| /* |
| * Copyright (C) 2008 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| |
| #if ENABLE(JIT) |
| #include "JIT.h" |
| |
| #include "CodeBlock.h" |
| #include "JITInlines.h" |
| #include "JITStubCall.h" |
| #include "JITStubs.h" |
| #include "JSArray.h" |
| #include "JSFunction.h" |
| #include "Interpreter.h" |
| #include "ResultType.h" |
| #include "SamplingTool.h" |
| |
| #ifndef NDEBUG |
| #include <stdio.h> |
| #endif |
| |
| using namespace std; |
| |
| namespace JSC { |
| |
| void JIT::emit_op_jless(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJump(op_jless, op1, op2, target, LessThan); |
| } |
| |
| void JIT::emit_op_jlesseq(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual); |
| } |
| |
| void JIT::emit_op_jgreater(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan); |
| } |
| |
| void JIT::emit_op_jgreatereq(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual); |
| } |
| |
| void JIT::emit_op_jnless(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual); |
| } |
| |
| void JIT::emit_op_jnlesseq(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan); |
| } |
| |
| void JIT::emit_op_jngreater(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual); |
| } |
| |
| void JIT::emit_op_jngreatereq(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan); |
| } |
| |
| void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, cti_op_jless, false, iter); |
| } |
| |
| void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, cti_op_jlesseq, false, iter); |
| } |
| |
| void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, cti_op_jgreater, false, iter); |
| } |
| |
| void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, cti_op_jgreatereq, false, iter); |
| } |
| |
| void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, cti_op_jless, true, iter); |
| } |
| |
| void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, cti_op_jlesseq, true, iter); |
| } |
| |
| void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, cti_op_jgreater, true, iter); |
| } |
| |
| void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, cti_op_jgreatereq, true, iter); |
| } |
| |
| #if USE(JSVALUE64) |
| |
| void JIT::emit_op_negate(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned src = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(src, regT0); |
| |
| Jump srcNotInt = emitJumpIfNotImmediateInteger(regT0); |
| addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff))); |
| neg32(regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| |
| Jump end = jump(); |
| |
| srcNotInt.link(this); |
| emitJumpSlowCaseIfNotImmediateNumber(regT0); |
| |
| move(TrustedImm64((int64_t)0x8000000000000000ull), regT1); |
| xor64(regT1, regT0); |
| |
| end.link(this); |
| emitPutVirtualRegister(dst); |
| } |
| |
| void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| |
| linkSlowCase(iter); // 0x7fffffff check |
| linkSlowCase(iter); // double check |
| |
| JITStubCall stubCall(this, cti_op_negate); |
| stubCall.addArgument(regT0); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emit_op_lshift(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| emitGetVirtualRegisters(op1, regT0, op2, regT2); |
| // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| emitFastArithImmToInt(regT0); |
| emitFastArithImmToInt(regT2); |
| lshift32(regT2, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| UNUSED_PARAM(op1); |
| UNUSED_PARAM(op2); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_lshift); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_rshift(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| // isOperandConstantImmediateInt(op2) => 1 SlowCase |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| // Mask with 0x1f as per ecma-262 11.7.2 step 7. |
| rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT2); |
| if (supportsFloatingPointTruncate()) { |
| Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); |
| // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases |
| addSlowCase(emitJumpIfNotImmediateNumber(regT0)); |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT0); |
| addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); |
| lhsIsInt.link(this); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| } else { |
| // !supportsFloatingPoint() => 2 SlowCases |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| } |
| emitFastArithImmToInt(regT2); |
| rshift32(regT2, regT0); |
| } |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, cti_op_rshift); |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| } else { |
| if (supportsFloatingPointTruncate()) { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| // We're reloading op1 to regT0 as we can no longer guarantee that |
| // we have not munged the operand. It may have already been shifted |
| // correctly, but it still will not have been tagged. |
| stubCall.addArgument(op1, regT0); |
| stubCall.addArgument(regT2); |
| } else { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT2); |
| } |
| } |
| |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_urshift(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| // Slow case of urshift makes assumptions about what registers hold the |
| // shift arguments, so any changes must be updated there as well. |
| if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitFastArithImmToInt(regT0); |
| int shift = getConstantOperand(op2).asInt32(); |
| if (shift) |
| urshift32(Imm32(shift & 0x1f), regT0); |
| // unsigned shift < 0 or shift = k*2^32 may result in (essentially) |
| // a toUint conversion, which can result in a value we can represent |
| // as an immediate int. |
| if (shift < 0 || !(shift & 31)) |
| addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(dst, regT0); |
| return; |
| } |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| if (!isOperandConstantImmediateInt(op1)) |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| emitFastArithImmToInt(regT0); |
| emitFastArithImmToInt(regT1); |
| urshift32(regT1, regT0); |
| addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(dst, regT0); |
| } |
| |
| void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| if (isOperandConstantImmediateInt(op2)) { |
| int shift = getConstantOperand(op2).asInt32(); |
| // op1 = regT0 |
| linkSlowCase(iter); // int32 check |
| if (supportsFloatingPointTruncate()) { |
| JumpList failures; |
| failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT0); |
| failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); |
| if (shift) |
| urshift32(Imm32(shift & 0x1f), regT0); |
| if (shift < 0 || !(shift & 31)) |
| failures.append(branch32(LessThan, regT0, TrustedImm32(0))); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(dst, regT0); |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); |
| failures.link(this); |
| } |
| if (shift < 0 || !(shift & 31)) |
| linkSlowCase(iter); // failed to box in hot path |
| } else { |
| // op1 = regT0 |
| // op2 = regT1 |
| if (!isOperandConstantImmediateInt(op1)) { |
| linkSlowCase(iter); // int32 check -- op1 is not an int |
| if (supportsFloatingPointTruncate()) { |
| JumpList failures; |
| failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT0); |
| failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); |
| failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int |
| emitFastArithImmToInt(regT1); |
| urshift32(regT1, regT0); |
| failures.append(branch32(LessThan, regT0, TrustedImm32(0))); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(dst, regT0); |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); |
| failures.link(this); |
| } |
| } |
| |
| linkSlowCase(iter); // int32 check - op2 is not an int |
| linkSlowCase(iter); // Can't represent unsigned result as an immediate |
| } |
| |
| JITStubCall stubCall(this, cti_op_urshift); |
| stubCall.addArgument(op1, regT0); |
| stubCall.addArgument(op2, regT1); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emit_compareAndJump(OpcodeID, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition) |
| { |
| // We generate inline code for the following cases in the fast path: |
| // - int immediate to constant int immediate |
| // - constant int immediate to int immediate |
| // - int immediate to int immediate |
| |
| if (isOperandConstantImmediateChar(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| addSlowCase(emitJumpIfNotJSCell(regT0)); |
| JumpList failures; |
| emitLoadCharacterString(regT0, regT0, failures); |
| addSlowCase(failures); |
| addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); |
| return; |
| } |
| if (isOperandConstantImmediateChar(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| addSlowCase(emitJumpIfNotJSCell(regT0)); |
| JumpList failures; |
| emitLoadCharacterString(regT0, regT0, failures); |
| addSlowCase(failures); |
| addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); |
| return; |
| } |
| if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| int32_t op2imm = getConstantOperandImmediateInt(op2); |
| addJump(branch32(condition, regT0, Imm32(op2imm)), target); |
| } else if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| int32_t op1imm = getConstantOperandImmediateInt(op1); |
| addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target); |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| |
| addJump(branch32(condition, regT0, regT1), target); |
| } |
| } |
| |
| void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition condition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless); |
| COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless); |
| COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless); |
| COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless); |
| COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless); |
| COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless); |
| COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless); |
| |
| // We generate inline code for the following cases in the slow path: |
| // - floating-point number to constant int immediate |
| // - constant int immediate to floating-point number |
| // - floating-point number to floating-point number. |
| if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, stub); |
| stubCall.addArgument(op1, regT0); |
| stubCall.addArgument(op2, regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); |
| return; |
| } |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT0); |
| |
| int32_t op2imm = getConstantOperand(op2).asInt32(); |
| |
| move(Imm32(op2imm), regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| |
| emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); |
| |
| fail1.link(this); |
| } |
| |
| JITStubCall stubCall(this, stub); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); |
| |
| } else if (isOperandConstantImmediateInt(op1)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT1); |
| add64(tagTypeNumberRegister, regT1); |
| move64ToDouble(regT1, fpRegT1); |
| |
| int32_t op1imm = getConstantOperand(op1).asInt32(); |
| |
| move(Imm32(op1imm), regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| |
| emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); |
| |
| fail1.link(this); |
| } |
| |
| JITStubCall stubCall(this, stub); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); |
| } else { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| Jump fail2 = emitJumpIfNotImmediateNumber(regT1); |
| Jump fail3 = emitJumpIfImmediateInteger(regT1); |
| add64(tagTypeNumberRegister, regT0); |
| add64(tagTypeNumberRegister, regT1); |
| move64ToDouble(regT0, fpRegT0); |
| move64ToDouble(regT1, fpRegT1); |
| |
| emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); |
| |
| fail1.link(this); |
| fail2.link(this); |
| fail3.link(this); |
| } |
| |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, stub); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); |
| } |
| } |
| |
| void JIT::emit_op_bitand(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| int32_t imm = getConstantOperandImmediateInt(op1); |
| and64(Imm32(imm), regT0); |
| if (imm >= 0) |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| int32_t imm = getConstantOperandImmediateInt(op2); |
| and64(Imm32(imm), regT0); |
| if (imm >= 0) |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| and64(regT1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| } |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| linkSlowCase(iter); |
| if (isOperandConstantImmediateInt(op1)) { |
| JITStubCall stubCall(this, cti_op_bitand); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT0); |
| stubCall.call(result); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| JITStubCall stubCall(this, cti_op_bitand); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else { |
| JITStubCall stubCall(this, cti_op_bitand); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT1); |
| stubCall.call(result); |
| } |
| } |
| |
| void JIT::emit_op_post_inc(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| move(regT0, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT1)); |
| emitFastArithIntToImmNoCheck(regT1, regT1); |
| emitPutVirtualRegister(srcDst, regT1); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_post_inc); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(Imm32(srcDst)); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_post_dec(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| move(regT0, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT1)); |
| emitFastArithIntToImmNoCheck(regT1, regT1); |
| emitPutVirtualRegister(srcDst, regT1); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_post_dec); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(Imm32(srcDst)); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_pre_inc(Instruction* currentInstruction) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| emitPutVirtualRegister(srcDst); |
| } |
| |
| void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitGetVirtualRegister(srcDst, regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, cti_op_pre_inc); |
| stubCall.addArgument(regT0); |
| stubCall.call(srcDst); |
| } |
| |
| void JIT::emit_op_pre_dec(Instruction* currentInstruction) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| emitPutVirtualRegister(srcDst); |
| } |
| |
| void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitGetVirtualRegister(srcDst, regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, cti_op_pre_dec); |
| stubCall.addArgument(regT0); |
| stubCall.call(srcDst); |
| } |
| |
| /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ |
| |
| #if CPU(X86) || CPU(X86_64) |
| |
| void JIT::emit_op_mod(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| // Make sure registers are correct for x86 IDIV instructions. |
| ASSERT(regT0 == X86Registers::eax); |
| ASSERT(regT1 == X86Registers::edx); |
| ASSERT(regT2 == X86Registers::ecx); |
| |
| emitGetVirtualRegisters(op1, regT3, op2, regT2); |
| emitJumpSlowCaseIfNotImmediateInteger(regT3); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| |
| move(regT3, regT0); |
| addSlowCase(branchTest32(Zero, regT2)); |
| Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1)); |
| addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1))); |
| denominatorNotNeg1.link(this); |
| m_assembler.cdq(); |
| m_assembler.idivl_r(regT2); |
| Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0)); |
| addSlowCase(branchTest32(Zero, regT1)); |
| numeratorPositive.link(this); |
| emitFastArithReTagImmediate(regT1, regT0); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_mod); |
| stubCall.addArgument(regT3); |
| stubCall.addArgument(regT2); |
| stubCall.call(result); |
| } |
| |
| #else // CPU(X86) || CPU(X86_64) |
| |
| void JIT::emit_op_mod(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, cti_op_mod); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| ASSERT_NOT_REACHED(); |
| } |
| |
| #endif // CPU(X86) || CPU(X86_64) |
| |
| /* ------------------------------ END: OP_MOD ------------------------------ */ |
| |
| /* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ |
| |
| void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes) |
| { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| #if ENABLE(VALUE_PROFILER) |
| RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); |
| #endif |
| if (opcodeID == op_add) |
| addSlowCase(branchAdd32(Overflow, regT1, regT0)); |
| else if (opcodeID == op_sub) |
| addSlowCase(branchSub32(Overflow, regT1, regT0)); |
| else { |
| ASSERT(opcodeID == op_mul); |
| #if ENABLE(VALUE_PROFILER) |
| if (shouldEmitProfiling()) { |
| // We want to be able to measure if this is taking the slow case just |
| // because of negative zero. If this produces positive zero, then we |
| // don't want the slow case to be taken because that will throw off |
| // speculative compilation. |
| move(regT0, regT2); |
| addSlowCase(branchMul32(Overflow, regT1, regT2)); |
| JumpList done; |
| done.append(branchTest32(NonZero, regT2)); |
| Jump negativeZero = branch32(LessThan, regT0, TrustedImm32(0)); |
| done.append(branch32(GreaterThanOrEqual, regT1, TrustedImm32(0))); |
| negativeZero.link(this); |
| // We only get here if we have a genuine negative zero. Record this, |
| // so that the speculative JIT knows that we failed speculation |
| // because of a negative zero. |
| add32(TrustedImm32(1), AbsoluteAddress(&profile->m_counter)); |
| addSlowCase(jump()); |
| done.link(this); |
| move(regT2, regT0); |
| } else { |
| addSlowCase(branchMul32(Overflow, regT1, regT0)); |
| addSlowCase(branchTest32(Zero, regT0)); |
| } |
| #else |
| addSlowCase(branchMul32(Overflow, regT1, regT0)); |
| addSlowCase(branchTest32(Zero, regT0)); |
| #endif |
| } |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } |
| |
| void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase) |
| { |
| // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. |
| COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); |
| |
| Jump notImm1; |
| Jump notImm2; |
| if (op1HasImmediateIntFastCase) { |
| notImm2 = getSlowCase(iter); |
| } else if (op2HasImmediateIntFastCase) { |
| notImm1 = getSlowCase(iter); |
| } else { |
| notImm1 = getSlowCase(iter); |
| notImm2 = getSlowCase(iter); |
| } |
| |
| linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. |
| if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number. |
| linkSlowCase(iter); |
| emitGetVirtualRegister(op1, regT0); |
| |
| Label stubFunctionCall(this); |
| JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); |
| if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) { |
| emitGetVirtualRegister(op1, regT0); |
| emitGetVirtualRegister(op2, regT1); |
| } |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(result); |
| Jump end = jump(); |
| |
| if (op1HasImmediateIntFastCase) { |
| notImm2.link(this); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); |
| emitGetVirtualRegister(op1, regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT2); |
| } else if (op2HasImmediateIntFastCase) { |
| notImm1.link(this); |
| if (!types.first().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); |
| emitGetVirtualRegister(op2, regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT2); |
| } else { |
| // if we get here, eax is not an int32, edx not yet checked. |
| notImm1.link(this); |
| if (!types.first().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT1); |
| Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); |
| convertInt32ToDouble(regT1, fpRegT2); |
| Jump op2wasInteger = jump(); |
| |
| // if we get here, eax IS an int32, edx is not. |
| notImm2.link(this); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); |
| convertInt32ToDouble(regT0, fpRegT1); |
| op2isDouble.link(this); |
| add64(tagTypeNumberRegister, regT1); |
| move64ToDouble(regT1, fpRegT2); |
| op2wasInteger.link(this); |
| } |
| |
| if (opcodeID == op_add) |
| addDouble(fpRegT2, fpRegT1); |
| else if (opcodeID == op_sub) |
| subDouble(fpRegT2, fpRegT1); |
| else if (opcodeID == op_mul) |
| mulDouble(fpRegT2, fpRegT1); |
| else { |
| ASSERT(opcodeID == op_div); |
| divDouble(fpRegT2, fpRegT1); |
| } |
| moveDoubleTo64(fpRegT1, regT0); |
| sub64(tagTypeNumberRegister, regT0); |
| emitPutVirtualRegister(result, regT0); |
| |
| end.link(this); |
| } |
| |
| void JIT::emit_op_add(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { |
| addSlowCase(); |
| JITStubCall stubCall(this, cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| return; |
| } |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op1)), regT1)); |
| emitFastArithIntToImmNoCheck(regT1, regT0); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op2)), regT1)); |
| emitFastArithIntToImmNoCheck(regT1, regT0); |
| } else |
| compileBinaryArithOp(op_add, result, op1, op2, types); |
| |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { |
| linkDummySlowCase(iter); |
| return; |
| } |
| |
| bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1); |
| bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2); |
| compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); |
| } |
| |
| void JIT::emit_op_mul(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| // For now, only plant a fast int case if the constant operand is greater than zero. |
| int32_t value; |
| if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { |
| #if ENABLE(VALUE_PROFILER) |
| // Add a special fast case profile because the DFG JIT will expect one. |
| m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); |
| #endif |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1)); |
| emitFastArithReTagImmediate(regT1, regT0); |
| } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { |
| #if ENABLE(VALUE_PROFILER) |
| // Add a special fast case profile because the DFG JIT will expect one. |
| m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); |
| #endif |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1)); |
| emitFastArithReTagImmediate(regT1, regT0); |
| } else |
| compileBinaryArithOp(op_mul, result, op1, op2, types); |
| |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0; |
| bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0; |
| compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); |
| } |
| |
| void JIT::emit_op_div(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (isOperandConstantImmediateDouble(op1)) { |
| emitGetVirtualRegister(op1, regT0); |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT0); |
| } else if (isOperandConstantImmediateInt(op1)) { |
| emitLoadInt32ToDouble(op1, fpRegT0); |
| } else { |
| emitGetVirtualRegister(op1, regT0); |
| if (!types.first().definitelyIsNumber()) |
| emitJumpSlowCaseIfNotImmediateNumber(regT0); |
| Jump notInt = emitJumpIfNotImmediateInteger(regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| Jump skipDoubleLoad = jump(); |
| notInt.link(this); |
| add64(tagTypeNumberRegister, regT0); |
| move64ToDouble(regT0, fpRegT0); |
| skipDoubleLoad.link(this); |
| } |
| |
| if (isOperandConstantImmediateDouble(op2)) { |
| emitGetVirtualRegister(op2, regT1); |
| add64(tagTypeNumberRegister, regT1); |
| move64ToDouble(regT1, fpRegT1); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitLoadInt32ToDouble(op2, fpRegT1); |
| } else { |
| emitGetVirtualRegister(op2, regT1); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpSlowCaseIfNotImmediateNumber(regT1); |
| Jump notInt = emitJumpIfNotImmediateInteger(regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| Jump skipDoubleLoad = jump(); |
| notInt.link(this); |
| add64(tagTypeNumberRegister, regT1); |
| move64ToDouble(regT1, fpRegT1); |
| skipDoubleLoad.link(this); |
| } |
| divDouble(fpRegT1, fpRegT0); |
| |
| #if ENABLE(VALUE_PROFILER) |
| // Is the result actually an integer? The DFG JIT would really like to know. If it's |
| // not an integer, we increment a count. If this together with the slow case counter |
| // are below threshold then the DFG JIT will compile this division with a specualtion |
| // that the remainder is zero. |
| |
| // As well, there are cases where a double result here would cause an important field |
| // in the heap to sometimes have doubles in it, resulting in double predictions getting |
| // propagated to a use site where it might cause damage (such as the index to an array |
| // access). So if we are DFG compiling anything in the program, we want this code to |
| // ensure that it produces integers whenever possible. |
| |
| JumpList notInteger; |
| branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1); |
| // If we've got an integer, we might as well make that the result of the division. |
| emitFastArithReTagImmediate(regT0, regT0); |
| Jump isInteger = jump(); |
| notInteger.link(this); |
| moveDoubleTo64(fpRegT0, regT0); |
| Jump doubleZero = branchTest64(Zero, regT0); |
| add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter)); |
| sub64(tagTypeNumberRegister, regT0); |
| Jump trueDouble = jump(); |
| doubleZero.link(this); |
| move(tagTypeNumberRegister, regT0); |
| trueDouble.link(this); |
| isInteger.link(this); |
| #else |
| // Double result. |
| moveDoubleTo64(fpRegT0, regT0); |
| sub64(tagTypeNumberRegister, regT0); |
| #endif |
| |
| emitPutVirtualRegister(dst, regT0); |
| } |
| |
| void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) { |
| #ifndef NDEBUG |
| breakpoint(); |
| #endif |
| return; |
| } |
| if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) { |
| if (!types.first().definitelyIsNumber()) |
| linkSlowCase(iter); |
| } |
| if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) { |
| if (!types.second().definitelyIsNumber()) |
| linkSlowCase(iter); |
| } |
| // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. |
| JITStubCall stubCall(this, cti_op_div); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_sub(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| compileBinaryArithOp(op_sub, result, op1, op2, types); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false); |
| } |
| |
| /* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ |
| |
| #endif // USE(JSVALUE64) |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(JIT) |