* end = instructions().end();
for (const Instruction* it = begin; it != end; ++it)
dumpBytecode(out, exec, begin, it);
if (!m_identifiers.isEmpty()) {
out.printf("\nIdentifiers:\n");
size_t i = 0;
do {
out.printf(" id%u = %s\n", static_cast<unsigned>(i), m_identifiers[i].string().utf8().data());
++i;
} while (i != m_identifiers.size());
}
if (!m_constantRegisters.isEmpty()) {
out.printf("\nConstants:\n");
size_t i = 0;
do {
out.printf(" k%u = %s\n", static_cast<unsigned>(i), valueToSourceString(exec, m_constantRegisters[i].get()).utf8().data());
++i;
} while (i < m_constantRegisters.size());
}
if (size_t count = m_unlinkedCode->numberOfRegExps()) {
out.printf("\nm_regexps:\n");
size_t i = 0;
do {
out.printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_unlinkedCode->regexp(i)).utf8().data());
++i;
} while (i < count);
}
#if ENABLE(JIT)
if (!m_structureStubInfos.isEmpty())
out.printf("\nStructures:\n");
#endif
if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) {
out.printf("\nException Handlers:\n");
unsigned i = 0;
do {
out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] depth: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target, m_rareData->m_exceptionHandlers[i].scopeDepth);
++i;
} while (i < m_rareData->m_exceptionHandlers.size());
}
if (m_rareData && !m_rareData->m_immediateSwitchJumpTables.isEmpty()) {
out.printf("Immediate Switch Jump Tables:\n");
unsigned i = 0;
do {
out.printf(" %1d = {\n", i);
int entry = 0;
Vector<int32_t>::const_iterator end = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.end();
for (Vector<int32_t>::const_iterator iter = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) {
if (!*iter)
continue;
out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter);
}
out.printf(" }\n");
++i;
} while (i < m_rareData->m_immediateSwitchJumpTables.size());
}
if (m_rareData && !m_rareData->m_characterSwitchJumpTables.isEmpty()) {
out.printf("\nCharacter Switch Jump Tables:\n");
unsigned i = 0;
do {
out.printf(" %1d = {\n", i);
int entry = 0;
Vector<int32_t>::const_iterator end = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.end();
for (Vector<int32_t>::const_iterator iter = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) {
if (!*iter)
continue;
ASSERT(!((i + m_rareData->m_characterSwitchJumpTables[i].min) & ~0xFFFF));
UChar ch = static_cast<UChar>(entry + m_rareData->m_characterSwitchJumpTables[i].min);
out.printf("\t\t\"%s\" => %04d\n", String(&ch, 1).utf8().data(), *iter);
}
out.printf(" }\n");
++i;
} while (i < m_rareData->m_characterSwitchJumpTables.size());
}
if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) {
out.printf("\nString Switch Jump Tables:\n");
unsigned i = 0;
do {
out.printf(" %1d = {\n", i);
StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end();
for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter)
out.printf("\t\t\"%s\" => %04d\n", String(iter->key).utf8().data(), iter->value.branchOffset);
out.printf(" }\n");
++i;
} while (i < m_rareData->m_stringSwitchJumpTables.size());
}
out.printf("\n");
}
void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling)
{
if (hasPrintedProfiling) {
out.print("; ");
return;
}
out.print(" ");
hasPrintedProfiling = true;
}
void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling)
{
++it;
#if ENABLE(VALUE_PROFILER)
CString description = it->u.profile->briefDescription();
if (!description.length())
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(description);
#else
UNUSED_PARAM(out);
#endif
}
void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling)
{
++it;
#if ENABLE(VALUE_PROFILER)
CString description = it->u.arrayProfile->briefDescription(this);
if (!description.length())
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(description);
#else
UNUSED_PARAM(out);
#endif
}
#if ENABLE(VALUE_PROFILER)
void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling)
{
if (!profile || !profile->m_counter)
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(name, profile->m_counter);
}
#endif
void CodeBlock::dumpBytecode(PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it)
{
int location = it - begin;
bool hasPrintedProfiling = false;
switch (exec->interpreter()->getOpcodeID(it->u.opcode)) {
case op_enter: {
out.printf("[%4d] enter", location);
break;
}
case op_create_activation: {
int r0 = (++it)->u.operand;
out.printf("[%4d] create_activation %s", location, registerName(exec, r0).data());
break;
}
case op_create_arguments: {
int r0 = (++it)->u.operand;
out.printf("[%4d] create_arguments\t %s", location, registerName(exec, r0).data());
break;
}
case op_init_lazy_reg: {
int r0 = (++it)->u.operand;
out.printf("[%4d] init_lazy_reg\t %s", location, registerName(exec, r0).data());
break;
}
case op_get_callee: {
int r0 = (++it)->u.operand;
out.printf("[%4d] op_get_callee %s\n", location, registerName(exec, r0).data());
++it;
break;
}
case op_create_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] create_this %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_convert_this: {
int r0 = (++it)->u.operand;
out.printf("[%4d] convert_this\t %s", location, registerName(exec, r0).data());
++it; // Skip value profile.
break;
}
case op_new_object: {
int r0 = (++it)->u.operand;
out.printf("[%4d] new_object\t %s", location, registerName(exec, r0).data());
break;
}
case op_new_array: {
int dst = (++it)->u.operand;
int argv = (++it)->u.operand;
int argc = (++it)->u.operand;
out.printf("[%4d] new_array\t %s, %s, %d", location, registerName(exec, dst).data(), registerName(exec, argv).data(), argc);
++it; // Skip array allocation profile.
break;
}
case op_new_array_with_size: {
int dst = (++it)->u.operand;
int length = (++it)->u.operand;
out.printf("[%4d] new_array_with_size\t %s, %s", location, registerName(exec, dst).data(), registerName(exec, length).data());
++it; // Skip array allocation profile.
break;
}
case op_new_array_buffer: {
int dst = (++it)->u.operand;
int argv = (++it)->u.operand;
int argc = (++it)->u.operand;
out.printf("[%4d] new_array_buffer\t %s, %d, %d", location, registerName(exec, dst).data(), argv, argc);
++it; // Skip array allocation profile.
break;
}
case op_new_regexp: {
int r0 = (++it)->u.operand;
int re0 = (++it)->u.operand;
out.printf("[%4d] new_regexp\t %s, ", location, registerName(exec, r0).data());
if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps())
out.printf("%s", regexpName(re0, regexp(re0)).data());
else
out.printf("bad_regexp(%d)", re0);
break;
}
case op_mov: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] mov\t\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_not: {
printUnaryOp(out, exec, location, it, "not");
break;
}
case op_eq: {
printBinaryOp(out, exec, location, it, "eq");
break;
}
case op_eq_null: {
printUnaryOp(out, exec, location, it, "eq_null");
break;
}
case op_neq: {
printBinaryOp(out, exec, location, it, "neq");
break;
}
case op_neq_null: {
printUnaryOp(out, exec, location, it, "neq_null");
break;
}
case op_stricteq: {
printBinaryOp(out, exec, location, it, "stricteq");
break;
}
case op_nstricteq: {
printBinaryOp(out, exec, location, it, "nstricteq");
break;
}
case op_less: {
printBinaryOp(out, exec, location, it, "less");
break;
}
case op_lesseq: {
printBinaryOp(out, exec, location, it, "lesseq");
break;
}
case op_greater: {
printBinaryOp(out, exec, location, it, "greater");
break;
}
case op_greatereq: {
printBinaryOp(out, exec, location, it, "greatereq");
break;
}
case op_pre_inc: {
int r0 = (++it)->u.operand;
out.printf("[%4d] pre_inc\t\t %s", location, registerName(exec, r0).data());
break;
}
case op_pre_dec: {
int r0 = (++it)->u.operand;
out.printf("[%4d] pre_dec\t\t %s", location, registerName(exec, r0).data());
break;
}
case op_post_inc: {
printUnaryOp(out, exec, location, it, "post_inc");
break;
}
case op_post_dec: {
printUnaryOp(out, exec, location, it, "post_dec");
break;
}
case op_to_jsnumber: {
printUnaryOp(out, exec, location, it, "to_jsnumber");
break;
}
case op_negate: {
printUnaryOp(out, exec, location, it, "negate");
break;
}
case op_add: {
printBinaryOp(out, exec, location, it, "add");
++it;
break;
}
case op_mul: {
printBinaryOp(out, exec, location, it, "mul");
++it;
break;
}
case op_div: {
printBinaryOp(out, exec, location, it, "div");
++it;
break;
}
case op_mod: {
printBinaryOp(out, exec, location, it, "mod");
break;
}
case op_sub: {
printBinaryOp(out, exec, location, it, "sub");
++it;
break;
}
case op_lshift: {
printBinaryOp(out, exec, location, it, "lshift");
break;
}
case op_rshift: {
printBinaryOp(out, exec, location, it, "rshift");
break;
}
case op_urshift: {
printBinaryOp(out, exec, location, it, "urshift");
break;
}
case op_bitand: {
printBinaryOp(out, exec, location, it, "bitand");
++it;
break;
}
case op_bitxor: {
printBinaryOp(out, exec, location, it, "bitxor");
++it;
break;
}
case op_bitor: {
printBinaryOp(out, exec, location, it, "bitor");
++it;
break;
}
case op_check_has_instance: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] check_has_instance\t\t %s, %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), offset, location + offset);
break;
}
case op_instanceof: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] instanceof\t\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_typeof: {
printUnaryOp(out, exec, location, it, "typeof");
break;
}
case op_is_undefined: {
printUnaryOp(out, exec, location, it, "is_undefined");
break;
}
case op_is_boolean: {
printUnaryOp(out, exec, location, it, "is_boolean");
break;
}
case op_is_number: {
printUnaryOp(out, exec, location, it, "is_number");
break;
}
case op_is_string: {
printUnaryOp(out, exec, location, it, "is_string");
break;
}
case op_is_object: {
printUnaryOp(out, exec, location, it, "is_object");
break;
}
case op_is_function: {
printUnaryOp(out, exec, location, it, "is_function");
break;
}
case op_in: {
printBinaryOp(out, exec, location, it, "in");
break;
}
case op_put_to_base_variable:
case op_put_to_base: {
int base = (++it)->u.operand;
int id0 = (++it)->u.operand;
int value = (++it)->u.operand;
int resolveInfo = (++it)->u.operand;
out.printf("[%4d] put_to_base\t %s, %s, %s, %d", location, registerName(exec, base).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, value).data(), resolveInfo);
break;
}
case op_resolve:
case op_resolve_global_property:
case op_resolve_global_var:
case op_resolve_scoped_var:
case op_resolve_scoped_var_on_top_scope:
case op_resolve_scoped_var_with_top_scope_check: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int resolveInfo = (++it)->u.operand;
out.printf("[%4d] resolve\t\t %s, %s, %d", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_init_global_const_nop: {
out.printf("[%4d] init_global_const_nop\t", location);
it++;
it++;
it++;
it++;
break;
}
case op_init_global_const: {
WriteBarrier<Unknown>* registerPointer = (++it)->u.registerPointer;
int r0 = (++it)->u.operand;
out.printf("[%4d] init_global_const\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(exec, r0).data());
it++;
it++;
break;
}
case op_init_global_const_check: {
WriteBarrier<Unknown>* registerPointer = (++it)->u.registerPointer;
int r0 = (++it)->u.operand;
out.printf("[%4d] init_global_const_check\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(exec, r0).data());
it++;
it++;
break;
}
case op_resolve_base_to_global:
case op_resolve_base_to_global_dynamic:
case op_resolve_base_to_scope:
case op_resolve_base_to_scope_with_top_scope_check:
case op_resolve_base: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int isStrict = (++it)->u.operand;
int resolveInfo = (++it)->u.operand;
int putToBaseInfo = (++it)->u.operand;
out.printf("[%4d] resolve_base%s\t %s, %s, %d, %d", location, isStrict ? "_strict" : "", registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo, putToBaseInfo);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_ensure_property_exists: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
out.printf("[%4d] ensure_property_exists\t %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data());
break;
}
case op_resolve_with_base: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int resolveInfo = (++it)->u.operand;
int putToBaseInfo = (++it)->u.operand;
out.printf("[%4d] resolve_with_base %s, %s, %s, %d, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo, putToBaseInfo);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_resolve_with_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int resolveInfo = (++it)->u.operand;
out.printf("[%4d] resolve_with_this %s, %s, %s, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_get_by_id:
case op_get_by_id_out_of_line:
case op_get_by_id_self:
case op_get_by_id_proto:
case op_get_by_id_chain:
case op_get_by_id_getter_self:
case op_get_by_id_getter_proto:
case op_get_by_id_getter_chain:
case op_get_by_id_custom_self:
case op_get_by_id_custom_proto:
case op_get_by_id_custom_chain:
case op_get_by_id_generic:
case op_get_array_length:
case op_get_string_length: {
printGetByIdOp(out, exec, location, it);
printGetByIdCacheStatus(out, exec, location);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_get_arguments_length: {
printUnaryOp(out, exec, location, it, "get_arguments_length");
it++;
break;
}
case op_put_by_id: {
printPutByIdOp(out, exec, location, it, "put_by_id");
break;
}
case op_put_by_id_out_of_line: {
printPutByIdOp(out, exec, location, it, "put_by_id_out_of_line");
break;
}
case op_put_by_id_replace: {
printPutByIdOp(out, exec, location, it, "put_by_id_replace");
break;
}
case op_put_by_id_transition: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition");
break;
}
case op_put_by_id_transition_direct: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct");
break;
}
case op_put_by_id_transition_direct_out_of_line: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct_out_of_line");
break;
}
case op_put_by_id_transition_normal: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal");
break;
}
case op_put_by_id_transition_normal_out_of_line: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal_out_of_line");
break;
}
case op_put_by_id_generic: {
printPutByIdOp(out, exec, location, it, "put_by_id_generic");
break;
}
case op_put_getter_setter: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] put_getter_setter\t %s, %s, %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_del_by_id: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
out.printf("[%4d] del_by_id\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data());
break;
}
case op_get_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] get_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
dumpArrayProfiling(out, it, hasPrintedProfiling);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_get_argument_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] get_argument_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
++it;
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_get_by_pname: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
int r3 = (++it)->u.operand;
int r4 = (++it)->u.operand;
int r5 = (++it)->u.operand;
out.printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), registerName(exec, r4).data(), registerName(exec, r5).data());
break;
}
case op_put_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] put_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
dumpArrayProfiling(out, it, hasPrintedProfiling);
break;
}
case op_del_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] del_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_put_by_index: {
int r0 = (++it)->u.operand;
unsigned n0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] put_by_index\t %s, %u, %s", location, registerName(exec, r0).data(), n0, registerName(exec, r1).data());
break;
}
case op_jmp: {
int offset = (++it)->u.operand;
out.printf("[%4d] jmp\t\t %d(->%d)", location, offset, location + offset);
break;
}
case op_loop: {
int offset = (++it)->u.operand;
out.printf("[%4d] loop\t\t %d(->%d)", location, offset, location + offset);
break;
}
case op_jtrue: {
printConditionalJump(out, exec, begin, it, location, "jtrue");
break;
}
case op_loop_if_true: {
printConditionalJump(out, exec, begin, it, location, "loop_if_true");
break;
}
case op_loop_if_false: {
printConditionalJump(out, exec, begin, it, location, "loop_if_false");
break;
}
case op_jfalse: {
printConditionalJump(out, exec, begin, it, location, "jfalse");
break;
}
case op_jeq_null: {
printConditionalJump(out, exec, begin, it, location, "jeq_null");
break;
}
case op_jneq_null: {
printConditionalJump(out, exec, begin, it, location, "jneq_null");
break;
}
case op_jneq_ptr: {
int r0 = (++it)->u.operand;
Special::Pointer pointer = (++it)->u.specialPointer;
int offset = (++it)->u.operand;
out.printf("[%4d] jneq_ptr\t\t %s, %d (%p), %d(->%d)", location, registerName(exec, r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset);
break;
}
case op_jless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jless\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jlesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jgreater: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jgreater\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jgreatereq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jgreatereq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jnless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jnless\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jnlesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jngreater: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jngreater\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jngreatereq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jngreatereq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_loop_if_less: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] loop_if_less\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_loop_if_lesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] loop_if_lesseq\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_loop_if_greater: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] loop_if_greater\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_loop_if_greatereq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] loop_if_greatereq\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_loop_hint: {
out.printf("[%4d] loop_hint", location);
break;
}
case op_switch_imm: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
out.printf("[%4d] switch_imm\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_switch_char: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
out.printf("[%4d] switch_char\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_switch_string: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
out.printf("[%4d] switch_string\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_new_func: {
int r0 = (++it)->u.operand;
int f0 = (++it)->u.operand;
int shouldCheck = (++it)->u.operand;
out.printf("[%4d] new_func\t\t %s, f%d, %s", location, registerName(exec, r0).data(), f0, shouldCheck ? "<Checked>" : "<Unchecked>");
break;
}
case op_new_func_exp: {
int r0 = (++it)->u.operand;
int f0 = (++it)->u.operand;
out.printf("[%4d] new_func_exp\t %s, f%d", location, registerName(exec, r0).data(), f0);
break;
}
case op_call: {
printCallOp(out, exec, location, it, "call", DumpCaches);
break;
}
case op_call_eval: {
printCallOp(out, exec, location, it, "call_eval", DontDumpCaches);
break;
}
case op_call_varargs: {
int callee = (++it)->u.operand;
int thisValue = (++it)->u.operand;
int arguments = (++it)->u.operand;
int firstFreeRegister = (++it)->u.operand;
out.printf("[%4d] call_varargs\t %s, %s, %s, %d", location, registerName(exec, callee).data(), registerName(exec, thisValue).data(), registerName(exec, arguments).data(), firstFreeRegister);
break;
}
case op_tear_off_activation: {
int r0 = (++it)->u.operand;
out.printf("[%4d] tear_off_activation\t %s", location, registerName(exec, r0).data());
break;
}
case op_tear_off_arguments: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] tear_off_arguments %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_ret: {
int r0 = (++it)->u.operand;
out.printf("[%4d] ret\t\t %s", location, registerName(exec, r0).data());
break;
}
case op_call_put_result: {
int r0 = (++it)->u.operand;
out.printf("[%4d] call_put_result\t\t %s", location, registerName(exec, r0).data());
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_ret_object_or_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] constructor_ret\t\t %s %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_construct: {
printCallOp(out, exec, location, it, "construct", DumpCaches);
break;
}
case op_strcat: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int count = (++it)->u.operand;
out.printf("[%4d] strcat\t\t %s, %s, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), count);
break;
}
case op_to_primitive: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] to_primitive\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_get_pnames: {
int r0 = it[1].u.operand;
int r1 = it[2].u.operand;
int r2 = it[3].u.operand;
int r3 = it[4].u.operand;
int offset = it[5].u.operand;
out.printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), offset, location + offset);
it += OPCODE_LENGTH(op_get_pnames) - 1;
break;
}
case op_next_pname: {
int dest = it[1].u.operand;
int base = it[2].u.operand;
int i = it[3].u.operand;
int size = it[4].u.operand;
int iter = it[5].u.operand;
int offset = it[6].u.operand;
out.printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)", location, registerName(exec, dest).data(), registerName(exec, base).data(), registerName(exec, i).data(), registerName(exec, size).data(), registerName(exec, iter).data(), offset, location + offset);
it += OPCODE_LENGTH(op_next_pname) - 1;
break;
}
case op_push_with_scope: {
int r0 = (++it)->u.operand;
out.printf("[%4d] push_with_scope\t %s", location, registerName(exec, r0).data());
break;
}
case op_pop_scope: {
out.printf("[%4d] pop_scope", location);
break;
}
case op_push_name_scope: {
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
unsigned attributes = (++it)->u.operand;
out.printf("[%4d] push_name_scope \t%s, %s, %u", location, idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data(), attributes);
break;
}
case op_jmp_scopes: {
int scopeDelta = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jmp_scopes\t^%d, %d(->%d)", location, scopeDelta, offset, location + offset);
break;
}
case op_catch: {
int r0 = (++it)->u.operand;
out.printf("[%4d] catch\t\t %s", location, registerName(exec, r0).data());
break;
}
case op_throw: {
int r0 = (++it)->u.operand;
out.printf("[%4d] throw\t\t %s", location, registerName(exec, r0).data());
break;
}
case op_throw_static_error: {
int k0 = (++it)->u.operand;
int k1 = (++it)->u.operand;
out.printf("[%4d] throw_static_error\t %s, %s", location, constantName(exec, k0, getConstant(k0)).data(), k1 ? "true" : "false");
break;
}
case op_debug: {
int debugHookID = (++it)->u.operand;
int firstLine = (++it)->u.operand;
int lastLine = (++it)->u.operand;
int column = (++it)->u.operand;
out.printf("[%4d] debug\t\t %s, %d, %d, %d", location, debugHookName(debugHookID), firstLine, lastLine, column);
break;
}
case op_profile_will_call: {
int function = (++it)->u.operand;
out.printf("[%4d] profile_will_call %s", location, registerName(exec, function).data());
break;
}
case op_profile_did_call: {
int function = (++it)->u.operand;
out.printf("[%4d] profile_did_call\t %s", location, registerName(exec, function).data());
break;
}
case op_end: {
int r0 = (++it)->u.operand;
out.printf("[%4d] end\t\t %s", location, registerName(exec, r0).data());
break;
}
#if ENABLE(LLINT_C_LOOP)
default:
ASSERT(false); // We should never get here.
#endif
}
#if ENABLE(VALUE_PROFILER)
dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling);
dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling);
#endif
dumpBytecodeCommentAndNewLine(out, location);
}
void CodeBlock::dumpBytecode(PrintStream& out, unsigned bytecodeOffset)
{
ExecState* exec = m_globalObject->globalExec();
const Instruction* it = instructions().begin() + bytecodeOffset;
dumpBytecode(out, exec, instructions().begin(), it);
}
#if DUMP_CODE_BLOCK_STATISTICS
static HashSet<CodeBlock*> liveCodeBlockSet;
#endif
#define FOR_EACH_MEMBER_VECTOR(macro) \
macro(instructions) \
macro(globalResolveInfos) \
macro(structureStubInfos) \
macro(callLinkInfos) \
macro(linkedCallerList) \
macro(identifiers) \
macro(functionExpressions) \
macro(constantRegisters)
#define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \
macro(regexps) \
macro(functions) \
macro(exceptionHandlers) \
macro(immediateSwitchJumpTables) \
macro(characterSwitchJumpTables) \
macro(stringSwitchJumpTables) \
macro(evalCodeCache) \
macro(expressionInfo) \
macro(lineInfo) \
macro(callReturnIndexVector)
template<typename T>
static size_t sizeInBytes(const Vector<T>& vector)
{
return vector.capacity() * sizeof(T);
}
void CodeBlock::dumpStatistics()
{
#if DUMP_CODE_BLOCK_STATISTICS
#define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0;
FOR_EACH_MEMBER_VECTOR(DEFINE_VARS)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS)
#undef DEFINE_VARS
// Non-vector data members
size_t evalCodeCacheIsNotEmpty = 0;
size_t symbolTableIsNotEmpty = 0;
size_t symbolTableTotalSize = 0;
size_t hasRareData = 0;
size_t isFunctionCode = 0;
size_t isGlobalCode = 0;
size_t isEvalCode = 0;
HashSet<CodeBlock*>::const_iterator end = liveCodeBlockSet.end();
for (HashSet<CodeBlock*>::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) {
CodeBlock* codeBlock = *it;
#define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); }
FOR_EACH_MEMBER_VECTOR(GET_STATS)
#undef GET_STATS
if (codeBlock->symbolTable() && !codeBlock->symbolTable()->isEmpty()) {
symbolTableIsNotEmpty++;
symbolTableTotalSize += (codeBlock->symbolTable()->capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType)));
}
if (codeBlock->m_rareData) {
hasRareData++;
#define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); }
FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS)
#undef GET_STATS
if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty())
evalCodeCacheIsNotEmpty++;
}
switch (codeBlock->codeType()) {
case FunctionCode:
++isFunctionCode;
break;
case GlobalCode:
++isGlobalCode;
break;
case EvalCode:
++isEvalCode;
break;
}
}
size_t totalSize = 0;
#define GET_TOTAL_SIZE(name) totalSize += name##TotalSize;
FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE)
#undef GET_TOTAL_SIZE
totalSize += symbolTableTotalSize;
totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock));
dataLogF("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size());
dataLogF("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock));
dataLogF("Size of all CodeBlocks: %zu\n", totalSize);
dataLogF("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size());
dataLogF("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast<double>(isFunctionCode) * 100.0 / liveCodeBlockSet.size());
dataLogF("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast<double>(isGlobalCode) * 100.0 / liveCodeBlockSet.size());
dataLogF("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast<double>(isEvalCode) * 100.0 / liveCodeBlockSet.size());
dataLogF("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast<double>(hasRareData) * 100.0 / liveCodeBlockSet.size());
#define PRINT_STATS(name) dataLogF("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); dataLogF("Size of all " #name ": %zu\n", name##TotalSize);
FOR_EACH_MEMBER_VECTOR(PRINT_STATS)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS)
#undef PRINT_STATS
dataLogF("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty);
dataLogF("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty);
dataLogF("Size of all symbolTables: %zu\n", symbolTableTotalSize);
#else
dataLogF("Dumping CodeBlock statistics is not enabled.\n");
#endif
}
CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other)
: m_globalObject(other.m_globalObject)
, m_heap(other.m_heap)
, m_numCalleeRegisters(other.m_numCalleeRegisters)
, m_numVars(other.m_numVars)
, m_isConstructor(other.m_isConstructor)
, m_unlinkedCode(*other.m_globalData, other.m_ownerExecutable.get(), other.m_unlinkedCode.get())
, m_ownerExecutable(*other.m_globalData, other.m_ownerExecutable.get(), other.m_ownerExecutable.get())
, m_globalData(other.m_globalData)
, m_instructions(other.m_instructions)
, m_thisRegister(other.m_thisRegister)
, m_argumentsRegister(other.m_argumentsRegister)
, m_activationRegister(other.m_activationRegister)
, m_isStrictMode(other.m_isStrictMode)
, m_source(other.m_source)
, m_sourceOffset(other.m_sourceOffset)
#if ENABLE(VALUE_PROFILER)
, m_executionEntryCount(0)
#endif
, m_identifiers(other.m_identifiers)
, m_constantRegisters(other.m_constantRegisters)
, m_functionDecls(other.m_functionDecls)
, m_functionExprs(other.m_functionExprs)
, m_osrExitCounter(0)
, m_optimizationDelayCounter(0)
, m_reoptimizationRetryCounter(0)
, m_resolveOperations(other.m_resolveOperations)
, m_putToBaseOperations(other.m_putToBaseOperations)
#if ENABLE(BYTECODE_COMMENTS)
, m_bytecodeCommentIterator(0)
#endif
#if ENABLE(JIT)
, m_canCompileWithDFGState(DFG::CapabilityLevelNotSet)
#endif
{
setNumParameters(other.numParameters());
optimizeAfterWarmUp();
jitAfterWarmUp();
if (other.m_rareData) {
createRareDataIfNecessary();
m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers;
m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers;
m_rareData->m_immediateSwitchJumpTables = other.m_rareData->m_immediateSwitchJumpTables;
m_rareData->m_characterSwitchJumpTables = other.m_rareData->m_characterSwitchJumpTables;
m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables;
}
}
CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSGlobalObject* globalObject, unsigned baseScopeDepth, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, PassOwnPtr<CodeBlock> alternative)
: m_globalObject(globalObject->globalData(), ownerExecutable, globalObject)
, m_heap(&m_globalObject->globalData().heap)
, m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters)
, m_numVars(unlinkedCodeBlock->m_numVars)
, m_isConstructor(unlinkedCodeBlock->isConstructor())
, m_unlinkedCode(globalObject->globalData(), ownerExecutable, unlinkedCodeBlock)
, m_ownerExecutable(globalObject->globalData(), ownerExecutable, ownerExecutable)
, m_globalData(unlinkedCodeBlock->globalData())
, m_thisRegister(unlinkedCodeBlock->thisRegister())
, m_argumentsRegister(unlinkedCodeBlock->argumentsRegister())
, m_activationRegister(unlinkedCodeBlock->activationRegister())
, m_isStrictMode(unlinkedCodeBlock->isStrictMode())
, m_source(sourceProvider)
, m_sourceOffset(sourceOffset)
#if ENABLE(VALUE_PROFILER)
, m_executionEntryCount(0)
#endif
, m_alternative(alternative)
, m_osrExitCounter(0)
, m_optimizationDelayCounter(0)
, m_reoptimizationRetryCounter(0)
#if ENABLE(BYTECODE_COMMENTS)
, m_bytecodeCommentIterator(0)
#endif
{
m_globalData->startedCompiling(this);
ASSERT(m_source);
setNumParameters(unlinkedCodeBlock->numParameters());
#if DUMP_CODE_BLOCK_STATISTICS
liveCodeBlockSet.add(this);
#endif
setIdentifiers(unlinkedCodeBlock->identifiers());
setConstantRegisters(unlinkedCodeBlock->constantRegisters());
m_functionDecls.grow(unlinkedCodeBlock->numberOfFunctionDecls());
for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) {
UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i);
unsigned lineCount = unlinkedExecutable->lineCount();
unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset();
unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset();
unsigned sourceLength = unlinkedExecutable->sourceLength();
SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine);
FunctionExecutable* executable = FunctionExecutable::create(*m_globalData, code, unlinkedExecutable, firstLine, firstLine + lineCount);
m_functionDecls[i].set(*m_globalData, ownerExecutable, executable);
}
m_functionExprs.grow(unlinkedCodeBlock->numberOfFunctionExprs());
for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) {
UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i);
unsigned lineCount = unlinkedExecutable->lineCount();
unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset();
unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset();
unsigned sourceLength = unlinkedExecutable->sourceLength();
SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine);
FunctionExecutable* executable = FunctionExecutable::create(*m_globalData, code, unlinkedExecutable, firstLine, firstLine + lineCount);
m_functionExprs[i].set(*m_globalData, ownerExecutable, executable);
}
if (unlinkedCodeBlock->hasRareData()) {
createRareDataIfNecessary();
if (size_t count = unlinkedCodeBlock->constantBufferCount()) {
m_rareData->m_constantBuffers.grow(count);
for (size_t i = 0; i < count; i++) {
const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i);
m_rareData->m_constantBuffers[i] = buffer;
}
}
if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) {
m_rareData->m_exceptionHandlers.grow(count);
for (size_t i = 0; i < count; i++) {
const UnlinkedHandlerInfo& handler = unlinkedCodeBlock->exceptionHandler(i);
m_rareData->m_exceptionHandlers[i].start = handler.start;
m_rareData->m_exceptionHandlers[i].end = handler.end;
m_rareData->m_exceptionHandlers[i].target = handler.target;
m_rareData->m_exceptionHandlers[i].scopeDepth = handler.scopeDepth + baseScopeDepth;
#if ENABLE(JIT) && ENABLE(LLINT)
m_rareData->m_exceptionHandlers[i].nativeCode = CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(llint_op_catch)));
#endif
}
}
if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) {
m_rareData->m_stringSwitchJumpTables.grow(count);
for (size_t i = 0; i < count; i++) {
UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin();
UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end();
for (; ptr != end; ++ptr) {
OffsetLocation offset;
offset.branchOffset = ptr->value;
m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset);
}
}
}
if (size_t count = unlinkedCodeBlock->numberOfImmediateSwitchJumpTables()) {
m_rareData->m_immediateSwitchJumpTables.grow(count);
for (size_t i = 0; i < count; i++) {
UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->immediateSwitchJumpTable(i);
SimpleJumpTable& destTable = m_rareData->m_immediateSwitchJumpTables[i];
destTable.branchOffsets = sourceTable.branchOffsets;
destTable.min = sourceTable.min;
}
}
if (size_t count = unlinkedCodeBlock->numberOfCharacterSwitchJumpTables()) {
m_rareData->m_characterSwitchJumpTables.grow(count);
for (size_t i = 0; i < count; i++) {
UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->characterSwitchJumpTable(i);
SimpleJumpTable& destTable = m_rareData->m_characterSwitchJumpTables[i];
destTable.branchOffsets = sourceTable.branchOffsets;
destTable.min = sourceTable.min;
}
}
}
// Allocate metadata buffers for the bytecode
#if ENABLE(LLINT)
if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos())
m_llintCallLinkInfos.grow(size);
#endif
#if ENABLE(DFG_JIT)
if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles())
m_arrayProfiles.grow(size);
if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles())
m_arrayAllocationProfiles.grow(size);
if (size_t size = unlinkedCodeBlock->numberOfValueProfiles())
m_valueProfiles.grow(size);
#endif
if (size_t size = unlinkedCodeBlock->numberOfResolveOperations())
m_resolveOperations.grow(size);
size_t putToBaseCount = unlinkedCodeBlock->numberOfPutToBaseOperations();
m_putToBaseOperations.reserveCapacity(putToBaseCount);
for (size_t i = 0; i < putToBaseCount; ++i)
m_putToBaseOperations.append(PutToBaseOperation(isStrictMode()));
ASSERT(m_putToBaseOperations.capacity() == putToBaseCount);
// Copy and translate the UnlinkedInstructions
size_t instructionCount = unlinkedCodeBlock->instructions().size();
UnlinkedInstruction* pc = unlinkedCodeBlock->instructions().data();
Vector<Instruction> instructions(instructionCount);
for (size_t i = 0; i < unlinkedCodeBlock->instructions().size(); ) {
unsigned opLength = opcodeLength(pc[i].u.opcode);
instructions[i] = globalData()->interpreter->getOpcode(pc[i].u.opcode);
for (size_t j = 1; j < opLength; ++j) {
if (sizeof(int32_t) != sizeof(intptr_t))
instructions[i + j].u.pointer = 0;
instructions[i + j].u.operand = pc[i + j].u.operand;
}
switch (pc[i].u.opcode) {
#if ENABLE(DFG_JIT)
case op_get_by_val:
case op_get_argument_by_val: {
int arrayProfileIndex = pc[i + opLength - 2].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex];
// fallthrough
}
case op_convert_this:
case op_resolve:
case op_resolve_base:
case op_resolve_with_base:
case op_resolve_with_this:
case op_get_by_id:
case op_call_put_result:
case op_get_callee: {
ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
break;
}
case op_put_by_val: {
int arrayProfileIndex = pc[i + opLength - 1].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex];
break;
}
case op_new_array:
case op_new_array_buffer:
case op_new_array_with_size: {
int arrayAllocationProfileIndex = pc[i + opLength - 1].u.operand;
instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex];
break;
}
#endif
case op_call:
case op_call_eval: {
#if ENABLE(DFG_JIT)
int arrayProfileIndex = pc[i + opLength - 1].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex];
#endif
#if ENABLE(LLINT)
instructions[i + 4] = &m_llintCallLinkInfos[pc[i + 4].u.operand];
#endif
break;
}
case op_construct:
#if ENABLE(LLINT)
instructions[i + 4] = &m_llintCallLinkInfos[pc[i + 4].u.operand];
#endif
break;
case op_get_by_id_out_of_line:
case op_get_by_id_self:
case op_get_by_id_proto:
case op_get_by_id_chain:
case op_get_by_id_getter_self:
case op_get_by_id_getter_proto:
case op_get_by_id_getter_chain:
case op_get_by_id_custom_self:
case op_get_by_id_custom_proto:
case op_get_by_id_custom_chain:
case op_get_by_id_generic:
case op_get_array_length:
case op_get_string_length:
CRASH();
case op_init_global_const_nop: {
ASSERT(codeType() == GlobalCode);
Identifier ident = identifier(pc[i + 4].u.operand);
SymbolTableEntry entry = globalObject->symbolTable()->get(ident.impl());
if (entry.isNull())
break;
if (entry.couldBeWatched()) {
instructions[i + 0] = globalData()->interpreter->getOpcode(op_init_global_const_check);
instructions[i + 1] = &globalObject->registerAt(entry.getIndex());
instructions[i + 3] = entry.addressOfIsWatched();
break;
}
instructions[i + 0] = globalData()->interpreter->getOpcode(op_init_global_const);
instructions[i + 1] = &globalObject->registerAt(entry.getIndex());
break;
}
default:
break;
}
i += opLength;
}
m_instructions = WTF::RefCountedArray<Instruction>(instructions);
// Set optimization thresholds only after m_instructions is initialized, since these
// rely on the instruction count (and are in theory permitted to also inspect the
// instruction stream to more accurate assess the cost of tier-up).
optimizeAfterWarmUp();
jitAfterWarmUp();
if (Options::dumpGeneratedBytecodes())
dumpBytecode();
m_globalData->finishedCompiling(this);
}
CodeBlock::~CodeBlock()
{
if (m_globalData->m_perBytecodeProfiler)
m_globalData->m_perBytecodeProfiler->notifyDestruction(this);
#if ENABLE(DFG_JIT)
// Remove myself from the set of DFG code blocks. Note that I may not be in this set
// (because I'm not a DFG code block), in which case this is a no-op anyway.
m_globalData->heap.m_dfgCodeBlocks.m_set.remove(this);
#endif
#if ENABLE(VERBOSE_VALUE_PROFILE)
dumpValueProfiles();
#endif
#if ENABLE(LLINT)
while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end())
m_incomingLLIntCalls.begin()->remove();
#endif // ENABLE(LLINT)
#if ENABLE(JIT)
// We may be destroyed before any CodeBlocks that refer to us are destroyed.
// Consider that two CodeBlocks become unreachable at the same time. There
// is no guarantee about the order in which the CodeBlocks are destroyed.
// So, if we don't remove incoming calls, and get destroyed before the
// CodeBlock(s) that have calls into us, then the CallLinkInfo vector's
// destructor will try to remove nodes from our (no longer valid) linked list.
while (m_incomingCalls.begin() != m_incomingCalls.end())
m_incomingCalls.begin()->remove();
// Note that our outgoing calls will be removed from other CodeBlocks'
// m_incomingCalls linked lists through the execution of the ~CallLinkInfo
// destructors.
for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i)
m_structureStubInfos[i].deref();
#endif // ENABLE(JIT)
#if DUMP_CODE_BLOCK_STATISTICS
liveCodeBlockSet.remove(this);
#endif
}
void CodeBlock::setNumParameters(int newValue)
{
m_numParameters = newValue;
#if ENABLE(VALUE_PROFILER)
m_argumentValueProfiles.resize(newValue);
#endif
}
void CodeBlock::visitStructures(SlotVisitor& visitor, Instruction* vPC)
{
Interpreter* interpreter = m_globalData->interpreter;
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) && vPC[4].u.structure) {
visitor.append(&vPC[4].u.structure);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self)) {
visitor.append(&vPC[4].u.structure);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto)) {
visitor.append(&vPC[4].u.structure);
visitor.append(&vPC[5].u.structure);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_chain)) {
visitor.append(&vPC[4].u.structure);
if (vPC[5].u.structureChain)
visitor.append(&vPC[5].u.structureChain);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) {
visitor.append(&vPC[4].u.structure);
visitor.append(&vPC[5].u.structure);
if (vPC[6].u.structureChain)
visitor.append(&vPC[6].u.structureChain);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) && vPC[4].u.structure) {
visitor.append(&vPC[4].u.structure);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) {
visitor.append(&vPC[4].u.structure);
return;
}
// These instructions don't ref their Structures.
ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_get_array_length) || vPC[0].u.opcode == interpreter->getOpcode(op_get_string_length));
}
void EvalCodeCache::visitAggregate(SlotVisitor& visitor)
{
EvalCacheMap::iterator end = m_cacheMap.end();
for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr)
visitor.append(&ptr->value);
}
void CodeBlock::visitAggregate(SlotVisitor& visitor)
{
#if ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT)
if (!!m_dfgData) {
// I may be asked to scan myself more than once, and it may even happen concurrently.
// To this end, use a CAS loop to check if I've been called already. Only one thread
// may proceed past this point - whichever one wins the CAS race.
unsigned oldValue;
do {
oldValue = m_dfgData->visitAggregateHasBeenCalled;
if (oldValue) {
// Looks like someone else won! Return immediately to ensure that we don't
// trace the same CodeBlock concurrently. Doing so is hazardous since we will
// be mutating the state of ValueProfiles, which contain JSValues, which can
// have word-tearing on 32-bit, leading to awesome timing-dependent crashes
// that are nearly impossible to track down.
// Also note that it must be safe to return early as soon as we see the
// value true (well, (unsigned)1), since once a GC thread is in this method
// and has won the CAS race (i.e. was responsible for setting the value true)
// it will definitely complete the rest of this method before declaring
// termination.
return;
}
} while (!WTF::weakCompareAndSwap(&m_dfgData->visitAggregateHasBeenCalled, 0, 1));
}
#endif // ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT)
if (!!m_alternative)
m_alternative->visitAggregate(visitor);
visitor.append(&m_unlinkedCode);
// There are three things that may use unconditional finalizers: lazy bytecode freeing,
// inline cache clearing, and jettisoning. The probability of us wanting to do at
// least one of those things is probably quite close to 1. So we add one no matter what
// and when it runs, it figures out whether it has any work to do.
visitor.addUnconditionalFinalizer(this);
if (shouldImmediatelyAssumeLivenessDuringScan()) {
// This code block is live, so scan all references strongly and return.
stronglyVisitStrongReferences(visitor);
stronglyVisitWeakReferences(visitor);
return;
}
#if ENABLE(DFG_JIT)
// We get here if we're live in the sense that our owner executable is live,
// but we're not yet live for sure in another sense: we may yet decide that this
// code block should be jettisoned based on its outgoing weak references being
// stale. Set a flag to indicate that we're still assuming that we're dead, and
// perform one round of determining if we're live. The GC may determine, based on
// either us marking additional objects, or by other objects being marked for
// other reasons, that this iteration should run again; it will notify us of this
// decision by calling harvestWeakReferences().
m_dfgData->livenessHasBeenProved = false;
m_dfgData->allTransitionsHaveBeenMarked = false;
performTracingFixpointIteration(visitor);
// GC doesn't have enough information yet for us to decide whether to keep our DFG
// data, so we need to register a handler to run again at the end of GC, when more
// information is available.
if (!(m_dfgData->livenessHasBeenProved && m_dfgData->allTransitionsHaveBeenMarked))
visitor.addWeakReferenceHarvester(this);
#else // ENABLE(DFG_JIT)
ASSERT_NOT_REACHED();
#endif // ENABLE(DFG_JIT)
}
void CodeBlock::performTracingFixpointIteration(SlotVisitor& visitor)
{
UNUSED_PARAM(visitor);
#if ENABLE(DFG_JIT)
// Evaluate our weak reference transitions, if there are still some to evaluate.
if (!m_dfgData->allTransitionsHaveBeenMarked) {
bool allAreMarkedSoFar = true;
for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) {
if ((!m_dfgData->transitions[i].m_codeOrigin
|| Heap::isMarked(m_dfgData->transitions[i].m_codeOrigin.get()))
&& Heap::isMarked(m_dfgData->transitions[i].m_from.get())) {
// If the following three things are live, then the target of the
// transition is also live:
// - This code block. We know it's live already because otherwise
// we wouldn't be scanning ourselves.
// - The code origin of the transition. Transitions may arise from
// code that was inlined. They are not relevant if the user's
// object that is required for the inlinee to run is no longer
// live.
// - The source of the transition. The transition checks if some
// heap location holds the source, and if so, stores the target.
// Hence the source must be live for the transition to be live.
visitor.append(&m_dfgData->transitions[i].m_to);
} else
allAreMarkedSoFar = false;
}
if (allAreMarkedSoFar)
m_dfgData->allTransitionsHaveBeenMarked = true;
}
// Check if we have any remaining work to do.
if (m_dfgData->livenessHasBeenProved)
return;
// Now check all of our weak references. If all of them are live, then we
// have proved liveness and so we scan our strong references. If at end of
// GC we still have not proved liveness, then this code block is toast.
bool allAreLiveSoFar = true;
for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) {
if (!Heap::isMarked(m_dfgData->weakReferences[i].get())) {
allAreLiveSoFar = false;
break;
}
}
// If some weak references are dead, then this fixpoint iteration was
// unsuccessful.
if (!allAreLiveSoFar)
return;
// All weak references are live. Record this information so we don't
// come back here again, and scan the strong references.
m_dfgData->livenessHasBeenProved = true;
stronglyVisitStrongReferences(visitor);
#endif // ENABLE(DFG_JIT)
}
void CodeBlock::visitWeakReferences(SlotVisitor& visitor)
{
performTracingFixpointIteration(visitor);
}
#if ENABLE(JIT_VERBOSE_OSR)
static const bool verboseUnlinking = true;
#else
static const bool verboseUnlinking = false;
#endif
void CodeBlock::finalizeUnconditionally()
{
#if ENABLE(LLINT)
Interpreter* interpreter = m_globalData->interpreter;
if (!!numberOfInstructions()) {
const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions();
for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) {
Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]];
switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) {
case op_get_by_id:
case op_get_by_id_out_of_line:
case op_put_by_id:
case op_put_by_id_out_of_line:
if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get()))
break;
if (verboseUnlinking)
dataLogF("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get());
curInstruction[4].u.structure.clear();
curInstruction[5].u.operand = 0;
break;
case op_put_by_id_transition_direct:
case op_put_by_id_transition_normal:
case op_put_by_id_transition_direct_out_of_line:
case op_put_by_id_transition_normal_out_of_line:
if (Heap::isMarked(curInstruction[4].u.structure.get())
&& Heap::isMarked(curInstruction[6].u.structure.get())
&& Heap::isMarked(curInstruction[7].u.structureChain.get()))
break;
if (verboseUnlinking) {
dataLogF("Clearing LLInt put transition with structures %p -> %p, chain %p.\n",
curInstruction[4].u.structure.get(),
curInstruction[6].u.structure.get(),
curInstruction[7].u.structureChain.get());
}
curInstruction[4].u.structure.clear();
curInstruction[6].u.structure.clear();
curInstruction[7].u.structureChain.clear();
curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id);
break;
case op_get_array_length:
break;
default:
ASSERT_NOT_REACHED();
}
}
for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) {
if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) {
if (verboseUnlinking)
dataLog("Clearing LLInt call from ", *this, "\n");
m_llintCallLinkInfos[i].unlink();
}
if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get()))
m_llintCallLinkInfos[i].lastSeenCallee.clear();
}
}
#endif // ENABLE(LLINT)
#if ENABLE(DFG_JIT)
// Check if we're not live. If we are, then jettison.
if (!(shouldImmediatelyAssumeLivenessDuringScan() || m_dfgData->livenessHasBeenProved)) {
if (verboseUnlinking)
dataLog(*this, " has dead weak references, jettisoning during GC.\n");
// Make sure that the baseline JIT knows that it should re-warm-up before
// optimizing.
alternative()->optimizeAfterWarmUp();
if (DFG::shouldShowDisassembly()) {
dataLog(*this, "will be jettisoned because of the following dead references:\n");
for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) {
WeakReferenceTransition& transition = m_dfgData->transitions[i];
JSCell* origin = transition.m_codeOrigin.get();
JSCell* from = transition.m_from.get();
JSCell* to = transition.m_to.get();
if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from))
continue;
dataLog(" Transition under ", JSValue(origin), ", ", JSValue(from), " -> ", JSValue(to), ".\n");
}
for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) {
JSCell* weak = m_dfgData->weakReferences[i].get();
if (Heap::isMarked(weak))
continue;
dataLog(" Weak reference ", JSValue(weak), ".\n");
}
}
jettison();
return;
}
#endif // ENABLE(DFG_JIT)
for (size_t size = m_putToBaseOperations.size(), i = 0; i < size; ++i) {
if (m_putToBaseOperations[i].m_structure && !Heap::isMarked(m_putToBaseOperations[i].m_structure.get())) {
if (verboseUnlinking)
dataLog("Clearing putToBase info in ", *this, "\n");
m_putToBaseOperations[i].m_structure.clear();
}
}
for (size_t size = m_resolveOperations.size(), i = 0; i < size; ++i) {
if (m_resolveOperations[i].isEmpty())
continue;
#ifndef NDEBUG
for (size_t insnSize = m_resolveOperations[i].size() - 1, k = 0; k < insnSize; ++k)
ASSERT(!m_resolveOperations[i][k].m_structure);
#endif
m_resolveOperations[i].last().m_structure.clear();
if (m_resolveOperations[i].last().m_structure && !Heap::isMarked(m_resolveOperations[i].last().m_structure.get())) {
if (verboseUnlinking)
dataLog("Clearing resolve info in ", *this, "\n");
m_resolveOperations[i].last().m_structure.clear();
}
}
#if ENABLE(JIT)
// Handle inline caches.
if (!!getJITCode()) {
RepatchBuffer repatchBuffer(this);
for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) {
if (callLinkInfo(i).isLinked()) {
if (ClosureCallStubRoutine* stub = callLinkInfo(i).stub.get()) {
if (!Heap::isMarked(stub->structure())
|| !Heap::isMarked(stub->executable())) {
if (verboseUnlinking) {
dataLog(
"Clearing closure call from ", *this, " to ",
stub->executable()->hashFor(callLinkInfo(i).specializationKind()),
", stub routine ", RawPointer(stub), ".\n");
}
callLinkInfo(i).unlink(*m_globalData, repatchBuffer);
}
} else if (!Heap::isMarked(callLinkInfo(i).callee.get())) {
if (verboseUnlinking) {
dataLog(
"Clearing call from ", *this, " to ",
RawPointer(callLinkInfo(i).callee.get()), " (",
callLinkInfo(i).callee.get()->executable()->hashFor(
callLinkInfo(i).specializationKind()),
").\n");
}
callLinkInfo(i).unlink(*m_globalData, repatchBuffer);
}
}
if (!!callLinkInfo(i).lastSeenCallee
&& !Heap::isMarked(callLinkInfo(i).lastSeenCallee.get()))
callLinkInfo(i).lastSeenCallee.clear();
}
for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) {
StructureStubInfo& stubInfo = m_structureStubInfos[i];
if (stubInfo.visitWeakReferences())
continue;
resetStubInternal(repatchBuffer, stubInfo);
}
}
#endif
}
#if ENABLE(JIT)
void CodeBlock::resetStub(StructureStubInfo& stubInfo)
{
if (stubInfo.accessType == access_unset)
return;
RepatchBuffer repatchBuffer(this);
resetStubInternal(repatchBuffer, stubInfo);
}
void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo)
{
AccessType accessType = static_cast<AccessType>(stubInfo.accessType);
if (verboseUnlinking)
dataLog("Clearing structure cache (kind ", static_cast<int>(stubInfo.accessType), ") in ", *this, ".\n");
if (isGetByIdAccess(accessType)) {
if (getJITCode().jitType() == JITCode::DFGJIT)
DFG::dfgResetGetByID(repatchBuffer, stubInfo);
else
JIT::resetPatchGetById(repatchBuffer, &stubInfo);
} else {
ASSERT(isPutByIdAccess(accessType));
if (getJITCode().jitType() == JITCode::DFGJIT)
DFG::dfgResetPutByID(repatchBuffer, stubInfo);
else
JIT::resetPatchPutById(repatchBuffer, &stubInfo);
}
stubInfo.reset();
}
#endif
void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor)
{
visitor.append(&m_globalObject);
visitor.append(&m_ownerExecutable);
visitor.append(&m_unlinkedCode);
if (m_rareData)
m_rareData->m_evalCodeCache.visitAggregate(visitor);
visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size());
for (size_t i = 0; i < m_functionExprs.size(); ++i)
visitor.append(&m_functionExprs[i]);
for (size_t i = 0; i < m_functionDecls.size(); ++i)
visitor.append(&m_functionDecls[i]);
updateAllPredictions(Collection);
}
void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor)
{
UNUSED_PARAM(visitor);
#if ENABLE(DFG_JIT)
if (!m_dfgData)
return;
for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) {
if (!!m_dfgData->transitions[i].m_codeOrigin)
visitor.append(&m_dfgData->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though.
visitor.append(&m_dfgData->transitions[i].m_from);
visitor.append(&m_dfgData->transitions[i].m_to);
}
for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i)
visitor.append(&m_dfgData->weakReferences[i]);
#endif
}
#if ENABLE(BYTECODE_COMMENTS)
// Finds the comment string for the specified bytecode offset/PC is available.
const char* CodeBlock::commentForBytecodeOffset(unsigned bytecodeOffset)
{
ASSERT(bytecodeOffset < instructions().size());
Vector<Comment>& comments = m_bytecodeComments;
size_t numberOfComments = comments.size();
const char* result = 0;
if (!numberOfComments)
return 0; // No comments to match with.
// The next match is most likely the next comment in the list.
// Do a quick check to see if that is a match first.
// m_bytecodeCommentIterator should already be pointing to the
// next comment we should check.
ASSERT(m_bytecodeCommentIterator < comments.size());
size_t i = m_bytecodeCommentIterator;
size_t commentPC = comments[i].pc;
if (commentPC == bytecodeOffset) {
// We've got a match. All done!
m_bytecodeCommentIterator = i;
result = comments[i].string;
} else if (commentPC > bytecodeOffset) {
// The current comment is already greater than the requested PC.
// Start searching from the first comment.
i = 0;
} else {
// Otherwise, the current comment's PC is less than the requested PC.
// Hence, we can just start searching from the next comment in the
// list.
i++;
}
// If the result is still not found, do a linear search in the range
// that we've determined above.
if (!result) {
for (; i < comments.size(); ++i) {
commentPC = comments[i].pc;
if (commentPC == bytecodeOffset) {
result = comments[i].string;
break;
}
if (comments[i].pc > bytecodeOffset) {
// The current comment PC is already past the requested
// bytecodeOffset. Hence, there are no more possible
// matches. Just fail.
break;
}
}
}
// Update the iterator to point to the next comment.
if (++i >= numberOfComments) {
// At most point to the last comment entry. This ensures that the
// next time we call this function, the quick checks will at least
// have one entry to check and can fail fast if appropriate.
i = numberOfComments - 1;
}
m_bytecodeCommentIterator = i;
return result;
}
void CodeBlock::dumpBytecodeComments()
{
Vector<Comment>& comments = m_bytecodeComments;
printf("Comments for codeblock %p: size %lu\n", this, comments.size());
for (size_t i = 0; i < comments.size(); ++i)
printf(" pc %lu : '%s'\n", comments[i].pc, comments[i].string);
printf("End of comments for codeblock %p\n", this);
}
#endif // ENABLE_BYTECODE_COMMENTS
HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset)
{
ASSERT(bytecodeOffset < instructions().size());
if (!m_rareData)
return 0;
Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers;
for (size_t i = 0; i < exceptionHandlers.size(); ++i) {
// Handlers are ordered innermost first, so the first handler we encounter
// that contains the source address is the correct handler to use.
if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end > bytecodeOffset)
return &exceptionHandlers[i];
}
return 0;
}
int CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset)
{
ASSERT(bytecodeOffset < instructions().size());
return m_ownerExecutable->lineNo() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset);
}
void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset)
{
m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset);
divot += m_sourceOffset;
}
void CodeBlock::shrinkToFit(ShrinkMode shrinkMode)
{
#if ENABLE(LLINT)
m_llintCallLinkInfos.shrinkToFit();
#endif
#if ENABLE(JIT)
m_structureStubInfos.shrinkToFit();
m_callLinkInfos.shrinkToFit();
#endif
#if ENABLE(VALUE_PROFILER)
if (shrinkMode == EarlyShrink)
m_argumentValueProfiles.shrinkToFit();
m_rareCaseProfiles.shrinkToFit();
m_specialFastCaseProfiles.shrinkToFit();
#endif
if (shrinkMode == EarlyShrink) {
m_identifiers.shrinkToFit();
m_functionDecls.shrinkToFit();
m_functionExprs.shrinkToFit();
m_constantRegisters.shrinkToFit();
} // else don't shrink these, because we would have already pointed pointers into these tables.
if (m_rareData) {
m_rareData->m_exceptionHandlers.shrinkToFit();
m_rareData->m_immediateSwitchJumpTables.shrinkToFit();
m_rareData->m_characterSwitchJumpTables.shrinkToFit();
m_rareData->m_stringSwitchJumpTables.shrinkToFit();
#if ENABLE(JIT)
m_rareData->m_callReturnIndexVector.shrinkToFit();
#endif
#if ENABLE(DFG_JIT)
m_rareData->m_inlineCallFrames.shrinkToFit();
m_rareData->m_codeOrigins.shrinkToFit();
#endif
}
#if ENABLE(DFG_JIT)
if (m_dfgData) {
m_dfgData->osrEntry.shrinkToFit();
m_dfgData->osrExit.shrinkToFit();
m_dfgData->speculationRecovery.shrinkToFit();
m_dfgData->weakReferences.shrinkToFit();
m_dfgData->transitions.shrinkToFit();
m_dfgData->minifiedDFG.prepareAndShrink();
m_dfgData->variableEventStream.shrinkToFit();
}
#endif
}
void CodeBlock::createActivation(CallFrame* callFrame)
{
ASSERT(codeType() == FunctionCode);
ASSERT(needsFullScopeChain());
ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue());
JSActivation* activation = JSActivation::create(callFrame->globalData(), callFrame, this);
callFrame->uncheckedR(activationRegister()) = JSValue(activation);
callFrame->setScope(activation);
}
unsigned CodeBlock::addOrFindConstant(JSValue v)
{
unsigned numberOfConstants = numberOfConstantRegisters();
for (unsigned i = 0; i < numberOfConstants; ++i) {
if (getConstant(FirstConstantRegisterIndex + i) == v)
return i;
}
return addConstant(v);
}
#if ENABLE(JIT)
void CodeBlock::unlinkCalls()
{
if (!!m_alternative)
m_alternative->unlinkCalls();
#if ENABLE(LLINT)
for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) {
if (m_llintCallLinkInfos[i].isLinked())
m_llintCallLinkInfos[i].unlink();
}
#endif
if (!m_callLinkInfos.size())
return;
if (!m_globalData->canUseJIT())
return;
RepatchBuffer repatchBuffer(this);
for (size_t i = 0; i < m_callLinkInfos.size(); i++) {
if (!m_callLinkInfos[i].isLinked())
continue;
m_callLinkInfos[i].unlink(*m_globalData, repatchBuffer);
}
}
void CodeBlock::unlinkIncomingCalls()
{
#if ENABLE(LLINT)
while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end())
m_incomingLLIntCalls.begin()->unlink();
#endif
if (m_incomingCalls.isEmpty())
return;
RepatchBuffer repatchBuffer(this);
while (m_incomingCalls.begin() != m_incomingCalls.end())
m_incomingCalls.begin()->unlink(*m_globalData, repatchBuffer);
}
#endif // ENABLE(JIT)
#if ENABLE(LLINT)
Instruction* CodeBlock::adjustPCIfAtCallSite(Instruction* potentialReturnPC)
{
ASSERT(potentialReturnPC);
unsigned returnPCOffset = potentialReturnPC - instructions().begin();
Instruction* adjustedPC;
unsigned opcodeLength;
// If we are at a callsite, the LLInt stores the PC after the call
// instruction rather than the PC of the call instruction. This requires
// some correcting. If so, we can rely on the fact that the preceding
// instruction must be one of the call instructions, so either it's a
// call_varargs or it's a call, construct, or eval.
//
// If we are not at a call site, then we need to guard against the
// possibility of peeking past the start of the bytecode range for this
// codeBlock. Hence, we do a bounds check before we peek at the
// potential "preceding" instruction.
// The bounds check is done by comparing the offset of the potential
// returnPC with the length of the opcode. If there is room for a call
// instruction before the returnPC, then the offset of the returnPC must
// be greater than the size of the call opcode we're looking for.
// The determination of the call instruction present (if we are at a
// callsite) depends on the following assumptions. So, assert that
// they are still true:
ASSERT(OPCODE_LENGTH(op_call_varargs) <= OPCODE_LENGTH(op_call));
ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct));
ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_call_eval));
// Check for the case of a preceeding op_call_varargs:
opcodeLength = OPCODE_LENGTH(op_call_varargs);
adjustedPC = potentialReturnPC - opcodeLength;
if ((returnPCOffset >= opcodeLength)
&& (adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call_varargs))) {
return adjustedPC;
}
// Check for the case of the other 3 call instructions:
opcodeLength = OPCODE_LENGTH(op_call);
adjustedPC = potentialReturnPC - opcodeLength;
if ((returnPCOffset >= opcodeLength)
&& (adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call)
|| adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_construct)
|| adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call_eval))) {
return adjustedPC;
}
// Not a call site. No need to adjust PC. Just return the original.
return potentialReturnPC;
}
#endif // ENABLE(LLINT)
#if ENABLE(JIT)
ClosureCallStubRoutine* CodeBlock::findClosureCallForReturnPC(ReturnAddressPtr returnAddress)
{
for (unsigned i = m_callLinkInfos.size(); i--;) {
CallLinkInfo& info = m_callLinkInfos[i];
if (!info.stub)
continue;
if (!info.stub->code().executableMemory()->contains(returnAddress.value()))
continue;
return info.stub.get();
}
// The stub routine may have been jettisoned. This is rare, but we have to handle it.
const JITStubRoutineSet& set = m_globalData->heap.jitStubRoutines();
for (unsigned i = set.size(); i--;) {
GCAwareJITStubRoutine* genericStub = set.at(i);
if (!genericStub->isClosureCall())
continue;
ClosureCallStubRoutine* stub = static_cast<ClosureCallStubRoutine*>(genericStub);
if (!stub->code().executableMemory()->contains(returnAddress.value()))
continue;
return stub;
}
return 0;
}
#endif
unsigned CodeBlock::bytecodeOffset(ExecState* exec, ReturnAddressPtr returnAddress)
{
UNUSED_PARAM(exec);
UNUSED_PARAM(returnAddress);
#if ENABLE(LLINT)
#if !ENABLE(LLINT_C_LOOP)
// When using the JIT, we could have addresses that are not bytecode
// addresses. We check if the return address is in the LLint glue and
// opcode handlers range here to ensure that we are looking at bytecode
// before attempting to convert the return address into a bytecode offset.
//
// In the case of the C Loop LLInt, the JIT is disabled, and the only
// valid return addresses should be bytecode PCs. So, we can and need to
// forego this check because when we do not ENABLE(COMPUTED_GOTO_OPCODES),
// then the bytecode "PC"s are actually the opcodeIDs and are not bounded
// by llint_begin and llint_end.
if (returnAddress.value() >= LLInt::getCodePtr(llint_begin)
&& returnAddress.value() <= LLInt::getCodePtr(llint_end))
#endif
{
ASSERT(exec->codeBlock());
ASSERT(exec->codeBlock() == this);
ASSERT(JITCode::isBaselineCode(getJITType()));
Instruction* instruction = exec->currentVPC();
ASSERT(instruction);
instruction = adjustPCIfAtCallSite(instruction);
return bytecodeOffset(instruction);
}
#endif // !ENABLE(LLINT)
#if ENABLE(JIT)
if (!m_rareData)
return 1;
Vector<CallReturnOffsetToBytecodeOffset>& callIndices = m_rareData->m_callReturnIndexVector;
if (!callIndices.size())
return 1;
if (getJITCode().getExecutableMemory()->contains(returnAddress.value())) {
unsigned callReturnOffset = getJITCode().offsetOf(returnAddress.value());
CallReturnOffsetToBytecodeOffset* result =
binarySearch<CallReturnOffsetToBytecodeOffset, unsigned>(
callIndices, callIndices.size(), callReturnOffset, getCallReturnOffset);
ASSERT(result->callReturnOffset == callReturnOffset);
return result->bytecodeOffset;
}
return findClosureCallForReturnPC(returnAddress)->codeOrigin().bytecodeIndex;
#endif // ENABLE(JIT)
#if !ENABLE(LLINT) && !ENABLE(JIT)
return 1;
#endif
}
#if ENABLE(DFG_JIT)
bool CodeBlock::codeOriginForReturn(ReturnAddressPtr returnAddress, CodeOrigin& codeOrigin)
{
if (!hasCodeOrigins())
return false;
if (!getJITCode().getExecutableMemory()->contains(returnAddress.value())) {
codeOrigin = findClosureCallForReturnPC(returnAddress)->codeOrigin();
return true;
}
unsigned offset = getJITCode().offsetOf(returnAddress.value());
CodeOriginAtCallReturnOffset* entry =
tryBinarySearch<CodeOriginAtCallReturnOffset, unsigned>(
codeOrigins(), codeOrigins().size(), offset,
getCallReturnOffsetForCodeOrigin);
if (!entry)
return false;
codeOrigin = entry->codeOrigin;
return true;
}
#endif // ENABLE(DFG_JIT)
void CodeBlock::clearEvalCache()
{
if (!!m_alternative)
m_alternative->clearEvalCache();
if (!m_rareData)
return;
m_rareData->m_evalCodeCache.clear();
}
template<typename T>
inline void replaceExistingEntries(Vector<T>& target, Vector<T>& source)
{
ASSERT(target.size() <= source.size());
for (size_t i = 0; i < target.size(); ++i)
target[i] = source[i];
}
void CodeBlock::copyPostParseDataFrom(CodeBlock* alternative)
{
if (!alternative)
return;
replaceExistingEntries(m_constantRegisters, alternative->m_constantRegisters);
replaceExistingEntries(m_functionDecls, alternative->m_functionDecls);
replaceExistingEntries(m_functionExprs, alternative->m_functionExprs);
if (!!m_rareData && !!alternative->m_rareData)
replaceExistingEntries(m_rareData->m_constantBuffers, alternative->m_rareData->m_constantBuffers);
}
void CodeBlock::copyPostParseDataFromAlternative()
{
copyPostParseDataFrom(m_alternative.get());
}
#if ENABLE(JIT)
void CodeBlock::reoptimize()
{
ASSERT(replacement() != this);
ASSERT(replacement()->alternative() == this);
replacement()->tallyFrequentExitSites();
if (DFG::shouldShowDisassembly())
dataLog(*replacement(), " will be jettisoned due to reoptimization of ", *this, ".\n");
replacement()->jettison();
countReoptimization();
optimizeAfterWarmUp();
}
CodeBlock* ProgramCodeBlock::replacement()
{
return &static_cast<ProgramExecutable*>(ownerExecutable())->generatedBytecode();
}
CodeBlock* EvalCodeBlock::replacement()
{
return &static_cast<EvalExecutable*>(ownerExecutable())->generatedBytecode();
}
CodeBlock* FunctionCodeBlock::replacement()
{
return &static_cast<FunctionExecutable*>(ownerExecutable())->generatedBytecodeFor(m_isConstructor ? CodeForConstruct : CodeForCall);
}
JSObject* ProgramCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex)
{
if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType()))
return 0;
JSObject* error = static_cast<ProgramExecutable*>(ownerExecutable())->compileOptimized(exec, scope, bytecodeIndex);
return error;
}
JSObject* EvalCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex)
{
if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType()))
return 0;
JSObject* error = static_cast<EvalExecutable*>(ownerExecutable())->compileOptimized(exec, scope, bytecodeIndex);
return error;
}
JSObject* FunctionCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex)
{
if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType()))
return 0;
JSObject* error = static_cast<FunctionExecutable*>(ownerExecutable())->compileOptimizedFor(exec, scope, bytecodeIndex, m_isConstructor ? CodeForConstruct : CodeForCall);
return error;
}
DFG::CapabilityLevel ProgramCodeBlock::canCompileWithDFGInternal()
{
return DFG::canCompileProgram(this);
}
DFG::CapabilityLevel EvalCodeBlock::canCompileWithDFGInternal()
{
return DFG::canCompileEval(this);
}
DFG::CapabilityLevel FunctionCodeBlock::canCompileWithDFGInternal()
{
if (m_isConstructor)
return DFG::canCompileFunctionForConstruct(this);
return DFG::canCompileFunctionForCall(this);
}
void ProgramCodeBlock::jettison()
{
ASSERT(JITCode::isOptimizingJIT(getJITType()));
ASSERT(this == replacement());
if (DFG::shouldShowDisassembly())
dataLog("Jettisoning ", *this, ".\n");
static_cast<ProgramExecutable*>(ownerExecutable())->jettisonOptimizedCode(*globalData());
}
void EvalCodeBlock::jettison()
{
ASSERT(JITCode::isOptimizingJIT(getJITType()));
ASSERT(this == replacement());
if (DFG::shouldShowDisassembly())
dataLog("Jettisoning ", *this, ".\n");
static_cast<EvalExecutable*>(ownerExecutable())->jettisonOptimizedCode(*globalData());
}
void FunctionCodeBlock::jettison()
{
ASSERT(JITCode::isOptimizingJIT(getJITType()));
ASSERT(this == replacement());
if (DFG::shouldShowDisassembly())
dataLog("Jettisoning ", *this, ".\n");
static_cast<FunctionExecutable*>(ownerExecutable())->jettisonOptimizedCodeFor(*globalData(), m_isConstructor ? CodeForConstruct : CodeForCall);
}
bool ProgramCodeBlock::jitCompileImpl(ExecState* exec)
{
ASSERT(getJITType() == JITCode::InterpreterThunk);
ASSERT(this == replacement());
return static_cast<ProgramExecutable*>(ownerExecutable())->jitCompile(exec);
}
bool EvalCodeBlock::jitCompileImpl(ExecState* exec)
{
ASSERT(getJITType() == JITCode::InterpreterThunk);
ASSERT(this == replacement());
return static_cast<EvalExecutable*>(ownerExecutable())->jitCompile(exec);
}
bool FunctionCodeBlock::jitCompileImpl(ExecState* exec)
{
ASSERT(getJITType() == JITCode::InterpreterThunk);
ASSERT(this == replacement());
return static_cast<FunctionExecutable*>(ownerExecutable())->jitCompileFor(exec, m_isConstructor ? CodeForConstruct : CodeForCall);
}
#endif
unsigned CodeBlock::reoptimizationRetryCounter() const
{
ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax());
return m_reoptimizationRetryCounter;
}
void CodeBlock::countReoptimization()
{
m_reoptimizationRetryCounter++;
if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax())
m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax();
}
double CodeBlock::optimizationThresholdScalingFactor()
{
// This expression arises from doing a least-squares fit of
//
// F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d
//
// against the data points:
//
// x F[x_]
// 10 0.9 (smallest reasonable code block)
// 200 1.0 (typical small-ish code block)
// 320 1.2 (something I saw in 3d-cube that I wanted to optimize)
// 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize)
// 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort)
// 10000 6.0 (similar to above)
//
// I achieve the minimization using the following Mathematica code:
//
// MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d
//
// samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}}
//
// solution =
// Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples),
// {a, b, c, d}][[2]]
//
// And the code below (to initialize a, b, c, d) is generated by:
//
// Print["const double " <> ToString[#[[1]]] <> " = " <>
// If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution
//
// We've long known the following to be true:
// - Small code blocks are cheap to optimize and so we should do it sooner rather
// than later.
// - Large code blocks are expensive to optimize and so we should postpone doing so,
// and sometimes have a large enough threshold that we never optimize them.
// - The difference in cost is not totally linear because (a) just invoking the
// DFG incurs some base cost and (b) for large code blocks there is enough slop
// in the correlation between instruction count and the actual compilation cost
// that for those large blocks, the instruction count should not have a strong
// influence on our threshold.
//
// I knew the goals but I didn't know how to achieve them; so I picked an interesting
// example where the heuristics were right (code block in 3d-cube with instruction
// count 320, which got compiled early as it should have been) and one where they were
// totally wrong (code block in 3d-cube with instruction count 1268, which was expensive
// to compile and didn't run often enough to warrant compilation in my opinion), and
// then threw in additional data points that represented my own guess of what our
// heuristics should do for some round-numbered examples.
//
// The expression to which I decided to fit the data arose because I started with an
// affine function, and then did two things: put the linear part in an Abs to ensure
// that the fit didn't end up choosing a negative value of c (which would result in
// the function turning over and going negative for large x) and I threw in a Sqrt
// term because Sqrt represents my intution that the function should be more sensitive
// to small changes in small values of x, but less sensitive when x gets large.
// Note that the current fit essentially eliminates the linear portion of the
// expression (c == 0.0).
const double a = 0.061504;
const double b = 1.02406;
const double c = 0.0;
const double d = 0.825914;
double instructionCount = this->instructionCount();
ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense.
double result = d + a * sqrt(instructionCount + b) + c * instructionCount;
#if ENABLE(JIT_VERBOSE_OSR)
dataLog(*this, ": instruction count is ", instructionCount, ", scaling execution counter by ", result, "\n");
#endif
return result;
}
static int32_t clipThreshold(double threshold)
{
if (threshold < 1.0)
return 1;
if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max()))
return std::numeric_limits<int32_t>::max();
return static_cast<int32_t>(threshold);
}
int32_t CodeBlock::counterValueForOptimizeAfterWarmUp()
{
return clipThreshold(
Options::thresholdForOptimizeAfterWarmUp() *
optimizationThresholdScalingFactor() *
(1 << reoptimizationRetryCounter()));
}
int32_t CodeBlock::counterValueForOptimizeAfterLongWarmUp()
{
return clipThreshold(
Options::thresholdForOptimizeAfterLongWarmUp() *
optimizationThresholdScalingFactor() *
(1 << reoptimizationRetryCounter()));
}
int32_t CodeBlock::counterValueForOptimizeSoon()
{
return clipThreshold(
Options::thresholdForOptimizeSoon() *
optimizationThresholdScalingFactor() *
(1 << reoptimizationRetryCounter()));
}
bool CodeBlock::checkIfOptimizationThresholdReached()
{
return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this);
}
void CodeBlock::optimizeNextInvocation()
{
m_jitExecuteCounter.setNewThreshold(0, this);
}
void CodeBlock::dontOptimizeAnytimeSoon()
{
m_jitExecuteCounter.deferIndefinitely();
}
void CodeBlock::optimizeAfterWarmUp()
{
m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterWarmUp(), this);
}
void CodeBlock::optimizeAfterLongWarmUp()
{
m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterLongWarmUp(), this);
}
void CodeBlock::optimizeSoon()
{
m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeSoon(), this);
}
#if ENABLE(JIT)
uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold)
{
ASSERT(getJITType() == JITCode::DFGJIT);
// Compute this the lame way so we don't saturate. This is called infrequently
// enough that this loop won't hurt us.
unsigned result = desiredThreshold;
for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) {
unsigned newResult = result << 1;
if (newResult < result)
return std::numeric_limits<uint32_t>::max();
result = newResult;
}
return result;
}
uint32_t CodeBlock::exitCountThresholdForReoptimization()
{
return adjustedExitCountThreshold(Options::osrExitCountForReoptimization());
}
uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop()
{
return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop());
}
bool CodeBlock::shouldReoptimizeNow()
{
return osrExitCounter() >= exitCountThresholdForReoptimization();
}
bool CodeBlock::shouldReoptimizeFromLoopNow()
{
return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop();
}
#endif
#if ENABLE(VALUE_PROFILER)
ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset)
{
for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) {
if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset)
return &m_arrayProfiles[i];
}
return 0;
}
ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset)
{
ArrayProfile* result = getArrayProfile(bytecodeOffset);
if (result)
return result;
return addArrayProfile(bytecodeOffset);
}
void CodeBlock::updateAllPredictionsAndCountLiveness(
OperationInProgress operation, unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles)
{
numberOfLiveNonArgumentValueProfiles = 0;
numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full.
for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) {
ValueProfile* profile = getFromAllValueProfiles(i);
unsigned numSamples = profile->totalNumberOfSamples();
if (numSamples > ValueProfile::numberOfBuckets)
numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight.
numberOfSamplesInProfiles += numSamples;
if (profile->m_bytecodeOffset < 0) {
profile->computeUpdatedPrediction(operation);
continue;
}
if (profile->numberOfSamples() || profile->m_prediction != SpecNone)
numberOfLiveNonArgumentValueProfiles++;
profile->computeUpdatedPrediction(operation);
}
#if ENABLE(DFG_JIT)
m_lazyOperandValueProfiles.computeUpdatedPredictions(operation);
#endif
}
void CodeBlock::updateAllValueProfilePredictions(OperationInProgress operation)
{
unsigned ignoredValue1, ignoredValue2;
updateAllPredictionsAndCountLiveness(operation, ignoredValue1, ignoredValue2);
}
void CodeBlock::updateAllArrayPredictions(OperationInProgress operation)
{
for (unsigned i = m_arrayProfiles.size(); i--;)
m_arrayProfiles[i].computeUpdatedPrediction(this, operation);
// Don't count these either, for similar reasons.
for (unsigned i = m_arrayAllocationProfiles.size(); i--;)
m_arrayAllocationProfiles[i].updateIndexingType();
}
void CodeBlock::updateAllPredictions(OperationInProgress operation)
{
updateAllValueProfilePredictions(operation);
updateAllArrayPredictions(operation);
}
bool CodeBlock::shouldOptimizeNow()
{
#if ENABLE(JIT_VERBOSE_OSR)
dataLog("Considering optimizing ", *this, "...\n");
#endif
#if ENABLE(VERBOSE_VALUE_PROFILE)
dumpValueProfiles();
#endif
if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay())
return true;
updateAllArrayPredictions();
unsigned numberOfLiveNonArgumentValueProfiles;
unsigned numberOfSamplesInProfiles;
updateAllPredictionsAndCountLiveness(NoOperation, numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles);
#if ENABLE(JIT_VERBOSE_OSR)
dataLogF("Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles());
#endif
if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate())
&& (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate())
&& static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay())
return true;
ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max());
m_optimizationDelayCounter++;
optimizeAfterWarmUp();
return false;
}
#endif
#if ENABLE(DFG_JIT)
void CodeBlock::tallyFrequentExitSites()
{
ASSERT(getJITType() == JITCode::DFGJIT);
ASSERT(alternative()->getJITType() == JITCode::BaselineJIT);
ASSERT(!!m_dfgData);
CodeBlock* profiledBlock = alternative();
for (unsigned i = 0; i < m_dfgData->osrExit.size(); ++i) {
DFG::OSRExit& exit = m_dfgData->osrExit[i];
if (!exit.considerAddingAsFrequentExitSite(this, profiledBlock))
continue;
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLog("OSR exit #", i, " (bc#", exit.m_codeOrigin.bytecodeIndex, ", @", exit.m_nodeIndex, ", ", exit.m_kind, ") for ", *this, " occurred frequently: counting as frequent exit site.\n");
#endif
}
}
#endif // ENABLE(DFG_JIT)
#if ENABLE(VERBOSE_VALUE_PROFILE)
void CodeBlock::dumpValueProfiles()
{
dataLog("ValueProfile for ", *this, ":\n");
for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) {
ValueProfile* profile = getFromAllValueProfiles(i);
if (profile->m_bytecodeOffset < 0) {
ASSERT(profile->m_bytecodeOffset == -1);
dataLogF(" arg = %u: ", i);
} else
dataLogF(" bc = %d: ", profile->m_bytecodeOffset);
if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) {
dataLogF("<empty>\n");
continue;
}
profile->dump(WTF::dataFile());
dataLogF("\n");
}
dataLog("RareCaseProfile for ", *this, ":\n");
for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) {
RareCaseProfile* profile = rareCaseProfile(i);
dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter);
}
dataLog("SpecialFastCaseProfile for ", *this, ":\n");
for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) {
RareCaseProfile* profile = specialFastCaseProfile(i);
dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter);
}
}
#endif // ENABLE(VERBOSE_VALUE_PROFILE)
size_t CodeBlock::predictedMachineCodeSize()
{
// This will be called from CodeBlock::CodeBlock before either m_globalData or the
// instructions have been initialized. It's OK to return 0 because what will really
// matter is the recomputation of this value when the slow path is triggered.
if (!m_globalData)
return 0;
if (!m_globalData->machineCodeBytesPerBytecodeWordForBaselineJIT)
return 0; // It's as good of a prediction as we'll get.
// Be conservative: return a size that will be an overestimation 84% of the time.
double multiplier = m_globalData->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() +
m_globalData->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation();
// Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing
// here is OK, since this whole method is just a heuristic.
if (multiplier < 0 || multiplier > 1000)
return 0;
double doubleResult = multiplier * m_instructions.size();
// Be even more paranoid: silently reject values that won't fit into a size_t. If
// the function is so huge that we can't even fit it into virtual memory then we
// should probably have some other guards in place to prevent us from even getting
// to this point.
if (doubleResult > std::numeric_limits<size_t>::max())
return 0;
return static_cast<size_t>(doubleResult);
}
bool CodeBlock::usesOpcode(OpcodeID opcodeID)
{
Interpreter* interpreter = globalData()->interpreter;
Instruction* instructionsBegin = instructions().begin();
unsigned instructionCount = instructions().size();
for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) {
switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) {
#define DEFINE_OP(curOpcode, length) \
case curOpcode: \
if (curOpcode == opcodeID) \
return true; \
bytecodeOffset += length; \
break;
FOR_EACH_OPCODE_ID(DEFINE_OP)
#undef DEFINE_OP
default:
ASSERT_NOT_REACHED();
break;
}
}
return false;
}
String CodeBlock::nameForRegister(int registerNumber)
{
SymbolTable::iterator end = symbolTable()->end();
for (SymbolTable::iterator ptr = symbolTable()->begin(); ptr != end; ++ptr) {
if (ptr->value.getIndex() == registerNumber)
return String(ptr->key);
}
if (needsActivation() && registerNumber == activationRegister())
return ASCIILiteral("activation");
if (registerNumber == thisRegister())
return ASCIILiteral("this");
if (usesArguments()) {
if (registerNumber == argumentsRegister())
return ASCIILiteral("arguments");
if (unmodifiedArgumentsRegister(argumentsRegister()) == registerNumber)
return ASCIILiteral("real arguments");
}
if (registerNumber < 0) {
int argumentPosition = -registerNumber;
argumentPosition -= JSStack::CallFrameHeaderSize + 1;
return String::format("arguments[%3d]", argumentPosition - 1).impl();
}
return "";
}
} // namespace JSC