| /* |
| * Copyright (C) 1999-2002 Harri Porten (porten@kde.org) |
| * Copyright (C) 2001 Peter Kelly (pmk@post.com) |
| * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2012 Apple Inc. All rights reserved. |
| * Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca) |
| * Copyright (C) 2007 Maks Orlovich |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| * |
| */ |
| |
| #include "config.h" |
| #include "JSGlobalObjectFunctions.h" |
| |
| #include "CallFrame.h" |
| #include "Interpreter.h" |
| #include "JSFunction.h" |
| #include "JSGlobalObject.h" |
| #include "JSString.h" |
| #include "JSStringBuilder.h" |
| #include "Lexer.h" |
| #include "LiteralParser.h" |
| #include "Nodes.h" |
| #include "Parser.h" |
| #include <wtf/dtoa.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <wtf/ASCIICType.h> |
| #include <wtf/Assertions.h> |
| #include <wtf/MathExtras.h> |
| #include <wtf/StringExtras.h> |
| #include <wtf/text/StringBuilder.h> |
| #include <wtf/unicode/UTF8.h> |
| |
| using namespace WTF; |
| using namespace Unicode; |
| |
| namespace JSC { |
| |
| static JSValue encode(ExecState* exec, const char* doNotEscape) |
| { |
| CString cstr = exec->argument(0).toString(exec)->value(exec).utf8(String::StrictConversion); |
| if (!cstr.data()) |
| return throwError(exec, createURIError(exec, ASCIILiteral("String contained an illegal UTF-16 sequence."))); |
| |
| JSStringBuilder builder; |
| const char* p = cstr.data(); |
| for (size_t k = 0; k < cstr.length(); k++, p++) { |
| char c = *p; |
| if (c && strchr(doNotEscape, c)) |
| builder.append(c); |
| else { |
| char tmp[4]; |
| snprintf(tmp, sizeof(tmp), "%%%02X", static_cast<unsigned char>(c)); |
| builder.append(tmp); |
| } |
| } |
| return builder.build(exec); |
| } |
| |
| template <typename CharType> |
| ALWAYS_INLINE |
| static JSValue decode(ExecState* exec, const CharType* characters, int length, const char* doNotUnescape, bool strict) |
| { |
| JSStringBuilder builder; |
| int k = 0; |
| UChar u = 0; |
| while (k < length) { |
| const CharType* p = characters + k; |
| CharType c = *p; |
| if (c == '%') { |
| int charLen = 0; |
| if (k <= length - 3 && isASCIIHexDigit(p[1]) && isASCIIHexDigit(p[2])) { |
| const char b0 = Lexer<CharType>::convertHex(p[1], p[2]); |
| const int sequenceLen = UTF8SequenceLength(b0); |
| if (sequenceLen && k <= length - sequenceLen * 3) { |
| charLen = sequenceLen * 3; |
| char sequence[5]; |
| sequence[0] = b0; |
| for (int i = 1; i < sequenceLen; ++i) { |
| const CharType* q = p + i * 3; |
| if (q[0] == '%' && isASCIIHexDigit(q[1]) && isASCIIHexDigit(q[2])) |
| sequence[i] = Lexer<CharType>::convertHex(q[1], q[2]); |
| else { |
| charLen = 0; |
| break; |
| } |
| } |
| if (charLen != 0) { |
| sequence[sequenceLen] = 0; |
| const int character = decodeUTF8Sequence(sequence); |
| if (character < 0 || character >= 0x110000) |
| charLen = 0; |
| else if (character >= 0x10000) { |
| // Convert to surrogate pair. |
| builder.append(static_cast<UChar>(0xD800 | ((character - 0x10000) >> 10))); |
| u = static_cast<UChar>(0xDC00 | ((character - 0x10000) & 0x3FF)); |
| } else |
| u = static_cast<UChar>(character); |
| } |
| } |
| } |
| if (charLen == 0) { |
| if (strict) |
| return throwError(exec, createURIError(exec, ASCIILiteral("URI error"))); |
| // The only case where we don't use "strict" mode is the "unescape" function. |
| // For that, it's good to support the wonky "%u" syntax for compatibility with WinIE. |
| if (k <= length - 6 && p[1] == 'u' |
| && isASCIIHexDigit(p[2]) && isASCIIHexDigit(p[3]) |
| && isASCIIHexDigit(p[4]) && isASCIIHexDigit(p[5])) { |
| charLen = 6; |
| u = Lexer<UChar>::convertUnicode(p[2], p[3], p[4], p[5]); |
| } |
| } |
| if (charLen && (u == 0 || u >= 128 || !strchr(doNotUnescape, u))) { |
| if (u < 256) |
| builder.append(static_cast<LChar>(u)); |
| else |
| builder.append(u); |
| k += charLen; |
| continue; |
| } |
| } |
| k++; |
| builder.append(c); |
| } |
| return builder.build(exec); |
| } |
| |
| static JSValue decode(ExecState* exec, const char* doNotUnescape, bool strict) |
| { |
| JSStringBuilder builder; |
| String str = exec->argument(0).toString(exec)->value(exec); |
| |
| if (str.is8Bit()) |
| return decode(exec, str.characters8(), str.length(), doNotUnescape, strict); |
| return decode(exec, str.characters16(), str.length(), doNotUnescape, strict); |
| } |
| |
| bool isStrWhiteSpace(UChar c) |
| { |
| switch (c) { |
| // ECMA-262-5th 7.2 & 7.3 |
| case 0x0009: |
| case 0x000A: |
| case 0x000B: |
| case 0x000C: |
| case 0x000D: |
| case 0x0020: |
| case 0x00A0: |
| case 0x2028: |
| case 0x2029: |
| case 0xFEFF: |
| return true; |
| default: |
| return c > 0xff && isSeparatorSpace(c); |
| } |
| } |
| |
| static int parseDigit(unsigned short c, int radix) |
| { |
| int digit = -1; |
| |
| if (c >= '0' && c <= '9') |
| digit = c - '0'; |
| else if (c >= 'A' && c <= 'Z') |
| digit = c - 'A' + 10; |
| else if (c >= 'a' && c <= 'z') |
| digit = c - 'a' + 10; |
| |
| if (digit >= radix) |
| return -1; |
| return digit; |
| } |
| |
| double parseIntOverflow(const LChar* s, int length, int radix) |
| { |
| double number = 0.0; |
| double radixMultiplier = 1.0; |
| |
| for (const LChar* p = s + length - 1; p >= s; p--) { |
| if (radixMultiplier == std::numeric_limits<double>::infinity()) { |
| if (*p != '0') { |
| number = std::numeric_limits<double>::infinity(); |
| break; |
| } |
| } else { |
| int digit = parseDigit(*p, radix); |
| number += digit * radixMultiplier; |
| } |
| |
| radixMultiplier *= radix; |
| } |
| |
| return number; |
| } |
| |
| double parseIntOverflow(const UChar* s, int length, int radix) |
| { |
| double number = 0.0; |
| double radixMultiplier = 1.0; |
| |
| for (const UChar* p = s + length - 1; p >= s; p--) { |
| if (radixMultiplier == std::numeric_limits<double>::infinity()) { |
| if (*p != '0') { |
| number = std::numeric_limits<double>::infinity(); |
| break; |
| } |
| } else { |
| int digit = parseDigit(*p, radix); |
| number += digit * radixMultiplier; |
| } |
| |
| radixMultiplier *= radix; |
| } |
| |
| return number; |
| } |
| |
| // ES5.1 15.1.2.2 |
| template <typename CharType> |
| ALWAYS_INLINE |
| static double parseInt(const String& s, const CharType* data, int radix) |
| { |
| // 1. Let inputString be ToString(string). |
| // 2. Let S be a newly created substring of inputString consisting of the first character that is not a |
| // StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white |
| // space.) If inputString does not contain any such characters, let S be the empty string. |
| int length = s.length(); |
| int p = 0; |
| while (p < length && isStrWhiteSpace(data[p])) |
| ++p; |
| |
| // 3. Let sign be 1. |
| // 4. If S is not empty and the first character of S is a minus sign -, let sign be -1. |
| // 5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S. |
| double sign = 1; |
| if (p < length) { |
| if (data[p] == '+') |
| ++p; |
| else if (data[p] == '-') { |
| sign = -1; |
| ++p; |
| } |
| } |
| |
| // 6. Let R = ToInt32(radix). |
| // 7. Let stripPrefix be true. |
| // 8. If R != 0,then |
| // b. If R != 16, let stripPrefix be false. |
| // 9. Else, R == 0 |
| // a. LetR = 10. |
| // 10. If stripPrefix is true, then |
| // a. If the length of S is at least 2 and the first two characters of S are either -0x or -0X, |
| // then remove the first two characters from S and let R = 16. |
| // 11. If S contains any character that is not a radix-R digit, then let Z be the substring of S |
| // consisting of all characters before the first such character; otherwise, let Z be S. |
| if ((radix == 0 || radix == 16) && length - p >= 2 && data[p] == '0' && (data[p + 1] == 'x' || data[p + 1] == 'X')) { |
| radix = 16; |
| p += 2; |
| } else if (radix == 0) |
| radix = 10; |
| |
| // 8.a If R < 2 or R > 36, then return NaN. |
| if (radix < 2 || radix > 36) |
| return QNaN; |
| |
| // 13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters |
| // A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant |
| // digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; |
| // and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the |
| // mathematical integer value that is represented by Z in radix-R notation.) |
| // 14. Let number be the Number value for mathInt. |
| int firstDigitPosition = p; |
| bool sawDigit = false; |
| double number = 0; |
| while (p < length) { |
| int digit = parseDigit(data[p], radix); |
| if (digit == -1) |
| break; |
| sawDigit = true; |
| number *= radix; |
| number += digit; |
| ++p; |
| } |
| |
| // 12. If Z is empty, return NaN. |
| if (!sawDigit) |
| return QNaN; |
| |
| // Alternate code path for certain large numbers. |
| if (number >= mantissaOverflowLowerBound) { |
| if (radix == 10) { |
| size_t parsedLength; |
| number = parseDouble(s.characters() + firstDigitPosition, p - firstDigitPosition, parsedLength); |
| } else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32) |
| number = parseIntOverflow(s.substringSharingImpl(firstDigitPosition, p - firstDigitPosition).utf8().data(), p - firstDigitPosition, radix); |
| } |
| |
| // 15. Return sign x number. |
| return sign * number; |
| } |
| |
| static double parseInt(const String& s, int radix) |
| { |
| if (s.is8Bit()) |
| return parseInt(s, s.characters8(), radix); |
| return parseInt(s, s.characters16(), radix); |
| } |
| |
| static const int SizeOfInfinity = 8; |
| |
| template <typename CharType> |
| static bool isInfinity(const CharType* data, const CharType* end) |
| { |
| return (end - data) >= SizeOfInfinity |
| && data[0] == 'I' |
| && data[1] == 'n' |
| && data[2] == 'f' |
| && data[3] == 'i' |
| && data[4] == 'n' |
| && data[5] == 'i' |
| && data[6] == 't' |
| && data[7] == 'y'; |
| } |
| |
| // See ecma-262 9.3.1 |
| template <typename CharType> |
| static double jsHexIntegerLiteral(const CharType*& data, const CharType* end) |
| { |
| // Hex number. |
| data += 2; |
| const CharType* firstDigitPosition = data; |
| double number = 0; |
| while (true) { |
| number = number * 16 + toASCIIHexValue(*data); |
| ++data; |
| if (data == end) |
| break; |
| if (!isASCIIHexDigit(*data)) |
| break; |
| } |
| if (number >= mantissaOverflowLowerBound) |
| number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 16); |
| |
| return number; |
| } |
| |
| // See ecma-262 9.3.1 |
| template <typename CharType> |
| static double jsStrDecimalLiteral(const CharType*& data, const CharType* end) |
| { |
| ASSERT(data < end); |
| |
| size_t parsedLength; |
| double number = parseDouble(data, end - data, parsedLength); |
| if (parsedLength) { |
| data += parsedLength; |
| return number; |
| } |
| |
| // Check for [+-]?Infinity |
| switch (*data) { |
| case 'I': |
| if (isInfinity(data, end)) { |
| data += SizeOfInfinity; |
| return std::numeric_limits<double>::infinity(); |
| } |
| break; |
| |
| case '+': |
| if (isInfinity(data + 1, end)) { |
| data += SizeOfInfinity + 1; |
| return std::numeric_limits<double>::infinity(); |
| } |
| break; |
| |
| case '-': |
| if (isInfinity(data + 1, end)) { |
| data += SizeOfInfinity + 1; |
| return -std::numeric_limits<double>::infinity(); |
| } |
| break; |
| } |
| |
| // Not a number. |
| return QNaN; |
| } |
| |
| template <typename CharType> |
| static double toDouble(const CharType* characters, unsigned size) |
| { |
| const CharType* endCharacters = characters + size; |
| |
| // Skip leading white space. |
| for (; characters < endCharacters; ++characters) { |
| if (!isStrWhiteSpace(*characters)) |
| break; |
| } |
| |
| // Empty string. |
| if (characters == endCharacters) |
| return 0.0; |
| |
| double number; |
| if (characters[0] == '0' && characters + 2 < endCharacters && (characters[1] | 0x20) == 'x' && isASCIIHexDigit(characters[2])) |
| number = jsHexIntegerLiteral(characters, endCharacters); |
| else |
| number = jsStrDecimalLiteral(characters, endCharacters); |
| |
| // Allow trailing white space. |
| for (; characters < endCharacters; ++characters) { |
| if (!isStrWhiteSpace(*characters)) |
| break; |
| } |
| if (characters != endCharacters) |
| return QNaN; |
| |
| return number; |
| } |
| |
| // See ecma-262 9.3.1 |
| double jsToNumber(const String& s) |
| { |
| unsigned size = s.length(); |
| |
| if (size == 1) { |
| UChar c = s[0]; |
| if (isASCIIDigit(c)) |
| return c - '0'; |
| if (isStrWhiteSpace(c)) |
| return 0; |
| return QNaN; |
| } |
| |
| if (s.is8Bit()) |
| return toDouble(s.characters8(), size); |
| return toDouble(s.characters16(), size); |
| } |
| |
| static double parseFloat(const String& s) |
| { |
| unsigned size = s.length(); |
| |
| if (size == 1) { |
| UChar c = s[0]; |
| if (isASCIIDigit(c)) |
| return c - '0'; |
| return QNaN; |
| } |
| |
| if (s.is8Bit()) { |
| const LChar* data = s.characters8(); |
| const LChar* end = data + size; |
| |
| // Skip leading white space. |
| for (; data < end; ++data) { |
| if (!isStrWhiteSpace(*data)) |
| break; |
| } |
| |
| // Empty string. |
| if (data == end) |
| return QNaN; |
| |
| return jsStrDecimalLiteral(data, end); |
| } |
| |
| const UChar* data = s.characters16(); |
| const UChar* end = data + size; |
| |
| // Skip leading white space. |
| for (; data < end; ++data) { |
| if (!isStrWhiteSpace(*data)) |
| break; |
| } |
| |
| // Empty string. |
| if (data == end) |
| return QNaN; |
| |
| return jsStrDecimalLiteral(data, end); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncEval(ExecState* exec) |
| { |
| JSValue x = exec->argument(0); |
| if (!x.isString()) |
| return JSValue::encode(x); |
| |
| String s = x.toString(exec)->value(exec); |
| |
| if (s.is8Bit()) { |
| LiteralParser<LChar> preparser(exec, s.characters8(), s.length(), NonStrictJSON); |
| if (JSValue parsedObject = preparser.tryLiteralParse()) |
| return JSValue::encode(parsedObject); |
| } else { |
| LiteralParser<UChar> preparser(exec, s.characters16(), s.length(), NonStrictJSON); |
| if (JSValue parsedObject = preparser.tryLiteralParse()) |
| return JSValue::encode(parsedObject); |
| } |
| |
| JSGlobalObject* calleeGlobalObject = exec->callee()->globalObject(); |
| EvalExecutable* eval = EvalExecutable::create(exec, makeSource(s), false); |
| JSObject* error = eval->compile(exec, calleeGlobalObject); |
| if (error) |
| return throwVMError(exec, error); |
| |
| return JSValue::encode(exec->interpreter()->execute(eval, exec, calleeGlobalObject->globalThis(), calleeGlobalObject)); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncParseInt(ExecState* exec) |
| { |
| JSValue value = exec->argument(0); |
| JSValue radixValue = exec->argument(1); |
| |
| // Optimized handling for numbers: |
| // If the argument is 0 or a number in range 10^-6 <= n < INT_MAX+1, then parseInt |
| // results in a truncation to integer. In the case of -0, this is converted to 0. |
| // |
| // This is also a truncation for values in the range INT_MAX+1 <= n < 10^21, |
| // however these values cannot be trivially truncated to int since 10^21 exceeds |
| // even the int64_t range. Negative numbers are a little trickier, the case for |
| // values in the range -10^21 < n <= -1 are similar to those for integer, but |
| // values in the range -1 < n <= -10^-6 need to truncate to -0, not 0. |
| static const double tenToTheMinus6 = 0.000001; |
| static const double intMaxPlusOne = 2147483648.0; |
| if (value.isNumber()) { |
| double n = value.asNumber(); |
| if (((n < intMaxPlusOne && n >= tenToTheMinus6) || !n) && radixValue.isUndefinedOrNull()) |
| return JSValue::encode(jsNumber(static_cast<int32_t>(n))); |
| } |
| |
| // If ToString throws, we shouldn't call ToInt32. |
| String s = value.toString(exec)->value(exec); |
| if (exec->hadException()) |
| return JSValue::encode(jsUndefined()); |
| |
| return JSValue::encode(jsNumber(parseInt(s, radixValue.toInt32(exec)))); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncParseFloat(ExecState* exec) |
| { |
| return JSValue::encode(jsNumber(parseFloat(exec->argument(0).toString(exec)->value(exec)))); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncIsNaN(ExecState* exec) |
| { |
| return JSValue::encode(jsBoolean(isnan(exec->argument(0).toNumber(exec)))); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncIsFinite(ExecState* exec) |
| { |
| double n = exec->argument(0).toNumber(exec); |
| return JSValue::encode(jsBoolean(isfinite(n))); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncDecodeURI(ExecState* exec) |
| { |
| static const char do_not_unescape_when_decoding_URI[] = |
| "#$&+,/:;=?@"; |
| |
| return JSValue::encode(decode(exec, do_not_unescape_when_decoding_URI, true)); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncDecodeURIComponent(ExecState* exec) |
| { |
| return JSValue::encode(decode(exec, "", true)); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncEncodeURI(ExecState* exec) |
| { |
| static const char do_not_escape_when_encoding_URI[] = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| "abcdefghijklmnopqrstuvwxyz" |
| "0123456789" |
| "!#$&'()*+,-./:;=?@_~"; |
| |
| return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI)); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncEncodeURIComponent(ExecState* exec) |
| { |
| static const char do_not_escape_when_encoding_URI_component[] = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| "abcdefghijklmnopqrstuvwxyz" |
| "0123456789" |
| "!'()*-._~"; |
| |
| return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI_component)); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncEscape(ExecState* exec) |
| { |
| static const char do_not_escape[] = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| "abcdefghijklmnopqrstuvwxyz" |
| "0123456789" |
| "*+-./@_"; |
| |
| JSStringBuilder builder; |
| String str = exec->argument(0).toString(exec)->value(exec); |
| if (str.is8Bit()) { |
| const LChar* c = str.characters8(); |
| for (unsigned k = 0; k < str.length(); k++, c++) { |
| int u = c[0]; |
| if (u && strchr(do_not_escape, static_cast<char>(u))) |
| builder.append(c, 1); |
| else { |
| char tmp[4]; |
| snprintf(tmp, sizeof(tmp), "%%%02X", u); |
| builder.append(tmp); |
| } |
| } |
| |
| return JSValue::encode(builder.build(exec)); |
| } |
| |
| const UChar* c = str.characters16(); |
| for (unsigned k = 0; k < str.length(); k++, c++) { |
| int u = c[0]; |
| if (u > 255) { |
| char tmp[7]; |
| snprintf(tmp, sizeof(tmp), "%%u%04X", u); |
| builder.append(tmp); |
| } else if (u != 0 && strchr(do_not_escape, static_cast<char>(u))) |
| builder.append(c, 1); |
| else { |
| char tmp[4]; |
| snprintf(tmp, sizeof(tmp), "%%%02X", u); |
| builder.append(tmp); |
| } |
| } |
| |
| return JSValue::encode(builder.build(exec)); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncUnescape(ExecState* exec) |
| { |
| StringBuilder builder; |
| String str = exec->argument(0).toString(exec)->value(exec); |
| int k = 0; |
| int len = str.length(); |
| |
| if (str.is8Bit()) { |
| const LChar* characters = str.characters8(); |
| LChar convertedLChar; |
| while (k < len) { |
| const LChar* c = characters + k; |
| if (c[0] == '%' && k <= len - 6 && c[1] == 'u') { |
| if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) { |
| builder.append(Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5])); |
| k += 6; |
| continue; |
| } |
| } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) { |
| convertedLChar = LChar(Lexer<LChar>::convertHex(c[1], c[2])); |
| c = &convertedLChar; |
| k += 2; |
| } |
| builder.append(*c); |
| k++; |
| } |
| } else { |
| const UChar* characters = str.characters16(); |
| |
| while (k < len) { |
| const UChar* c = characters + k; |
| UChar convertedUChar; |
| if (c[0] == '%' && k <= len - 6 && c[1] == 'u') { |
| if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) { |
| convertedUChar = Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]); |
| c = &convertedUChar; |
| k += 5; |
| } |
| } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) { |
| convertedUChar = UChar(Lexer<UChar>::convertHex(c[1], c[2])); |
| c = &convertedUChar; |
| k += 2; |
| } |
| k++; |
| builder.append(*c); |
| } |
| } |
| |
| return JSValue::encode(jsString(exec, builder.toString())); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncThrowTypeError(ExecState* exec) |
| { |
| return throwVMTypeError(exec); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncProtoGetter(ExecState* exec) |
| { |
| if (!exec->thisValue().isObject()) |
| return JSValue::encode(exec->thisValue().synthesizePrototype(exec)); |
| |
| JSObject* thisObject = asObject(exec->thisValue()); |
| if (!thisObject->allowsAccessFrom(exec->trueCallerFrame())) |
| return JSValue::encode(jsUndefined()); |
| |
| return JSValue::encode(thisObject->prototype()); |
| } |
| |
| EncodedJSValue JSC_HOST_CALL globalFuncProtoSetter(ExecState* exec) |
| { |
| JSValue value = exec->argument(0); |
| |
| // Setting __proto__ of a primitive should have no effect. |
| if (!exec->thisValue().isObject()) |
| return JSValue::encode(jsUndefined()); |
| |
| JSObject* thisObject = asObject(exec->thisValue()); |
| if (!thisObject->allowsAccessFrom(exec->trueCallerFrame())) |
| return JSValue::encode(jsUndefined()); |
| |
| // Setting __proto__ to a non-object, non-null value is silently ignored to match Mozilla. |
| if (!value.isObject() && !value.isNull()) |
| return JSValue::encode(jsUndefined()); |
| |
| if (!thisObject->isExtensible()) |
| return throwVMError(exec, createTypeError(exec, GetStrictModeReadonlyPropertyWriteError())); |
| |
| if (!thisObject->setPrototypeWithCycleCheck(exec->globalData(), value)) |
| throwError(exec, createError(exec, "cyclic __proto__ value")); |
| return JSValue::encode(jsUndefined()); |
| } |
| |
| } // namespace JSC |