blob: 00c5140b1c028b8199193e26baaa5cf5ffe18ac6 [file] [log] [blame]
/*
* (C) 1999 Lars Knoll (knoll@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2007-2009 Torch Mobile, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "WTFString.h"
#include "IntegerToStringConversion.h"
#include <stdarg.h>
#include <wtf/ASCIICType.h>
#include <wtf/DataLog.h>
#include <wtf/HexNumber.h>
#include <wtf/MathExtras.h>
#include <wtf/text/CString.h>
#include <wtf/StringExtras.h>
#include <wtf/Vector.h>
#include <wtf/dtoa.h>
#include <wtf/unicode/CharacterNames.h>
#include <wtf/unicode/UTF8.h>
#include <wtf/unicode/Unicode.h>
using namespace std;
namespace WTF {
using namespace Unicode;
using namespace std;
// Construct a string with UTF-16 data.
String::String(const UChar* characters, unsigned length)
: m_impl(characters ? StringImpl::create(characters, length) : 0)
{
}
// Construct a string with UTF-16 data, from a null-terminated source.
String::String(const UChar* str)
{
if (!str)
return;
size_t len = 0;
while (str[len] != UChar(0))
++len;
if (len > numeric_limits<unsigned>::max())
CRASH();
m_impl = StringImpl::create(str, len);
}
// Construct a string with latin1 data.
String::String(const LChar* characters, unsigned length)
: m_impl(characters ? StringImpl::create(characters, length) : 0)
{
}
String::String(const char* characters, unsigned length)
: m_impl(characters ? StringImpl::create(reinterpret_cast<const LChar*>(characters), length) : 0)
{
}
// Construct a string with latin1 data, from a null-terminated source.
String::String(const LChar* characters)
: m_impl(characters ? StringImpl::create(characters) : 0)
{
}
String::String(const char* characters)
: m_impl(characters ? StringImpl::create(reinterpret_cast<const LChar*>(characters)) : 0)
{
}
String::String(ASCIILiteral characters)
: m_impl(StringImpl::createFromLiteral(characters))
{
}
void String::append(const String& str)
{
if (str.isEmpty())
return;
// FIXME: This is extremely inefficient. So much so that we might want to take this
// out of String's API. We can make it better by optimizing the case where exactly
// one String is pointing at this StringImpl, but even then it's going to require a
// call to fastMalloc every single time.
if (str.m_impl) {
if (m_impl) {
if (m_impl->is8Bit() && str.m_impl->is8Bit()) {
LChar* data;
if (str.length() > numeric_limits<unsigned>::max() - m_impl->length())
CRASH();
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(m_impl->length() + str.length(), data);
memcpy(data, m_impl->characters8(), m_impl->length() * sizeof(LChar));
memcpy(data + m_impl->length(), str.characters8(), str.length() * sizeof(LChar));
m_impl = newImpl.release();
return;
}
UChar* data;
if (str.length() > numeric_limits<unsigned>::max() - m_impl->length())
CRASH();
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(m_impl->length() + str.length(), data);
memcpy(data, m_impl->characters(), m_impl->length() * sizeof(UChar));
memcpy(data + m_impl->length(), str.characters(), str.length() * sizeof(UChar));
m_impl = newImpl.release();
} else
m_impl = str.m_impl;
}
}
void String::append(LChar c)
{
// FIXME: This is extremely inefficient. So much so that we might want to take this
// out of String's API. We can make it better by optimizing the case where exactly
// one String is pointing at this StringImpl, but even then it's going to require a
// call to fastMalloc every single time.
if (m_impl) {
UChar* data;
if (m_impl->length() >= numeric_limits<unsigned>::max())
CRASH();
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(m_impl->length() + 1, data);
memcpy(data, m_impl->characters(), m_impl->length() * sizeof(UChar));
data[m_impl->length()] = c;
m_impl = newImpl.release();
} else
m_impl = StringImpl::create(&c, 1);
}
void String::append(UChar c)
{
// FIXME: This is extremely inefficient. So much so that we might want to take this
// out of String's API. We can make it better by optimizing the case where exactly
// one String is pointing at this StringImpl, but even then it's going to require a
// call to fastMalloc every single time.
if (m_impl) {
UChar* data;
if (m_impl->length() >= numeric_limits<unsigned>::max())
CRASH();
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(m_impl->length() + 1, data);
memcpy(data, m_impl->characters(), m_impl->length() * sizeof(UChar));
data[m_impl->length()] = c;
m_impl = newImpl.release();
} else
m_impl = StringImpl::create(&c, 1);
}
int codePointCompare(const String& a, const String& b)
{
return codePointCompare(a.impl(), b.impl());
}
void String::insert(const String& str, unsigned pos)
{
if (str.isEmpty()) {
if (str.isNull())
return;
if (isNull())
m_impl = str.impl();
return;
}
insert(str.characters(), str.length(), pos);
}
void String::append(const LChar* charactersToAppend, unsigned lengthToAppend)
{
if (!m_impl) {
if (!charactersToAppend)
return;
m_impl = StringImpl::create(charactersToAppend, lengthToAppend);
return;
}
if (!lengthToAppend)
return;
ASSERT(charactersToAppend);
unsigned strLength = m_impl->length();
if (m_impl->is8Bit()) {
if (lengthToAppend > numeric_limits<unsigned>::max() - strLength)
CRASH();
LChar* data;
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(strLength + lengthToAppend, data);
StringImpl::copyChars(data, m_impl->characters8(), strLength);
StringImpl::copyChars(data + strLength, charactersToAppend, lengthToAppend);
m_impl = newImpl.release();
return;
}
if (lengthToAppend > numeric_limits<unsigned>::max() - strLength)
CRASH();
UChar* data;
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(length() + lengthToAppend, data);
StringImpl::copyChars(data, m_impl->characters16(), strLength);
StringImpl::copyChars(data + strLength, charactersToAppend, lengthToAppend);
m_impl = newImpl.release();
}
void String::append(const UChar* charactersToAppend, unsigned lengthToAppend)
{
if (!m_impl) {
if (!charactersToAppend)
return;
m_impl = StringImpl::create(charactersToAppend, lengthToAppend);
return;
}
if (!lengthToAppend)
return;
unsigned strLength = m_impl->length();
ASSERT(charactersToAppend);
if (lengthToAppend > numeric_limits<unsigned>::max() - strLength)
CRASH();
UChar* data;
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(strLength + lengthToAppend, data);
if (m_impl->is8Bit())
StringImpl::copyChars(data, characters8(), strLength);
else
StringImpl::copyChars(data, characters16(), strLength);
StringImpl::copyChars(data + strLength, charactersToAppend, lengthToAppend);
m_impl = newImpl.release();
}
void String::insert(const UChar* charactersToInsert, unsigned lengthToInsert, unsigned position)
{
if (position >= length()) {
append(charactersToInsert, lengthToInsert);
return;
}
ASSERT(m_impl);
if (!lengthToInsert)
return;
ASSERT(charactersToInsert);
UChar* data;
if (lengthToInsert > numeric_limits<unsigned>::max() - length())
CRASH();
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(length() + lengthToInsert, data);
memcpy(data, characters(), position * sizeof(UChar));
memcpy(data + position, charactersToInsert, lengthToInsert * sizeof(UChar));
memcpy(data + position + lengthToInsert, characters() + position, (length() - position) * sizeof(UChar));
m_impl = newImpl.release();
}
UChar32 String::characterStartingAt(unsigned i) const
{
if (!m_impl || i >= m_impl->length())
return 0;
return m_impl->characterStartingAt(i);
}
void String::truncate(unsigned position)
{
if (position >= length())
return;
UChar* data;
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(position, data);
memcpy(data, characters(), position * sizeof(UChar));
m_impl = newImpl.release();
}
template <typename CharacterType>
inline void String::removeInternal(const CharacterType* characters, unsigned position, int lengthToRemove)
{
CharacterType* data;
RefPtr<StringImpl> newImpl = StringImpl::createUninitialized(length() - lengthToRemove, data);
memcpy(data, characters, position * sizeof(CharacterType));
memcpy(data + position, characters + position + lengthToRemove,
(length() - lengthToRemove - position) * sizeof(CharacterType));
m_impl = newImpl.release();
}
void String::remove(unsigned position, int lengthToRemove)
{
if (lengthToRemove <= 0)
return;
if (position >= length())
return;
if (static_cast<unsigned>(lengthToRemove) > length() - position)
lengthToRemove = length() - position;
if (is8Bit()) {
removeInternal(characters8(), position, lengthToRemove);
return;
}
removeInternal(characters16(), position, lengthToRemove);
}
String String::substring(unsigned pos, unsigned len) const
{
if (!m_impl)
return String();
return m_impl->substring(pos, len);
}
String String::substringSharingImpl(unsigned offset, unsigned length) const
{
// FIXME: We used to check against a limit of Heap::minExtraCost / sizeof(UChar).
unsigned stringLength = this->length();
offset = min(offset, stringLength);
length = min(length, stringLength - offset);
if (!offset && length == stringLength)
return *this;
return String(StringImpl::create(m_impl, offset, length));
}
String String::lower() const
{
if (!m_impl)
return String();
return m_impl->lower();
}
String String::upper() const
{
if (!m_impl)
return String();
return m_impl->upper();
}
String String::stripWhiteSpace() const
{
if (!m_impl)
return String();
return m_impl->stripWhiteSpace();
}
String String::stripWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace) const
{
if (!m_impl)
return String();
return m_impl->stripWhiteSpace(isWhiteSpace);
}
String String::simplifyWhiteSpace() const
{
if (!m_impl)
return String();
return m_impl->simplifyWhiteSpace();
}
String String::simplifyWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace) const
{
if (!m_impl)
return String();
return m_impl->simplifyWhiteSpace(isWhiteSpace);
}
String String::removeCharacters(CharacterMatchFunctionPtr findMatch) const
{
if (!m_impl)
return String();
return m_impl->removeCharacters(findMatch);
}
String String::foldCase() const
{
if (!m_impl)
return String();
return m_impl->foldCase();
}
bool String::percentage(int& result) const
{
if (!m_impl || !m_impl->length())
return false;
if ((*m_impl)[m_impl->length() - 1] != '%')
return false;
result = charactersToIntStrict(m_impl->characters(), m_impl->length() - 1);
return true;
}
const UChar* String::charactersWithNullTermination()
{
if (!m_impl)
return 0;
if (m_impl->hasTerminatingNullCharacter())
return m_impl->characters();
m_impl = StringImpl::createWithTerminatingNullCharacter(*m_impl);
return m_impl->characters();
}
String String::format(const char *format, ...)
{
#if PLATFORM(QT)
// Use QString::vsprintf to avoid the locale dependent formatting of vsnprintf.
// https://bugs.webkit.org/show_bug.cgi?id=18994
va_list args;
va_start(args, format);
QString buffer;
buffer.vsprintf(format, args);
va_end(args);
QByteArray ba = buffer.toUtf8();
return StringImpl::create(reinterpret_cast<const LChar*>(ba.constData()), ba.length());
#elif OS(WINCE)
va_list args;
va_start(args, format);
Vector<char, 256> buffer;
int bufferSize = 256;
buffer.resize(bufferSize);
for (;;) {
int written = vsnprintf(buffer.data(), bufferSize, format, args);
va_end(args);
if (written == 0)
return String("");
if (written > 0)
return StringImpl::create(reinterpret_cast<const LChar*>(buffer.data()), written);
bufferSize <<= 1;
buffer.resize(bufferSize);
va_start(args, format);
}
#else
va_list args;
va_start(args, format);
Vector<char, 256> buffer;
// Do the format once to get the length.
#if COMPILER(MSVC)
int result = _vscprintf(format, args);
#else
char ch;
int result = vsnprintf(&ch, 1, format, args);
// We need to call va_end() and then va_start() again here, as the
// contents of args is undefined after the call to vsnprintf
// according to http://man.cx/snprintf(3)
//
// Not calling va_end/va_start here happens to work on lots of
// systems, but fails e.g. on 64bit Linux.
va_end(args);
va_start(args, format);
#endif
if (result == 0)
return String("");
if (result < 0)
return String();
unsigned len = result;
buffer.grow(len + 1);
// Now do the formatting again, guaranteed to fit.
vsnprintf(buffer.data(), buffer.size(), format, args);
va_end(args);
return StringImpl::create(reinterpret_cast<const LChar*>(buffer.data()), len);
#endif
}
String String::number(int number)
{
return numberToStringSigned<String>(number);
}
String String::number(unsigned int number)
{
return numberToStringUnsigned<String>(number);
}
String String::number(long number)
{
return numberToStringSigned<String>(number);
}
String String::number(unsigned long number)
{
return numberToStringUnsigned<String>(number);
}
String String::number(long long number)
{
return numberToStringSigned<String>(number);
}
String String::number(unsigned long long number)
{
return numberToStringUnsigned<String>(number);
}
String String::number(double number, unsigned precision, TrailingZerosTruncatingPolicy trailingZerosTruncatingPolicy)
{
NumberToStringBuffer buffer;
return String(numberToFixedPrecisionString(number, precision, buffer, trailingZerosTruncatingPolicy == TruncateTrailingZeros));
}
String String::numberToStringECMAScript(double number)
{
NumberToStringBuffer buffer;
return String(numberToString(number, buffer));
}
String String::numberToStringFixedWidth(double number, unsigned decimalPlaces)
{
NumberToStringBuffer buffer;
return String(numberToFixedWidthString(number, decimalPlaces, buffer));
}
int String::toIntStrict(bool* ok, int base) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toIntStrict(ok, base);
}
unsigned String::toUIntStrict(bool* ok, int base) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toUIntStrict(ok, base);
}
int64_t String::toInt64Strict(bool* ok, int base) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toInt64Strict(ok, base);
}
uint64_t String::toUInt64Strict(bool* ok, int base) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toUInt64Strict(ok, base);
}
intptr_t String::toIntPtrStrict(bool* ok, int base) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toIntPtrStrict(ok, base);
}
int String::toInt(bool* ok) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toInt(ok);
}
unsigned String::toUInt(bool* ok) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toUInt(ok);
}
int64_t String::toInt64(bool* ok) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toInt64(ok);
}
uint64_t String::toUInt64(bool* ok) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toUInt64(ok);
}
intptr_t String::toIntPtr(bool* ok) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0;
}
return m_impl->toIntPtr(ok);
}
double String::toDouble(bool* ok) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0.0;
}
return m_impl->toDouble(ok);
}
float String::toFloat(bool* ok) const
{
if (!m_impl) {
if (ok)
*ok = false;
return 0.0f;
}
return m_impl->toFloat(ok);
}
String String::isolatedCopy() const
{
if (!m_impl)
return String();
return m_impl->isolatedCopy();
}
void String::split(const String& separator, bool allowEmptyEntries, Vector<String>& result) const
{
result.clear();
unsigned startPos = 0;
size_t endPos;
while ((endPos = find(separator, startPos)) != notFound) {
if (allowEmptyEntries || startPos != endPos)
result.append(substring(startPos, endPos - startPos));
startPos = endPos + separator.length();
}
if (allowEmptyEntries || startPos != length())
result.append(substring(startPos));
}
void String::split(UChar separator, bool allowEmptyEntries, Vector<String>& result) const
{
result.clear();
unsigned startPos = 0;
size_t endPos;
while ((endPos = find(separator, startPos)) != notFound) {
if (allowEmptyEntries || startPos != endPos)
result.append(substring(startPos, endPos - startPos));
startPos = endPos + 1;
}
if (allowEmptyEntries || startPos != length())
result.append(substring(startPos));
}
CString String::ascii() const
{
// Printable ASCII characters 32..127 and the null character are
// preserved, characters outside of this range are converted to '?'.
unsigned length = this->length();
if (!length) {
char* characterBuffer;
return CString::newUninitialized(length, characterBuffer);
}
if (this->is8Bit()) {
const LChar* characters = this->characters8();
char* characterBuffer;
CString result = CString::newUninitialized(length, characterBuffer);
for (unsigned i = 0; i < length; ++i) {
LChar ch = characters[i];
characterBuffer[i] = ch && (ch < 0x20 || ch > 0x7f) ? '?' : ch;
}
return result;
}
const UChar* characters = this->characters16();
char* characterBuffer;
CString result = CString::newUninitialized(length, characterBuffer);
for (unsigned i = 0; i < length; ++i) {
UChar ch = characters[i];
characterBuffer[i] = ch && (ch < 0x20 || ch > 0x7f) ? '?' : ch;
}
return result;
}
CString String::latin1() const
{
// Basic Latin1 (ISO) encoding - Unicode characters 0..255 are
// preserved, characters outside of this range are converted to '?'.
unsigned length = this->length();
if (!length)
return CString("", 0);
if (is8Bit())
return CString(reinterpret_cast<const char*>(this->characters8()), length);
const UChar* characters = this->characters16();
char* characterBuffer;
CString result = CString::newUninitialized(length, characterBuffer);
for (unsigned i = 0; i < length; ++i) {
UChar ch = characters[i];
characterBuffer[i] = ch > 0xff ? '?' : ch;
}
return result;
}
// Helper to write a three-byte UTF-8 code point to the buffer, caller must check room is available.
static inline void putUTF8Triple(char*& buffer, UChar ch)
{
ASSERT(ch >= 0x0800);
*buffer++ = static_cast<char>(((ch >> 12) & 0x0F) | 0xE0);
*buffer++ = static_cast<char>(((ch >> 6) & 0x3F) | 0x80);
*buffer++ = static_cast<char>((ch & 0x3F) | 0x80);
}
CString String::utf8(ConversionMode mode) const
{
unsigned length = this->length();
if (!length)
return CString("", 0);
// Allocate a buffer big enough to hold all the characters
// (an individual UTF-16 UChar can only expand to 3 UTF-8 bytes).
// Optimization ideas, if we find this function is hot:
// * We could speculatively create a CStringBuffer to contain 'length'
// characters, and resize if necessary (i.e. if the buffer contains
// non-ascii characters). (Alternatively, scan the buffer first for
// ascii characters, so we know this will be sufficient).
// * We could allocate a CStringBuffer with an appropriate size to
// have a good chance of being able to write the string into the
// buffer without reallocing (say, 1.5 x length).
if (length > numeric_limits<unsigned>::max() / 3)
return CString();
Vector<char, 1024> bufferVector(length * 3);
char* buffer = bufferVector.data();
if (is8Bit()) {
const LChar* characters = this->characters8();
ConversionResult result = convertLatin1ToUTF8(&characters, characters + length, &buffer, buffer + bufferVector.size());
ASSERT_UNUSED(result, result != targetExhausted); // (length * 3) should be sufficient for any conversion
} else {
const UChar* characters = this->characters16();
if (mode == StrictConversionReplacingUnpairedSurrogatesWithFFFD) {
const UChar* charactersEnd = characters + length;
char* bufferEnd = buffer + bufferVector.size();
while (characters < charactersEnd) {
// Use strict conversion to detect unpaired surrogates.
ConversionResult result = convertUTF16ToUTF8(&characters, charactersEnd, &buffer, bufferEnd, true);
ASSERT(result != targetExhausted);
// Conversion fails when there is an unpaired surrogate.
// Put replacement character (U+FFFD) instead of the unpaired surrogate.
if (result != conversionOK) {
ASSERT((0xD800 <= *characters && *characters <= 0xDFFF));
// There should be room left, since one UChar hasn't been converted.
ASSERT((buffer + 3) <= bufferEnd);
putUTF8Triple(buffer, replacementCharacter);
++characters;
}
}
} else {
bool strict = mode == StrictConversion;
ConversionResult result = convertUTF16ToUTF8(&characters, characters + length, &buffer, buffer + bufferVector.size(), strict);
ASSERT(result != targetExhausted); // (length * 3) should be sufficient for any conversion
// Only produced from strict conversion.
if (result == sourceIllegal) {
ASSERT(strict);
return CString();
}
// Check for an unconverted high surrogate.
if (result == sourceExhausted) {
if (strict)
return CString();
// This should be one unpaired high surrogate. Treat it the same
// was as an unpaired high surrogate would have been handled in
// the middle of a string with non-strict conversion - which is
// to say, simply encode it to UTF-8.
ASSERT((characters + 1) == (this->characters() + length));
ASSERT((*characters >= 0xD800) && (*characters <= 0xDBFF));
// There should be room left, since one UChar hasn't been converted.
ASSERT((buffer + 3) <= (buffer + bufferVector.size()));
putUTF8Triple(buffer, *characters);
}
}
}
return CString(bufferVector.data(), buffer - bufferVector.data());
}
String String::make8BitFrom16BitSource(const UChar* source, size_t length)
{
if (!length)
return String();
LChar* destination;
String result = String::createUninitialized(length, destination);
copyLCharsFromUCharSource(destination, source, length);
return result;
}
String String::make16BitFrom8BitSource(const LChar* source, size_t length)
{
if (!length)
return String();
UChar* destination;
String result = String::createUninitialized(length, destination);
StringImpl::copyChars(destination, source, length);
return result;
}
String String::fromUTF8(const LChar* stringStart, size_t length)
{
if (length > numeric_limits<unsigned>::max())
CRASH();
if (!stringStart)
return String();
if (!length)
return emptyString();
// We'll use a StringImpl as a buffer; if the source string only contains ascii this should be
// the right length, if there are any multi-byte sequences this buffer will be too large.
UChar* buffer;
String stringBuffer(StringImpl::createUninitialized(length, buffer));
UChar* bufferEnd = buffer + length;
// Try converting into the buffer.
const char* stringCurrent = reinterpret_cast<const char*>(stringStart);
bool isAllASCII;
if (convertUTF8ToUTF16(&stringCurrent, reinterpret_cast<const char *>(stringStart + length), &buffer, bufferEnd, &isAllASCII) != conversionOK)
return String();
if (isAllASCII)
return String(stringStart, length);
// stringBuffer is full (the input must have been all ascii) so just return it!
if (buffer == bufferEnd)
return stringBuffer;
// stringBuffer served its purpose as a buffer, copy the contents out into a new string.
unsigned utf16Length = buffer - stringBuffer.characters();
ASSERT(utf16Length < length);
return String(stringBuffer.characters(), utf16Length);
}
String String::fromUTF8(const LChar* string)
{
if (!string)
return String();
return fromUTF8(string, strlen(reinterpret_cast<const char*>(string)));
}
String String::fromUTF8(const CString& s)
{
return fromUTF8(s.data());
}
String String::fromUTF8WithLatin1Fallback(const LChar* string, size_t size)
{
String utf8 = fromUTF8(string, size);
if (!utf8)
return String(string, size);
return utf8;
}
// String Operations
static bool isCharacterAllowedInBase(UChar c, int base)
{
if (c > 0x7F)
return false;
if (isASCIIDigit(c))
return c - '0' < base;
if (isASCIIAlpha(c)) {
if (base > 36)
base = 36;
return (c >= 'a' && c < 'a' + base - 10)
|| (c >= 'A' && c < 'A' + base - 10);
}
return false;
}
template <typename IntegralType, typename CharType>
static inline IntegralType toIntegralType(const CharType* data, size_t length, bool* ok, int base)
{
static const IntegralType integralMax = numeric_limits<IntegralType>::max();
static const bool isSigned = numeric_limits<IntegralType>::is_signed;
const IntegralType maxMultiplier = integralMax / base;
IntegralType value = 0;
bool isOk = false;
bool isNegative = false;
if (!data)
goto bye;
// skip leading whitespace
while (length && isSpaceOrNewline(*data)) {
--length;
++data;
}
if (isSigned && length && *data == '-') {
--length;
++data;
isNegative = true;
} else if (length && *data == '+') {
--length;
++data;
}
if (!length || !isCharacterAllowedInBase(*data, base))
goto bye;
while (length && isCharacterAllowedInBase(*data, base)) {
--length;
IntegralType digitValue;
CharType c = *data;
if (isASCIIDigit(c))
digitValue = c - '0';
else if (c >= 'a')
digitValue = c - 'a' + 10;
else
digitValue = c - 'A' + 10;
if (value > maxMultiplier || (value == maxMultiplier && digitValue > (integralMax % base) + isNegative))
goto bye;
value = base * value + digitValue;
++data;
}
#if COMPILER(MSVC)
#pragma warning(push, 0)
#pragma warning(disable:4146)
#endif
if (isNegative)
value = -value;
#if COMPILER(MSVC)
#pragma warning(pop)
#endif
// skip trailing space
while (length && isSpaceOrNewline(*data)) {
--length;
++data;
}
if (!length)
isOk = true;
bye:
if (ok)
*ok = isOk;
return isOk ? value : 0;
}
template <typename CharType>
static unsigned lengthOfCharactersAsInteger(const CharType* data, size_t length)
{
size_t i = 0;
// Allow leading spaces.
for (; i != length; ++i) {
if (!isSpaceOrNewline(data[i]))
break;
}
// Allow sign.
if (i != length && (data[i] == '+' || data[i] == '-'))
++i;
// Allow digits.
for (; i != length; ++i) {
if (!isASCIIDigit(data[i]))
break;
}
return i;
}
int charactersToIntStrict(const LChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<int, LChar>(data, length, ok, base);
}
int charactersToIntStrict(const UChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<int, UChar>(data, length, ok, base);
}
unsigned charactersToUIntStrict(const LChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<unsigned, LChar>(data, length, ok, base);
}
unsigned charactersToUIntStrict(const UChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<unsigned, UChar>(data, length, ok, base);
}
int64_t charactersToInt64Strict(const LChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<int64_t, LChar>(data, length, ok, base);
}
int64_t charactersToInt64Strict(const UChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<int64_t, UChar>(data, length, ok, base);
}
uint64_t charactersToUInt64Strict(const LChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<uint64_t, LChar>(data, length, ok, base);
}
uint64_t charactersToUInt64Strict(const UChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<uint64_t, UChar>(data, length, ok, base);
}
intptr_t charactersToIntPtrStrict(const LChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<intptr_t, LChar>(data, length, ok, base);
}
intptr_t charactersToIntPtrStrict(const UChar* data, size_t length, bool* ok, int base)
{
return toIntegralType<intptr_t, UChar>(data, length, ok, base);
}
int charactersToInt(const LChar* data, size_t length, bool* ok)
{
return toIntegralType<int, LChar>(data, lengthOfCharactersAsInteger<LChar>(data, length), ok, 10);
}
int charactersToInt(const UChar* data, size_t length, bool* ok)
{
return toIntegralType<int, UChar>(data, lengthOfCharactersAsInteger(data, length), ok, 10);
}
unsigned charactersToUInt(const LChar* data, size_t length, bool* ok)
{
return toIntegralType<unsigned, LChar>(data, lengthOfCharactersAsInteger<LChar>(data, length), ok, 10);
}
unsigned charactersToUInt(const UChar* data, size_t length, bool* ok)
{
return toIntegralType<unsigned, UChar>(data, lengthOfCharactersAsInteger<UChar>(data, length), ok, 10);
}
int64_t charactersToInt64(const LChar* data, size_t length, bool* ok)
{
return toIntegralType<int64_t, LChar>(data, lengthOfCharactersAsInteger<LChar>(data, length), ok, 10);
}
int64_t charactersToInt64(const UChar* data, size_t length, bool* ok)
{
return toIntegralType<int64_t, UChar>(data, lengthOfCharactersAsInteger<UChar>(data, length), ok, 10);
}
uint64_t charactersToUInt64(const LChar* data, size_t length, bool* ok)
{
return toIntegralType<uint64_t, LChar>(data, lengthOfCharactersAsInteger<LChar>(data, length), ok, 10);
}
uint64_t charactersToUInt64(const UChar* data, size_t length, bool* ok)
{
return toIntegralType<uint64_t, UChar>(data, lengthOfCharactersAsInteger<UChar>(data, length), ok, 10);
}
intptr_t charactersToIntPtr(const LChar* data, size_t length, bool* ok)
{
return toIntegralType<intptr_t, LChar>(data, lengthOfCharactersAsInteger<LChar>(data, length), ok, 10);
}
intptr_t charactersToIntPtr(const UChar* data, size_t length, bool* ok)
{
return toIntegralType<intptr_t, UChar>(data, lengthOfCharactersAsInteger<UChar>(data, length), ok, 10);
}
enum TrailingJunkPolicy { DisallowTrailingJunk, AllowTrailingJunk };
template <typename CharType, TrailingJunkPolicy policy>
static inline double toDoubleType(const CharType* data, size_t length, bool* ok, size_t& parsedLength)
{
size_t leadingSpacesLength = 0;
while (leadingSpacesLength < length && isASCIISpace(data[leadingSpacesLength]))
++leadingSpacesLength;
double number = parseDouble(data + leadingSpacesLength, length - leadingSpacesLength, parsedLength);
if (!parsedLength) {
if (ok)
*ok = false;
return 0.0;
}
parsedLength += leadingSpacesLength;
if (ok)
*ok = policy == AllowTrailingJunk || parsedLength == length;
return number;
}
double charactersToDouble(const LChar* data, size_t length, bool* ok)
{
size_t parsedLength;
return toDoubleType<LChar, DisallowTrailingJunk>(data, length, ok, parsedLength);
}
double charactersToDouble(const UChar* data, size_t length, bool* ok)
{
size_t parsedLength;
return toDoubleType<UChar, DisallowTrailingJunk>(data, length, ok, parsedLength);
}
float charactersToFloat(const LChar* data, size_t length, bool* ok)
{
// FIXME: This will return ok even when the string fits into a double but not a float.
size_t parsedLength;
return static_cast<float>(toDoubleType<LChar, DisallowTrailingJunk>(data, length, ok, parsedLength));
}
float charactersToFloat(const UChar* data, size_t length, bool* ok)
{
// FIXME: This will return ok even when the string fits into a double but not a float.
size_t parsedLength;
return static_cast<float>(toDoubleType<UChar, DisallowTrailingJunk>(data, length, ok, parsedLength));
}
float charactersToFloat(const LChar* data, size_t length, size_t& parsedLength)
{
// FIXME: This will return ok even when the string fits into a double but not a float.
return static_cast<float>(toDoubleType<LChar, AllowTrailingJunk>(data, length, 0, parsedLength));
}
float charactersToFloat(const UChar* data, size_t length, size_t& parsedLength)
{
// FIXME: This will return ok even when the string fits into a double but not a float.
return static_cast<float>(toDoubleType<UChar, AllowTrailingJunk>(data, length, 0, parsedLength));
}
const String& emptyString()
{
DEFINE_STATIC_LOCAL(String, emptyString, (StringImpl::empty()));
return emptyString;
}
} // namespace WTF
#ifndef NDEBUG
// For use in the debugger
String* string(const char*);
Vector<char> asciiDebug(StringImpl* impl);
Vector<char> asciiDebug(String& string);
void String::show() const
{
dataLogF("%s\n", asciiDebug(impl()).data());
}
String* string(const char* s)
{
// leaks memory!
return new String(s);
}
Vector<char> asciiDebug(StringImpl* impl)
{
if (!impl)
return asciiDebug(String("[null]").impl());
Vector<char> buffer;
for (unsigned i = 0; i < impl->length(); ++i) {
UChar ch = (*impl)[i];
if (isASCIIPrintable(ch)) {
if (ch == '\\')
buffer.append(ch);
buffer.append(ch);
} else {
buffer.append('\\');
buffer.append('u');
appendUnsignedAsHexFixedSize(ch, buffer, 4);
}
}
buffer.append('\0');
return buffer;
}
Vector<char> asciiDebug(String& string)
{
return asciiDebug(string.impl());
}
#endif