| /* |
| * Copyright (c) 2014 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./vp9_rtcd.h" |
| #include "./vpx_dsp_rtcd.h" |
| |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem.h" |
| |
| #include "vp9/common/vp9_blockd.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_scan.h" |
| |
| #include "vp9/encoder/vp9_cost.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "vp9/encoder/vp9_pickmode.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/encoder/vp9_rd.h" |
| |
| typedef struct { |
| uint8_t *data; |
| int stride; |
| int in_use; |
| } PRED_BUFFER; |
| |
| |
| static const int pos_shift_16x16[4][4] = { |
| {9, 10, 13, 14}, |
| {11, 12, 15, 16}, |
| {17, 18, 21, 22}, |
| {19, 20, 23, 24} |
| }; |
| |
| static int mv_refs_rt(VP9_COMP *cpi, const VP9_COMMON *cm, |
| const MACROBLOCK *x, |
| const MACROBLOCKD *xd, |
| const TileInfo *const tile, |
| MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, |
| int_mv *mv_ref_list, int_mv *base_mv, |
| int mi_row, int mi_col, int use_base_mv) { |
| const int *ref_sign_bias = cm->ref_frame_sign_bias; |
| int i, refmv_count = 0; |
| |
| const POSITION *const mv_ref_search = mv_ref_blocks[mi->sb_type]; |
| |
| int different_ref_found = 0; |
| int context_counter = 0; |
| int const_motion = 0; |
| |
| // Blank the reference vector list |
| memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES); |
| |
| // The nearest 2 blocks are treated differently |
| // if the size < 8x8 we get the mv from the bmi substructure, |
| // and we also need to keep a mode count. |
| for (i = 0; i < 2; ++i) { |
| const POSITION *const mv_ref = &mv_ref_search[i]; |
| if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { |
| const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row * |
| xd->mi_stride]; |
| // Keep counts for entropy encoding. |
| context_counter += mode_2_counter[candidate_mi->mode]; |
| different_ref_found = 1; |
| |
| if (candidate_mi->ref_frame[0] == ref_frame) |
| ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1), |
| refmv_count, mv_ref_list, Done); |
| } |
| } |
| |
| const_motion = 1; |
| |
| // Check the rest of the neighbors in much the same way |
| // as before except we don't need to keep track of sub blocks or |
| // mode counts. |
| for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) { |
| const POSITION *const mv_ref = &mv_ref_search[i]; |
| if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { |
| const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row * |
| xd->mi_stride]; |
| different_ref_found = 1; |
| |
| if (candidate_mi->ref_frame[0] == ref_frame) |
| ADD_MV_REF_LIST(candidate_mi->mv[0], refmv_count, mv_ref_list, Done); |
| } |
| } |
| |
| // Since we couldn't find 2 mvs from the same reference frame |
| // go back through the neighbors and find motion vectors from |
| // different reference frames. |
| if (different_ref_found && !refmv_count) { |
| for (i = 0; i < MVREF_NEIGHBOURS; ++i) { |
| const POSITION *mv_ref = &mv_ref_search[i]; |
| if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { |
| const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row |
| * xd->mi_stride]; |
| |
| // If the candidate is INTRA we don't want to consider its mv. |
| IF_DIFF_REF_FRAME_ADD_MV(candidate_mi, ref_frame, ref_sign_bias, |
| refmv_count, mv_ref_list, Done); |
| } |
| } |
| } |
| if (use_base_mv && |
| !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && |
| ref_frame == LAST_FRAME) { |
| // Get base layer mv. |
| MV_REF *candidate = |
| &cm->prev_frame->mvs[(mi_col>>1) + (mi_row>>1) * (cm->mi_cols>>1)]; |
| if (candidate->mv[0].as_int != INVALID_MV) { |
| base_mv->as_mv.row = (candidate->mv[0].as_mv.row * 2); |
| base_mv->as_mv.col = (candidate->mv[0].as_mv.col * 2); |
| clamp_mv_ref(&base_mv->as_mv, xd); |
| } else { |
| base_mv->as_int = INVALID_MV; |
| } |
| } |
| |
| Done: |
| |
| x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter]; |
| |
| // Clamp vectors |
| for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) |
| clamp_mv_ref(&mv_ref_list[i].as_mv, xd); |
| |
| return const_motion; |
| } |
| |
| static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int_mv *tmp_mv, int *rate_mv, |
| int64_t best_rd_sofar, int use_base_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}}; |
| const int step_param = cpi->sf.mv.fullpel_search_step_param; |
| const int sadpb = x->sadperbit16; |
| MV mvp_full; |
| const int ref = mi->ref_frame[0]; |
| const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| MV center_mv; |
| int dis; |
| int rate_mode; |
| const int tmp_col_min = x->mv_col_min; |
| const int tmp_col_max = x->mv_col_max; |
| const int tmp_row_min = x->mv_row_min; |
| const int tmp_row_max = x->mv_row_max; |
| int rv = 0; |
| int cost_list[5]; |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi, |
| ref); |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[i] = xd->plane[i].pre[0]; |
| vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); |
| } |
| vp9_set_mv_search_range(x, &ref_mv); |
| |
| assert(x->mv_best_ref_index[ref] <= 2); |
| if (x->mv_best_ref_index[ref] < 2) |
| mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv; |
| else |
| mvp_full = x->pred_mv[ref]; |
| |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| |
| if (!use_base_mv) |
| center_mv = ref_mv; |
| else |
| center_mv = tmp_mv->as_mv; |
| |
| vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb, |
| cond_cost_list(cpi, cost_list), |
| ¢er_mv, &tmp_mv->as_mv, INT_MAX, 0); |
| |
| x->mv_col_min = tmp_col_min; |
| x->mv_col_max = tmp_col_max; |
| x->mv_row_min = tmp_row_min; |
| x->mv_row_max = tmp_row_max; |
| |
| // calculate the bit cost on motion vector |
| mvp_full.row = tmp_mv->as_mv.row * 8; |
| mvp_full.col = tmp_mv->as_mv.col * 8; |
| |
| *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| |
| rate_mode = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]] |
| [INTER_OFFSET(NEWMV)]; |
| rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) > |
| best_rd_sofar); |
| |
| if (rv) { |
| cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv, |
| cpi->common.allow_high_precision_mv, |
| x->errorperbit, |
| &cpi->fn_ptr[bsize], |
| cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, |
| cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, |
| &dis, &x->pred_sse[ref], NULL, 0, 0); |
| *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| return rv; |
| } |
| |
| static void block_variance(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| int w, int h, unsigned int *sse, int *sum, |
| int block_size, unsigned int *sse8x8, |
| int *sum8x8, unsigned int *var8x8) { |
| int i, j, k = 0; |
| |
| *sse = 0; |
| *sum = 0; |
| |
| for (i = 0; i < h; i += block_size) { |
| for (j = 0; j < w; j += block_size) { |
| vpx_get8x8var(src + src_stride * i + j, src_stride, |
| ref + ref_stride * i + j, ref_stride, |
| &sse8x8[k], &sum8x8[k]); |
| *sse += sse8x8[k]; |
| *sum += sum8x8[k]; |
| var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6); |
| k++; |
| } |
| } |
| } |
| |
| static void calculate_variance(int bw, int bh, TX_SIZE tx_size, |
| unsigned int *sse_i, int *sum_i, |
| unsigned int *var_o, unsigned int *sse_o, |
| int *sum_o) { |
| const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; |
| const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); |
| const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); |
| int i, j, k = 0; |
| |
| for (i = 0; i < nh; i += 2) { |
| for (j = 0; j < nw; j += 2) { |
| sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + |
| sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; |
| sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + |
| sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; |
| var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >> |
| (b_width_log2_lookup[unit_size] + |
| b_height_log2_lookup[unit_size] + 6)); |
| k++; |
| } |
| } |
| } |
| |
| static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| int *out_rate_sum, int64_t *out_dist_sum, |
| unsigned int *var_y, unsigned int *sse_y, |
| int mi_row, int mi_col, int *early_term) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const uint32_t dc_quant = pd->dequant[0]; |
| const uint32_t ac_quant = pd->dequant[1]; |
| const int64_t dc_thr = dc_quant * dc_quant >> 6; |
| const int64_t ac_thr = ac_quant * ac_quant >> 6; |
| unsigned int var; |
| int sum; |
| int skip_dc = 0; |
| |
| const int bw = b_width_log2_lookup[bsize]; |
| const int bh = b_height_log2_lookup[bsize]; |
| const int num8x8 = 1 << (bw + bh - 2); |
| unsigned int sse8x8[64] = {0}; |
| int sum8x8[64] = {0}; |
| unsigned int var8x8[64] = {0}; |
| TX_SIZE tx_size; |
| int i, k; |
| |
| // Calculate variance for whole partition, and also save 8x8 blocks' variance |
| // to be used in following transform skipping test. |
| block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8); |
| var = sse - (((int64_t)sum * sum) >> (bw + bh + 4)); |
| |
| *var_y = var; |
| *sse_y = sse; |
| |
| if (cpi->common.tx_mode == TX_MODE_SELECT) { |
| if (sse > (var << 2)) |
| tx_size = VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| else |
| tx_size = TX_8X8; |
| |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && |
| cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id)) |
| tx_size = TX_8X8; |
| else if (tx_size > TX_16X16) |
| tx_size = TX_16X16; |
| } else { |
| tx_size = VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| } |
| |
| assert(tx_size >= TX_8X8); |
| xd->mi[0]->tx_size = tx_size; |
| |
| // Evaluate if the partition block is a skippable block in Y plane. |
| { |
| unsigned int sse16x16[16] = {0}; |
| int sum16x16[16] = {0}; |
| unsigned int var16x16[16] = {0}; |
| const int num16x16 = num8x8 >> 2; |
| |
| unsigned int sse32x32[4] = {0}; |
| int sum32x32[4] = {0}; |
| unsigned int var32x32[4] = {0}; |
| const int num32x32 = num8x8 >> 4; |
| |
| int ac_test = 1; |
| int dc_test = 1; |
| const int num = (tx_size == TX_8X8) ? num8x8 : |
| ((tx_size == TX_16X16) ? num16x16 : num32x32); |
| const unsigned int *sse_tx = (tx_size == TX_8X8) ? sse8x8 : |
| ((tx_size == TX_16X16) ? sse16x16 : sse32x32); |
| const unsigned int *var_tx = (tx_size == TX_8X8) ? var8x8 : |
| ((tx_size == TX_16X16) ? var16x16 : var32x32); |
| |
| // Calculate variance if tx_size > TX_8X8 |
| if (tx_size >= TX_16X16) |
| calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, |
| sum16x16); |
| if (tx_size == TX_32X32) |
| calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32, |
| sse32x32, sum32x32); |
| |
| // Skipping test |
| x->skip_txfm[0] = SKIP_TXFM_NONE; |
| for (k = 0; k < num; k++) |
| // Check if all ac coefficients can be quantized to zero. |
| if (!(var_tx[k] < ac_thr || var == 0)) { |
| ac_test = 0; |
| break; |
| } |
| |
| for (k = 0; k < num; k++) |
| // Check if dc coefficient can be quantized to zero. |
| if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { |
| dc_test = 0; |
| break; |
| } |
| |
| if (ac_test) { |
| x->skip_txfm[0] = SKIP_TXFM_AC_ONLY; |
| |
| if (dc_test) |
| x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| } else if (dc_test) { |
| skip_dc = 1; |
| } |
| } |
| |
| if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) { |
| int skip_uv[2] = {0}; |
| unsigned int var_uv[2]; |
| unsigned int sse_uv[2]; |
| |
| *out_rate_sum = 0; |
| *out_dist_sum = sse << 4; |
| |
| // Transform skipping test in UV planes. |
| for (i = 1; i <= 2; i++) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const TX_SIZE uv_tx_size = get_uv_tx_size(xd->mi[0], pd); |
| const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size]; |
| const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd); |
| const int uv_bw = b_width_log2_lookup[uv_bsize]; |
| const int uv_bh = b_height_log2_lookup[uv_bsize]; |
| const int sf = (uv_bw - b_width_log2_lookup[unit_size]) + |
| (uv_bh - b_height_log2_lookup[unit_size]); |
| const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf); |
| const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf); |
| int j = i - 1; |
| |
| vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i); |
| var_uv[j] = cpi->fn_ptr[uv_bsize].vf(p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride, &sse_uv[j]); |
| |
| if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && |
| (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) |
| skip_uv[j] = 1; |
| else |
| break; |
| } |
| |
| // If the transform in YUV planes are skippable, the mode search checks |
| // fewer inter modes and doesn't check intra modes. |
| if (skip_uv[0] & skip_uv[1]) { |
| *early_term = 1; |
| } |
| |
| return; |
| } |
| |
| if (!skip_dc) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> (xd->bd - 5), &rate, &dist); |
| } else { |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> 3, &rate, &dist); |
| } |
| #else |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| if (!skip_dc) { |
| *out_rate_sum = rate >> 1; |
| *out_dist_sum = dist << 3; |
| } else { |
| *out_rate_sum = 0; |
| *out_dist_sum = (sse - var) << 4; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], |
| ac_quant >> (xd->bd - 5), &rate, &dist); |
| } else { |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], |
| ac_quant >> 3, &rate, &dist); |
| } |
| #else |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], |
| ac_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| *out_rate_sum += rate; |
| *out_dist_sum += dist << 4; |
| } |
| |
| static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| int *out_rate_sum, int64_t *out_dist_sum, |
| unsigned int *var_y, unsigned int *sse_y) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int64_t dc_thr = p->quant_thred[0] >> 6; |
| const int64_t ac_thr = p->quant_thred[1] >> 6; |
| const uint32_t dc_quant = pd->dequant[0]; |
| const uint32_t ac_quant = pd->dequant[1]; |
| unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride, &sse); |
| int skip_dc = 0; |
| |
| *var_y = var; |
| *sse_y = sse; |
| |
| if (cpi->common.tx_mode == TX_MODE_SELECT) { |
| if (sse > (var << 2)) |
| xd->mi[0]->tx_size = |
| VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| else |
| xd->mi[0]->tx_size = TX_8X8; |
| |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && |
| cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id)) |
| xd->mi[0]->tx_size = TX_8X8; |
| else if (xd->mi[0]->tx_size > TX_16X16) |
| xd->mi[0]->tx_size = TX_16X16; |
| } else { |
| xd->mi[0]->tx_size = |
| VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| } |
| |
| // Evaluate if the partition block is a skippable block in Y plane. |
| { |
| const BLOCK_SIZE unit_size = |
| txsize_to_bsize[xd->mi[0]->tx_size]; |
| const unsigned int num_blk_log2 = |
| (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) + |
| (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]); |
| const unsigned int sse_tx = sse >> num_blk_log2; |
| const unsigned int var_tx = var >> num_blk_log2; |
| |
| x->skip_txfm[0] = SKIP_TXFM_NONE; |
| // Check if all ac coefficients can be quantized to zero. |
| if (var_tx < ac_thr || var == 0) { |
| x->skip_txfm[0] = SKIP_TXFM_AC_ONLY; |
| // Check if dc coefficient can be quantized to zero. |
| if (sse_tx - var_tx < dc_thr || sse == var) |
| x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| } else { |
| if (sse_tx - var_tx < dc_thr || sse == var) |
| skip_dc = 1; |
| } |
| } |
| |
| if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) { |
| *out_rate_sum = 0; |
| *out_dist_sum = sse << 4; |
| return; |
| } |
| |
| if (!skip_dc) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> (xd->bd - 5), &rate, &dist); |
| } else { |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> 3, &rate, &dist); |
| } |
| #else |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], |
| dc_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| if (!skip_dc) { |
| *out_rate_sum = rate >> 1; |
| *out_dist_sum = dist << 3; |
| } else { |
| *out_rate_sum = 0; |
| *out_dist_sum = (sse - var) << 4; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], |
| ac_quant >> (xd->bd - 5), &rate, &dist); |
| } else { |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], |
| ac_quant >> 3, &rate, &dist); |
| } |
| #else |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], |
| ac_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| *out_rate_sum += rate; |
| *out_dist_sum += dist << 4; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *this_rdc, |
| int *skippable, int64_t *sse, BLOCK_SIZE bsize, |
| TX_SIZE tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| unsigned int var_y, sse_y; |
| |
| (void)tx_size; |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc->rate, &this_rdc->dist, &var_y, |
| &sse_y); |
| *sse = INT_MAX; |
| *skippable = 0; |
| return; |
| } |
| #else |
| static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *this_rdc, |
| int *skippable, int64_t *sse, BLOCK_SIZE bsize, |
| TX_SIZE tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const struct macroblockd_plane *pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| const int step = 1 << (tx_size << 1); |
| const int block_step = (1 << tx_size); |
| int block = 0, r, c; |
| const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : |
| xd->mb_to_right_edge >> 5); |
| const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : |
| xd->mb_to_bottom_edge >> 5); |
| int eob_cost = 0; |
| const int bw = 4 * num_4x4_w; |
| const int bh = 4 * num_4x4_h; |
| |
| (void)cpi; |
| |
| // The max tx_size passed in is TX_16X16. |
| assert(tx_size != TX_32X32); |
| |
| vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| *skippable = 1; |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (r = 0; r < max_blocks_high; r += block_step) { |
| for (c = 0; c < num_4x4_w; c += block_step) { |
| if (c < max_blocks_wide) { |
| const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint16_t *const eob = &p->eobs[block]; |
| const int diff_stride = bw; |
| const int16_t *src_diff; |
| src_diff = &p->src_diff[(r * diff_stride + c) << 2]; |
| |
| switch (tx_size) { |
| case TX_16X16: |
| vpx_hadamard_16x16(src_diff, diff_stride, (int16_t *)coeff); |
| vp9_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp, |
| p->quant_fp, p->quant_shift, qcoeff, dqcoeff, |
| pd->dequant, eob, |
| scan_order->scan, scan_order->iscan); |
| break; |
| case TX_8X8: |
| vpx_hadamard_8x8(src_diff, diff_stride, (int16_t *)coeff); |
| vp9_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp, |
| p->quant_fp, p->quant_shift, qcoeff, dqcoeff, |
| pd->dequant, eob, |
| scan_order->scan, scan_order->iscan); |
| break; |
| case TX_4X4: |
| x->fwd_txm4x4(src_diff, coeff, diff_stride); |
| vp9_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp, |
| p->quant_fp, p->quant_shift, qcoeff, dqcoeff, |
| pd->dequant, eob, |
| scan_order->scan, scan_order->iscan); |
| break; |
| default: |
| assert(0); |
| break; |
| } |
| *skippable &= (*eob == 0); |
| eob_cost += 1; |
| } |
| block += step; |
| } |
| } |
| |
| this_rdc->rate = 0; |
| if (*sse < INT64_MAX) { |
| *sse = (*sse << 6) >> 2; |
| if (*skippable) { |
| this_rdc->dist = *sse; |
| return; |
| } |
| } |
| |
| block = 0; |
| this_rdc->dist = 0; |
| for (r = 0; r < max_blocks_high; r += block_step) { |
| for (c = 0; c < num_4x4_w; c += block_step) { |
| if (c < max_blocks_wide) { |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint16_t *const eob = &p->eobs[block]; |
| |
| if (*eob == 1) |
| this_rdc->rate += (int)abs(qcoeff[0]); |
| else if (*eob > 1) |
| this_rdc->rate += vpx_satd((const int16_t *)qcoeff, step << 4); |
| |
| this_rdc->dist += |
| vp9_block_error_fp(coeff, dqcoeff, step << 4) >> 2; |
| } |
| block += step; |
| } |
| } |
| |
| // If skippable is set, rate gets clobbered later. |
| this_rdc->rate <<= (2 + VP9_PROB_COST_SHIFT); |
| this_rdc->rate += (eob_cost << VP9_PROB_COST_SHIFT); |
| } |
| #endif |
| |
| static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE plane_bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| RD_COST *this_rdc, |
| unsigned int *var_y, unsigned int *sse_y, |
| int start_plane, int stop_plane) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| int i; |
| |
| this_rdc->rate = 0; |
| this_rdc->dist = 0; |
| |
| for (i = start_plane; i <= stop_plane; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const uint32_t dc_quant = pd->dequant[0]; |
| const uint32_t ac_quant = pd->dequant[1]; |
| const BLOCK_SIZE bs = plane_bsize; |
| unsigned int var; |
| |
| if (!x->color_sensitivity[i - 1]) |
| continue; |
| |
| var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride, &sse); |
| *var_y += var; |
| *sse_y += sse; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], |
| dc_quant >> (xd->bd - 5), &rate, &dist); |
| } else { |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], |
| dc_quant >> 3, &rate, &dist); |
| } |
| #else |
| vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], |
| dc_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| this_rdc->rate += rate >> 1; |
| this_rdc->dist += dist << 3; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], |
| ac_quant >> (xd->bd - 5), &rate, &dist); |
| } else { |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], |
| ac_quant >> 3, &rate, &dist); |
| } |
| #else |
| vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], |
| ac_quant >> 3, &rate, &dist); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| this_rdc->rate += rate; |
| this_rdc->dist += dist << 4; |
| } |
| } |
| |
| static int get_pred_buffer(PRED_BUFFER *p, int len) { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| if (!p[i].in_use) { |
| p[i].in_use = 1; |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| static void free_pred_buffer(PRED_BUFFER *p) { |
| if (p != NULL) |
| p->in_use = 0; |
| } |
| |
| static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| MV_REFERENCE_FRAME ref_frame, |
| PREDICTION_MODE this_mode, |
| unsigned int var_y, unsigned int sse_y, |
| struct buf_2d yv12_mb[][MAX_MB_PLANE], |
| int *rate, int64_t *dist) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]); |
| unsigned int var = var_y, sse = sse_y; |
| // Skipping threshold for ac. |
| unsigned int thresh_ac; |
| // Skipping threshold for dc. |
| unsigned int thresh_dc; |
| int motion_low = 1; |
| if (mi->mv[0].as_mv.row > 64 || |
| mi->mv[0].as_mv.row < -64 || |
| mi->mv[0].as_mv.col > 64 || |
| mi->mv[0].as_mv.col < -64) |
| motion_low = 0; |
| if (x->encode_breakout > 0 && motion_low == 1) { |
| // Set a maximum for threshold to avoid big PSNR loss in low bit rate |
| // case. Use extreme low threshold for static frames to limit |
| // skipping. |
| const unsigned int max_thresh = 36000; |
| // The encode_breakout input |
| const unsigned int min_thresh = |
| VPXMIN(((unsigned int)x->encode_breakout << 4), max_thresh); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int shift = (xd->bd << 1) - 16; |
| #endif |
| |
| // Calculate threshold according to dequant value. |
| thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { |
| thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| thresh_ac = clamp(thresh_ac, min_thresh, max_thresh); |
| |
| // Adjust ac threshold according to partition size. |
| thresh_ac >>= |
| 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| |
| thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { |
| thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } else { |
| thresh_ac = 0; |
| thresh_dc = 0; |
| } |
| |
| // Y skipping condition checking for ac and dc. |
| if (var <= thresh_ac && (sse - var) <= thresh_dc) { |
| unsigned int sse_u, sse_v; |
| unsigned int var_u, var_v; |
| unsigned int thresh_ac_uv = thresh_ac; |
| unsigned int thresh_dc_uv = thresh_dc; |
| if (x->sb_is_skin) { |
| thresh_ac_uv = 0; |
| thresh_dc_uv = 0; |
| } |
| |
| // Skip UV prediction unless breakout is zero (lossless) to save |
| // computation with low impact on the result |
| if (x->encode_breakout == 0) { |
| xd->plane[1].pre[0] = yv12_mb[ref_frame][1]; |
| xd->plane[2].pre[0] = yv12_mb[ref_frame][2]; |
| vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize); |
| } |
| |
| var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, |
| x->plane[1].src.stride, |
| xd->plane[1].dst.buf, |
| xd->plane[1].dst.stride, &sse_u); |
| |
| // U skipping condition checking |
| if (((var_u << 2) <= thresh_ac_uv) && (sse_u - var_u <= thresh_dc_uv)) { |
| var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf, |
| x->plane[2].src.stride, |
| xd->plane[2].dst.buf, |
| xd->plane[2].dst.stride, &sse_v); |
| |
| // V skipping condition checking |
| if (((var_v << 2) <= thresh_ac_uv) && (sse_v - var_v <= thresh_dc_uv)) { |
| x->skip = 1; |
| |
| // The cost of skip bit needs to be added. |
| *rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] |
| [INTER_OFFSET(this_mode)]; |
| |
| // More on this part of rate |
| // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| |
| // Scaling factor for SSE from spatial domain to frequency |
| // domain is 16. Adjust distortion accordingly. |
| // TODO(yunqingwang): In this function, only y-plane dist is |
| // calculated. |
| *dist = (sse << 4); // + ((sse_u + sse_v) << 4); |
| |
| // *disable_skip = 1; |
| } |
| } |
| } |
| } |
| |
| struct estimate_block_intra_args { |
| VP9_COMP *cpi; |
| MACROBLOCK *x; |
| PREDICTION_MODE mode; |
| int skippable; |
| RD_COST *rdc; |
| }; |
| |
| static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg) { |
| struct estimate_block_intra_args* const args = arg; |
| VP9_COMP *const cpi = args->cpi; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; |
| uint8_t *const src_buf_base = p->src.buf; |
| uint8_t *const dst_buf_base = pd->dst.buf; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| int i, j; |
| RD_COST this_rdc; |
| |
| txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j); |
| |
| p->src.buf = &src_buf_base[4 * (j * src_stride + i)]; |
| pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)]; |
| // Use source buffer as an approximation for the fully reconstructed buffer. |
| vp9_predict_intra_block(xd, b_width_log2_lookup[plane_bsize], |
| tx_size, args->mode, |
| x->skip_encode ? p->src.buf : pd->dst.buf, |
| x->skip_encode ? src_stride : dst_stride, |
| pd->dst.buf, dst_stride, |
| i, j, plane); |
| |
| if (plane == 0) { |
| int64_t this_sse = INT64_MAX; |
| // TODO(jingning): This needs further refactoring. |
| block_yrd(cpi, x, &this_rdc, &args->skippable, &this_sse, bsize_tx, |
| VPXMIN(tx_size, TX_16X16)); |
| } else { |
| unsigned int var = 0; |
| unsigned int sse = 0; |
| model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &var, &sse, plane, |
| plane); |
| } |
| |
| p->src.buf = src_buf_base; |
| pd->dst.buf = dst_buf_base; |
| args->rdc->rate += this_rdc.rate; |
| args->rdc->dist += this_rdc.dist; |
| } |
| |
| static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][4] = { |
| {THR_DC, THR_V_PRED, THR_H_PRED, THR_TM}, |
| {THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV}, |
| {THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG}, |
| }; |
| |
| static const PREDICTION_MODE intra_mode_list[] = { |
| DC_PRED, V_PRED, H_PRED, TM_PRED |
| }; |
| |
| static int mode_offset(const PREDICTION_MODE mode) { |
| if (mode >= NEARESTMV) { |
| return INTER_OFFSET(mode); |
| } else { |
| switch (mode) { |
| case DC_PRED: |
| return 0; |
| case V_PRED: |
| return 1; |
| case H_PRED: |
| return 2; |
| case TM_PRED: |
| return 3; |
| default: |
| return -1; |
| } |
| } |
| } |
| |
| static INLINE void update_thresh_freq_fact(VP9_COMP *cpi, |
| TileDataEnc *tile_data, |
| BLOCK_SIZE bsize, |
| MV_REFERENCE_FRAME ref_frame, |
| THR_MODES best_mode_idx, |
| PREDICTION_MODE mode) { |
| THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; |
| int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx]; |
| if (thr_mode_idx == best_mode_idx) |
| *freq_fact -= (*freq_fact >> 4); |
| else |
| *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, |
| cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); |
| } |
| |
| void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| RD_COST this_rdc, best_rdc; |
| PREDICTION_MODE this_mode; |
| struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; |
| const TX_SIZE intra_tx_size = |
| VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| MODE_INFO *const mic = xd->mi[0]; |
| int *bmode_costs; |
| const MODE_INFO *above_mi = xd->above_mi; |
| const MODE_INFO *left_mi = xd->left_mi; |
| const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0); |
| const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0); |
| bmode_costs = cpi->y_mode_costs[A][L]; |
| |
| (void) ctx; |
| vp9_rd_cost_reset(&best_rdc); |
| vp9_rd_cost_reset(&this_rdc); |
| |
| mi->ref_frame[0] = INTRA_FRAME; |
| mi->mv[0].as_int = INVALID_MV; |
| mi->uv_mode = DC_PRED; |
| memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); |
| |
| // Change the limit of this loop to add other intra prediction |
| // mode tests. |
| for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) { |
| this_rdc.dist = this_rdc.rate = 0; |
| args.mode = this_mode; |
| args.skippable = 1; |
| args.rdc = &this_rdc; |
| mi->tx_size = intra_tx_size; |
| vp9_foreach_transformed_block_in_plane(xd, bsize, 0, |
| estimate_block_intra, &args); |
| if (args.skippable) { |
| x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1); |
| } else { |
| x->skip_txfm[0] = SKIP_TXFM_NONE; |
| this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0); |
| } |
| this_rdc.rate += bmode_costs[this_mode]; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, |
| this_rdc.rate, this_rdc.dist); |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| mi->mode = this_mode; |
| } |
| } |
| |
| *rd_cost = best_rdc; |
| } |
| |
| static void init_ref_frame_cost(VP9_COMMON *const cm, |
| MACROBLOCKD *const xd, |
| int ref_frame_cost[MAX_REF_FRAMES]) { |
| vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd); |
| vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); |
| vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); |
| |
| ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); |
| ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] = |
| ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1); |
| |
| ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); |
| ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); |
| ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); |
| ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); |
| ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); |
| } |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame; |
| PREDICTION_MODE pred_mode; |
| } REF_MODE; |
| |
| #define RT_INTER_MODES 8 |
| static const REF_MODE ref_mode_set[RT_INTER_MODES] = { |
| {LAST_FRAME, ZEROMV}, |
| {LAST_FRAME, NEARESTMV}, |
| {GOLDEN_FRAME, ZEROMV}, |
| {LAST_FRAME, NEARMV}, |
| {LAST_FRAME, NEWMV}, |
| {GOLDEN_FRAME, NEARESTMV}, |
| {GOLDEN_FRAME, NEARMV}, |
| {GOLDEN_FRAME, NEWMV} |
| }; |
| static const REF_MODE ref_mode_set_svc[RT_INTER_MODES] = { |
| {LAST_FRAME, ZEROMV}, |
| {GOLDEN_FRAME, ZEROMV}, |
| {LAST_FRAME, NEARESTMV}, |
| {LAST_FRAME, NEARMV}, |
| {GOLDEN_FRAME, NEARESTMV}, |
| {GOLDEN_FRAME, NEARMV}, |
| {LAST_FRAME, NEWMV}, |
| {GOLDEN_FRAME, NEWMV} |
| }; |
| |
| static int set_intra_cost_penalty(const VP9_COMP *const cpi, BLOCK_SIZE bsize) { |
| const VP9_COMMON *const cm = &cpi->common; |
| // Reduce the intra cost penalty for small blocks (<=16x16). |
| int reduction_fac = |
| (bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0; |
| if (cpi->noise_estimate.enabled && cpi->noise_estimate.level == kHigh) |
| // Don't reduce intra cost penalty if estimated noise level is high. |
| reduction_fac = 0; |
| return vp9_get_intra_cost_penalty( |
| cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) >> reduction_fac; |
| } |
| |
| static INLINE void find_predictors(VP9_COMP *cpi, MACROBLOCK *x, |
| MV_REFERENCE_FRAME ref_frame, |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], |
| int const_motion[MAX_REF_FRAMES], |
| int *ref_frame_skip_mask, |
| const int flag_list[4], |
| TileDataEnc *tile_data, |
| int mi_row, int mi_col, |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], |
| BLOCK_SIZE bsize, |
| int force_skip_low_temp_var) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| // TODO(jingning) placeholder for inter-frame non-RD mode decision. |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[ZEROMV][ref_frame].as_int = 0; |
| // this needs various further optimizations. to be continued.. |
| if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { |
| int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; |
| const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; |
| vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, |
| sf, sf); |
| if (cm->use_prev_frame_mvs) { |
| vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, |
| candidates, mi_row, mi_col, |
| x->mbmi_ext->mode_context); |
| } else { |
| const_motion[ref_frame] = |
| mv_refs_rt(cpi, cm, x, xd, tile_info, xd->mi[0], ref_frame, |
| candidates, &frame_mv[NEWMV][ref_frame], mi_row, mi_col, |
| (int)(cpi->svc.use_base_mv && cpi->svc.spatial_layer_id)); |
| } |
| vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, |
| &frame_mv[NEARESTMV][ref_frame], |
| &frame_mv[NEARMV][ref_frame]); |
| // Early exit for golden frame if force_skip_low_temp_var is set. |
| if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8 && |
| !(force_skip_low_temp_var && ref_frame == GOLDEN_FRAME)) { |
| vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, |
| ref_frame, bsize); |
| } |
| } else { |
| *ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| } |
| |
| static void vp9_large_block_mv_bias(const NOISE_ESTIMATE *ne, RD_COST *this_rdc, |
| BLOCK_SIZE bsize, int mv_row, int mv_col, |
| int is_last_frame) { |
| // Bias against non-zero (above some threshold) motion for large blocks. |
| // This is temporary fix to avoid selection of large mv for big blocks. |
| if (mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64) { |
| if (bsize == BLOCK_64X64) |
| this_rdc->rdcost = this_rdc->rdcost << 1; |
| else if (bsize >= BLOCK_32X32) |
| this_rdc->rdcost = 3 * this_rdc->rdcost >> 1; |
| } |
| // If noise estimation is enabled, and estimated level is above threshold, |
| // add a bias to LAST reference with small motion, for large blocks. |
| if (ne->enabled && ne->level >= kMedium && |
| bsize >= BLOCK_32X32 && is_last_frame && |
| mv_row < 8 && mv_row > -8 && mv_col < 8 && mv_col > -8) { |
| this_rdc->rdcost = 7 * this_rdc->rdcost >> 3; |
| } |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| static void vp9_pickmode_ctx_den_update( |
| VP9_PICKMODE_CTX_DEN *ctx_den, |
| int64_t zero_last_cost_orig, |
| int ref_frame_cost[MAX_REF_FRAMES], |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], |
| int reuse_inter_pred, |
| TX_SIZE best_tx_size, |
| PREDICTION_MODE best_mode, |
| MV_REFERENCE_FRAME best_ref_frame, |
| INTERP_FILTER best_pred_filter, |
| uint8_t best_mode_skip_txfm) { |
| ctx_den->zero_last_cost_orig = zero_last_cost_orig; |
| ctx_den->ref_frame_cost = ref_frame_cost; |
| ctx_den->frame_mv = frame_mv; |
| ctx_den->reuse_inter_pred = reuse_inter_pred; |
| ctx_den->best_tx_size = best_tx_size; |
| ctx_den->best_mode = best_mode; |
| ctx_den->best_ref_frame = best_ref_frame; |
| ctx_den->best_pred_filter = best_pred_filter; |
| ctx_den->best_mode_skip_txfm = best_mode_skip_txfm; |
| } |
| |
| static void recheck_zeromv_after_denoising( |
| VP9_COMP *cpi, MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd, |
| VP9_DENOISER_DECISION decision, VP9_PICKMODE_CTX_DEN *ctx_den, |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_COST *best_rdc, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on |
| // denoised result. Only do this under noise conditions, and if rdcost of |
| // ZEROMV onoriginal source is not significantly higher than rdcost of best |
| // mode. |
| if (cpi->noise_estimate.enabled && |
| cpi->noise_estimate.level > kLow && |
| ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) && |
| ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) || |
| (ctx_den->best_ref_frame == GOLDEN_FRAME && |
| decision == FILTER_ZEROMV_BLOCK))) { |
| // Check if we should pick ZEROMV on denoised signal. |
| int rate = 0; |
| int64_t dist = 0; |
| uint32_t var_y = UINT_MAX; |
| uint32_t sse_y = UINT_MAX; |
| RD_COST this_rdc; |
| mi->mode = ZEROMV; |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE; |
| mi->mv[0].as_int = 0; |
| mi->interp_filter = EIGHTTAP; |
| xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0]; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y); |
| this_rdc.rate = rate + ctx_den->ref_frame_cost[LAST_FRAME] + |
| cpi->inter_mode_cost[x->mbmi_ext->mode_context[LAST_FRAME]] |
| [INTER_OFFSET(ZEROMV)]; |
| this_rdc.dist = dist; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, rate, dist); |
| // Switch to ZEROMV if the rdcost for ZEROMV on denoised source |
| // is lower than best_ref mode (on original source). |
| if (this_rdc.rdcost > best_rdc->rdcost) { |
| this_rdc = *best_rdc; |
| mi->mode = ctx_den->best_mode; |
| mi->ref_frame[0] = ctx_den->best_ref_frame; |
| mi->interp_filter = ctx_den->best_pred_filter; |
| if (ctx_den->best_ref_frame == INTRA_FRAME) |
| mi->mv[0].as_int = INVALID_MV; |
| else if (ctx_den->best_ref_frame == GOLDEN_FRAME) { |
| mi->mv[0].as_int = ctx_den->frame_mv[ctx_den->best_mode] |
| [ctx_den->best_ref_frame].as_int; |
| if (ctx_den->reuse_inter_pred) { |
| xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0]; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| } |
| } |
| mi->tx_size = ctx_den->best_tx_size; |
| x->skip_txfm[0] = ctx_den->best_mode_skip_txfm; |
| } else { |
| ctx_den->best_ref_frame = LAST_FRAME; |
| *best_rdc = this_rdc; |
| } |
| } |
| } |
| #endif // CONFIG_VP9_TEMPORAL_DENOISING |
| |
| static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const int i = (mi_row & 0x7) >> 1; |
| const int j = (mi_col & 0x7) >> 1; |
| int force_skip_low_temp_var = 0; |
| // Set force_skip_low_temp_var based on the block size and block offset. |
| if (bsize == BLOCK_64X64) { |
| force_skip_low_temp_var = variance_low[0]; |
| } else if (bsize == BLOCK_64X32) { |
| if (!(mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[1]; |
| } else if (!(mi_col & 0x7) && (mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[2]; |
| } |
| } else if (bsize == BLOCK_32X64) { |
| if (!(mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[3]; |
| } else if ((mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[4]; |
| } |
| } else if (bsize == BLOCK_32X32) { |
| if (!(mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[5]; |
| } else if ((mi_col & 0x7) && !(mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[6]; |
| } else if (!(mi_col & 0x7) && (mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[7]; |
| } else if ((mi_col & 0x7) && (mi_row & 0x7)) { |
| force_skip_low_temp_var = variance_low[8]; |
| } |
| } else if (bsize == BLOCK_16X16) { |
| force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]]; |
| } else if (bsize == BLOCK_32X16) { |
| // The col shift index for the second 16x16 block. |
| const int j2 = ((mi_col + 2) & 0x7) >> 1; |
| // Only if each 16x16 block inside has low temporal variance. |
| force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] && |
| variance_low[pos_shift_16x16[i][j2]]; |
| } else if (bsize == BLOCK_16X32) { |
| // The row shift index for the second 16x16 block. |
| const int i2 = ((mi_row + 2) & 0x7) >> 1; |
| force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] && |
| variance_low[pos_shift_16x16[i2][j]]; |
| } |
| return force_skip_low_temp_var; |
| } |
| |
| void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| TileDataEnc *tile_data, |
| int mi_row, int mi_col, RD_COST *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| VP9_COMMON *const cm = &cpi->common; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| const SVC *const svc = &cpi->svc; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| PREDICTION_MODE best_mode = ZEROMV; |
| MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME; |
| MV_REFERENCE_FRAME usable_ref_frame; |
| TX_SIZE best_tx_size = TX_SIZES; |
| INTERP_FILTER best_pred_filter = EIGHTTAP; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| RD_COST this_rdc, best_rdc; |
| uint8_t skip_txfm = SKIP_TXFM_NONE, best_mode_skip_txfm = SKIP_TXFM_NONE; |
| // var_y and sse_y are saved to be used in skipping checking |
| unsigned int var_y = UINT_MAX; |
| unsigned int sse_y = UINT_MAX; |
| const int intra_cost_penalty = set_intra_cost_penalty(cpi, bsize); |
| int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv, |
| intra_cost_penalty, 0); |
| const int *const rd_threshes = cpi->rd.threshes[mi->segment_id][bsize]; |
| const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; |
| INTERP_FILTER filter_ref; |
| const int bsl = mi_width_log2_lookup[bsize]; |
| const int pred_filter_search = cm->interp_filter == SWITCHABLE ? |
| (((mi_row + mi_col) >> bsl) + |
| get_chessboard_index(cm->current_video_frame)) & 0x1 : 0; |
| int const_motion[MAX_REF_FRAMES] = { 0 }; |
| const int bh = num_4x4_blocks_high_lookup[bsize] << 2; |
| const int bw = num_4x4_blocks_wide_lookup[bsize] << 2; |
| // For speed 6, the result of interp filter is reused later in actual encoding |
| // process. |
| // tmp[3] points to dst buffer, and the other 3 point to allocated buffers. |
| PRED_BUFFER tmp[4]; |
| DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]); |
| #endif |
| struct buf_2d orig_dst = pd->dst; |
| PRED_BUFFER *best_pred = NULL; |
| PRED_BUFFER *this_mode_pred = NULL; |
| const int pixels_in_block = bh * bw; |
| int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready; |
| int ref_frame_skip_mask = 0; |
| int idx; |
| int best_pred_sad = INT_MAX; |
| int best_early_term = 0; |
| int ref_frame_cost[MAX_REF_FRAMES]; |
| int svc_force_zero_mode[3] = {0}; |
| int perform_intra_pred = 1; |
| int use_golden_nonzeromv = 1; |
| int force_skip_low_temp_var = 0; |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| VP9_PICKMODE_CTX_DEN ctx_den; |
| int64_t zero_last_cost_orig = INT64_MAX; |
| #endif |
| |
| init_ref_frame_cost(cm, xd, ref_frame_cost); |
| |
| if (reuse_inter_pred) { |
| int i; |
| for (i = 0; i < 3; i++) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]); |
| else |
| tmp[i].data = &pred_buf[pixels_in_block * i]; |
| #else |
| tmp[i].data = &pred_buf[pixels_in_block * i]; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| tmp[i].stride = bw; |
| tmp[i].in_use = 0; |
| } |
| tmp[3].data = pd->dst.buf; |
| tmp[3].stride = pd->dst.stride; |
| tmp[3].in_use = 0; |
| } |
| |
| x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| x->skip = 0; |
| |
| if (xd->above_mi) |
| filter_ref = xd->above_mi->interp_filter; |
| else if (xd->left_mi) |
| filter_ref = xd->left_mi->interp_filter; |
| else |
| filter_ref = cm->interp_filter; |
| |
| // initialize mode decisions |
| vp9_rd_cost_reset(&best_rdc); |
| vp9_rd_cost_reset(rd_cost); |
| mi->sb_type = bsize; |
| mi->ref_frame[0] = NONE; |
| mi->ref_frame[1] = NONE; |
| mi->tx_size = VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cm->tx_mode]); |
| |
| if (sf->short_circuit_flat_blocks) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| x->source_variance = vp9_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| else |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| x->source_variance = |
| vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && |
| cpi->denoiser.denoising_level > kDenLowLow) { |
| vp9_denoiser_reset_frame_stats(ctx); |
| } |
| #endif |
| |
| if (cpi->rc.frames_since_golden == 0 && !cpi->use_svc) { |
| usable_ref_frame = LAST_FRAME; |
| } else { |
| usable_ref_frame = GOLDEN_FRAME; |
| } |
| |
| // For svc mode, on spatial_layer_id > 0: if the reference has different scale |
| // constrain the inter mode to only test zero motion. |
| if (cpi->use_svc && |
| svc ->force_zero_mode_spatial_ref && |
| cpi->svc.spatial_layer_id > 0) { |
| if (cpi->ref_frame_flags & flag_list[LAST_FRAME]) { |
| struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf; |
| if (vp9_is_scaled(sf)) |
| svc_force_zero_mode[LAST_FRAME - 1] = 1; |
| } |
| if (cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) { |
| struct scale_factors *const sf = &cm->frame_refs[GOLDEN_FRAME - 1].sf; |
| if (vp9_is_scaled(sf)) |
| svc_force_zero_mode[GOLDEN_FRAME - 1] = 1; |
| } |
| } |
| |
| if (cpi->sf.short_circuit_low_temp_var) { |
| force_skip_low_temp_var = |
| get_force_skip_low_temp_var(&x->variance_low[0], mi_row, mi_col, bsize); |
| } |
| |
| if (!((cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) && |
| !svc_force_zero_mode[GOLDEN_FRAME - 1] && !force_skip_low_temp_var)) |
| use_golden_nonzeromv = 0; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) { |
| find_predictors(cpi, x, ref_frame, frame_mv, const_motion, |
| &ref_frame_skip_mask, flag_list, tile_data, mi_row, mi_col, |
| yv12_mb, bsize, force_skip_low_temp_var); |
| } |
| |
| for (idx = 0; idx < RT_INTER_MODES; ++idx) { |
| int rate_mv = 0; |
| int mode_rd_thresh; |
| int mode_index; |
| int i; |
| int64_t this_sse; |
| int is_skippable; |
| int this_early_term = 0; |
| PREDICTION_MODE this_mode = ref_mode_set[idx].pred_mode; |
| |
| if (cpi->use_svc) |
| this_mode = ref_mode_set_svc[idx].pred_mode; |
| |
| if (sf->short_circuit_flat_blocks && x->source_variance == 0 && |
| this_mode != NEARESTMV) { |
| continue; |
| } |
| |
| if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode))) |
| continue; |
| |
| ref_frame = ref_mode_set[idx].ref_frame; |
| if (cpi->use_svc) { |
| ref_frame = ref_mode_set_svc[idx].ref_frame; |
| } |
| |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame])) |
| continue; |
| |
| if (const_motion[ref_frame] && this_mode == NEARMV) |
| continue; |
| |
| // Skip non-zeromv mode search for golden frame if force_skip_low_temp_var |
| // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped |
| // later. |
| if (force_skip_low_temp_var && ref_frame == GOLDEN_FRAME && |
| frame_mv[this_mode][ref_frame].as_int != 0) { |
| continue; |
| } |
| |
| if (cpi->sf.short_circuit_low_temp_var == 2 && |
| force_skip_low_temp_var && ref_frame == LAST_FRAME && |
| this_mode == NEWMV) { |
| continue; |
| } |
| |
| if (cpi->use_svc) { |
| if (svc_force_zero_mode[ref_frame - 1] && |
| frame_mv[this_mode][ref_frame].as_int != 0) |
| continue; |
| } |
| |
| if (!force_skip_low_temp_var && |
| !(frame_mv[this_mode][ref_frame].as_int == 0 && |
| ref_frame == LAST_FRAME)) { |
| i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME; |
| if ((cpi->ref_frame_flags & flag_list[i]) && sf->reference_masking) |
| if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1)) |
| ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| if (ref_frame_skip_mask & (1 << ref_frame)) |
| continue; |
| |
| // Select prediction reference frames. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| |
| mi->ref_frame[0] = ref_frame; |
| set_ref_ptrs(cm, xd, ref_frame, NONE); |
| |
| mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)]; |
| mode_rd_thresh = best_mode_skip_txfm ? |
| rd_threshes[mode_index] << 1 : rd_threshes[mode_index]; |
| if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, |
| rd_thresh_freq_fact[mode_index])) |
| continue; |
| |
| if (this_mode == NEWMV) { |
| if (ref_frame > LAST_FRAME && |
| !cpi->use_svc && |
| cpi->oxcf.rc_mode == VPX_CBR) { |
| int tmp_sad; |
| int dis, cost_list[5]; |
| |
| if (bsize < BLOCK_16X16) |
| continue; |
| |
| tmp_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col); |
| |
| if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) |
| continue; |
| if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) |
| continue; |
| |
| frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int; |
| rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, |
| &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; |
| frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; |
| |
| cpi->find_fractional_mv_step(x, &frame_mv[NEWMV][ref_frame].as_mv, |
| &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv, |
| cpi->common.allow_high_precision_mv, |
| x->errorperbit, |
| &cpi->fn_ptr[bsize], |
| cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, |
| cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, &dis, |
| &x->pred_sse[ref_frame], NULL, 0, 0); |
| } else if (svc->use_base_mv && svc->spatial_layer_id) { |
| if (frame_mv[NEWMV][ref_frame].as_int != INVALID_MV && |
| frame_mv[NEWMV][ref_frame].as_int != 0) { |
| const int pre_stride = xd->plane[0].pre[0].stride; |
| int base_mv_sad = INT_MAX; |
| const uint8_t * const pre_buf = xd->plane[0].pre[0].buf + |
| (frame_mv[NEWMV][ref_frame].as_mv.row >> 3) * pre_stride + |
| (frame_mv[NEWMV][ref_frame].as_mv.col >> 3); |
| base_mv_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, |
| x->plane[0].src.stride, |
| pre_buf, pre_stride); |
| |
| // TODO(wonkap): make the decision to use base layer mv on RD; |
| // not just SAD. |
| if (base_mv_sad < x->pred_mv_sad[ref_frame]) { |
| // Base layer mv is good. |
| if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost, 1)) { |
| continue; |
| } |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost, 0)) { |
| continue; |
| } |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost, 0)) { |
| continue; |
| } |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost, 0)) { |
| continue; |
| } |
| } |
| |
| // If use_golden_nonzeromv is false, NEWMV mode is skipped for golden, no |
| // need to compute best_pred_sad which is only used to skip golden NEWMV. |
| if (use_golden_nonzeromv && this_mode == NEWMV && |
| ref_frame == LAST_FRAME && |
| frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) { |
| const int pre_stride = xd->plane[0].pre[0].stride; |
| const uint8_t * const pre_buf = xd->plane[0].pre[0].buf + |
| (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride + |
| (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3); |
| best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, |
| x->plane[0].src.stride, |
| pre_buf, pre_stride); |
| x->pred_mv_sad[LAST_FRAME] = best_pred_sad; |
| } |
| |
| if (this_mode != NEARESTMV && |
| frame_mv[this_mode][ref_frame].as_int == |
| frame_mv[NEARESTMV][ref_frame].as_int) |
| continue; |
| |
| mi->mode = this_mode; |
| mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int; |
| |
| // Search for the best prediction filter type, when the resulting |
| // motion vector is at sub-pixel accuracy level for luma component, i.e., |
| // the last three bits are all zeros. |
| if (reuse_inter_pred) { |
| if (!this_mode_pred) { |
| this_mode_pred = &tmp[3]; |
| } else { |
| this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| pd->dst.buf = this_mode_pred->data; |
| pd->dst.stride = bw; |
| } |
| } |
| |
| if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && pred_filter_search |
| && (ref_frame == LAST_FRAME || |
| (ref_frame == GOLDEN_FRAME && |
| (cpi->use_svc || cpi->oxcf.rc_mode == VPX_VBR))) && |
| (((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) != 0)) { |
| int pf_rate[3]; |
| int64_t pf_dist[3]; |
| unsigned int pf_var[3]; |
| unsigned int pf_sse[3]; |
| TX_SIZE pf_tx_size[3]; |
| int64_t best_cost = INT64_MAX; |
| INTERP_FILTER best_filter = SWITCHABLE, filter; |
| PRED_BUFFER *current_pred = this_mode_pred; |
| |
| for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) { |
| int64_t cost; |
| mi->interp_filter = filter; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter], |
| &pf_var[filter], &pf_sse[filter]); |
| pf_rate[filter] += vp9_get_switchable_rate(cpi, xd); |
| cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]); |
| pf_tx_size[filter] = mi->tx_size; |
| if (cost < best_cost) { |
| best_filter = filter; |
| best_cost = cost; |
| skip_txfm = x->skip_txfm[0]; |
| |
| if (reuse_inter_pred) { |
| if (this_mode_pred != current_pred) { |
| free_pred_buffer(this_mode_pred); |
| this_mode_pred = current_pred; |
| } |
| current_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| pd->dst.buf = current_pred->data; |
| pd->dst.stride = bw; |
| } |
| } |
| } |
| |
| if (reuse_inter_pred && this_mode_pred != current_pred) |
| free_pred_buffer(current_pred); |
| |
| mi->interp_filter = best_filter; |
| mi->tx_size = pf_tx_size[best_filter]; |
| this_rdc.rate = pf_rate[best_filter]; |
| this_rdc.dist = pf_dist[best_filter]; |
| var_y = pf_var[best_filter]; |
| sse_y = pf_sse[best_filter]; |
| x->skip_txfm[0] = skip_txfm; |
| if (reuse_inter_pred) { |
| pd->dst.buf = this_mode_pred->data; |
| pd->dst.stride = this_mode_pred->stride; |
| } |
| } else { |
| mi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref; |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| |
| // For large partition blocks, extra testing is done. |
| if (cpi->oxcf.rc_mode == VPX_CBR && bsize > BLOCK_32X32 && |
| !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && |
| cm->base_qindex) { |
| model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate, |
| &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col, |
| &this_early_term); |
| } else { |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, |
| &var_y, &sse_y); |
| } |
| } |
| |
| if (!this_early_term) { |
| this_sse = (int64_t)sse_y; |
| block_yrd(cpi, x, &this_rdc, &is_skippable, &this_sse, bsize, |
| VPXMIN(mi->tx_size, TX_16X16)); |
| x->skip_txfm[0] = is_skippable; |
| if (is_skippable) { |
| this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| } else { |
| if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) < |
| RDCOST(x->rdmult, x->rddiv, 0, this_sse)) { |
| this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0); |
| } else { |
| this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| this_rdc.dist = this_sse; |
| x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| } |
| } |
| |
| if (cm->interp_filter == SWITCHABLE) { |
| if ((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) |
| this_rdc.rate += vp9_get_switchable_rate(cpi, xd); |
| } |
| } else { |
| this_rdc.rate += cm->interp_filter == SWITCHABLE ? |
| vp9_get_switchable_rate(cpi, xd) : 0; |
| this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); |
| } |
| |
| if (x->color_sensitivity[0] || x->color_sensitivity[1]) { |
| RD_COST rdc_uv; |
| const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, &xd->plane[1]); |
| if (x->color_sensitivity[0]) |
| vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1); |
| if (x->color_sensitivity[1]) |
| vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2); |
| model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &var_y, &sse_y, 1, 2); |
| this_rdc.rate += rdc_uv.rate; |
| this_rdc.dist += rdc_uv.dist; |
| } |
| |
| this_rdc.rate += rate_mv; |
| this_rdc.rate += |
| cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]][INTER_OFFSET( |
| this_mode)]; |
| this_rdc.rate += ref_frame_cost[ref_frame]; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); |
| |
| // Bias against non-zero motion |
| if (cpi->oxcf.rc_mode == VPX_CBR && |
| cpi->oxcf.speed >= 5 && |
| cpi->oxcf.content != VP9E_CONTENT_SCREEN && |
| !x->sb_is_skin) { |
| vp9_large_block_mv_bias(&cpi->noise_estimate, &this_rdc, bsize, |
| frame_mv[this_mode][ref_frame].as_mv.row, |
| frame_mv[this_mode][ref_frame].as_mv.col, |
| ref_frame == LAST_FRAME); |
| } |
| |
| // Skipping checking: test to see if this block can be reconstructed by |
| // prediction only. |
| if (cpi->allow_encode_breakout) { |
| encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode, |
| var_y, sse_y, yv12_mb, &this_rdc.rate, |
| &this_rdc.dist); |
| if (x->skip) { |
| this_rdc.rate += rate_mv; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, |
| this_rdc.dist); |
| } |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && |
| cpi->denoiser.denoising_level > kDenLowLow) { |
| vp9_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx); |
| // Keep track of zero_last cost. |
| if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) |
| zero_last_cost_orig = this_rdc.rdcost; |
| } |
| #else |
| (void)ctx; |
| #endif |
| |
| if (this_rdc.rdcost < best_rdc.rdcost || x->skip) { |
| best_rdc = this_rdc; |
| best_mode = this_mode; |
| best_pred_filter = mi->interp_filter; |
| best_tx_size = mi->tx_size; |
| best_ref_frame = ref_frame; |
| best_mode_skip_txfm = x->skip_txfm[0]; |
| best_early_term = this_early_term; |
| |
| if (reuse_inter_pred) { |
| free_pred_buffer(best_pred); |
| best_pred = this_mode_pred; |
| } |
| } else { |
| if (reuse_inter_pred) |
| free_pred_buffer(this_mode_pred); |
| } |
| |
| if (x->skip) |
| break; |
| |
| // If early termination flag is 1 and at least 2 modes are checked, |
| // the mode search is terminated. |
| if (best_early_term && idx > 0) { |
| x->skip = 1; |
| break; |
| } |
| } |
| |
| mi->mode = best_mode; |
| mi->interp_filter = best_pred_filter; |
| mi->tx_size = best_tx_size; |
| mi->ref_frame[0] = best_ref_frame; |
| mi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int; |
| xd->mi[0]->bmi[0].as_mv[0].as_int = mi->mv[0].as_int; |
| x->skip_txfm[0] = best_mode_skip_txfm; |
| |
| // For spatial enhancemanent layer: perform intra prediction only if base |
| // layer is chosen as the reference. Always perform intra prediction if |
| // LAST is the only reference or is_key_frame is set. |
| if (cpi->svc.spatial_layer_id) { |
| perform_intra_pred = |
| cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame || |
| !(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) || |
| (!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame |
| && svc_force_zero_mode[best_ref_frame - 1]); |
| inter_mode_thresh = (inter_mode_thresh << 1) + inter_mode_thresh; |
| } |
| // Perform intra prediction search, if the best SAD is above a certain |
| // threshold. |
| if ((!force_skip_low_temp_var || bsize < BLOCK_32X32) && |
| perform_intra_pred && |
| (best_rdc.rdcost == INT64_MAX || |
| (!x->skip && best_rdc.rdcost > inter_mode_thresh && |
| bsize <= cpi->sf.max_intra_bsize))) { |
| struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; |
| int i; |
| TX_SIZE best_intra_tx_size = TX_SIZES; |
| TX_SIZE intra_tx_size = |
| VPXMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); |
| if (cpi->oxcf.content != VP9E_CONTENT_SCREEN && intra_tx_size > TX_16X16) |
| intra_tx_size = TX_16X16; |
| |
| if (reuse_inter_pred && best_pred != NULL) { |
| if (best_pred->data == orig_dst.buf) { |
| this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| vpx_highbd_convolve_copy(best_pred->data, best_pred->stride, |
| this_mode_pred->data, this_mode_pred->stride, |
| NULL, 0, NULL, 0, bw, bh, xd->bd); |
| else |
| vpx_convolve_copy(best_pred->data, best_pred->stride, |
| this_mode_pred->data, this_mode_pred->stride, |
| NULL, 0, NULL, 0, bw, bh); |
| #else |
| vpx_convolve_copy(best_pred->data, best_pred->stride, |
| this_mode_pred->data, this_mode_pred->stride, |
| NULL, 0, NULL, 0, bw, bh); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| best_pred = this_mode_pred; |
| } |
| } |
| pd->dst = orig_dst; |
| |
| for (i = 0; i < 4; ++i) { |
| const PREDICTION_MODE this_mode = intra_mode_list[i]; |
| THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; |
| int mode_rd_thresh = rd_threshes[mode_index]; |
| if (sf->short_circuit_flat_blocks && x->source_variance == 0 && |
| this_mode != DC_PRED) { |
| continue; |
| } |
| |
| if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize])) |
| continue; |
| |
| if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, |
| rd_thresh_freq_fact[mode_index])) |
| continue; |
| |
| mi->mode = this_mode; |
| mi->ref_frame[0] = INTRA_FRAME; |
| this_rdc.dist = this_rdc.rate = 0; |
| args.mode = this_mode; |
| args.skippable = 1; |
| args.rdc = &this_rdc; |
| mi->tx_size = intra_tx_size; |
| vp9_foreach_transformed_block_in_plane(xd, bsize, 0, |
| estimate_block_intra, &args); |
| // Check skip cost here since skippable is not set for for uv, this |
| // mirrors the behavior used by inter |
| if (args.skippable) { |
| x->skip_txfm[0] = SKIP_TXFM_AC_DC; |
| this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1); |
| } else { |
| x->skip_txfm[0] = SKIP_TXFM_NONE; |
| this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0); |
| } |
| // Inter and intra RD will mismatch in scale for non-screen content. |
| if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) { |
| if (x->color_sensitivity[0]) |
| vp9_foreach_transformed_block_in_plane(xd, bsize, 1, |
| estimate_block_intra, &args); |
| if (x->color_sensitivity[1]) |
| vp9_foreach_transformed_block_in_plane(xd, bsize, 2, |
| estimate_block_intra, &args); |
| } |
| this_rdc.rate += cpi->mbmode_cost[this_mode]; |
| this_rdc.rate += ref_frame_cost[INTRA_FRAME]; |
| this_rdc.rate += intra_cost_penalty; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, |
| this_rdc.rate, this_rdc.dist); |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| best_mode = this_mode; |
| best_intra_tx_size = mi->tx_size; |
| best_ref_frame = INTRA_FRAME; |
| mi->uv_mode = this_mode; |
| mi->mv[0].as_int = INVALID_MV; |
| best_mode_skip_txfm = x->skip_txfm[0]; |
| } |
| } |
| |
| // Reset mb_mode_info to the best inter mode. |
| if (best_ref_frame != INTRA_FRAME) { |
| mi->tx_size = best_tx_size; |
| } else { |
| mi->tx_size = best_intra_tx_size; |
| } |
| } |
| |
| pd->dst = orig_dst; |
| mi->mode = best_mode; |
| mi->ref_frame[0] = best_ref_frame; |
| x->skip_txfm[0] = best_mode_skip_txfm; |
| |
| if (reuse_inter_pred && best_pred != NULL) { |
| if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| vpx_highbd_convolve_copy(best_pred->data, best_pred->stride, |
| pd->dst.buf, pd->dst.stride, NULL, 0, |
| NULL, 0, bw, bh, xd->bd); |
| else |
| vpx_convolve_copy(best_pred->data, best_pred->stride, |
| pd->dst.buf, pd->dst.stride, NULL, 0, |
| NULL, 0, bw, bh); |
| #else |
| vpx_convolve_copy(best_pred->data, best_pred->stride, |
| pd->dst.buf, pd->dst.stride, NULL, 0, |
| NULL, 0, bw, bh); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && |
| cpi->resize_pending == 0 && |
| cpi->denoiser.denoising_level > kDenLowLow && |
| cpi->denoiser.reset == 0) { |
| VP9_DENOISER_DECISION decision = COPY_BLOCK; |
| vp9_pickmode_ctx_den_update(&ctx_den, zero_last_cost_orig, ref_frame_cost, |
| frame_mv, reuse_inter_pred, best_tx_size, |
| best_mode, best_ref_frame, best_pred_filter, |
| best_mode_skip_txfm); |
| vp9_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision); |
| recheck_zeromv_after_denoising(cpi, mi, x, xd, decision, &ctx_den, yv12_mb, |
| &best_rdc, bsize, mi_row, mi_col); |
| best_ref_frame = ctx_den.best_ref_frame; |
| } |
| #endif |
| |
| if (cpi->sf.adaptive_rd_thresh) { |
| THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mi->mode)]; |
| |
| if (best_ref_frame == INTRA_FRAME) { |
| // Only consider the modes that are included in the intra_mode_list. |
| int intra_modes = sizeof(intra_mode_list)/sizeof(PREDICTION_MODE); |
| int i; |
| |
| // TODO(yunqingwang): Check intra mode mask and only update freq_fact |
| // for those valid modes. |
| for (i = 0; i < intra_modes; i++) { |
| update_thresh_freq_fact(cpi, tile_data, bsize, INTRA_FRAME, |
| best_mode_idx, intra_mode_list[i]); |
| } |
| } else { |
| for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { |
| PREDICTION_MODE this_mode; |
| if (best_ref_frame != ref_frame) continue; |
| for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { |
| update_thresh_freq_fact(cpi, tile_data, bsize, ref_frame, |
| best_mode_idx, this_mode); |
| } |
| } |
| } |
| } |
| |
| *rd_cost = best_rdc; |
| } |
| |
| void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col, RD_COST *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| VP9_COMMON *const cm = &cpi->common; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const struct segmentation *const seg = &cm->seg; |
| MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE; |
| MV_REFERENCE_FRAME best_ref_frame = NONE; |
| unsigned char segment_id = mi->segment_id; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| int64_t best_rd = INT64_MAX; |
| b_mode_info bsi[MAX_REF_FRAMES][4]; |
| int ref_frame_skip_mask = 0; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| |
| x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| ctx->pred_pixel_ready = 0; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); |
| int_mv dummy_mv[2]; |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| |
| if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { |
| int_mv *const candidates = mbmi_ext->ref_mvs[ref_frame]; |
| const struct scale_factors *const sf = |
| &cm->frame_refs[ref_frame - 1].sf; |
| vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, |
| sf, sf); |
| vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, |
| candidates, mi_row, mi_col, mbmi_ext->mode_context); |
| |
| vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, |
| &dummy_mv[0], &dummy_mv[1]); |
| } else { |
| ref_frame_skip_mask |= (1 << ref_frame); |
| } |
| } |
| |
| mi->sb_type = bsize; |
| mi->tx_size = TX_4X4; |
| mi->uv_mode = DC_PRED; |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE; |
| mi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP |
| : cm->interp_filter; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { |
| int64_t this_rd = 0; |
| int plane; |
| |
| if (ref_frame_skip_mask & (1 << ref_frame)) |
| continue; |
| |
| #if CONFIG_BETTER_HW_COMPATIBILITY |
| if ((bsize == BLOCK_8X4 || bsize == BLOCK_4X8) && |
| ref_frame > INTRA_FRAME && |
| vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) |
| continue; |
| #endif |
| |
| // TODO(jingning, agrange): Scaling reference frame not supported for |
| // sub8x8 blocks. Is this supported now? |
| if (ref_frame > INTRA_FRAME && |
| vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) |
| continue; |
| |
| // If the segment reference frame feature is enabled.... |
| // then do nothing if the current ref frame is not allowed.. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) |
| continue; |
| |
| mi->ref_frame[0] = ref_frame; |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| // Select prediction reference frames. |
| for (plane = 0; plane < MAX_MB_PLANE; plane++) |
| xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane]; |
| |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| int_mv b_mv[MB_MODE_COUNT]; |
| int64_t b_best_rd = INT64_MAX; |
| const int i = idy * 2 + idx; |
| PREDICTION_MODE this_mode; |
| RD_COST this_rdc; |
| unsigned int var_y, sse_y; |
| |
| struct macroblock_plane *p = &x->plane[0]; |
| struct macroblockd_plane *pd = &xd->plane[0]; |
| |
| const struct buf_2d orig_src = p->src; |
| const struct buf_2d orig_dst = pd->dst; |
| struct buf_2d orig_pre[2]; |
| memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre)); |
| |
| // set buffer pointers for sub8x8 motion search. |
| p->src.buf = |
| &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; |
| pd->dst.buf = |
| &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; |
| pd->pre[0].buf = |
| &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8, |
| i, pd->pre[0].stride)]; |
| |
| b_mv[ZEROMV].as_int = 0; |
| b_mv[NEWMV].as_int = INVALID_MV; |
| vp9_append_sub8x8_mvs_for_idx(cm, xd, i, 0, mi_row, mi_col, |
| &b_mv[NEARESTMV], |
| &b_mv[NEARMV], |
| mbmi_ext->mode_context); |
| |
| for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { |
| int b_rate = 0; |
| xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int; |
| |
| if (this_mode == NEWMV) { |
| const int step_param = cpi->sf.mv.fullpel_search_step_param; |
| MV mvp_full; |
| MV tmp_mv; |
| int cost_list[5]; |
| const int tmp_col_min = x->mv_col_min; |
| const int tmp_col_max = x->mv_col_max; |
| const int tmp_row_min = x->mv_row_min; |
| const int tmp_row_max = x->mv_row_max; |
| int dummy_dist; |
| |
| if (i == 0) { |
| mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3; |
| mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3; |
| } else { |
| mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3; |
| mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3; |
| } |
| |
| vp9_set_mv_search_range(x, &mbmi_ext->ref_mvs[0]->as_mv); |
| |
| vp9_full_pixel_search( |
| cpi, x, bsize, &mvp_full, step_param, x->sadperbit4, |
| cond_cost_list(cpi, cost_list), |
| &mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv, |
| INT_MAX, 0); |
| |
| x->mv_col_min = tmp_col_min; |
| x->mv_col_max = tmp_col_max; |
| x->mv_row_min = tmp_row_min; |
| x->mv_row_max = tmp_row_max; |
| |
| // calculate the bit cost on motion vector |
| mvp_full.row = tmp_mv.row * 8; |
| mvp_full.col = tmp_mv.col * 8; |
| |
| b_rate += vp9_mv_bit_cost(&mvp_full, |
| &mbmi_ext->ref_mvs[ref_frame][0].as_mv, |
| x->nmvjointcost, x->mvcost, |
| MV_COST_WEIGHT); |
| |
| b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] |
| [INTER_OFFSET(NEWMV)]; |
| if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd) |
| continue; |
| |
| cpi->find_fractional_mv_step(x, &tmp_mv, |
| &mbmi_ext->ref_mvs[ref_frame][0].as_mv, |
| cpi->common.allow_high_precision_mv, |
| x->errorperbit, |
| &cpi->fn_ptr[bsize], |
| cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, |
| cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, |
| &dummy_dist, |
| &x->pred_sse[ref_frame], NULL, 0, 0); |
| |
| xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv; |
| } else { |
| b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] |
| [INTER_OFFSET(this_mode)]; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_highbd_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride, |
| pd->dst.buf, pd->dst.stride, |
| &xd->mi[0]->bmi[i].as_mv[0].as_mv, |
| &xd->block_refs[0]->sf, |
| 4 * num_4x4_blocks_wide, |
| 4 * num_4x4_blocks_high, 0, |
| vp9_filter_kernels[mi->interp_filter], |
| MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * (i & 0x01), |
| mi_row * MI_SIZE + 4 * (i >> 1), xd->bd); |
| } else { |
| #endif |
| vp9_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride, |
| pd->dst.buf, pd->dst.stride, |
| &xd->mi[0]->bmi[i].as_mv[0].as_mv, |
| &xd->block_refs[0]->sf, |
| 4 * num_4x4_blocks_wide, |
| 4 * num_4x4_blocks_high, 0, |
| vp9_filter_kernels[mi->interp_filter], |
| MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * (i & 0x01), |
| mi_row * MI_SIZE + 4 * (i >> 1)); |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif |
| |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, |
| &var_y, &sse_y); |
| |
| this_rdc.rate += b_rate; |
| this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, |
| this_rdc.rate, this_rdc.dist); |
| if (this_rdc.rdcost < b_best_rd) { |
| b_best_rd = this_rdc.rdcost; |
| bsi[ref_frame][i].as_mode = this_mode; |
| bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv; |
| } |
| } // mode search |
| |
| // restore source and prediction buffer pointers. |
| p->src = orig_src; |
| pd->pre[0] = orig_pre[0]; |
| pd->dst = orig_dst; |
| this_rd += b_best_rd; |
| |
| xd->mi[0]->bmi[i] = bsi[ref_frame][i]; |
| if (num_4x4_blocks_wide > 1) |
| xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i]; |
| if (num_4x4_blocks_high > 1) |
| xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i]; |
| } |
| } // loop through sub8x8 blocks |
| |
| if (this_rd < best_rd) { |
| best_rd = this_rd; |
| best_ref_frame = ref_frame; |
| } |
| } // reference frames |
| |
| mi->tx_size = TX_4X4; |
| mi->ref_frame[0] = best_ref_frame; |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| const int block = idy * 2 + idx; |
| xd->mi[0]->bmi[block] = bsi[best_ref_frame][block]; |
| if (num_4x4_blocks_wide > 1) |
| xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block]; |
| if (num_4x4_blocks_high > 1) |
| xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block]; |
| } |
| } |
| mi->mode = xd->mi[0]->bmi[3].as_mode; |
| ctx->mic = *(xd->mi[0]); |
| ctx->mbmi_ext = *x->mbmi_ext; |
| ctx->skip_txfm[0] = SKIP_TXFM_NONE; |
| ctx->skip = 0; |
| // Dummy assignment for speed -5. No effect in speed -6. |
| rd_cost->rdcost = best_rd; |
| } |