blob: 41d1f971d4e93abfa85ad6da5e122bdb5d5f16fb [file] [log] [blame]
/*
* Copyright (C) 2011, 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGSpeculativeJIT_h
#define DFGSpeculativeJIT_h
#include <wtf/Platform.h>
#if ENABLE(DFG_JIT)
#include "DFGAbstractState.h"
#include "DFGGenerationInfo.h"
#include "DFGJITCompiler.h"
#include "DFGOSRExit.h"
#include "DFGOperations.h"
#include "DFGSilentRegisterSavePlan.h"
#include "DFGValueSource.h"
#include "MarkedAllocator.h"
#include "ValueRecovery.h"
namespace JSC { namespace DFG {
class GPRTemporary;
class JSValueOperand;
class SlowPathGenerator;
class SpeculativeJIT;
class SpeculateIntegerOperand;
class SpeculateStrictInt32Operand;
class SpeculateDoubleOperand;
class SpeculateCellOperand;
class SpeculateBooleanOperand;
enum GeneratedOperandType { GeneratedOperandTypeUnknown, GeneratedOperandInteger, GeneratedOperandDouble, GeneratedOperandJSValue};
enum SpeculationDirection { ForwardSpeculation, BackwardSpeculation };
// === SpeculativeJIT ===
//
// The SpeculativeJIT is used to generate a fast, but potentially
// incomplete code path for the dataflow. When code generating
// we may make assumptions about operand types, dynamically check,
// and bail-out to an alternate code path if these checks fail.
// Importantly, the speculative code path cannot be reentered once
// a speculative check has failed. This allows the SpeculativeJIT
// to propagate type information (including information that has
// only speculatively been asserted) through the dataflow.
class SpeculativeJIT {
friend struct OSRExit;
private:
typedef JITCompiler::TrustedImm32 TrustedImm32;
typedef JITCompiler::Imm32 Imm32;
typedef JITCompiler::TrustedImmPtr TrustedImmPtr;
typedef JITCompiler::ImmPtr ImmPtr;
typedef JITCompiler::TrustedImm64 TrustedImm64;
typedef JITCompiler::Imm64 Imm64;
// These constants are used to set priorities for spill order for
// the register allocator.
#if USE(JSVALUE64)
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderCell = 4, // needs spill
SpillOrderStorage = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderBoolean = 5, // needs spill and box
SpillOrderDouble = 6, // needs spill and convert
};
#elif USE(JSVALUE32_64)
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderStorage = 4, // needs spill
SpillOrderDouble = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderCell = 5, // needs spill and box
SpillOrderBoolean = 5, // needs spill and box
};
#endif
enum UseChildrenMode { CallUseChildren, UseChildrenCalledExplicitly };
public:
SpeculativeJIT(JITCompiler&);
~SpeculativeJIT();
bool compile();
void createOSREntries();
void linkOSREntries(LinkBuffer&);
Node& at(NodeIndex nodeIndex)
{
return m_jit.graph()[nodeIndex];
}
Node& at(Edge nodeUse)
{
return at(nodeUse.index());
}
BlockIndex nextBlock()
{
for (BlockIndex result = m_block + 1; ; result++) {
if (result >= m_jit.graph().m_blocks.size())
return NoBlock;
if (m_jit.graph().m_blocks[result])
return result;
}
}
GPRReg fillInteger(NodeIndex, DataFormat& returnFormat);
FPRReg fillDouble(NodeIndex);
#if USE(JSVALUE64)
GPRReg fillJSValue(NodeIndex);
#elif USE(JSVALUE32_64)
bool fillJSValue(NodeIndex, GPRReg&, GPRReg&, FPRReg&);
#endif
GPRReg fillStorage(NodeIndex);
// lock and unlock GPR & FPR registers.
void lock(GPRReg reg)
{
m_gprs.lock(reg);
}
void lock(FPRReg reg)
{
m_fprs.lock(reg);
}
void unlock(GPRReg reg)
{
m_gprs.unlock(reg);
}
void unlock(FPRReg reg)
{
m_fprs.unlock(reg);
}
// Used to check whether a child node is on its last use,
// and its machine registers may be reused.
bool canReuse(NodeIndex nodeIndex)
{
VirtualRegister virtualRegister = at(nodeIndex).virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.canReuse();
}
bool canReuse(Edge nodeUse)
{
return canReuse(nodeUse.index());
}
GPRReg reuse(GPRReg reg)
{
m_gprs.lock(reg);
return reg;
}
FPRReg reuse(FPRReg reg)
{
m_fprs.lock(reg);
return reg;
}
// Allocate a gpr/fpr.
GPRReg allocate()
{
VirtualRegister spillMe;
GPRReg gpr = m_gprs.allocate(spillMe);
if (spillMe != InvalidVirtualRegister) {
#if USE(JSVALUE32_64)
GenerationInfo& info = m_generationInfo[spillMe];
ASSERT(info.registerFormat() != DataFormatJSDouble);
if ((info.registerFormat() & DataFormatJS))
m_gprs.release(info.tagGPR() == gpr ? info.payloadGPR() : info.tagGPR());
#endif
spill(spillMe);
}
return gpr;
}
GPRReg allocate(GPRReg specific)
{
VirtualRegister spillMe = m_gprs.allocateSpecific(specific);
if (spillMe != InvalidVirtualRegister) {
#if USE(JSVALUE32_64)
GenerationInfo& info = m_generationInfo[spillMe];
ASSERT(info.registerFormat() != DataFormatJSDouble);
if ((info.registerFormat() & DataFormatJS))
m_gprs.release(info.tagGPR() == specific ? info.payloadGPR() : info.tagGPR());
#endif
spill(spillMe);
}
return specific;
}
GPRReg tryAllocate()
{
return m_gprs.tryAllocate();
}
FPRReg fprAllocate()
{
VirtualRegister spillMe;
FPRReg fpr = m_fprs.allocate(spillMe);
if (spillMe != InvalidVirtualRegister)
spill(spillMe);
return fpr;
}
// Check whether a VirtualRegsiter is currently in a machine register.
// We use this when filling operands to fill those that are already in
// machine registers first (by locking VirtualRegsiters that are already
// in machine register before filling those that are not we attempt to
// avoid spilling values we will need immediately).
bool isFilled(NodeIndex nodeIndex)
{
VirtualRegister virtualRegister = at(nodeIndex).virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.registerFormat() != DataFormatNone;
}
bool isFilledDouble(NodeIndex nodeIndex)
{
VirtualRegister virtualRegister = at(nodeIndex).virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.registerFormat() == DataFormatDouble;
}
// Called on an operand once it has been consumed by a parent node.
void use(NodeIndex nodeIndex)
{
Node& node = at(nodeIndex);
if (!node.hasResult())
return;
VirtualRegister virtualRegister = node.virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
// use() returns true when the value becomes dead, and any
// associated resources may be freed.
if (!info.use(*m_stream))
return;
// Release the associated machine registers.
DataFormat registerFormat = info.registerFormat();
#if USE(JSVALUE64)
if (registerFormat == DataFormatDouble)
m_fprs.release(info.fpr());
else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
#elif USE(JSVALUE32_64)
if (registerFormat == DataFormatDouble || registerFormat == DataFormatJSDouble)
m_fprs.release(info.fpr());
else if (registerFormat & DataFormatJS) {
m_gprs.release(info.tagGPR());
m_gprs.release(info.payloadGPR());
} else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
#endif
}
void use(Edge nodeUse)
{
use(nodeUse.index());
}
RegisterSet usedRegisters()
{
RegisterSet result;
for (unsigned i = GPRInfo::numberOfRegisters; i--;) {
GPRReg gpr = GPRInfo::toRegister(i);
if (m_gprs.isInUse(gpr))
result.set(gpr);
}
for (unsigned i = FPRInfo::numberOfRegisters; i--;) {
FPRReg fpr = FPRInfo::toRegister(i);
if (m_fprs.isInUse(fpr))
result.set(fpr);
}
return result;
}
static void markCellCard(MacroAssembler&, GPRReg ownerGPR, GPRReg scratchGPR1, GPRReg scratchGPR2);
static void writeBarrier(MacroAssembler&, GPRReg ownerGPR, GPRReg scratchGPR1, GPRReg scratchGPR2, WriteBarrierUseKind);
void writeBarrier(GPRReg ownerGPR, GPRReg valueGPR, Edge valueUse, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg, GPRReg scratchGPR2 = InvalidGPRReg);
void writeBarrier(GPRReg ownerGPR, JSCell* value, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg, GPRReg scratchGPR2 = InvalidGPRReg);
void writeBarrier(JSCell* owner, GPRReg valueGPR, Edge valueUse, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg);
static GPRReg selectScratchGPR(GPRReg preserve1 = InvalidGPRReg, GPRReg preserve2 = InvalidGPRReg, GPRReg preserve3 = InvalidGPRReg, GPRReg preserve4 = InvalidGPRReg)
{
return AssemblyHelpers::selectScratchGPR(preserve1, preserve2, preserve3, preserve4);
}
// Called by the speculative operand types, below, to fill operand to
// machine registers, implicitly generating speculation checks as needed.
GPRReg fillSpeculateInt(NodeIndex, DataFormat& returnFormat, SpeculationDirection);
GPRReg fillSpeculateIntStrict(NodeIndex);
FPRReg fillSpeculateDouble(NodeIndex, SpeculationDirection);
GPRReg fillSpeculateCell(NodeIndex, SpeculationDirection);
GPRReg fillSpeculateBoolean(NodeIndex, SpeculationDirection);
GeneratedOperandType checkGeneratedTypeForToInt32(NodeIndex);
void addSlowPathGenerator(PassOwnPtr<SlowPathGenerator>);
void runSlowPathGenerators();
void compile(Node&);
void noticeOSRBirth(NodeIndex, Node&);
void compileMovHint(Node&);
void compile(BasicBlock&);
void checkArgumentTypes();
void clearGenerationInfo();
// These methods are used when generating 'unexpected'
// calls out from JIT code to C++ helper routines -
// they spill all live values to the appropriate
// slots in the JSStack without changing any state
// in the GenerationInfo.
SilentRegisterSavePlan silentSavePlanForGPR(VirtualRegister spillMe, GPRReg source)
{
GenerationInfo& info = m_generationInfo[spillMe];
NodeIndex nodeIndex = info.nodeIndex();
Node& node = at(nodeIndex);
DataFormat registerFormat = info.registerFormat();
ASSERT(registerFormat != DataFormatNone);
ASSERT(registerFormat != DataFormatDouble);
SilentSpillAction spillAction;
SilentFillAction fillAction;
if (!info.needsSpill())
spillAction = DoNothingForSpill;
else {
#if USE(JSVALUE64)
ASSERT(info.gpr() == source);
if (registerFormat == DataFormatInteger)
spillAction = Store32Payload;
else if (registerFormat == DataFormatCell || registerFormat == DataFormatStorage)
spillAction = StorePtr;
else {
ASSERT(registerFormat & DataFormatJS);
spillAction = Store64;
}
#elif USE(JSVALUE32_64)
if (registerFormat & DataFormatJS) {
ASSERT(info.tagGPR() == source || info.payloadGPR() == source);
spillAction = source == info.tagGPR() ? Store32Tag : Store32Payload;
} else {
ASSERT(info.gpr() == source);
spillAction = Store32Payload;
}
#endif
}
if (registerFormat == DataFormatInteger) {
ASSERT(info.gpr() == source);
ASSERT(isJSInteger(info.registerFormat()));
if (node.hasConstant()) {
ASSERT(isInt32Constant(nodeIndex));
fillAction = SetInt32Constant;
} else
fillAction = Load32Payload;
} else if (registerFormat == DataFormatBoolean) {
#if USE(JSVALUE64)
ASSERT_NOT_REACHED();
fillAction = DoNothingForFill;
#elif USE(JSVALUE32_64)
ASSERT(info.gpr() == source);
if (node.hasConstant()) {
ASSERT(isBooleanConstant(nodeIndex));
fillAction = SetBooleanConstant;
} else
fillAction = Load32Payload;
#endif
} else if (registerFormat == DataFormatCell) {
ASSERT(info.gpr() == source);
if (node.hasConstant()) {
JSValue value = valueOfJSConstant(nodeIndex);
ASSERT_UNUSED(value, value.isCell());
fillAction = SetCellConstant;
} else {
#if USE(JSVALUE64)
fillAction = LoadPtr;
#else
fillAction = Load32Payload;
#endif
}
} else if (registerFormat == DataFormatStorage) {
ASSERT(info.gpr() == source);
fillAction = LoadPtr;
} else {
ASSERT(registerFormat & DataFormatJS);
#if USE(JSVALUE64)
ASSERT(info.gpr() == source);
if (node.hasConstant()) {
if (valueOfJSConstant(nodeIndex).isCell())
fillAction = SetTrustedJSConstant;
else
fillAction = SetJSConstant;
} else if (info.spillFormat() == DataFormatInteger) {
ASSERT(registerFormat == DataFormatJSInteger);
fillAction = Load32PayloadBoxInt;
} else if (info.spillFormat() == DataFormatDouble) {
ASSERT(registerFormat == DataFormatJSDouble);
fillAction = LoadDoubleBoxDouble;
} else
fillAction = Load64;
#else
ASSERT(info.tagGPR() == source || info.payloadGPR() == source);
if (node.hasConstant())
fillAction = info.tagGPR() == source ? SetJSConstantTag : SetJSConstantPayload;
else if (info.payloadGPR() == source)
fillAction = Load32Payload;
else { // Fill the Tag
switch (info.spillFormat()) {
case DataFormatInteger:
ASSERT(registerFormat == DataFormatJSInteger);
fillAction = SetInt32Tag;
break;
case DataFormatCell:
ASSERT(registerFormat == DataFormatJSCell);
fillAction = SetCellTag;
break;
case DataFormatBoolean:
ASSERT(registerFormat == DataFormatJSBoolean);
fillAction = SetBooleanTag;
break;
default:
fillAction = Load32Tag;
break;
}
}
#endif
}
return SilentRegisterSavePlan(spillAction, fillAction, nodeIndex, source);
}
SilentRegisterSavePlan silentSavePlanForFPR(VirtualRegister spillMe, FPRReg source)
{
GenerationInfo& info = m_generationInfo[spillMe];
NodeIndex nodeIndex = info.nodeIndex();
Node& node = at(nodeIndex);
ASSERT(info.registerFormat() == DataFormatDouble);
SilentSpillAction spillAction;
SilentFillAction fillAction;
if (!info.needsSpill())
spillAction = DoNothingForSpill;
else {
ASSERT(!at(info.nodeIndex()).hasConstant());
ASSERT(info.spillFormat() == DataFormatNone);
ASSERT(info.fpr() == source);
spillAction = StoreDouble;
}
#if USE(JSVALUE64)
if (node.hasConstant()) {
ASSERT(isNumberConstant(nodeIndex));
fillAction = SetDoubleConstant;
} else if (info.spillFormat() != DataFormatNone && info.spillFormat() != DataFormatDouble) {
// it was already spilled previously and not as a double, which means we need unboxing.
ASSERT(info.spillFormat() & DataFormatJS);
fillAction = LoadJSUnboxDouble;
} else
fillAction = LoadDouble;
#elif USE(JSVALUE32_64)
ASSERT(info.registerFormat() == DataFormatDouble || info.registerFormat() == DataFormatJSDouble);
if (node.hasConstant()) {
ASSERT(isNumberConstant(nodeIndex));
fillAction = SetDoubleConstant;
} else
fillAction = LoadDouble;
#endif
return SilentRegisterSavePlan(spillAction, fillAction, nodeIndex, source);
}
void silentSpill(const SilentRegisterSavePlan& plan)
{
switch (plan.spillAction()) {
case DoNothingForSpill:
break;
case Store32Tag:
m_jit.store32(plan.gpr(), JITCompiler::tagFor(at(plan.nodeIndex()).virtualRegister()));
break;
case Store32Payload:
m_jit.store32(plan.gpr(), JITCompiler::payloadFor(at(plan.nodeIndex()).virtualRegister()));
break;
case StorePtr:
m_jit.storePtr(plan.gpr(), JITCompiler::addressFor(at(plan.nodeIndex()).virtualRegister()));
break;
#if USE(JSVALUE64)
case Store64:
m_jit.store64(plan.gpr(), JITCompiler::addressFor(at(plan.nodeIndex()).virtualRegister()));
break;
#endif
case StoreDouble:
m_jit.storeDouble(plan.fpr(), JITCompiler::addressFor(at(plan.nodeIndex()).virtualRegister()));
break;
default:
ASSERT_NOT_REACHED();
}
}
void silentFill(const SilentRegisterSavePlan& plan, GPRReg canTrample)
{
#if USE(JSVALUE32_64)
UNUSED_PARAM(canTrample);
#endif
switch (plan.fillAction()) {
case DoNothingForFill:
break;
case SetInt32Constant:
m_jit.move(Imm32(valueOfInt32Constant(plan.nodeIndex())), plan.gpr());
break;
case SetBooleanConstant:
m_jit.move(TrustedImm32(valueOfBooleanConstant(plan.nodeIndex())), plan.gpr());
break;
case SetCellConstant:
m_jit.move(TrustedImmPtr(valueOfJSConstant(plan.nodeIndex()).asCell()), plan.gpr());
break;
#if USE(JSVALUE64)
case SetTrustedJSConstant:
m_jit.move(valueOfJSConstantAsImm64(plan.nodeIndex()).asTrustedImm64(), plan.gpr());
break;
case SetJSConstant:
m_jit.move(valueOfJSConstantAsImm64(plan.nodeIndex()), plan.gpr());
break;
case SetDoubleConstant:
m_jit.move(Imm64(reinterpretDoubleToInt64(valueOfNumberConstant(plan.nodeIndex()))), canTrample);
m_jit.move64ToDouble(canTrample, plan.fpr());
break;
case Load32PayloadBoxInt:
m_jit.load32(JITCompiler::payloadFor(at(plan.nodeIndex()).virtualRegister()), plan.gpr());
m_jit.or64(GPRInfo::tagTypeNumberRegister, plan.gpr());
break;
case LoadDoubleBoxDouble:
m_jit.load64(JITCompiler::addressFor(at(plan.nodeIndex()).virtualRegister()), plan.gpr());
m_jit.sub64(GPRInfo::tagTypeNumberRegister, plan.gpr());
break;
case LoadJSUnboxDouble:
m_jit.load64(JITCompiler::addressFor(at(plan.nodeIndex()).virtualRegister()), canTrample);
unboxDouble(canTrample, plan.fpr());
break;
#else
case SetJSConstantTag:
m_jit.move(Imm32(valueOfJSConstant(plan.nodeIndex()).tag()), plan.gpr());
break;
case SetJSConstantPayload:
m_jit.move(Imm32(valueOfJSConstant(plan.nodeIndex()).payload()), plan.gpr());
break;
case SetInt32Tag:
m_jit.move(TrustedImm32(JSValue::Int32Tag), plan.gpr());
break;
case SetCellTag:
m_jit.move(TrustedImm32(JSValue::CellTag), plan.gpr());
break;
case SetBooleanTag:
m_jit.move(TrustedImm32(JSValue::BooleanTag), plan.gpr());
break;
case SetDoubleConstant:
m_jit.loadDouble(addressOfDoubleConstant(plan.nodeIndex()), plan.fpr());
break;
#endif
case Load32Tag:
m_jit.load32(JITCompiler::tagFor(at(plan.nodeIndex()).virtualRegister()), plan.gpr());
break;
case Load32Payload:
m_jit.load32(JITCompiler::payloadFor(at(plan.nodeIndex()).virtualRegister()), plan.gpr());
break;
case LoadPtr:
m_jit.loadPtr(JITCompiler::addressFor(at(plan.nodeIndex()).virtualRegister()), plan.gpr());
break;
#if USE(JSVALUE64)
case Load64:
m_jit.load64(JITCompiler::addressFor(at(plan.nodeIndex()).virtualRegister()), plan.gpr());
break;
#endif
case LoadDouble:
m_jit.loadDouble(JITCompiler::addressFor(at(plan.nodeIndex()).virtualRegister()), plan.fpr());
break;
default:
ASSERT_NOT_REACHED();
}
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
{
ASSERT(plans.isEmpty());
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
GPRReg gpr = iter.regID();
if (iter.name() != InvalidVirtualRegister && gpr != exclude && gpr != exclude2) {
SilentRegisterSavePlan plan = silentSavePlanForGPR(iter.name(), gpr);
if (doSpill)
silentSpill(plan);
plans.append(plan);
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister && iter.regID() != fprExclude) {
SilentRegisterSavePlan plan = silentSavePlanForFPR(iter.name(), iter.regID());
if (doSpill)
silentSpill(plan);
plans.append(plan);
}
}
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, NoResultTag)
{
silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, InvalidFPRReg);
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, FPRReg exclude)
{
silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, exclude);
}
#if USE(JSVALUE32_64)
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, JSValueRegs exclude)
{
silentSpillAllRegistersImpl(doSpill, plans, exclude.tagGPR(), exclude.payloadGPR());
}
#endif
void silentSpillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
{
silentSpillAllRegistersImpl(true, m_plans, exclude, exclude2, fprExclude);
}
void silentSpillAllRegisters(FPRReg exclude)
{
silentSpillAllRegisters(InvalidGPRReg, InvalidGPRReg, exclude);
}
static GPRReg pickCanTrample(GPRReg exclude)
{
GPRReg result = GPRInfo::regT0;
if (result == exclude)
result = GPRInfo::regT1;
return result;
}
static GPRReg pickCanTrample(FPRReg)
{
return GPRInfo::regT0;
}
static GPRReg pickCanTrample(NoResultTag)
{
return GPRInfo::regT0;
}
#if USE(JSVALUE32_64)
static GPRReg pickCanTrample(JSValueRegs exclude)
{
GPRReg result = GPRInfo::regT0;
if (result == exclude.tagGPR()) {
result = GPRInfo::regT1;
if (result == exclude.payloadGPR())
result = GPRInfo::regT2;
} else if (result == exclude.payloadGPR()) {
result = GPRInfo::regT1;
if (result == exclude.tagGPR())
result = GPRInfo::regT2;
}
return result;
}
#endif
template<typename RegisterType>
void silentFillAllRegisters(RegisterType exclude)
{
GPRReg canTrample = pickCanTrample(exclude);
while (!m_plans.isEmpty()) {
SilentRegisterSavePlan& plan = m_plans.last();
silentFill(plan, canTrample);
m_plans.removeLast();
}
}
// These methods convert between doubles, and doubles boxed and JSValues.
#if USE(JSVALUE64)
GPRReg boxDouble(FPRReg fpr, GPRReg gpr)
{
return m_jit.boxDouble(fpr, gpr);
}
FPRReg unboxDouble(GPRReg gpr, FPRReg fpr)
{
return m_jit.unboxDouble(gpr, fpr);
}
GPRReg boxDouble(FPRReg fpr)
{
return boxDouble(fpr, allocate());
}
#elif USE(JSVALUE32_64)
void boxDouble(FPRReg fpr, GPRReg tagGPR, GPRReg payloadGPR)
{
m_jit.boxDouble(fpr, tagGPR, payloadGPR);
}
void unboxDouble(GPRReg tagGPR, GPRReg payloadGPR, FPRReg fpr, FPRReg scratchFPR)
{
m_jit.unboxDouble(tagGPR, payloadGPR, fpr, scratchFPR);
}
#endif
// Spill a VirtualRegister to the JSStack.
void spill(VirtualRegister spillMe)
{
GenerationInfo& info = m_generationInfo[spillMe];
#if USE(JSVALUE32_64)
if (info.registerFormat() == DataFormatNone) // it has been spilled. JS values which have two GPRs can reach here
return;
#endif
// Check the GenerationInfo to see if this value need writing
// to the JSStack - if not, mark it as spilled & return.
if (!info.needsSpill()) {
info.setSpilled(*m_stream, spillMe);
return;
}
DataFormat spillFormat = info.registerFormat();
switch (spillFormat) {
case DataFormatStorage: {
// This is special, since it's not a JS value - as in it's not visible to JS
// code.
m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatStorage);
return;
}
case DataFormatInteger: {
m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatInteger);
return;
}
#if USE(JSVALUE64)
case DataFormatDouble: {
m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatDouble);
return;
}
default:
// The following code handles JSValues, int32s, and cells.
ASSERT(spillFormat == DataFormatCell || spillFormat & DataFormatJS);
GPRReg reg = info.gpr();
// We need to box int32 and cell values ...
// but on JSVALUE64 boxing a cell is a no-op!
if (spillFormat == DataFormatInteger)
m_jit.or64(GPRInfo::tagTypeNumberRegister, reg);
// Spill the value, and record it as spilled in its boxed form.
m_jit.store64(reg, JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, (DataFormat)(spillFormat | DataFormatJS));
return;
#elif USE(JSVALUE32_64)
case DataFormatCell:
case DataFormatBoolean: {
m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
}
case DataFormatDouble:
case DataFormatJSDouble: {
// On JSVALUE32_64 boxing a double is a no-op.
m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatJSDouble);
return;
}
default:
// The following code handles JSValues.
ASSERT(spillFormat & DataFormatJS);
m_jit.store32(info.tagGPR(), JITCompiler::tagFor(spillMe));
m_jit.store32(info.payloadGPR(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
#endif
}
}
bool isStrictInt32(NodeIndex);
bool isKnownInteger(NodeIndex);
bool isKnownNumeric(NodeIndex);
bool isKnownCell(NodeIndex);
bool isKnownNotInteger(NodeIndex);
bool isKnownNotNumber(NodeIndex);
bool isKnownNotCell(NodeIndex);
// Checks/accessors for constant values.
bool isConstant(NodeIndex nodeIndex) { return m_jit.graph().isConstant(nodeIndex); }
bool isJSConstant(NodeIndex nodeIndex) { return m_jit.graph().isJSConstant(nodeIndex); }
bool isInt32Constant(NodeIndex nodeIndex) { return m_jit.graph().isInt32Constant(nodeIndex); }
bool isDoubleConstant(NodeIndex nodeIndex) { return m_jit.graph().isDoubleConstant(nodeIndex); }
bool isNumberConstant(NodeIndex nodeIndex) { return m_jit.graph().isNumberConstant(nodeIndex); }
bool isBooleanConstant(NodeIndex nodeIndex) { return m_jit.graph().isBooleanConstant(nodeIndex); }
bool isFunctionConstant(NodeIndex nodeIndex) { return m_jit.graph().isFunctionConstant(nodeIndex); }
int32_t valueOfInt32Constant(NodeIndex nodeIndex) { return m_jit.graph().valueOfInt32Constant(nodeIndex); }
double valueOfNumberConstant(NodeIndex nodeIndex) { return m_jit.graph().valueOfNumberConstant(nodeIndex); }
int32_t valueOfNumberConstantAsInt32(NodeIndex nodeIndex)
{
if (isInt32Constant(nodeIndex))
return valueOfInt32Constant(nodeIndex);
return JSC::toInt32(valueOfNumberConstant(nodeIndex));
}
#if USE(JSVALUE32_64)
void* addressOfDoubleConstant(NodeIndex nodeIndex) { return m_jit.addressOfDoubleConstant(nodeIndex); }
#endif
JSValue valueOfJSConstant(NodeIndex nodeIndex) { return m_jit.graph().valueOfJSConstant(nodeIndex); }
bool valueOfBooleanConstant(NodeIndex nodeIndex) { return m_jit.graph().valueOfBooleanConstant(nodeIndex); }
JSFunction* valueOfFunctionConstant(NodeIndex nodeIndex) { return m_jit.graph().valueOfFunctionConstant(nodeIndex); }
bool isNullConstant(NodeIndex nodeIndex)
{
if (!isConstant(nodeIndex))
return false;
return valueOfJSConstant(nodeIndex).isNull();
}
Identifier* identifier(unsigned index)
{
return &m_jit.codeBlock()->identifier(index);
}
ResolveOperations* resolveOperations(unsigned index)
{
return m_jit.codeBlock()->resolveOperations(index);
}
PutToBaseOperation* putToBaseOperation(unsigned index)
{
return m_jit.codeBlock()->putToBaseOperation(index);
}
// Spill all VirtualRegisters back to the JSStack.
void flushRegisters()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
spill(iter.name());
iter.release();
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
spill(iter.name());
iter.release();
}
}
}
#ifndef NDEBUG
// Used to ASSERT flushRegisters() has been called prior to
// calling out from JIT code to a C helper function.
bool isFlushed()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
return false;
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
return false;
}
return true;
}
#endif
#if USE(JSVALUE64)
MacroAssembler::Imm64 valueOfJSConstantAsImm64(NodeIndex nodeIndex)
{
return MacroAssembler::Imm64(JSValue::encode(valueOfJSConstant(nodeIndex)));
}
#endif
// Helper functions to enable code sharing in implementations of bit/shift ops.
void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result)
{
switch (op) {
case BitAnd:
m_jit.and32(Imm32(imm), op1, result);
break;
case BitOr:
m_jit.or32(Imm32(imm), op1, result);
break;
case BitXor:
m_jit.xor32(Imm32(imm), op1, result);
break;
default:
ASSERT_NOT_REACHED();
}
}
void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result)
{
switch (op) {
case BitAnd:
m_jit.and32(op1, op2, result);
break;
case BitOr:
m_jit.or32(op1, op2, result);
break;
case BitXor:
m_jit.xor32(op1, op2, result);
break;
default:
ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result)
{
switch (op) {
case BitRShift:
m_jit.rshift32(op1, Imm32(shiftAmount), result);
break;
case BitLShift:
m_jit.lshift32(op1, Imm32(shiftAmount), result);
break;
case BitURShift:
m_jit.urshift32(op1, Imm32(shiftAmount), result);
break;
default:
ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result)
{
switch (op) {
case BitRShift:
m_jit.rshift32(op1, shiftAmount, result);
break;
case BitLShift:
m_jit.lshift32(op1, shiftAmount, result);
break;
case BitURShift:
m_jit.urshift32(op1, shiftAmount, result);
break;
default:
ASSERT_NOT_REACHED();
}
}
// Returns the index of the branch node if peephole is okay, UINT_MAX otherwise.
unsigned detectPeepHoleBranch()
{
BasicBlock* block = m_jit.graph().m_blocks[m_block].get();
// Check that no intervening nodes will be generated.
for (unsigned index = m_indexInBlock + 1; index < block->size() - 1; ++index) {
NodeIndex nodeIndex = block->at(index);
if (at(nodeIndex).shouldGenerate())
return UINT_MAX;
}
// Check if the lastNode is a branch on this node.
Node& lastNode = at(block->last());
return lastNode.op() == Branch && lastNode.child1().index() == m_compileIndex ? block->size() - 1 : UINT_MAX;
}
void nonSpeculativeValueToNumber(Node&);
void nonSpeculativeValueToInt32(Node&);
void nonSpeculativeUInt32ToNumber(Node&);
#if USE(JSVALUE64)
void cachedGetById(CodeOrigin, GPRReg baseGPR, GPRReg resultGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
void cachedPutById(CodeOrigin, GPRReg base, GPRReg value, Edge valueUse, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump());
#elif USE(JSVALUE32_64)
void cachedGetById(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
void cachedPutById(CodeOrigin, GPRReg basePayloadGPR, GPRReg valueTagGPR, GPRReg valuePayloadGPR, Edge valueUse, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump());
#endif
void nonSpeculativeNonPeepholeCompareNull(Edge operand, bool invert = false);
void nonSpeculativePeepholeBranchNull(Edge operand, NodeIndex branchNodeIndex, bool invert = false);
bool nonSpeculativeCompareNull(Node&, Edge operand, bool invert = false);
void nonSpeculativePeepholeBranch(Node&, NodeIndex branchNodeIndex, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
void nonSpeculativeNonPeepholeCompare(Node&, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
bool nonSpeculativeCompare(Node&, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
void nonSpeculativePeepholeStrictEq(Node&, NodeIndex branchNodeIndex, bool invert = false);
void nonSpeculativeNonPeepholeStrictEq(Node&, bool invert = false);
bool nonSpeculativeStrictEq(Node&, bool invert = false);
void compileInstanceOfForObject(Node&, GPRReg valueReg, GPRReg prototypeReg, GPRReg scratchAndResultReg);
void compileInstanceOf(Node&);
// Access to our fixed callee CallFrame.
MacroAssembler::Address callFrameSlot(int slot)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)));
}
// Access to our fixed callee CallFrame.
MacroAssembler::Address argumentSlot(int argument)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)));
}
MacroAssembler::Address callFrameTagSlot(int slot)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag));
}
MacroAssembler::Address callFramePayloadSlot(int slot)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload));
}
MacroAssembler::Address argumentTagSlot(int argument)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag));
}
MacroAssembler::Address argumentPayloadSlot(int argument)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload));
}
void emitCall(Node&);
// Called once a node has completed code generation but prior to setting
// its result, to free up its children. (This must happen prior to setting
// the nodes result, since the node may have the same VirtualRegister as
// a child, and as such will use the same GeneratioInfo).
void useChildren(Node&);
// These method called to initialize the the GenerationInfo
// to describe the result of an operation.
void integerResult(GPRReg reg, NodeIndex nodeIndex, DataFormat format = DataFormatInteger, UseChildrenMode mode = CallUseChildren)
{
Node& node = at(nodeIndex);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
if (format == DataFormatInteger) {
m_jit.jitAssertIsInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderInteger);
info.initInteger(nodeIndex, node.refCount(), reg);
} else {
#if USE(JSVALUE64)
ASSERT(format == DataFormatJSInteger);
m_jit.jitAssertIsJSInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
info.initJSValue(nodeIndex, node.refCount(), reg, format);
#elif USE(JSVALUE32_64)
ASSERT_NOT_REACHED();
#endif
}
}
void integerResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode)
{
integerResult(reg, nodeIndex, DataFormatInteger, mode);
}
void noResult(NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
{
if (mode == UseChildrenCalledExplicitly)
return;
Node& node = at(nodeIndex);
useChildren(node);
}
void cellResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
{
Node& node = at(nodeIndex);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderCell);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initCell(nodeIndex, node.refCount(), reg);
}
void booleanResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
{
Node& node = at(nodeIndex);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderBoolean);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initBoolean(nodeIndex, node.refCount(), reg);
}
#if USE(JSVALUE64)
void jsValueResult(GPRReg reg, NodeIndex nodeIndex, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
if (format == DataFormatJSInteger)
m_jit.jitAssertIsJSInt32(reg);
Node& node = at(nodeIndex);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initJSValue(nodeIndex, node.refCount(), reg, format);
}
void jsValueResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode)
{
jsValueResult(reg, nodeIndex, DataFormatJS, mode);
}
#elif USE(JSVALUE32_64)
void jsValueResult(GPRReg tag, GPRReg payload, NodeIndex nodeIndex, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
Node& node = at(nodeIndex);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(tag, virtualRegister, SpillOrderJS);
m_gprs.retain(payload, virtualRegister, SpillOrderJS);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initJSValue(nodeIndex, node.refCount(), tag, payload, format);
}
void jsValueResult(GPRReg tag, GPRReg payload, NodeIndex nodeIndex, UseChildrenMode mode)
{
jsValueResult(tag, payload, nodeIndex, DataFormatJS, mode);
}
#endif
void storageResult(GPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
{
Node& node = at(nodeIndex);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderStorage);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initStorage(nodeIndex, node.refCount(), reg);
}
void doubleResult(FPRReg reg, NodeIndex nodeIndex, UseChildrenMode mode = CallUseChildren)
{
Node& node = at(nodeIndex);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_fprs.retain(reg, virtualRegister, SpillOrderDouble);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initDouble(nodeIndex, node.refCount(), reg);
}
void initConstantInfo(NodeIndex nodeIndex)
{
ASSERT(isInt32Constant(nodeIndex) || isNumberConstant(nodeIndex) || isJSConstant(nodeIndex));
Node& node = at(nodeIndex);
m_generationInfo[node.virtualRegister()].initConstant(nodeIndex, node.refCount());
}
// These methods add calls to C++ helper functions.
// These methods are broadly value representation specific (i.e.
// deal with the fact that a JSValue may be passed in one or two
// machine registers, and delegate the calling convention specific
// decision as to how to fill the regsiters to setupArguments* methods.
#if USE(JSVALUE64)
JITCompiler::Call callOperation(P_DFGOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EO operation, GPRReg result, GPRReg object)
{
m_jit.setupArgumentsWithExecState(object);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EOS operation, GPRReg result, GPRReg object, size_t size)
{
m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size)
{
m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EPS operation, GPRReg result, GPRReg old, size_t size)
{
m_jit.setupArgumentsWithExecState(old, TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_ES operation, GPRReg result, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg result, void* pointer)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_DFGOperation_D operation, GPRReg result, FPRReg arg1)
{
m_jit.setupArguments(arg1);
JITCompiler::Call call = m_jit.appendCall(operation);
m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call callOperation(J_DFGOperation_EGriJsgI operation, GPRReg result, GPRReg arg1, GPRReg arg2, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EI operation, GPRReg result, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EIRo operation, GPRReg result, Identifier* identifier, ResolveOperations* operations)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EIRoPtbo operation, GPRReg result, Identifier* identifier, ResolveOperations* operations, PutToBaseOperation* putToBaseOperations)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations), TrustedImmPtr(putToBaseOperations));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EA operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EAZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_ESt operation, GPRReg result, Structure* structure)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, Structure* structure, size_t arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(arg2));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStPS operation, GPRReg result, Structure* structure, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStSS operation, GPRReg result, Structure* structure, size_t index, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(index), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EPS operation, GPRReg result, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_ESS operation, GPRReg result, int startConstant, int numConstants)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg result, GPRReg arg1, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_ECI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EDA operation, GPRReg result, FPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg result, int32_t arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EZZ operation, GPRReg result, int32_t arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EZIcfZ operation, GPRReg result, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EIcf operation, GPRReg result, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(inlineCallFrame));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_ESt operation, GPRReg result, Structure* structure)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_J operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArguments(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, MacroAssembler::TrustedImm32 imm)
{
m_jit.setupArgumentsWithExecState(arg1, MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, MacroAssembler::TrustedImm32 imm, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_ECJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(V_DFGOperation_EC operation, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECIcf operation, GPRReg arg1, InlineCallFrame* arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(arg2));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECCIcf operation, GPRReg arg1, GPRReg arg2, InlineCallFrame* arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(arg3));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EJPP operation, GPRReg arg1, GPRReg arg2, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(pointer));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EJCI operation, GPRReg arg1, GPRReg arg2, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECZ operation, GPRReg arg1, int arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECC operation, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_W operation, WatchpointSet* watchpointSet)
{
m_jit.setupArguments(TrustedImmPtr(watchpointSet));
return appendCall(operation);
}
template<typename FunctionType, typename ArgumentType1>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1)
{
return callOperation(operation, arg1);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2)
{
return callOperation(operation, arg1, arg2);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3)
{
return callOperation(operation, arg1, arg2, arg3);
}
JITCompiler::Call callOperation(D_DFGOperation_EJ operation, FPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(D_DFGOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArguments(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(D_DFGOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2)
{
m_jit.setupArguments(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Str_DFGOperation_EJss operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
#else
// EncodedJSValue in JSVALUE32_64 is a 64-bit integer. When being compiled in ARM EABI, it must be aligned even-numbered register (r0, r2 or [sp]).
// To avoid assemblies from using wrong registers, let's occupy r1 or r3 with a dummy argument when necessary.
#if COMPILER_SUPPORTS(EABI) && CPU(ARM)
#define EABI_32BIT_DUMMY_ARG TrustedImm32(0),
#else
#define EABI_32BIT_DUMMY_ARG
#endif
JITCompiler::Call callOperation(P_DFGOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EO operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EOS operation, GPRReg result, GPRReg arg1, size_t arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(arg2));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EOZ operation, GPRReg result, GPRReg arg1, int32_t arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(arg2));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EPS operation, GPRReg result, GPRReg old, size_t size)
{
m_jit.setupArgumentsWithExecState(old, TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_ES operation, GPRReg result, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_DFGOperation_D operation, GPRReg result, FPRReg arg1)
{
prepareForExternalCall();
m_jit.setupArguments(arg1);
JITCompiler::Call call = m_jit.appendCall(operation);
m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call callOperation(J_DFGOperation_E operation, GPRReg resultTag, GPRReg resultPayload)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, void* pointer)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EGriJsgI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EI operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EAZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(P_DFGOperation_ESt operation, GPRReg result, Structure* structure)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, Structure* structure, size_t arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(arg2));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStPS operation, GPRReg result, Structure* structure, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStSS operation, GPRReg result, Structure* structure, size_t index, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(index), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EPS operation, GPRReg resultTag, GPRReg resultPayload, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_ESS operation, GPRReg resultTag, GPRReg resultPayload, int startConstant, int numConstants)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, void* pointer)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_ECI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1Tag, GPRReg arg1Payload, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, TrustedImm32(arg1Tag), TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EDA operation, GPRReg resultTag, GPRReg resultPayload, FPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, TrustedImm32 arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EZIcfZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EZZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(C_DFGOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EIcf operation, GPRReg result, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(inlineCallFrame));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_ESt operation, GPRReg result, Structure* structure)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_J operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArguments(arg1Payload, arg1Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2Payload, arg2Tag);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, MacroAssembler::TrustedImm32 imm)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, imm, TrustedImm32(JSValue::Int32Tag));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, MacroAssembler::TrustedImm32 imm, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag), arg2Payload, arg2Tag);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EIRo operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier, ResolveOperations* operations)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EIRoPtbo operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier, ResolveOperations* operations, PutToBaseOperation* putToBaseOperations)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations), TrustedImmPtr(putToBaseOperations));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_ECC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(V_DFGOperation_EC operation, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECIcf operation, GPRReg arg1, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(inlineCallFrame));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECCIcf operation, GPRReg arg1, GPRReg arg2, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(inlineCallFrame));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EJPP operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, void* pointer)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(pointer));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EJCI operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(identifier));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECJJ operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, arg3Payload, arg3Tag);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECZ operation, GPRReg arg1, int arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECC operation, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, TrustedImm32 arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_W operation, WatchpointSet* watchpointSet)
{
m_jit.setupArguments(TrustedImmPtr(watchpointSet));
return appendCall(operation);
}
template<typename FunctionType, typename ArgumentType1>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1)
{
return callOperation(operation, arg1);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2)
{
return callOperation(operation, arg1, arg2);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3)
{
return callOperation(operation, arg1, arg2, arg3);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3, typename ArgumentType4>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3, ArgumentType4 arg4)
{
return callOperation(operation, arg1, arg2, arg3, arg4);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3, typename ArgumentType4, typename ArgumentType5>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5)
{
return callOperation(operation, arg1, arg2, arg3, arg4, arg5);
}
JITCompiler::Call callOperation(D_DFGOperation_EJ operation, FPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(D_DFGOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArguments(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(D_DFGOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2)
{
m_jit.setupArguments(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Str_DFGOperation_EJss operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
#undef EABI_32BIT_DUMMY_ARG
template<typename FunctionType>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR());
}
template<typename FunctionType, typename ArgumentType1>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3, typename ArgumentType4>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3, ArgumentType4 arg4)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3, typename ArgumentType4, typename ArgumentType5>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5)
{
return callOperation(
operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4, arg5);
}
#endif
#if !defined(NDEBUG) && !CPU(ARM)
void prepareForExternalCall()
{
// We're about to call out to a "native" helper function. The helper
// function is expected to set topCallFrame itself with the ExecState
// that is passed to it.
//
// We explicitly trash topCallFrame here so that we'll know if some of
// the helper functions are not setting topCallFrame when they should
// be doing so. Note: the previous value in topcallFrame was not valid
// anyway since it was not being updated by JIT'ed code by design.
for (unsigned i = 0; i < sizeof(void*) / 4; i++)
m_jit.store32(TrustedImm32(0xbadbeef), reinterpret_cast<char*>(&m_jit.globalData()->topCallFrame) + i * 4);
}
#else
void prepareForExternalCall() { }
#endif
// These methods add call instructions, with optional exception checks & setting results.
JITCompiler::Call appendCallWithExceptionCheck(const FunctionPtr& function)
{
prepareForExternalCall();
CodeOrigin codeOrigin = at(m_compileIndex).codeOrigin;
CallBeginToken token;
m_jit.beginCall(codeOrigin, token);
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.addExceptionCheck(call, codeOrigin, token);
return call;
}
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, GPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.move(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result)
{
prepareForExternalCall();
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.move(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call appendCall(const FunctionPtr& function)
{
prepareForExternalCall();
return m_jit.appendCall(function);
}
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, GPRReg result1, GPRReg result2)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.setupResults(result1, result2);
return call;
}
#if CPU(X86)
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
return call;
}
#elif CPU(ARM)
#if CPU(ARM_HARDFP)
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.moveDouble(result, FPRInfo::argumentFPR0);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.moveDouble(result, FPRInfo::argumentFPR0);
return call;
}
#else
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
return call;
}
#endif // CPU(ARM_HARDFP)
#else
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.moveDouble(FPRInfo::returnValueFPR, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.moveDouble(FPRInfo::returnValueFPR, result);
return call;
}
#endif
void branchDouble(JITCompiler::DoubleCondition cond, FPRReg left, FPRReg right, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchDouble(cond, left, right), destination);
JITCompiler::Jump notTaken = m_jit.branchDouble(JITCompiler::invert(cond), left, right);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
void branchDoubleNonZero(FPRReg value, FPRReg scratch, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchDoubleNonZero(value, scratch), destination);
JITCompiler::Jump notTaken = m_jit.branchDoubleZeroOrNaN(value, scratch);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T, typename U>
void branch32(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branch32(cond, left, right), destination);
JITCompiler::Jump notTaken = m_jit.branch32(JITCompiler::invert(cond), left, right);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T, typename U>
void branchTest32(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTest32(cond, value, mask), destination);
JITCompiler::Jump notTaken = m_jit.branchTest32(JITCompiler::invert(cond), value, mask);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T>
void branchTest32(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTest32(cond, value), destination);
JITCompiler::Jump notTaken = m_jit.branchTest32(JITCompiler::invert(cond), value);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
#if USE(JSVALUE64)
template<typename T, typename U>
void branch64(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branch64(cond, left, right), destination);
JITCompiler::Jump notTaken = m_jit.branch64(JITCompiler::invert(cond), left, right);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
#endif
template<typename T, typename U>
void branchPtr(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchPtr(cond, left, right), destination);
JITCompiler::Jump notTaken = m_jit.branchPtr(JITCompiler::invert(cond), left, right);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T, typename U>
void branchTestPtr(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTestPtr(cond, value, mask), destination);
JITCompiler::Jump notTaken = m_jit.branchTestPtr(JITCompiler::invert(cond), value, mask);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T>
void branchTestPtr(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTestPtr(cond, value), destination);
JITCompiler::Jump notTaken = m_jit.branchTestPtr(JITCompiler::invert(cond), value);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T, typename U>
void branchTest8(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTest8(cond, value, mask), destination);
JITCompiler::Jump notTaken = m_jit.branchTest8(JITCompiler::invert(cond), value, mask);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T>
void branchTest8(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTest8(cond, value), destination);
JITCompiler::Jump notTaken = m_jit.branchTest8(JITCompiler::invert(cond), value);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
enum FallThroughMode {
AtFallThroughPoint,
ForceJump
};
void jump(BlockIndex destination, FallThroughMode fallThroughMode = AtFallThroughPoint)
{
if (haveEdgeCodeToEmit(destination))
emitEdgeCode(destination);
if (destination == nextBlock()
&& fallThroughMode == AtFallThroughPoint)
return;
addBranch(m_jit.jump(), destination);
}
inline bool haveEdgeCodeToEmit(BlockIndex)
{
return DFG_ENABLE_EDGE_CODE_VERIFICATION;
}
void emitEdgeCode(BlockIndex destination)
{
if (!DFG_ENABLE_EDGE_CODE_VERIFICATION)
return;
m_jit.move(TrustedImm32(destination), GPRInfo::regT0);
}
void addBranch(const MacroAssembler::Jump& jump, BlockIndex destination)
{
m_branches.append(BranchRecord(jump, destination));
}
void linkBranches()
{
for (size_t i = 0; i < m_branches.size(); ++i) {
BranchRecord& branch = m_branches[i];
branch.jump.linkTo(m_blockHeads[branch.destination], &m_jit);
}
}
BasicBlock* block()
{
return m_jit.graph().m_blocks[m_block].get();
}
#ifndef NDEBUG
void dump(const char* label = 0);
#endif
#if DFG_ENABLE(CONSISTENCY_CHECK)
void checkConsistency();
#else
void checkConsistency() { }
#endif
bool isInteger(NodeIndex nodeIndex)
{
Node& node = at(nodeIndex);
if (node.hasInt32Result())
return true;
if (isInt32Constant(nodeIndex))
return true;
VirtualRegister virtualRegister = node.virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.isJSInteger();
}
bool compare(Node&, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_DFGOperation_EJJ);
bool compilePeepHoleBranch(Node&, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_DFGOperation_EJJ);
void compilePeepHoleIntegerBranch(Node&, NodeIndex branchNodeIndex, JITCompiler::RelationalCondition);
void compilePeepHoleDoubleBranch(Node&, NodeIndex branchNodeIndex, JITCompiler::DoubleCondition);
void compilePeepHoleObjectEquality(Node&, NodeIndex branchNodeIndex);
void compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, NodeIndex branchNodeIndex);
void compileObjectEquality(Node&);
void compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild);
void compileValueAdd(Node&);
void compileNonStringCellOrOtherLogicalNot(Edge value, bool needSpeculationCheck);
void compileLogicalNot(Node&);
void emitNonStringCellOrOtherBranch(Edge value, BlockIndex taken, BlockIndex notTaken, bool needSpeculationCheck);
void emitBranch(Node&);
void compileIntegerCompare(Node&, MacroAssembler::RelationalCondition);
void compileDoubleCompare(Node&, MacroAssembler::DoubleCondition);
bool compileStrictEqForConstant(Node&, Edge value, JSValue constant);
bool compileStrictEq(Node&);
void compileAllocatePropertyStorage(Node&);
void compileReallocatePropertyStorage(Node&);
#if USE(JSVALUE32_64)
template<typename BaseOperandType, typename PropertyOperandType, typename ValueOperandType, typename TagType>
void compileContiguousPutByVal(Node&, BaseOperandType&, PropertyOperandType&, ValueOperandType&, GPRReg valuePayloadReg, TagType valueTag);
#endif
void compileDoublePutByVal(Node&, SpeculateCellOperand& base, SpeculateStrictInt32Operand& property);
bool putByValWillNeedExtraRegister(ArrayMode arrayMode)
{
return arrayMode.mayStoreToHole();
}
GPRReg temporaryRegisterForPutByVal(GPRTemporary&, ArrayMode);
GPRReg temporaryRegisterForPutByVal(GPRTemporary& temporary, Node& node)
{
return temporaryRegisterForPutByVal(temporary, node.arrayMode());
}
void compileGetCharCodeAt(Node&);
void compileGetByValOnString(Node&);
void compileGetByValOnArguments(Node&);
void compileGetArgumentsLength(Node&);
void compileGetArrayLength(Node&);
void compileValueToInt32(Node&);
void compileUInt32ToNumber(Node&);
void compileDoubleAsInt32(Node&);
void compileInt32ToDouble(Node&);
void compileAdd(Node&);
void compileArithSub(Node&);
void compileArithNegate(Node&);
void compileArithMul(Node&);
#if CPU(X86) || CPU(X86_64)
void compileIntegerArithDivForX86(Node&);
#endif
void compileArithMod(Node&);
void compileSoftModulo(Node&);
void compileGetIndexedPropertyStorage(Node&);
void compileGetByValOnIntTypedArray(const TypedArrayDescriptor&, Node&, size_t elementSize, TypedArraySignedness);
void compilePutByValForIntTypedArray(const TypedArrayDescriptor&, GPRReg base, GPRReg property, Node&, size_t elementSize, TypedArraySignedness, TypedArrayRounding = TruncateRounding);
void compileGetByValOnFloatTypedArray(const TypedArrayDescriptor&, Node&, size_t elementSize);
void compilePutByValForFloatTypedArray(const TypedArrayDescriptor&, GPRReg base, GPRReg property, Node&, size_t elementSize);
void compileNewFunctionNoCheck(Node&);
void compileNewFunctionExpression(Node&);
bool compileRegExpExec(Node&);
// size can be an immediate or a register, and must be in bytes. If size is a register,
// it must be a different register than resultGPR. Emits code that place a pointer to
// the end of the allocation. The returned jump is the jump to the slow path.
template<typename SizeType>
MacroAssembler::Jump emitAllocateBasicStorage(SizeType size, GPRReg resultGPR)
{
CopiedAllocator* copiedAllocator = &m_jit.globalData()->heap.storageAllocator();
m_jit.loadPtr(&copiedAllocator->m_currentRemaining, resultGPR);
MacroAssembler::Jump slowPath = m_jit.branchSubPtr(JITCompiler::Signed, size, resultGPR);
#if 0
MacroAssembler::Jump done = m_jit.jump();
slowPath1.link(&m_jit);
m_jit.breakpoint();
MacroAssembler::Jump slowPath = m_jit.jump();
done.link(&m_jit);
#endif
m_jit.storePtr(resultGPR, &copiedAllocator->m_currentRemaining);
m_jit.negPtr(resultGPR);
m_jit.addPtr(JITCompiler::AbsoluteAddress(&copiedAllocator->m_currentPayloadEnd), resultGPR);
return slowPath;
}
// It is NOT okay for the structure and the scratch register to be the same thing because if they are then the Structure will
// get clobbered.
template <typename ClassType, MarkedBlock::DestructorType destructorType, typename StructureType, typename StorageType>
void emitAllocateBasicJSObject(StructureType structure, GPRReg resultGPR, GPRReg scratchGPR, StorageType storage, size_t size, MacroAssembler::JumpList& slowPath)
{
MarkedAllocator* allocator = 0;
if (destructorType == MarkedBlock::Normal)
allocator = &m_jit.globalData()->heap.allocatorForObjectWithNormalDestructor(size);
else if (destructorType == MarkedBlock::ImmortalStructure)
allocator = &m_jit.globalData()->heap.allocatorForObjectWithImmortalStructureDestructor(size);
else
allocator = &m_jit.globalData()->heap.allocatorForObjectWithoutDestructor(size);
m_jit.loadPtr(&allocator->m_freeList.head, resultGPR);
slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR));
// The object is half-allocated: we have what we know is a fresh object, but
// it's still on the GC's free list.
m_jit.loadPtr(MacroAssembler::Address(resultGPR), scratchGPR);
m_jit.storePtr(scratchGPR, &allocator->m_freeList.head);
// Initialize the object's Structure.
m_jit.storePtr(structure, MacroAssembler::Address(resultGPR, JSCell::structureOffset()));
// Initialize the object's property storage pointer.
m_jit.storePtr(storage, MacroAssembler::Address(resultGPR, JSObject::butterflyOffset()));
}
template<typename T>
void emitAllocateJSFinalObject(T structure, GPRReg resultGPR, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
{
return emitAllocateBasicJSObject<JSFinalObject, MarkedBlock::None>(structure, resultGPR, scratchGPR, TrustedImmPtr(0), JSFinalObject::allocationSize(INLINE_STORAGE_CAPACITY), slowPath);
}
void emitAllocateJSArray(Structure*, GPRReg resultGPR, GPRReg storageGPR, unsigned numElements);
#if USE(JSVALUE64)
JITCompiler::Jump convertToDouble(GPRReg value, FPRReg result, GPRReg tmp);
#elif USE(JSVALUE32_64)
JITCompiler::Jump convertToDouble(JSValueOperand&, FPRReg result);
#endif
// Add a speculation check without additional recovery.
void speculationCheck(ExitKind, JSValueSource, NodeIndex, MacroAssembler::Jump jumpToFail);
void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail);
// Add a set of speculation checks without additional recovery.
void speculationCheck(ExitKind, JSValueSource, NodeIndex, const MacroAssembler::JumpList& jumpsToFail);
void speculationCheck(ExitKind, JSValueSource, Edge, const MacroAssembler::JumpList& jumpsToFail);
// Add a speculation check with additional recovery.
void speculationCheck(ExitKind, JSValueSource, NodeIndex, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
// Use this like you would use speculationCheck(), except that you don't pass it a jump
// (because you don't have to execute a branch; that's kind of the whole point), and you
// must register the returned Watchpoint with something relevant. In general, this should
// be used with extreme care. Use speculationCheck() unless you've got an amazing reason
// not to.
JumpReplacementWatchpoint* speculationWatchpoint(ExitKind, JSValueSource, NodeIndex);
// The default for speculation watchpoints is that they're uncounted, because the
// act of firing a watchpoint invalidates it. So, future recompilations will not
// attempt to set this watchpoint again.
JumpReplacementWatchpoint* speculationWatchpoint(ExitKind = UncountableWatchpoint);
// It is generally a good idea to not use this directly.
void convertLastOSRExitToForward(const ValueRecovery& = ValueRecovery());
// Note: not specifying the valueRecovery argument (leaving it as ValueRecovery()) implies
// that you've ensured that there exists a MovHint prior to your use of forwardSpeculationCheck().
void forwardSpeculationCheck(ExitKind, JSValueSource, NodeIndex, MacroAssembler::Jump jumpToFail, const ValueRecovery& = ValueRecovery());
void forwardSpeculationCheck(ExitKind, JSValueSource, NodeIndex, const MacroAssembler::JumpList& jumpsToFail, const ValueRecovery& = ValueRecovery());
void speculationCheck(ExitKind, JSValueSource, NodeIndex, MacroAssembler::Jump jumpToFail, SpeculationDirection);
void speculationCheck(ExitKind, JSValueSource, NodeIndex, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&, SpeculationDirection);
// Called when we statically determine that a speculation will fail.
void terminateSpeculativeExecution(ExitKind, JSValueRegs, NodeIndex);
void terminateSpeculativeExecution(ExitKind, JSValueRegs, Edge);
void terminateSpeculativeExecution(ExitKind, JSValueRegs, NodeIndex, SpeculationDirection);
// Issue a forward speculation watchpoint, which will exit to the next instruction rather
// than the current one.
JumpReplacementWatchpoint* forwardSpeculationWatchpoint(ExitKind = UncountableWatchpoint);
JumpReplacementWatchpoint* speculationWatchpoint(ExitKind, SpeculationDirection);
const TypedArrayDescriptor* typedArrayDescriptor(ArrayMode);
JITCompiler::Jump jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode, IndexingType, bool invert);
JITCompiler::JumpList jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode, bool invert = false);
void checkArray(Node&);
void arrayify(Node&, GPRReg baseReg, GPRReg propertyReg);
void arrayify(Node&);
template<bool strict>
GPRReg fillSpeculateIntInternal(NodeIndex, DataFormat& returnFormat, SpeculationDirection);
// It is possible, during speculative generation, to reach a situation in which we
// can statically determine a speculation will fail (for example, when two nodes
// will make conflicting speculations about the same operand). In such cases this
// flag is cleared, indicating no further code generation should take place.
bool m_compileOkay;
// Tracking for which nodes are currently holding the values of arguments and bytecode
// operand-indexed variables.
ValueSource valueSourceForOperand(int operand)
{
return valueSourceReferenceForOperand(operand);
}
void setNodeIndexForOperand(NodeIndex nodeIndex, int operand)
{
valueSourceReferenceForOperand(operand) = ValueSource(nodeIndex);
}
// Call this with care, since it both returns a reference into an array
// and potentially resizes the array. So it would not be right to call this
// twice and then perform operands on both references, since the one from
// the first call may no longer be valid.
ValueSource& valueSourceReferenceForOperand(int operand)
{
if (operandIsArgument(operand)) {
int argument = operandToArgument(operand);
return m_arguments[argument];
}
if ((unsigned)operand >= m_variables.size())
m_variables.resize(operand + 1);
return m_variables[operand];
}
void recordSetLocal(int operand, ValueSource valueSource)
{
valueSourceReferenceForOperand(operand) = valueSource;
m_stream->appendAndLog(VariableEvent::setLocal(operand, valueSource.dataFormat()));
}
// The JIT, while also provides MacroAssembler functionality.
JITCompiler& m_jit;
// The current node being generated.
BlockIndex m_block;
NodeIndex m_compileIndex;
unsigned m_indexInBlock;
// Virtual and physical register maps.
Vector<GenerationInfo, 32> m_generationInfo;
RegisterBank<GPRInfo> m_gprs;
RegisterBank<FPRInfo> m_fprs;
Vector<MacroAssembler::Label> m_blockHeads;
Vector<MacroAssembler::Label> m_osrEntryHeads;