blob: 0bdd7b278254d1f561925e1bf86ae86fdbe53c19 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/dns/host_resolver_impl.h"
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "base/auto_reset.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/location.h"
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "base/run_loop.h"
#include "base/single_thread_task_runner.h"
#include "base/stl_util.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/test/bind_test_util.h"
#include "base/test/test_mock_time_task_runner.h"
#include "base/test/test_timeouts.h"
#include "base/threading/thread_restrictions.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
#include "base/values.h"
#include "net/base/address_list.h"
#include "net/base/ip_address.h"
#include "net/base/mock_network_change_notifier.h"
#include "net/base/net_errors.h"
#include "net/dns/dns_client.h"
#include "net/dns/dns_test_util.h"
#include "net/dns/mock_host_resolver.h"
#include "net/dns/mock_mdns_client.h"
#include "net/dns/mock_mdns_socket_factory.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_source_type.h"
#include "net/log/net_log_with_source.h"
#include "net/log/test_net_log.h"
#include "net/test/gtest_util.h"
#include "net/test/test_with_scoped_task_environment.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using net::test::IsError;
using net::test::IsOk;
using ::testing::_;
using ::testing::Between;
using ::testing::ByMove;
using ::testing::NotNull;
using ::testing::Return;
namespace net {
namespace {
const size_t kMaxJobs = 10u;
const size_t kMaxRetryAttempts = 4u;
HostResolver::Options DefaultOptions() {
HostResolver::Options options;
options.max_concurrent_resolves = kMaxJobs;
options.max_retry_attempts = kMaxRetryAttempts;
options.enable_caching = true;
return options;
}
HostResolverImpl::ProcTaskParams DefaultParams(
HostResolverProc* resolver_proc) {
return HostResolverImpl::ProcTaskParams(resolver_proc, kMaxRetryAttempts);
}
// A HostResolverProc that pushes each host mapped into a list and allows
// waiting for a specific number of requests. Unlike RuleBasedHostResolverProc
// it never calls SystemHostResolverCall. By default resolves all hostnames to
// "127.0.0.1". After AddRule(), it resolves only names explicitly specified.
class MockHostResolverProc : public HostResolverProc {
public:
struct ResolveKey {
ResolveKey(const std::string& hostname,
AddressFamily address_family,
HostResolverFlags flags)
: hostname(hostname), address_family(address_family), flags(flags) {}
bool operator<(const ResolveKey& other) const {
return std::tie(address_family, hostname, flags) <
std::tie(other.address_family, other.hostname, other.flags);
}
std::string hostname;
AddressFamily address_family;
HostResolverFlags flags;
};
typedef std::vector<ResolveKey> CaptureList;
MockHostResolverProc()
: HostResolverProc(NULL),
num_requests_waiting_(0),
num_slots_available_(0),
requests_waiting_(&lock_),
slots_available_(&lock_) {
}
// Waits until |count| calls to |Resolve| are blocked. Returns false when
// timed out.
bool WaitFor(unsigned count) {
base::AutoLock lock(lock_);
base::Time start_time = base::Time::Now();
while (num_requests_waiting_ < count) {
requests_waiting_.TimedWait(TestTimeouts::action_timeout());
if (base::Time::Now() > start_time + TestTimeouts::action_timeout())
return false;
}
return true;
}
// Signals |count| waiting calls to |Resolve|. First come first served.
void SignalMultiple(unsigned count) {
base::AutoLock lock(lock_);
num_slots_available_ += count;
slots_available_.Broadcast();
}
// Signals all waiting calls to |Resolve|. Beware of races.
void SignalAll() {
base::AutoLock lock(lock_);
num_slots_available_ = num_requests_waiting_;
slots_available_.Broadcast();
}
void AddRule(const std::string& hostname,
AddressFamily family,
const AddressList& result,
HostResolverFlags flags = 0) {
base::AutoLock lock(lock_);
rules_[ResolveKey(hostname, family, flags)] = result;
}
void AddRule(const std::string& hostname,
AddressFamily family,
const std::string& ip_list,
HostResolverFlags flags = 0,
const std::string& canonical_name = "") {
AddressList result;
int rv = ParseAddressList(ip_list, canonical_name, &result);
DCHECK_EQ(OK, rv);
AddRule(hostname, family, result, flags);
}
void AddRuleForAllFamilies(const std::string& hostname,
const std::string& ip_list,
HostResolverFlags flags = 0,
const std::string& canonical_name = "") {
AddressList result;
int rv = ParseAddressList(ip_list, canonical_name, &result);
DCHECK_EQ(OK, rv);
AddRule(hostname, ADDRESS_FAMILY_UNSPECIFIED, result, flags);
AddRule(hostname, ADDRESS_FAMILY_IPV4, result, flags);
AddRule(hostname, ADDRESS_FAMILY_IPV6, result, flags);
#if !SB_HAS(IPV6)
if ((flags & HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6) == 0) {
AddRule(hostname, ADDRESS_FAMILY_UNSPECIFIED, result,
HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6);
AddRule(hostname, ADDRESS_FAMILY_IPV4, result,
HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6);
}
#endif
}
int Resolve(const std::string& hostname,
AddressFamily address_family,
HostResolverFlags host_resolver_flags,
AddressList* addrlist,
int* os_error) override {
base::AutoLock lock(lock_);
capture_list_.push_back(
ResolveKey(hostname, address_family, host_resolver_flags));
++num_requests_waiting_;
requests_waiting_.Broadcast();
{
base::ScopedAllowBaseSyncPrimitivesForTesting
scoped_allow_base_sync_primitives;
while (!num_slots_available_)
slots_available_.Wait();
}
DCHECK_GT(num_requests_waiting_, 0u);
--num_slots_available_;
--num_requests_waiting_;
if (rules_.empty()) {
int rv = ParseAddressList("127.0.0.1", std::string(), addrlist);
DCHECK_EQ(OK, rv);
return OK;
}
ResolveKey key(hostname, address_family, host_resolver_flags);
if (rules_.count(key) == 0)
return ERR_NAME_NOT_RESOLVED;
*addrlist = rules_[key];
return OK;
}
CaptureList GetCaptureList() const {
CaptureList copy;
{
base::AutoLock lock(lock_);
copy = capture_list_;
}
return copy;
}
bool HasBlockedRequests() const {
base::AutoLock lock(lock_);
return num_requests_waiting_ > num_slots_available_;
}
protected:
~MockHostResolverProc() override = default;
private:
mutable base::Lock lock_;
std::map<ResolveKey, AddressList> rules_;
CaptureList capture_list_;
unsigned num_requests_waiting_;
unsigned num_slots_available_;
base::ConditionVariable requests_waiting_;
base::ConditionVariable slots_available_;
DISALLOW_COPY_AND_ASSIGN(MockHostResolverProc);
};
bool AddressListContains(const AddressList& list,
const std::string& address,
uint16_t port) {
IPAddress ip;
bool rv = ip.AssignFromIPLiteral(address);
DCHECK(rv);
return base::ContainsValue(list, IPEndPoint(ip, port));
}
class ResolveHostResponseHelper {
public:
using Callback =
base::OnceCallback<void(CompletionOnceCallback completion_callback,
int error)>;
ResolveHostResponseHelper() {}
explicit ResolveHostResponseHelper(
std::unique_ptr<HostResolver::ResolveHostRequest> request)
: request_(std::move(request)) {
result_error_ = request_->Start(base::BindOnce(
&ResolveHostResponseHelper::OnComplete, base::Unretained(this)));
}
ResolveHostResponseHelper(
std::unique_ptr<HostResolver::ResolveHostRequest> request,
Callback custom_callback)
: request_(std::move(request)) {
result_error_ = request_->Start(
base::BindOnce(std::move(custom_callback),
base::BindOnce(&ResolveHostResponseHelper::OnComplete,
base::Unretained(this))));
}
bool complete() const { return result_error_ != ERR_IO_PENDING; }
int result_error() {
WaitForCompletion();
return result_error_;
}
HostResolver::ResolveHostRequest* request() { return request_.get(); }
void CancelRequest() {
DCHECK(request_);
DCHECK(!complete());
request_ = nullptr;
}
void OnComplete(int error) {
DCHECK(!complete());
result_error_ = error;
run_loop_.Quit();
}
private:
void WaitForCompletion() {
DCHECK(request_);
if (complete()) {
return;
}
run_loop_.Run();
DCHECK(complete());
}
std::unique_ptr<HostResolver::ResolveHostRequest> request_;
int result_error_ = ERR_IO_PENDING;
base::RunLoop run_loop_;
DISALLOW_COPY_AND_ASSIGN(ResolveHostResponseHelper);
};
// A wrapper for requests to a HostResolver.
class Request {
public:
// Base class of handlers to be executed on completion of requests.
struct Handler {
virtual ~Handler() = default;
virtual void Handle(Request* request) = 0;
};
Request(const HostResolver::RequestInfo& info,
RequestPriority priority,
size_t index,
HostResolverImpl* resolver,
Handler* handler)
: info_(info),
priority_(priority),
index_(index),
resolver_(resolver),
handler_(handler),
result_(ERR_UNEXPECTED) {}
int Resolve() {
DCHECK(resolver_);
DCHECK(!request_);
list_ = AddressList();
result_ = resolver_->Resolve(
info_, priority_, &list_,
base::Bind(&Request::OnComplete, base::Unretained(this)), &request_,
NetLogWithSource());
if (!list_.empty())
EXPECT_THAT(result_, IsOk());
return result_;
}
int ResolveFromCache() {
DCHECK(resolver_);
DCHECK(!request_);
return resolver_->ResolveFromCache(info_, &list_, NetLogWithSource());
}
int ResolveStaleFromCache() {
DCHECK(resolver_);
DCHECK(!request_);
return resolver_->ResolveStaleFromCache(info_, &list_, &staleness_,
NetLogWithSource());
}
void ChangePriority(RequestPriority priority) {
DCHECK(resolver_);
DCHECK(request_);
request_->ChangeRequestPriority(priority);
priority_ = priority;
}
void Cancel() {
DCHECK(resolver_);
DCHECK(request_);
request_.reset();
}
const HostResolver::RequestInfo& info() const { return info_; }
size_t index() const { return index_; }
const AddressList& list() const { return list_; }
int result() const { return result_; }
const HostCache::EntryStaleness staleness() const { return staleness_; }
bool completed() const { return result_ != ERR_IO_PENDING; }
bool pending() const { return request_ != nullptr; }
bool HasAddress(const std::string& address, uint16_t port) const {
return AddressListContains(list_, address, port);
}
// Returns the number of addresses in |list_|.
unsigned NumberOfAddresses() const {
return list_.size();
}
bool HasOneAddress(const std::string& address, uint16_t port) const {
return HasAddress(address, port) && (NumberOfAddresses() == 1u);
}
// Returns ERR_UNEXPECTED if timed out.
int WaitForResult() {
if (completed())
return result_;
base::RunLoop run_loop;
base::ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE, run_loop.QuitClosure(), TestTimeouts::action_max_timeout());
base::AutoReset<base::OnceClosure> reset(&quit_closure_,
run_loop.QuitClosure());
run_loop.Run();
if (!quit_closure_)
return result_;
else
return ERR_UNEXPECTED;
}
private:
void OnComplete(int rv) {
EXPECT_TRUE(pending());
EXPECT_THAT(result_, IsError(ERR_IO_PENDING));
EXPECT_NE(ERR_IO_PENDING, rv);
result_ = rv;
request_.reset();
if (!list_.empty()) {
EXPECT_THAT(result_, IsOk());
EXPECT_EQ(info_.port(), list_.front().port());
}
if (handler_)
handler_->Handle(this);
if (quit_closure_)
std::move(quit_closure_).Run();
}
HostResolver::RequestInfo info_;
RequestPriority priority_;
size_t index_;
HostResolverImpl* resolver_;
Handler* handler_;
base::OnceClosure quit_closure_;
AddressList list_;
int result_;
std::unique_ptr<HostResolver::Request> request_;
HostCache::EntryStaleness staleness_;
DISALLOW_COPY_AND_ASSIGN(Request);
};
// Using LookupAttemptHostResolverProc simulate very long lookups, and control
// which attempt resolves the host.
class LookupAttemptHostResolverProc : public HostResolverProc {
public:
LookupAttemptHostResolverProc(HostResolverProc* previous,
int attempt_number_to_resolve,
int total_attempts)
: HostResolverProc(previous),
attempt_number_to_resolve_(attempt_number_to_resolve),
current_attempt_number_(0),
total_attempts_(total_attempts),
total_attempts_resolved_(0),
resolved_attempt_number_(0),
num_attempts_waiting_(0),
all_done_(&lock_),
blocked_attempt_signal_(&lock_) {}
// Test harness will wait for all attempts to finish before checking the
// results.
void WaitForAllAttemptsToFinish() {
base::AutoLock auto_lock(lock_);
while (total_attempts_resolved_ != total_attempts_) {
all_done_.Wait();
}
}
void WaitForNAttemptsToBeBlocked(int n) {
base::AutoLock auto_lock(lock_);
while (num_attempts_waiting_ < n) {
blocked_attempt_signal_.Wait();
}
}
// All attempts will wait for an attempt to resolve the host.
void WaitForAnAttemptToComplete() {
{
base::AutoLock auto_lock(lock_);
base::ScopedAllowBaseSyncPrimitivesForTesting
scoped_allow_base_sync_primitives;
while (resolved_attempt_number_ == 0)
all_done_.Wait();
}
all_done_.Broadcast(); // Tell all waiting attempts to proceed.
}
// Returns the number of attempts that have finished the Resolve() method.
int total_attempts_resolved() { return total_attempts_resolved_; }
// Returns the first attempt that that has resolved the host.
int resolved_attempt_number() { return resolved_attempt_number_; }
// Returns the current number of blocked attempts.
int num_attempts_waiting() { return num_attempts_waiting_; }
// HostResolverProc methods.
int Resolve(const std::string& host,
AddressFamily address_family,
HostResolverFlags host_resolver_flags,
AddressList* addrlist,
int* os_error) override {
bool wait_for_right_attempt_to_complete = true;
{
base::AutoLock auto_lock(lock_);
++current_attempt_number_;
++num_attempts_waiting_;
if (current_attempt_number_ == attempt_number_to_resolve_) {
resolved_attempt_number_ = current_attempt_number_;
wait_for_right_attempt_to_complete = false;
}
}
blocked_attempt_signal_.Broadcast();
if (wait_for_right_attempt_to_complete)
// Wait for the attempt_number_to_resolve_ attempt to resolve.
WaitForAnAttemptToComplete();
int result = ResolveUsingPrevious(host, address_family, host_resolver_flags,
addrlist, os_error);
{
base::AutoLock auto_lock(lock_);
++total_attempts_resolved_;
--num_attempts_waiting_;
}
all_done_.Broadcast(); // Tell all attempts to proceed.
// Since any negative number is considered a network error, with -1 having
// special meaning (ERR_IO_PENDING). We could return the attempt that has
// resolved the host as a negative number. For example, if attempt number 3
// resolves the host, then this method returns -4.
if (result == OK)
return -1 - resolved_attempt_number_;
else
return result;
}
protected:
~LookupAttemptHostResolverProc() override = default;
private:
int attempt_number_to_resolve_;
int current_attempt_number_; // Incremented whenever Resolve is called.
int total_attempts_;
int total_attempts_resolved_;
int resolved_attempt_number_;
int num_attempts_waiting_;
// All attempts wait for right attempt to be resolve.
base::Lock lock_;
base::ConditionVariable all_done_;
base::ConditionVariable blocked_attempt_signal_;
};
// TestHostResolverImpl's sole purpose is to mock the IPv6 reachability test.
// By default, this pretends that IPv6 is globally reachable.
// This class is necessary so unit tests run the same on dual-stack machines as
// well as IPv4 only machines.
class TestHostResolverImpl : public HostResolverImpl {
public:
TestHostResolverImpl(const Options& options, NetLog* net_log)
: TestHostResolverImpl(options, net_log, true) {}
TestHostResolverImpl(const Options& options,
NetLog* net_log,
bool ipv6_reachable)
: HostResolverImpl(options, net_log), ipv6_reachable_(ipv6_reachable) {}
~TestHostResolverImpl() override = default;
private:
const bool ipv6_reachable_;
bool IsGloballyReachable(const IPAddress& dest,
const NetLogWithSource& net_log) override {
return ipv6_reachable_;
}
};
const uint16_t kLocalhostLookupPort = 80;
bool HasEndpoint(const IPEndPoint& endpoint, const AddressList& addresses) {
for (const auto& address : addresses) {
if (endpoint == address)
return true;
}
return false;
}
void TestBothLoopbackIPs(const std::string& host) {
IPEndPoint localhost_ipv4(IPAddress::IPv4Localhost(), kLocalhostLookupPort);
IPEndPoint localhost_ipv6(IPAddress::IPv6Localhost(), kLocalhostLookupPort);
AddressList addresses;
EXPECT_TRUE(ResolveLocalHostname(host, kLocalhostLookupPort, &addresses));
EXPECT_EQ(2u, addresses.size());
EXPECT_TRUE(HasEndpoint(localhost_ipv4, addresses));
EXPECT_TRUE(HasEndpoint(localhost_ipv6, addresses));
}
void TestIPv6LoopbackOnly(const std::string& host) {
IPEndPoint localhost_ipv6(IPAddress::IPv6Localhost(), kLocalhostLookupPort);
AddressList addresses;
EXPECT_TRUE(ResolveLocalHostname(host, kLocalhostLookupPort, &addresses));
EXPECT_EQ(1u, addresses.size());
EXPECT_TRUE(HasEndpoint(localhost_ipv6, addresses));
}
// Used to bind the unique_ptr<Request>* into callbacks.
struct RequestHolder {
std::unique_ptr<HostResolver::Request> request;
};
} // namespace
class HostResolverImplTest : public TestWithScopedTaskEnvironment {
public:
static const int kDefaultPort = 80;
HostResolverImplTest() : proc_(new MockHostResolverProc()) {}
void CreateResolver() {
CreateResolverWithLimitsAndParams(kMaxJobs, DefaultParams(proc_.get()),
#if !defined(STARBOARD) || SB_HAS(IPV6)
true /* ipv6_reachable */);
#else
false /* ipv6_reachable */);
#endif
}
// This HostResolverImpl will only allow 1 outstanding resolve at a time and
// perform no retries.
void CreateSerialResolver() {
HostResolverImpl::ProcTaskParams params = DefaultParams(proc_.get());
params.max_retry_attempts = 0u;
#if !defined(STARBOARD) || SB_HAS(IPV6)
CreateResolverWithLimitsAndParams(1u, params, true /* ipv6_reachable */);
#else
CreateResolverWithLimitsAndParams(1u, params, false /* ipv6_reachable */);
#endif
}
protected:
// A Request::Handler which is a proxy to the HostResolverImplTest fixture.
struct Handler : public Request::Handler {
~Handler() override = default;
// Proxy functions so that classes derived from Handler can access them.
Request* CreateRequest(const HostResolver::RequestInfo& info,
RequestPriority priority) {
return test->CreateRequest(info, priority);
}
Request* CreateRequest(const std::string& hostname, int port) {
return test->CreateRequest(hostname, port);
}
Request* CreateRequest(const std::string& hostname) {
return test->CreateRequest(hostname);
}
std::vector<std::unique_ptr<Request>>& requests() {
return test->requests_;
}
void DeleteResolver() { test->resolver_.reset(); }
HostResolverImplTest* test;
};
// testing::Test implementation:
void SetUp() override { CreateResolver(); }
void TearDown() override {
if (resolver_.get())
EXPECT_EQ(0u, resolver_->num_running_dispatcher_jobs_for_tests());
EXPECT_FALSE(proc_->HasBlockedRequests());
}
virtual void CreateResolverWithLimitsAndParams(
size_t max_concurrent_resolves,
const HostResolverImpl::ProcTaskParams& params,
bool ipv6_reachable) {
HostResolverImpl::Options options = DefaultOptions();
options.max_concurrent_resolves = max_concurrent_resolves;
resolver_.reset(new TestHostResolverImpl(options, NULL, ipv6_reachable));
resolver_->set_proc_params_for_test(params);
}
// The Request will not be made until a call to |Resolve()|, and the Job will
// not start until released by |proc_->SignalXXX|.
Request* CreateRequest(const HostResolver::RequestInfo& info,
RequestPriority priority) {
requests_.push_back(std::make_unique<Request>(
info, priority, requests_.size(), resolver_.get(), handler_.get()));
return requests_.back().get();
}
Request* CreateRequest(const std::string& hostname,
int port,
RequestPriority priority,
AddressFamily family) {
HostResolver::RequestInfo info(HostPortPair(hostname, port));
info.set_address_family(family);
return CreateRequest(info, priority);
}
Request* CreateRequest(const std::string& hostname,
int port,
RequestPriority priority) {
return CreateRequest(hostname, port, priority, ADDRESS_FAMILY_UNSPECIFIED);
}
Request* CreateRequest(const std::string& hostname, int port) {
return CreateRequest(hostname, port, MEDIUM);
}
Request* CreateRequest(const std::string& hostname) {
return CreateRequest(hostname, kDefaultPort);
}
void set_handler(Handler* handler) {
handler_.reset(handler);
handler_->test = this;
}
// Friendship is not inherited, so use proxies to access those.
size_t num_running_dispatcher_jobs() const {
DCHECK(resolver_.get());
return resolver_->num_running_dispatcher_jobs_for_tests();
}
void set_fallback_to_proctask(bool fallback_to_proctask) {
DCHECK(resolver_.get());
resolver_->fallback_to_proctask_ = fallback_to_proctask;
}
static unsigned maximum_dns_failures() {
return HostResolverImpl::kMaximumDnsFailures;
}
bool IsIPv6Reachable(const NetLogWithSource& net_log) {
return resolver_->IsIPv6Reachable(net_log);
}
const HostCache::Entry* GetCacheEntry(const Request& req) {
DCHECK(resolver_.get() && resolver_->GetHostCache());
const HostCache::Key key(req.info().hostname(), req.info().address_family(),
req.info().host_resolver_flags());
return resolver_->GetHostCache()->LookupStale(key, base::TimeTicks(),
nullptr);
}
void MakeCacheStale() {
DCHECK(resolver_.get());
resolver_->GetHostCache()->OnNetworkChange();
}
IPEndPoint CreateExpected(const std::string& ip_literal, uint16_t port) {
IPAddress ip;
bool result = ip.AssignFromIPLiteral(ip_literal);
DCHECK(result);
return IPEndPoint(ip, port);
}
scoped_refptr<MockHostResolverProc> proc_;
std::unique_ptr<HostResolverImpl> resolver_;
std::vector<std::unique_ptr<Request>> requests_;
std::unique_ptr<Handler> handler_;
};
TEST_F(HostResolverImplTest, AsynchronousLookup) {
proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42");
proc_->SignalMultiple(1u);
Request* req = CreateRequest("just.testing", 80);
EXPECT_THAT(req->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(req->WaitForResult(), IsOk());
EXPECT_TRUE(req->HasOneAddress("192.168.1.42", 80));
EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname);
}
TEST_F(HostResolverImplTest, AsynchronousLookup_ResolveHost) {
proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42");
proc_->SignalMultiple(1u);
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("just.testing", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(response.result_error(), IsOk());
EXPECT_THAT(response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("192.168.1.42", 80)));
EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname);
}
TEST_F(HostResolverImplTest, DnsQueryType) {
proc_->AddRule("host", ADDRESS_FAMILY_IPV4, "192.168.1.20");
proc_->AddRule("host", ADDRESS_FAMILY_IPV6, "::5");
HostResolver::ResolveHostParameters parameters;
parameters.dns_query_type = HostResolver::DnsQueryType::A;
ResolveHostResponseHelper v4_response(resolver_->CreateRequest(
HostPortPair("host", 80), NetLogWithSource(), parameters));
parameters.dns_query_type = HostResolver::DnsQueryType::AAAA;
ResolveHostResponseHelper v6_response(resolver_->CreateRequest(
HostPortPair("host", 80), NetLogWithSource(), parameters));
proc_->SignalMultiple(2u);
EXPECT_THAT(v4_response.result_error(), IsOk());
EXPECT_THAT(v4_response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("192.168.1.20", 80)));
EXPECT_THAT(v6_response.result_error(), IsOk());
EXPECT_THAT(v6_response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("::5", 80)));
}
TEST_F(HostResolverImplTest, LocalhostIPV4IPV6Lookup) {
Request* req1 = CreateRequest("localhost6", 80, MEDIUM, ADDRESS_FAMILY_IPV4);
EXPECT_THAT(req1->Resolve(), IsOk());
EXPECT_EQ(0u, req1->NumberOfAddresses());
Request* req2 = CreateRequest("localhost6", 80, MEDIUM, ADDRESS_FAMILY_IPV6);
EXPECT_THAT(req2->Resolve(), IsOk());
EXPECT_TRUE(req2->HasOneAddress("::1", 80));
Request* req3 =
CreateRequest("localhost6", 80, MEDIUM, ADDRESS_FAMILY_UNSPECIFIED);
EXPECT_THAT(req3->Resolve(), IsOk());
EXPECT_TRUE(req3->HasOneAddress("::1", 80));
Request* req4 = CreateRequest("localhost", 80, MEDIUM, ADDRESS_FAMILY_IPV4);
EXPECT_THAT(req4->Resolve(), IsOk());
EXPECT_TRUE(req4->HasOneAddress("127.0.0.1", 80));
Request* req5 = CreateRequest("localhost", 80, MEDIUM, ADDRESS_FAMILY_IPV6);
EXPECT_THAT(req5->Resolve(), IsOk());
EXPECT_TRUE(req5->HasOneAddress("::1", 80));
}
TEST_F(HostResolverImplTest, LocalhostIPV4IPV6Lookup_ResolveHost) {
HostResolver::ResolveHostParameters parameters;
parameters.dns_query_type = HostResolver::DnsQueryType::A;
ResolveHostResponseHelper v6_v4_response(resolver_->CreateRequest(
HostPortPair("localhost6", 80), NetLogWithSource(), parameters));
EXPECT_THAT(v6_v4_response.result_error(), IsOk());
EXPECT_THAT(v6_v4_response.request()->GetAddressResults().value().endpoints(),
testing::IsEmpty());
parameters.dns_query_type = HostResolver::DnsQueryType::AAAA;
ResolveHostResponseHelper v6_v6_response(resolver_->CreateRequest(
HostPortPair("localhost6", 80), NetLogWithSource(), parameters));
EXPECT_THAT(v6_v6_response.result_error(), IsOk());
EXPECT_THAT(v6_v6_response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("::1", 80)));
ResolveHostResponseHelper v6_unsp_response(resolver_->CreateRequest(
HostPortPair("localhost6", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(v6_unsp_response.result_error(), IsOk());
EXPECT_THAT(
v6_unsp_response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("::1", 80)));
parameters.dns_query_type = HostResolver::DnsQueryType::A;
ResolveHostResponseHelper v4_v4_response(resolver_->CreateRequest(
HostPortPair("localhost", 80), NetLogWithSource(), parameters));
EXPECT_THAT(v4_v4_response.result_error(), IsOk());
EXPECT_THAT(v4_v4_response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("127.0.0.1", 80)));
parameters.dns_query_type = HostResolver::DnsQueryType::AAAA;
ResolveHostResponseHelper v4_v6_response(resolver_->CreateRequest(
HostPortPair("localhost", 80), NetLogWithSource(), parameters));
EXPECT_THAT(v4_v6_response.result_error(), IsOk());
EXPECT_THAT(v4_v6_response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("::1", 80)));
ResolveHostResponseHelper v4_unsp_response(resolver_->CreateRequest(
HostPortPair("localhost", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(v4_unsp_response.result_error(), IsOk());
EXPECT_THAT(
v4_unsp_response.request()->GetAddressResults().value().endpoints(),
testing::UnorderedElementsAre(CreateExpected("127.0.0.1", 80),
CreateExpected("::1", 80)));
}
TEST_F(HostResolverImplTest, ResolveIPLiteralWithHostResolverSystemOnly) {
const char kIpLiteral[] = "178.78.32.1";
// Add a mapping to tell if the resolver proc was called (if it was called,
// then the result will be the remapped value. Otherwise it will be the IP
// literal).
proc_->AddRuleForAllFamilies(kIpLiteral, "183.45.32.1");
HostResolver::RequestInfo info_bypass(HostPortPair(kIpLiteral, 80));
info_bypass.set_host_resolver_flags(HOST_RESOLVER_SYSTEM_ONLY);
Request* req = CreateRequest(info_bypass, MEDIUM);
EXPECT_THAT(req->Resolve(), IsOk());
EXPECT_TRUE(req->HasAddress(kIpLiteral, 80));
}
TEST_F(HostResolverImplTest,
ResolveIPLiteralWithHostResolverSystemOnly_ResolveHost) {
const char kIpLiteral[] = "178.78.32.1";
// Add a mapping to tell if the resolver proc was called (if it was called,
// then the result will be the remapped value. Otherwise it will be the IP
// literal).
proc_->AddRuleForAllFamilies(kIpLiteral, "183.45.32.1");
HostResolver::ResolveHostParameters parameters;
parameters.source = HostResolverSource::SYSTEM;
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair(kIpLiteral, 80), NetLogWithSource(), parameters));
// IP literal resolution is expected to take precedence over source, so the
// result is expected to be the input IP, not the result IP from the proc rule
EXPECT_THAT(response.result_error(), IsOk());
EXPECT_THAT(response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected(kIpLiteral, 80)));
}
TEST_F(HostResolverImplTest, EmptyListMeansNameNotResolved) {
proc_->AddRuleForAllFamilies("just.testing", "");
proc_->SignalMultiple(1u);
Request* req = CreateRequest("just.testing", 80);
EXPECT_THAT(req->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(req->WaitForResult(), IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_EQ(0u, req->NumberOfAddresses());
EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname);
}
TEST_F(HostResolverImplTest, EmptyListMeansNameNotResolved_ResolveHost) {
proc_->AddRuleForAllFamilies("just.testing", "");
proc_->SignalMultiple(1u);
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("just.testing", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(response.result_error(), IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_FALSE(response.request()->GetAddressResults());
EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname);
}
TEST_F(HostResolverImplTest, FailedAsynchronousLookup) {
proc_->AddRuleForAllFamilies(std::string(),
"0.0.0.0"); // Default to failures.
proc_->SignalMultiple(1u);
Request* req = CreateRequest("just.testing", 80);
EXPECT_THAT(req->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(req->WaitForResult(), IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname);
// Also test that the error is not cached.
EXPECT_THAT(req->ResolveFromCache(), IsError(ERR_DNS_CACHE_MISS));
}
TEST_F(HostResolverImplTest, FailedAsynchronousLookup_ResolveHost) {
proc_->AddRuleForAllFamilies(std::string(),
"0.0.0.0"); // Default to failures.
proc_->SignalMultiple(1u);
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("just.testing", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(response.result_error(), IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_FALSE(response.request()->GetAddressResults());
EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname);
// Also test that the error is not cached.
Request* req = CreateRequest("just.testing", 80);
EXPECT_THAT(req->ResolveFromCache(), IsError(ERR_DNS_CACHE_MISS));
}
TEST_F(HostResolverImplTest, AbortedAsynchronousLookup) {
Request* req0 = CreateRequest("just.testing", 80);
EXPECT_THAT(req0->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_TRUE(proc_->WaitFor(1u));
// Resolver is destroyed while job is running on WorkerPool.
resolver_.reset();
proc_->SignalAll();
// To ensure there was no spurious callback, complete with a new resolver.
CreateResolver();
Request* req1 = CreateRequest("just.testing", 80);
EXPECT_THAT(req1->Resolve(), IsError(ERR_IO_PENDING));
proc_->SignalMultiple(2u);
EXPECT_THAT(req1->WaitForResult(), IsOk());
// This request was canceled.
EXPECT_FALSE(req0->completed());
}
TEST_F(HostResolverImplTest, AbortedAsynchronousLookup_ResolveHost) {
ResolveHostResponseHelper response0(resolver_->CreateRequest(
HostPortPair("just.testing", 80), NetLogWithSource(), base::nullopt));
ASSERT_FALSE(response0.complete());
ASSERT_TRUE(proc_->WaitFor(1u));
// Resolver is destroyed while job is running on WorkerPool.
resolver_.reset();
proc_->SignalAll();
// To ensure there was no spurious callback, complete with a new resolver.
CreateResolver();
ResolveHostResponseHelper response1(resolver_->CreateRequest(
HostPortPair("just.testing", 80), NetLogWithSource(), base::nullopt));
proc_->SignalMultiple(2u);
EXPECT_THAT(response1.result_error(), IsOk());
// This request was canceled.
EXPECT_FALSE(response0.complete());
}
#if defined(THREAD_SANITIZER)
// Use of WorkerPool in HostResolverImpl causes a data race. crbug.com/334140
#define MAYBE_NumericIPv4Address DISABLED_NumericIPv4Address
#else
#define MAYBE_NumericIPv4Address NumericIPv4Address
#endif
TEST_F(HostResolverImplTest, MAYBE_NumericIPv4Address) {
// Stevens says dotted quads with AI_UNSPEC resolve to a single sockaddr_in.
Request* req = CreateRequest("127.1.2.3", 5555);
EXPECT_THAT(req->Resolve(), IsOk());
EXPECT_TRUE(req->HasOneAddress("127.1.2.3", 5555));
}
#if defined(THREAD_SANITIZER)
// Use of WorkerPool in HostResolverImpl causes a data race. crbug.com/334140
#define MAYBE_NumericIPv4Address_ResolveHost \
DISABLED_NumericIPv4Address_ResolveHost
#else
#define MAYBE_NumericIPv4Address_ResolveHost NumericIPv4Address_ResolveHost
#endif
TEST_F(HostResolverImplTest, MAYBE_NumericIPv4Address_ResolveHost) {
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("127.1.2.3", 5555), NetLogWithSource(), base::nullopt));
EXPECT_THAT(response.result_error(), IsOk());
EXPECT_THAT(response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("127.1.2.3", 5555)));
}
#if defined(THREAD_SANITIZER)
// Use of WorkerPool in HostResolverImpl causes a data race. crbug.com/334140
#define MAYBE_NumericIPv6Address DISABLED_NumericIPv6Address
#else
#define MAYBE_NumericIPv6Address NumericIPv6Address
#endif
TEST_F(HostResolverImplTest, MAYBE_NumericIPv6Address) {
// Resolve a plain IPv6 address. Don't worry about [brackets], because
// the caller should have removed them.
Request* req = CreateRequest("2001:db8::1", 5555);
EXPECT_THAT(req->Resolve(), IsOk());
EXPECT_TRUE(req->HasOneAddress("2001:db8::1", 5555));
}
#if defined(THREAD_SANITIZER)
// Use of WorkerPool in HostResolverImpl causes a data race. crbug.com/334140
#define MAYBE_NumericIPv6Address_ResolveHost \
DISABLED_NumericIPv6Address_ResolveHost
#else
#define MAYBE_NumericIPv6Address_ResolveHost NumericIPv6Address_ResolveHost
#endif
TEST_F(HostResolverImplTest, MAYBE_NumericIPv6Address_ResolveHost) {
// Resolve a plain IPv6 address. Don't worry about [brackets], because
// the caller should have removed them.
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("2001:db8::1", 5555), NetLogWithSource(), base::nullopt));
EXPECT_THAT(response.result_error(), IsOk());
EXPECT_THAT(response.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("2001:db8::1", 5555)));
}
#if defined(THREAD_SANITIZER)
// Use of WorkerPool in HostResolverImpl causes a data race. crbug.com/334140
#define MAYBE_EmptyHost DISABLED_EmptyHost
#else
#define MAYBE_EmptyHost EmptyHost
#endif
TEST_F(HostResolverImplTest, MAYBE_EmptyHost) {
Request* req = CreateRequest(std::string(), 5555);
EXPECT_THAT(req->Resolve(), IsError(ERR_NAME_NOT_RESOLVED));
}
#if defined(THREAD_SANITIZER)
// Use of WorkerPool in HostResolverImpl causes a data race. crbug.com/334140
#define MAYBE_EmptyHost_ResolveHost DISABLED_EmptyHost_ResolveHost
#else
#define MAYBE_EmptyHost_ResolveHost EmptyHost_ResolveHost
#endif
TEST_F(HostResolverImplTest, MAYBE_EmptyHost_ResolveHost) {
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair(std::string(), 5555), NetLogWithSource(), base::nullopt));
EXPECT_THAT(response.result_error(), IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_FALSE(response.request()->GetAddressResults());
}
#if defined(THREAD_SANITIZER)
// There's a data race in this test that may lead to use-after-free.
// If the test starts to crash without ThreadSanitizer it needs to be disabled
// globally. See http://crbug.com/268946 (stacks for this test in
// crbug.com/333567).
#define MAYBE_EmptyDotsHost DISABLED_EmptyDotsHost
#else
#define MAYBE_EmptyDotsHost EmptyDotsHost
#endif
TEST_F(HostResolverImplTest, MAYBE_EmptyDotsHost) {
for (int i = 0; i < 16; ++i) {
Request* req = CreateRequest(std::string(i, '.'), 5555);
EXPECT_THAT(req->Resolve(), IsError(ERR_NAME_NOT_RESOLVED));
}
}
#if defined(THREAD_SANITIZER)
// There's a data race in this test that may lead to use-after-free.
// If the test starts to crash without ThreadSanitizer it needs to be disabled
// globally. See http://crbug.com/268946 (stacks for this test in
// crbug.com/333567).
#define MAYBE_EmptyDotsHost_ResolveHost DISABLED_EmptyDotsHost_ResolveHost
#else
#define MAYBE_EmptyDotsHost_ResolveHost EmptyDotsHost_ResolveHost
#endif
TEST_F(HostResolverImplTest, MAYBE_EmptyDotsHost_ResolveHost) {
for (int i = 0; i < 16; ++i) {
ResolveHostResponseHelper response(
resolver_->CreateRequest(HostPortPair(std::string(i, '.'), 5555),
NetLogWithSource(), base::nullopt));
EXPECT_THAT(response.result_error(), IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_FALSE(response.request()->GetAddressResults());
}
}
#if defined(THREAD_SANITIZER)
// There's a data race in this test that may lead to use-after-free.
// If the test starts to crash without ThreadSanitizer it needs to be disabled
// globally. See http://crbug.com/268946.
#define MAYBE_LongHost DISABLED_LongHost
#else
#define MAYBE_LongHost LongHost
#endif
TEST_F(HostResolverImplTest, MAYBE_LongHost) {
Request* req = CreateRequest(std::string(4097, 'a'), 5555);
EXPECT_THAT(req->Resolve(), IsError(ERR_NAME_NOT_RESOLVED));
}
#if defined(THREAD_SANITIZER)
// There's a data race in this test that may lead to use-after-free.
// If the test starts to crash without ThreadSanitizer it needs to be disabled
// globally. See http://crbug.com/268946.
#define MAYBE_LongHost_ResolveHost DISABLED_LongHost_ResolveHost
#else
#define MAYBE_LongHost_ResolveHost LongHost_ResolveHost
#endif
TEST_F(HostResolverImplTest, MAYBE_LongHost_ResolveHost) {
ResolveHostResponseHelper response(
resolver_->CreateRequest(HostPortPair(std::string(4097, 'a'), 5555),
NetLogWithSource(), base::nullopt));
EXPECT_THAT(response.result_error(), IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_FALSE(response.request()->GetAddressResults());
}
TEST_F(HostResolverImplTest, DeDupeRequests) {
// Start 5 requests, duplicating hosts "a" and "b". Since the resolver_proc is
// blocked, these should all pile up until we signal it.
EXPECT_THAT(CreateRequest("a", 80)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("b", 80)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("b", 81)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("a", 82)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("b", 83)->Resolve(), IsError(ERR_IO_PENDING));
proc_->SignalMultiple(2u); // One for "a", one for "b".
for (size_t i = 0; i < requests_.size(); ++i) {
EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i;
}
}
TEST_F(HostResolverImplTest, DeDupeRequests_ResolveHost) {
// Start 5 requests, duplicating hosts "a" and "b". Since the resolver_proc is
// blocked, these should all pile up until we signal it.
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 80), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 80), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 81), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 82), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 83), NetLogWithSource(), base::nullopt)));
for (auto& response : responses) {
ASSERT_FALSE(response->complete());
}
proc_->SignalMultiple(2u); // One for "a", one for "b".
for (auto& response : responses) {
EXPECT_THAT(response->result_error(), IsOk());
}
}
TEST_F(HostResolverImplTest, CancelMultipleRequests) {
EXPECT_THAT(CreateRequest("a", 80)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("b", 80)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("b", 81)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("a", 82)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("b", 83)->Resolve(), IsError(ERR_IO_PENDING));
// Cancel everything except request for ("a", 82).
requests_[0]->Cancel();
requests_[1]->Cancel();
requests_[2]->Cancel();
requests_[4]->Cancel();
proc_->SignalMultiple(2u); // One for "a", one for "b".
EXPECT_THAT(requests_[3]->WaitForResult(), IsOk());
}
TEST_F(HostResolverImplTest, CancelMultipleRequests_ResolveHost) {
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 80), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 80), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 81), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 82), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 83), NetLogWithSource(), base::nullopt)));
for (auto& response : responses) {
ASSERT_FALSE(response->complete());
}
// Cancel everything except request for requests[3] ("a", 82).
responses[0]->CancelRequest();
responses[1]->CancelRequest();
responses[2]->CancelRequest();
responses[4]->CancelRequest();
proc_->SignalMultiple(2u); // One for "a", one for "b".
EXPECT_THAT(responses[3]->result_error(), IsOk());
EXPECT_FALSE(responses[0]->complete());
EXPECT_FALSE(responses[1]->complete());
EXPECT_FALSE(responses[2]->complete());
EXPECT_FALSE(responses[4]->complete());
}
TEST_F(HostResolverImplTest, CanceledRequestsReleaseJobSlots) {
// Fill up the dispatcher and queue.
for (unsigned i = 0; i < kMaxJobs + 1; ++i) {
std::string hostname = "a_";
hostname[1] = 'a' + i;
EXPECT_THAT(CreateRequest(hostname, 80)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest(hostname, 81)->Resolve(),
IsError(ERR_IO_PENDING));
}
EXPECT_TRUE(proc_->WaitFor(kMaxJobs));
// Cancel all but last two.
for (unsigned i = 0; i < requests_.size() - 2; ++i) {
requests_[i]->Cancel();
}
EXPECT_TRUE(proc_->WaitFor(kMaxJobs + 1));
proc_->SignalAll();
size_t num_requests = requests_.size();
EXPECT_THAT(requests_[num_requests - 1]->WaitForResult(), IsOk());
EXPECT_THAT(requests_[num_requests - 2]->result(), IsOk());
}
TEST_F(HostResolverImplTest, CanceledRequestsReleaseJobSlots_ResolveHost) {
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
// Fill up the dispatcher and queue.
for (unsigned i = 0; i < kMaxJobs + 1; ++i) {
std::string hostname = "a_";
hostname[1] = 'a' + i;
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair(hostname, 80), NetLogWithSource(), base::nullopt)));
ASSERT_FALSE(responses.back()->complete());
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair(hostname, 81), NetLogWithSource(), base::nullopt)));
ASSERT_FALSE(responses.back()->complete());
}
ASSERT_TRUE(proc_->WaitFor(kMaxJobs));
// Cancel all but last two.
for (unsigned i = 0; i < responses.size() - 2; ++i) {
responses[i]->CancelRequest();
}
ASSERT_TRUE(proc_->WaitFor(kMaxJobs + 1));
proc_->SignalAll();
size_t num_requests = responses.size();
EXPECT_THAT(responses[num_requests - 1]->result_error(), IsOk());
EXPECT_THAT(responses[num_requests - 2]->result_error(), IsOk());
for (unsigned i = 0; i < num_requests - 2; ++i) {
EXPECT_FALSE(responses[i]->complete());
}
}
TEST_F(HostResolverImplTest, CancelWithinCallback) {
struct MyHandler : public Handler {
void Handle(Request* req) override {
// Port 80 is the first request that the callback will be invoked for.
// While we are executing within that callback, cancel the other requests
// in the job and start another request.
if (req->index() == 0) {
// Once "a:80" completes, it will cancel "a:81" and "a:82".
requests()[1]->Cancel();
requests()[2]->Cancel();
}
}
};
set_handler(new MyHandler());
for (size_t i = 0; i < 4; ++i) {
EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i;
}
proc_->SignalMultiple(2u); // One for "a". One for "finalrequest".
EXPECT_THAT(requests_[0]->WaitForResult(), IsOk());
Request* final_request = CreateRequest("finalrequest", 70);
EXPECT_THAT(final_request->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(final_request->WaitForResult(), IsOk());
EXPECT_TRUE(requests_[3]->completed());
}
TEST_F(HostResolverImplTest, CancelWithinCallback_ResolveHost) {
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
auto custom_callback = base::BindLambdaForTesting(
[&](CompletionOnceCallback completion_callback, int error) {
for (auto& response : responses) {
// Cancelling request is required to complete first, so that it can
// attempt to cancel the others. This test assumes all jobs are
// completed in order.
DCHECK(!response->complete());
response->CancelRequest();
}
std::move(completion_callback).Run(error);
});
ResolveHostResponseHelper cancelling_response(
resolver_->CreateRequest(HostPortPair("a", 80), NetLogWithSource(),
base::nullopt),
std::move(custom_callback));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 81), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 82), NetLogWithSource(), base::nullopt)));
proc_->SignalMultiple(2u); // One for "a". One for "finalrequest".
EXPECT_THAT(cancelling_response.result_error(), IsOk());
ResolveHostResponseHelper final_response(resolver_->CreateRequest(
HostPortPair("finalrequest", 70), NetLogWithSource(), base::nullopt));
EXPECT_THAT(final_response.result_error(), IsOk());
for (auto& response : responses) {
EXPECT_FALSE(response->complete());
}
}
TEST_F(HostResolverImplTest, DeleteWithinCallback) {
struct MyHandler : public Handler {
void Handle(Request* req) override {
EXPECT_EQ("a", req->info().hostname());
EXPECT_EQ(80, req->info().port());
DeleteResolver();
// Quit after returning from OnCompleted (to give it a chance at
// incorrectly running the cancelled tasks).
base::ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::RunLoop::QuitCurrentWhenIdleClosureDeprecated());
}
};
set_handler(new MyHandler());
for (size_t i = 0; i < 4; ++i) {
EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i;
}
proc_->SignalMultiple(1u); // One for "a".
// |MyHandler| will send quit message once all the requests have finished.
base::RunLoop().Run();
}
TEST_F(HostResolverImplTest, DeleteWithinCallback_ResolveHost) {
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
auto custom_callback = base::BindLambdaForTesting(
[&](CompletionOnceCallback completion_callback, int error) {
for (auto& response : responses) {
// Deleting request is required to be first, so the other requests
// will still be running to be deleted. This test assumes that the
// Jobs will be Aborted in order and the requests in order within the
// jobs.
DCHECK(!response->complete());
}
resolver_.reset();
std::move(completion_callback).Run(error);
});
ResolveHostResponseHelper deleting_response(
resolver_->CreateRequest(HostPortPair("a", 80), NetLogWithSource(),
base::nullopt),
std::move(custom_callback));
// Start additional requests to be cancelled as part of the first's deletion.
// Assumes all requests for a job are handled in order so that the deleting
// request will run first and cancel the rest.
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 81), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 82), NetLogWithSource(), base::nullopt)));
proc_->SignalMultiple(3u);
EXPECT_THAT(deleting_response.result_error(), IsOk());
base::RunLoop().RunUntilIdle();
for (auto& response : responses) {
EXPECT_FALSE(response->complete());
}
}
TEST_F(HostResolverImplTest, DeleteWithinAbortedCallback) {
struct MyHandler : public Handler {
void Handle(Request* req) override {
EXPECT_EQ("a", req->info().hostname());
EXPECT_EQ(80, req->info().port());
DeleteResolver();
// Quit after returning from OnCompleted (to give it a chance at
// incorrectly running the cancelled tasks).
base::ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::RunLoop::QuitCurrentWhenIdleClosureDeprecated());
}
};
set_handler(new MyHandler());
// This test assumes that the Jobs will be Aborted in order ["a", "b"]
EXPECT_THAT(CreateRequest("a", 80)->Resolve(), IsError(ERR_IO_PENDING));
// HostResolverImpl will be deleted before later Requests can complete.
EXPECT_THAT(CreateRequest("a", 81)->Resolve(), IsError(ERR_IO_PENDING));
// Job for 'b' will be aborted before it can complete.
EXPECT_THAT(CreateRequest("b", 82)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("b", 83)->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_TRUE(proc_->WaitFor(1u));
// Triggering an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
// |MyHandler| will send quit message once all the requests have finished.
base::RunLoop().Run();
EXPECT_THAT(requests_[0]->result(), IsError(ERR_NETWORK_CHANGED));
EXPECT_THAT(requests_[1]->result(), IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[2]->result(), IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[3]->result(), IsError(ERR_IO_PENDING));
// Clean up.
proc_->SignalMultiple(requests_.size());
}
TEST_F(HostResolverImplTest, DeleteWithinAbortedCallback_ResolveHost) {
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
ResolveHostResponseHelper::Callback custom_callback =
base::BindLambdaForTesting(
[&](CompletionOnceCallback completion_callback, int error) {
for (auto& response : responses) {
// Deleting request is required to be first, so the other requests
// will still be running to be deleted. This test assumes that the
// Jobs will be Aborted in order and the requests in order within
// the jobs.
DCHECK(!response->complete());
}
resolver_.reset();
std::move(completion_callback).Run(error);
});
ResolveHostResponseHelper deleting_response(
resolver_->CreateRequest(HostPortPair("a", 80), NetLogWithSource(),
base::nullopt),
std::move(custom_callback));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 81), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 82), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 83), NetLogWithSource(), base::nullopt)));
// Wait for all calls to queue up, trigger abort via IP address change, then
// signal all the queued requests to let them all try to finish.
EXPECT_TRUE(proc_->WaitFor(2u));
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
proc_->SignalAll();
EXPECT_THAT(deleting_response.result_error(), IsError(ERR_NETWORK_CHANGED));
base::RunLoop().RunUntilIdle();
for (auto& response : responses) {
EXPECT_FALSE(response->complete());
}
}
TEST_F(HostResolverImplTest, StartWithinCallback) {
struct MyHandler : public Handler {
void Handle(Request* req) override {
if (req->index() == 0) {
// On completing the first request, start another request for "a".
// Since caching is disabled, this will result in another async request.
EXPECT_THAT(CreateRequest("a", 70)->Resolve(), IsError(ERR_IO_PENDING));
}
}
};
set_handler(new MyHandler());
// Turn off caching for this host resolver.
HostResolver::Options options = DefaultOptions();
options.enable_caching = false;
resolver_.reset(new TestHostResolverImpl(options, NULL));
resolver_->set_proc_params_for_test(DefaultParams(proc_.get()));
for (size_t i = 0; i < 4; ++i) {
EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i;
}
proc_->SignalMultiple(2u); // One for "a". One for the second "a".
EXPECT_THAT(requests_[0]->WaitForResult(), IsOk());
ASSERT_EQ(5u, requests_.size());
EXPECT_THAT(requests_.back()->WaitForResult(), IsOk());
EXPECT_EQ(2u, proc_->GetCaptureList().size());
}
TEST_F(HostResolverImplTest, StartWithinCallback_ResolveHost) {
std::unique_ptr<ResolveHostResponseHelper> new_response;
auto custom_callback = base::BindLambdaForTesting(
[&](CompletionOnceCallback completion_callback, int error) {
new_response = std::make_unique<ResolveHostResponseHelper>(
resolver_->CreateRequest(HostPortPair("new", 70),
NetLogWithSource(), base::nullopt));
std::move(completion_callback).Run(error);
});
ResolveHostResponseHelper starting_response(
resolver_->CreateRequest(HostPortPair("a", 80), NetLogWithSource(),
base::nullopt),
std::move(custom_callback));
proc_->SignalMultiple(2u); // One for "a". One for "new".
EXPECT_THAT(starting_response.result_error(), IsOk());
EXPECT_THAT(new_response->result_error(), IsOk());
}
TEST_F(HostResolverImplTest, BypassCache) {
struct MyHandler : public Handler {
void Handle(Request* req) override {
if (req->index() == 0) {
// On completing the first request, start another request for "a".
// Since caching is enabled, this should complete synchronously.
std::string hostname = req->info().hostname();
EXPECT_THAT(CreateRequest(hostname, 70)->Resolve(), IsOk());
EXPECT_THAT(CreateRequest(hostname, 75)->ResolveFromCache(), IsOk());
// Ok good. Now make sure that if we ask to bypass the cache, it can no
// longer service the request synchronously.
HostResolver::RequestInfo info(HostPortPair(hostname, 71));
info.set_allow_cached_response(false);
EXPECT_EQ(ERR_IO_PENDING,
CreateRequest(info, DEFAULT_PRIORITY)->Resolve());
} else if (71 == req->info().port()) {
// Test is done.
base::RunLoop::QuitCurrentWhenIdleDeprecated();
} else {
FAIL() << "Unexpected request";
}
}
};
set_handler(new MyHandler());
EXPECT_THAT(CreateRequest("a", 80)->Resolve(), IsError(ERR_IO_PENDING));
proc_->SignalMultiple(3u); // Only need two, but be generous.
// |verifier| will send quit message once all the requests have finished.
base::RunLoop().Run();
EXPECT_EQ(2u, proc_->GetCaptureList().size());
}
TEST_F(HostResolverImplTest, BypassCache_ResolveHost) {
proc_->SignalMultiple(2u);
ResolveHostResponseHelper initial_response(resolver_->CreateRequest(
HostPortPair("a", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(initial_response.result_error(), IsOk());
EXPECT_EQ(1u, proc_->GetCaptureList().size());
ResolveHostResponseHelper cached_response(resolver_->CreateRequest(
HostPortPair("a", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(cached_response.result_error(), IsOk());
// Expect no increase to calls to |proc_| because result was cached.
EXPECT_EQ(1u, proc_->GetCaptureList().size());
HostResolver::ResolveHostParameters parameters;
parameters.allow_cached_response = false;
ResolveHostResponseHelper cache_bypassed_response(resolver_->CreateRequest(
HostPortPair("a", 80), NetLogWithSource(), parameters));
EXPECT_THAT(cache_bypassed_response.result_error(), IsOk());
// Expect call to |proc_| because cache was bypassed.
EXPECT_EQ(2u, proc_->GetCaptureList().size());
}
// Test that IP address changes flush the cache but initial DNS config reads do
// not.
TEST_F(HostResolverImplTest, FlushCacheOnIPAddressChange) {
proc_->SignalMultiple(2u); // One before the flush, one after.
Request* req = CreateRequest("host1", 70);
EXPECT_THAT(req->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(req->WaitForResult(), IsOk());
req = CreateRequest("host1", 75);
EXPECT_THAT(req->Resolve(), IsOk()); // Should complete synchronously.
// Verify initial DNS config read does not flush cache.
NetworkChangeNotifier::NotifyObserversOfInitialDNSConfigReadForTests();
req = CreateRequest("host1", 75);
EXPECT_THAT(req->Resolve(), IsOk()); // Should complete synchronously.
// Flush cache by triggering an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
base::RunLoop().RunUntilIdle(); // Notification happens async.
// Resolve "host1" again -- this time it won't be served from cache, so it
// will complete asynchronously.
req = CreateRequest("host1", 80);
EXPECT_THAT(req->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(req->WaitForResult(), IsOk());
}
// Test that IP address changes flush the cache but initial DNS config reads
// do not.
TEST_F(HostResolverImplTest, FlushCacheOnIPAddressChange_ResolveHost) {
proc_->SignalMultiple(2u); // One before the flush, one after.
ResolveHostResponseHelper initial_response(resolver_->CreateRequest(
HostPortPair("host1", 70), NetLogWithSource(), base::nullopt));
EXPECT_THAT(initial_response.result_error(), IsOk());
EXPECT_EQ(1u, proc_->GetCaptureList().size());
ResolveHostResponseHelper cached_response(resolver_->CreateRequest(
HostPortPair("host1", 75), NetLogWithSource(), base::nullopt));
EXPECT_THAT(cached_response.result_error(), IsOk());
EXPECT_EQ(1u, proc_->GetCaptureList().size()); // No expected increase.
// Verify initial DNS config read does not flush cache.
NetworkChangeNotifier::NotifyObserversOfInitialDNSConfigReadForTests();
ResolveHostResponseHelper unflushed_response(resolver_->CreateRequest(
HostPortPair("host1", 75), NetLogWithSource(), base::nullopt));
EXPECT_THAT(unflushed_response.result_error(), IsOk());
EXPECT_EQ(1u, proc_->GetCaptureList().size()); // No expected increase.
// Flush cache by triggering an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
base::RunLoop().RunUntilIdle(); // Notification happens async.
// Resolve "host1" again -- this time it won't be served from cache, so it
// will complete asynchronously.
ResolveHostResponseHelper flushed_response(resolver_->CreateRequest(
HostPortPair("host1", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(flushed_response.result_error(), IsOk());
EXPECT_EQ(2u, proc_->GetCaptureList().size()); // Expected increase.
}
// Test that IP address changes send ERR_NETWORK_CHANGED to pending requests.
TEST_F(HostResolverImplTest, AbortOnIPAddressChanged) {
Request* req = CreateRequest("host1", 70);
EXPECT_THAT(req->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_TRUE(proc_->WaitFor(1u));
// Triggering an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
base::RunLoop().RunUntilIdle(); // Notification happens async.
proc_->SignalAll();
EXPECT_THAT(req->WaitForResult(), IsError(ERR_NETWORK_CHANGED));
EXPECT_EQ(0u, resolver_->GetHostCache()->size());
}
// Test that IP address changes send ERR_NETWORK_CHANGED to pending requests.
TEST_F(HostResolverImplTest, AbortOnIPAddressChanged_ResolveHost) {
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("host1", 70), NetLogWithSource(), base::nullopt));
ASSERT_FALSE(response.complete());
ASSERT_TRUE(proc_->WaitFor(1u));
// Triggering an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
base::RunLoop().RunUntilIdle(); // Notification happens async.
proc_->SignalAll();
EXPECT_THAT(response.result_error(), IsError(ERR_NETWORK_CHANGED));
EXPECT_FALSE(response.request()->GetAddressResults());
EXPECT_EQ(0u, resolver_->GetHostCache()->size());
}
// Test that initial DNS config read signals do not abort pending requests.
TEST_F(HostResolverImplTest, DontAbortOnInitialDNSConfigRead) {
Request* req = CreateRequest("host1", 70);
EXPECT_THAT(req->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_TRUE(proc_->WaitFor(1u));
// Triggering initial DNS config read signal.
NetworkChangeNotifier::NotifyObserversOfInitialDNSConfigReadForTests();
base::RunLoop().RunUntilIdle(); // Notification happens async.
proc_->SignalAll();
EXPECT_THAT(req->WaitForResult(), IsOk());
}
// Test that initial DNS config read signals do not abort pending requests.
TEST_F(HostResolverImplTest, DontAbortOnInitialDNSConfigRead_ResolveHost) {
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("host1", 70), NetLogWithSource(), base::nullopt));
ASSERT_FALSE(response.complete());
ASSERT_TRUE(proc_->WaitFor(1u));
// Triggering initial DNS config read signal.
NetworkChangeNotifier::NotifyObserversOfInitialDNSConfigReadForTests();
base::RunLoop().RunUntilIdle(); // Notification happens async.
proc_->SignalAll();
EXPECT_THAT(response.result_error(), IsOk());
EXPECT_TRUE(response.request()->GetAddressResults());
}
// Obey pool constraints after IP address has changed.
TEST_F(HostResolverImplTest, ObeyPoolConstraintsAfterIPAddressChange) {
// Runs at most one job at a time.
CreateSerialResolver();
EXPECT_THAT(CreateRequest("a")->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("b")->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("c")->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_TRUE(proc_->WaitFor(1u));
// Triggering an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
base::RunLoop().RunUntilIdle(); // Notification happens async.
proc_->SignalMultiple(3u); // Let the false-start go so that we can catch it.
EXPECT_THAT(requests_[0]->WaitForResult(), IsError(ERR_NETWORK_CHANGED));
EXPECT_EQ(1u, num_running_dispatcher_jobs());
EXPECT_FALSE(requests_[1]->completed());
EXPECT_FALSE(requests_[2]->completed());
EXPECT_THAT(requests_[2]->WaitForResult(), IsOk());
EXPECT_THAT(requests_[1]->result(), IsOk());
}
// Obey pool constraints after IP address has changed.
TEST_F(HostResolverImplTest,
ObeyPoolConstraintsAfterIPAddressChange_ResolveHost) {
// Runs at most one job at a time.
CreateSerialResolver();
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("a", 80), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("b", 80), NetLogWithSource(), base::nullopt)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("c", 80), NetLogWithSource(), base::nullopt)));
for (auto& response : responses) {
ASSERT_FALSE(response->complete());
}
ASSERT_TRUE(proc_->WaitFor(1u));
// Triggering an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
base::RunLoop().RunUntilIdle(); // Notification happens async.
proc_->SignalMultiple(3u); // Let the false-start go so that we can catch it.
// Requests should complete one at a time, with the first failing.
EXPECT_THAT(responses[0]->result_error(), IsError(ERR_NETWORK_CHANGED));
EXPECT_EQ(1u, num_running_dispatcher_jobs());
EXPECT_FALSE(responses[1]->complete());
EXPECT_FALSE(responses[2]->complete());
EXPECT_THAT(responses[1]->result_error(), IsOk());
EXPECT_EQ(1u, num_running_dispatcher_jobs());
EXPECT_FALSE(responses[2]->complete());
EXPECT_THAT(responses[2]->result_error(), IsOk());
}
// Tests that a new Request made from the callback of a previously aborted one
// will not be aborted.
TEST_F(HostResolverImplTest, AbortOnlyExistingRequestsOnIPAddressChange) {
struct MyHandler : public Handler {
void Handle(Request* req) override {
// Start new request for a different hostname to ensure that the order
// of jobs in HostResolverImpl is not stable.
std::string hostname;
if (req->index() == 0)
hostname = "zzz";
else if (req->index() == 1)
hostname = "aaa";
else if (req->index() == 2)
hostname = "eee";
else
return; // A request started from within MyHandler.
EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname)->Resolve()) << hostname;
}
};
set_handler(new MyHandler());
EXPECT_THAT(CreateRequest("bbb")->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("eee")->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("ccc")->Resolve(), IsError(ERR_IO_PENDING));
// Wait until all are blocked;
EXPECT_TRUE(proc_->WaitFor(3u));
// Trigger an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
// This should abort all running jobs.
base::RunLoop().RunUntilIdle();
EXPECT_THAT(requests_[0]->result(), IsError(ERR_NETWORK_CHANGED));
EXPECT_THAT(requests_[1]->result(), IsError(ERR_NETWORK_CHANGED));
EXPECT_THAT(requests_[2]->result(), IsError(ERR_NETWORK_CHANGED));
ASSERT_EQ(6u, requests_.size());
// Unblock all calls to proc.
proc_->SignalMultiple(requests_.size());
// Run until the re-started requests finish.
EXPECT_THAT(requests_[3]->WaitForResult(), IsOk());
EXPECT_THAT(requests_[4]->WaitForResult(), IsOk());
EXPECT_THAT(requests_[5]->WaitForResult(), IsOk());
// Verify that results of aborted Jobs were not cached.
EXPECT_EQ(6u, proc_->GetCaptureList().size());
EXPECT_EQ(3u, resolver_->GetHostCache()->size());
}
// Tests that a new Request made from the callback of a previously aborted one
// will not be aborted.
TEST_F(HostResolverImplTest,
AbortOnlyExistingRequestsOnIPAddressChange_ResolveHost) {
auto custom_callback_template = base::BindLambdaForTesting(
[&](const HostPortPair& next_host,
std::unique_ptr<ResolveHostResponseHelper>* next_response,
CompletionOnceCallback completion_callback, int error) {
*next_response = std::make_unique<ResolveHostResponseHelper>(
resolver_->CreateRequest(next_host, NetLogWithSource(),
base::nullopt));
std::move(completion_callback).Run(error);
});
std::vector<std::unique_ptr<ResolveHostResponseHelper>> next_responses(3);
ResolveHostResponseHelper response0(
resolver_->CreateRequest(HostPortPair("bbb", 80), NetLogWithSource(),
base::nullopt),
base::BindOnce(custom_callback_template, HostPortPair("zzz", 80),
&next_responses[0]));
ResolveHostResponseHelper response1(
resolver_->CreateRequest(HostPortPair("eee", 80), NetLogWithSource(),
base::nullopt),
base::BindOnce(custom_callback_template, HostPortPair("aaa", 80),
&next_responses[1]));
ResolveHostResponseHelper response2(
resolver_->CreateRequest(HostPortPair("ccc", 80), NetLogWithSource(),
base::nullopt),
base::BindOnce(custom_callback_template, HostPortPair("eee", 80),
&next_responses[2]));
// Wait until all are blocked;
ASSERT_TRUE(proc_->WaitFor(3u));
// Trigger an IP address change.
NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests();
// This should abort all running jobs.
base::RunLoop().RunUntilIdle();
EXPECT_THAT(response0.result_error(), IsError(ERR_NETWORK_CHANGED));
EXPECT_THAT(response1.result_error(), IsError(ERR_NETWORK_CHANGED));
EXPECT_THAT(response2.result_error(), IsError(ERR_NETWORK_CHANGED));
EXPECT_FALSE(next_responses[0]->complete());
EXPECT_FALSE(next_responses[1]->complete());
EXPECT_FALSE(next_responses[2]->complete());
// Unblock all calls to proc.
proc_->SignalMultiple(6u);
// Run until the re-started requests finish.
EXPECT_THAT(next_responses[0]->result_error(), IsOk());
EXPECT_THAT(next_responses[1]->result_error(), IsOk());
EXPECT_THAT(next_responses[2]->result_error(), IsOk());
// Verify that results of aborted Jobs were not cached.
EXPECT_EQ(6u, proc_->GetCaptureList().size());
EXPECT_EQ(3u, resolver_->GetHostCache()->size());
}
// Tests that when the maximum threads is set to 1, requests are dequeued
// in order of priority.
TEST_F(HostResolverImplTest, HigherPriorityRequestsStartedFirst) {
CreateSerialResolver();
// Note that at this point the MockHostResolverProc is blocked, so any
// requests we make will not complete.
CreateRequest("req0", 80, LOW);
CreateRequest("req1", 80, MEDIUM);
CreateRequest("req2", 80, MEDIUM);
CreateRequest("req3", 80, LOW);
CreateRequest("req4", 80, HIGHEST);
CreateRequest("req5", 80, LOW);
CreateRequest("req6", 80, LOW);
CreateRequest("req5", 80, HIGHEST);
for (size_t i = 0; i < requests_.size(); ++i) {
EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i;
}
// Unblock the resolver thread so the requests can run.
proc_->SignalMultiple(requests_.size()); // More than needed.
// Wait for all the requests to complete succesfully.
for (size_t i = 0; i < requests_.size(); ++i) {
EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i;
}
// Since we have restricted to a single concurrent thread in the jobpool,
// the requests should complete in order of priority (with the exception
// of the first request, which gets started right away, since there is
// nothing outstanding).
MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList();
ASSERT_EQ(7u, capture_list.size());
EXPECT_EQ("req0", capture_list[0].hostname);
EXPECT_EQ("req4", capture_list[1].hostname);
EXPECT_EQ("req5", capture_list[2].hostname);
EXPECT_EQ("req1", capture_list[3].hostname);
EXPECT_EQ("req2", capture_list[4].hostname);
EXPECT_EQ("req3", capture_list[5].hostname);
EXPECT_EQ("req6", capture_list[6].hostname);
}
// Tests that when the maximum threads is set to 1, requests are dequeued
// in order of priority.
TEST_F(HostResolverImplTest, HigherPriorityRequestsStartedFirst_ResolveHost) {
CreateSerialResolver();
HostResolver::ResolveHostParameters low_priority;
low_priority.initial_priority = LOW;
HostResolver::ResolveHostParameters medium_priority;
medium_priority.initial_priority = MEDIUM;
HostResolver::ResolveHostParameters highest_priority;
highest_priority.initial_priority = HIGHEST;
// Note that at this point the MockHostResolverProc is blocked, so any
// requests we make will not complete.
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req0", 80), NetLogWithSource(), low_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req1", 80), NetLogWithSource(), medium_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req2", 80), NetLogWithSource(), medium_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req3", 80), NetLogWithSource(), low_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req4", 80), NetLogWithSource(), highest_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req5", 80), NetLogWithSource(), low_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req6", 80), NetLogWithSource(), low_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req5", 80), NetLogWithSource(), highest_priority)));
for (const auto& response : responses) {
ASSERT_FALSE(response->complete());
}
// Unblock the resolver thread so the requests can run.
proc_->SignalMultiple(responses.size()); // More than needed.
// Wait for all the requests to complete successfully.
for (auto& response : responses) {
EXPECT_THAT(response->result_error(), IsOk());
}
// Since we have restricted to a single concurrent thread in the jobpool,
// the requests should complete in order of priority (with the exception
// of the first request, which gets started right away, since there is
// nothing outstanding).
MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList();
ASSERT_EQ(7u, capture_list.size());
EXPECT_EQ("req0", capture_list[0].hostname);
EXPECT_EQ("req4", capture_list[1].hostname);
EXPECT_EQ("req5", capture_list[2].hostname);
EXPECT_EQ("req1", capture_list[3].hostname);
EXPECT_EQ("req2", capture_list[4].hostname);
EXPECT_EQ("req3", capture_list[5].hostname);
EXPECT_EQ("req6", capture_list[6].hostname);
}
// Test that changing a job's priority affects the dequeueing order.
// TODO(crbug.com/821021): Add ResolveHost test once changing priorities is
// supported.
TEST_F(HostResolverImplTest, ChangePriority) {
CreateSerialResolver();
CreateRequest("req0", 80, MEDIUM);
CreateRequest("req1", 80, LOW);
CreateRequest("req2", 80, LOWEST);
ASSERT_EQ(3u, requests_.size());
// req0 starts immediately; without ChangePriority, req1 and then req2 should
// run.
EXPECT_THAT(requests_[0]->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[1]->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[2]->Resolve(), IsError(ERR_IO_PENDING));
// Changing req2 to HIGH should make it run before req1.
// (It can't run before req0, since req0 started immediately.)
requests_[2]->ChangePriority(HIGHEST);
// Let all 3 requests finish.
proc_->SignalMultiple(3u);
EXPECT_THAT(requests_[0]->WaitForResult(), IsOk());
EXPECT_THAT(requests_[1]->WaitForResult(), IsOk());
EXPECT_THAT(requests_[2]->WaitForResult(), IsOk());
MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList();
ASSERT_EQ(3u, capture_list.size());
EXPECT_EQ("req0", capture_list[0].hostname);
EXPECT_EQ("req2", capture_list[1].hostname);
EXPECT_EQ("req1", capture_list[2].hostname);
}
// Try cancelling a job which has not started yet.
TEST_F(HostResolverImplTest, CancelPendingRequest) {
CreateSerialResolver();
CreateRequest("req0", 80, LOWEST);
CreateRequest("req1", 80, HIGHEST); // Will cancel.
CreateRequest("req2", 80, MEDIUM);
CreateRequest("req3", 80, LOW);
CreateRequest("req4", 80, HIGHEST); // Will cancel.
CreateRequest("req5", 80, LOWEST); // Will cancel.
CreateRequest("req6", 80, MEDIUM);
// Start all of the requests.
for (size_t i = 0; i < requests_.size(); ++i) {
EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i;
}
// Cancel some requests
requests_[1]->Cancel();
requests_[4]->Cancel();
requests_[5]->Cancel();
// Unblock the resolver thread so the requests can run.
proc_->SignalMultiple(requests_.size()); // More than needed.
// Wait for all the requests to complete succesfully.
for (size_t i = 0; i < requests_.size(); ++i) {
if (!requests_[i]->pending())
continue; // Don't wait for the requests we cancelled.
EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i;
}
// Verify that they called out the the resolver proc (which runs on the
// resolver thread) in the expected order.
MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList();
ASSERT_EQ(4u, capture_list.size());
EXPECT_EQ("req0", capture_list[0].hostname);
EXPECT_EQ("req2", capture_list[1].hostname);
EXPECT_EQ("req6", capture_list[2].hostname);
EXPECT_EQ("req3", capture_list[3].hostname);
}
// Try cancelling a job which has not started yet.
TEST_F(HostResolverImplTest, CancelPendingRequest_ResolveHost) {
CreateSerialResolver();
HostResolver::ResolveHostParameters lowest_priority;
lowest_priority.initial_priority = LOWEST;
HostResolver::ResolveHostParameters low_priority;
low_priority.initial_priority = LOW;
HostResolver::ResolveHostParameters medium_priority;
medium_priority.initial_priority = MEDIUM;
HostResolver::ResolveHostParameters highest_priority;
highest_priority.initial_priority = HIGHEST;
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req0", 80), NetLogWithSource(), lowest_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req1", 80), NetLogWithSource(), highest_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req2", 80), NetLogWithSource(), medium_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req3", 80), NetLogWithSource(), low_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req4", 80), NetLogWithSource(), highest_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req5", 80), NetLogWithSource(), lowest_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req6", 80), NetLogWithSource(), medium_priority)));
// Cancel some requests
responses[1]->CancelRequest();
responses[4]->CancelRequest();
responses[5]->CancelRequest();
// Unblock the resolver thread so the requests can run.
proc_->SignalMultiple(responses.size()); // More than needed.
// Let everything try to finish.
base::RunLoop().RunUntilIdle();
// Wait for all the requests to complete succesfully.
EXPECT_THAT(responses[0]->result_error(), IsOk());
EXPECT_THAT(responses[2]->result_error(), IsOk());
EXPECT_THAT(responses[3]->result_error(), IsOk());
EXPECT_THAT(responses[6]->result_error(), IsOk());
// Cancelled requests shouldn't complete.
EXPECT_FALSE(responses[1]->complete());
EXPECT_FALSE(responses[4]->complete());
EXPECT_FALSE(responses[5]->complete());
// Verify that they called out the the resolver proc (which runs on the
// resolver thread) in the expected order.
MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList();
ASSERT_EQ(4u, capture_list.size());
EXPECT_EQ("req0", capture_list[0].hostname);
EXPECT_EQ("req2", capture_list[1].hostname);
EXPECT_EQ("req6", capture_list[2].hostname);
EXPECT_EQ("req3", capture_list[3].hostname);
}
// Test that when too many requests are enqueued, old ones start to be aborted.
TEST_F(HostResolverImplTest, QueueOverflow) {
CreateSerialResolver();
// Allow only 3 queued jobs.
const size_t kMaxPendingJobs = 3u;
resolver_->SetMaxQueuedJobsForTesting(kMaxPendingJobs);
// Note that at this point the MockHostResolverProc is blocked, so any
// requests we make will not complete.
EXPECT_THAT(CreateRequest("req0", 80, LOWEST)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("req1", 80, HIGHEST)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("req2", 80, MEDIUM)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(CreateRequest("req3", 80, MEDIUM)->Resolve(),
IsError(ERR_IO_PENDING));
// At this point, there are 3 enqueued jobs.
// Insertion of subsequent requests will cause evictions
// based on priority.
EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE,
CreateRequest("req4", 80, LOW)->Resolve()); // Evicts itself!
EXPECT_THAT(CreateRequest("req5", 80, MEDIUM)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[2]->result(),
IsError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE));
EXPECT_THAT(CreateRequest("req6", 80, HIGHEST)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[3]->result(),
IsError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE));
EXPECT_THAT(CreateRequest("req7", 80, MEDIUM)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[5]->result(),
IsError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE));
// Unblock the resolver thread so the requests can run.
proc_->SignalMultiple(4u);
// The rest should succeed.
EXPECT_THAT(requests_[7]->WaitForResult(), IsOk());
EXPECT_THAT(requests_[0]->result(), IsOk());
EXPECT_THAT(requests_[1]->result(), IsOk());
EXPECT_THAT(requests_[6]->result(), IsOk());
// Verify that they called out the the resolver proc (which runs on the
// resolver thread) in the expected order.
MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList();
ASSERT_EQ(4u, capture_list.size());
EXPECT_EQ("req0", capture_list[0].hostname);
EXPECT_EQ("req1", capture_list[1].hostname);
EXPECT_EQ("req6", capture_list[2].hostname);
EXPECT_EQ("req7", capture_list[3].hostname);
// Verify that the evicted (incomplete) requests were not cached.
EXPECT_EQ(4u, resolver_->GetHostCache()->size());
for (size_t i = 0; i < requests_.size(); ++i) {
EXPECT_TRUE(requests_[i]->completed()) << i;
}
}
// Test that when too many requests are enqueued, old ones start to be aborted.
TEST_F(HostResolverImplTest, QueueOverflow_ResolveHost) {
CreateSerialResolver();
// Allow only 3 queued jobs.
const size_t kMaxPendingJobs = 3u;
resolver_->SetMaxQueuedJobsForTesting(kMaxPendingJobs);
HostResolver::ResolveHostParameters lowest_priority;
lowest_priority.initial_priority = LOWEST;
HostResolver::ResolveHostParameters low_priority;
low_priority.initial_priority = LOW;
HostResolver::ResolveHostParameters medium_priority;
medium_priority.initial_priority = MEDIUM;
HostResolver::ResolveHostParameters highest_priority;
highest_priority.initial_priority = HIGHEST;
// Note that at this point the MockHostResolverProc is blocked, so any
// requests we make will not complete.
std::vector<std::unique_ptr<ResolveHostResponseHelper>> responses;
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req0", 80), NetLogWithSource(), lowest_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req1", 80), NetLogWithSource(), highest_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req2", 80), NetLogWithSource(), medium_priority)));
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req3", 80), NetLogWithSource(), medium_priority)));
// At this point, there are 3 enqueued jobs (and one "running" job).
// Insertion of subsequent requests will cause evictions.
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req4", 80), NetLogWithSource(), low_priority)));
EXPECT_THAT(responses[4]->result_error(),
IsError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE)); // Evicts self.
EXPECT_FALSE(responses[4]->request()->GetAddressResults());
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req5", 80), NetLogWithSource(), medium_priority)));
EXPECT_THAT(responses[2]->result_error(),
IsError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE));
EXPECT_FALSE(responses[2]->request()->GetAddressResults());
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req6", 80), NetLogWithSource(), highest_priority)));
EXPECT_THAT(responses[3]->result_error(),
IsError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE));
EXPECT_FALSE(responses[3]->request()->GetAddressResults());
responses.emplace_back(
std::make_unique<ResolveHostResponseHelper>(resolver_->CreateRequest(
HostPortPair("req7", 80), NetLogWithSource(), medium_priority)));
EXPECT_THAT(responses[5]->result_error(),
IsError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE));
EXPECT_FALSE(responses[5]->request()->GetAddressResults());
// Unblock the resolver thread so the requests can run.
proc_->SignalMultiple(4u);
// The rest should succeed.
EXPECT_THAT(responses[0]->result_error(), IsOk());
EXPECT_TRUE(responses[0]->request()->GetAddressResults());
EXPECT_THAT(responses[1]->result_error(), IsOk());
EXPECT_TRUE(responses[1]->request()->GetAddressResults());
EXPECT_THAT(responses[6]->result_error(), IsOk());
EXPECT_TRUE(responses[6]->request()->GetAddressResults());
EXPECT_THAT(responses[7]->result_error(), IsOk());
EXPECT_TRUE(responses[7]->request()->GetAddressResults());
// Verify that they called out the the resolver proc (which runs on the
// resolver thread) in the expected order.
MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList();
ASSERT_EQ(4u, capture_list.size());
EXPECT_EQ("req0", capture_list[0].hostname);
EXPECT_EQ("req1", capture_list[1].hostname);
EXPECT_EQ("req6", capture_list[2].hostname);
EXPECT_EQ("req7", capture_list[3].hostname);
// Verify that the evicted (incomplete) requests were not cached.
EXPECT_EQ(4u, resolver_->GetHostCache()->size());
for (size_t i = 0; i < responses.size(); ++i) {
EXPECT_TRUE(responses[i]->complete()) << i;
}
}
// Tests that jobs can self-evict by setting the max queue to 0.
TEST_F(HostResolverImplTest, QueueOverflow_ResolveHost_SelfEvict) {
CreateSerialResolver();
resolver_->SetMaxQueuedJobsForTesting(0);
// Note that at this point the MockHostResolverProc is blocked, so any
// requests we make will not complete.
ResolveHostResponseHelper run_response(resolver_->CreateRequest(
HostPortPair("run", 80), NetLogWithSource(), base::nullopt));
ResolveHostResponseHelper evict_response(resolver_->CreateRequest(
HostPortPair("req1", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(evict_response.result_error(),
IsError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE));
EXPECT_FALSE(evict_response.request()->GetAddressResults());
proc_->SignalMultiple(1u);
EXPECT_THAT(run_response.result_error(), IsOk());
EXPECT_TRUE(run_response.request()->GetAddressResults());
}
// Make sure that the address family parameter is respected when raw IPs are
// passed in.
TEST_F(HostResolverImplTest, AddressFamilyWithRawIPs) {
Request* request =
CreateRequest("127.0.0.1", 80, MEDIUM, ADDRESS_FAMILY_IPV4);
EXPECT_THAT(request->Resolve(), IsOk());
EXPECT_TRUE(request->HasOneAddress("127.0.0.1", 80));
request = CreateRequest("127.0.0.1", 80, MEDIUM, ADDRESS_FAMILY_IPV6);
EXPECT_THAT(request->Resolve(), IsError(ERR_NAME_NOT_RESOLVED));
request = CreateRequest("127.0.0.1", 80, MEDIUM, ADDRESS_FAMILY_UNSPECIFIED);
EXPECT_THAT(request->Resolve(), IsOk());
EXPECT_TRUE(request->HasOneAddress("127.0.0.1", 80));
request = CreateRequest("::1", 80, MEDIUM, ADDRESS_FAMILY_IPV4);
EXPECT_THAT(request->Resolve(), IsError(ERR_NAME_NOT_RESOLVED));
request = CreateRequest("::1", 80, MEDIUM, ADDRESS_FAMILY_IPV6);
EXPECT_THAT(request->Resolve(), IsOk());
EXPECT_TRUE(request->HasOneAddress("::1", 80));
request = CreateRequest("::1", 80, MEDIUM, ADDRESS_FAMILY_UNSPECIFIED);
EXPECT_THAT(request->Resolve(), IsOk());
EXPECT_TRUE(request->HasOneAddress("::1", 80));
}
// Make sure that the dns query type parameter is respected when raw IPs are
// passed in.
TEST_F(HostResolverImplTest, AddressFamilyWithRawIPs_ResolveHost) {
HostResolver::ResolveHostParameters v4_parameters;
v4_parameters.dns_query_type = HostResolver::DnsQueryType::A;
HostResolver::ResolveHostParameters v6_parameters;
v6_parameters.dns_query_type = HostResolver::DnsQueryType::AAAA;
ResolveHostResponseHelper v4_v4_request(resolver_->CreateRequest(
HostPortPair("127.0.0.1", 80), NetLogWithSource(), v4_parameters));
EXPECT_THAT(v4_v4_request.result_error(), IsOk());
EXPECT_THAT(v4_v4_request.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("127.0.0.1", 80)));
ResolveHostResponseHelper v4_v6_request(resolver_->CreateRequest(
HostPortPair("127.0.0.1", 80), NetLogWithSource(), v6_parameters));
EXPECT_THAT(v4_v6_request.result_error(), IsError(ERR_NAME_NOT_RESOLVED));
ResolveHostResponseHelper v4_unsp_request(resolver_->CreateRequest(
HostPortPair("127.0.0.1", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(v4_unsp_request.result_error(), IsOk());
EXPECT_THAT(
v4_unsp_request.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("127.0.0.1", 80)));
ResolveHostResponseHelper v6_v4_request(resolver_->CreateRequest(
HostPortPair("::1", 80), NetLogWithSource(), v4_parameters));
EXPECT_THAT(v6_v4_request.result_error(), IsError(ERR_NAME_NOT_RESOLVED));
ResolveHostResponseHelper v6_v6_request(resolver_->CreateRequest(
HostPortPair("::1", 80), NetLogWithSource(), v6_parameters));
EXPECT_THAT(v6_v6_request.result_error(), IsOk());
EXPECT_THAT(v6_v6_request.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("::1", 80)));
ResolveHostResponseHelper v6_unsp_request(resolver_->CreateRequest(
HostPortPair("::1", 80), NetLogWithSource(), base::nullopt));
EXPECT_THAT(v6_unsp_request.result_error(), IsOk());
EXPECT_THAT(
v6_unsp_request.request()->GetAddressResults().value().endpoints(),
testing::ElementsAre(CreateExpected("::1", 80)));
}
TEST_F(HostResolverImplTest, ResolveFromCache) {
proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42");
proc_->SignalMultiple(1u); // Need only one.
HostResolver::RequestInfo info(HostPortPair("just.testing", 80));
// First query will miss the cache.
EXPECT_EQ(ERR_DNS_CACHE_MISS,
CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache());
// This time, we fetch normally.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[1]->WaitForResult(), IsOk());
// Now we should be able to fetch from the cache.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache(),
IsOk());
EXPECT_TRUE(requests_[2]->HasOneAddress("192.168.1.42", 80));
}
TEST_F(HostResolverImplTest, ResolveFromCacheInvalidName) {
proc_->AddRuleForAllFamilies("foo,bar.com", "192.168.1.42");
HostResolver::RequestInfo info(HostPortPair("foo,bar.com", 80));
// Query should be rejected before it makes it to the cache.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache(),
IsError(ERR_NAME_NOT_RESOLVED));
// Query should be rejected without attempting to resolve it.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->Resolve(),
IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_THAT(requests_[1]->WaitForResult(), IsError(ERR_NAME_NOT_RESOLVED));
}
TEST_F(HostResolverImplTest, ResolveFromCacheInvalidNameLocalhost) {
HostResolver::RequestInfo info(HostPortPair("foo,bar.localhost", 80));
// Query should be rejected before it makes it to the localhost check.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache(),
IsError(ERR_NAME_NOT_RESOLVED));
// Query should be rejected without attempting to resolve it.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->Resolve(),
IsError(ERR_NAME_NOT_RESOLVED));
EXPECT_THAT(requests_[1]->WaitForResult(), IsError(ERR_NAME_NOT_RESOLVED));
}
TEST_F(HostResolverImplTest, ResolveStaleFromCache) {
proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42");
proc_->SignalMultiple(1u); // Need only one.
HostResolver::RequestInfo info(HostPortPair("just.testing", 80));
// First query will miss the cache.
EXPECT_EQ(ERR_DNS_CACHE_MISS,
CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache());
// This time, we fetch normally.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[1]->WaitForResult(), IsOk());
// Now we should be able to fetch from the cache.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache(),
IsOk());
EXPECT_TRUE(requests_[2]->HasOneAddress("192.168.1.42", 80));
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveStaleFromCache(),
IsOk());
EXPECT_TRUE(requests_[3]->HasOneAddress("192.168.1.42", 80));
EXPECT_FALSE(requests_[3]->staleness().is_stale());
MakeCacheStale();
// Now we should be able to fetch from the cache only if we use
// ResolveStaleFromCache.
EXPECT_EQ(ERR_DNS_CACHE_MISS,
CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache());
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveStaleFromCache(),
IsOk());
EXPECT_TRUE(requests_[5]->HasOneAddress("192.168.1.42", 80));
EXPECT_TRUE(requests_[5]->staleness().is_stale());
}
TEST_F(HostResolverImplTest, ResolveStaleFromCacheError) {
proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42");
proc_->SignalMultiple(1u); // Need only one.
HostResolver::RequestInfo info(HostPortPair("just.testing", 80));
// First query will miss the cache.
EXPECT_EQ(ERR_DNS_CACHE_MISS,
CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache());
// This time, we fetch normally.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[1]->WaitForResult(), IsOk());
// Now we should be able to fetch from the cache.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache(),
IsOk());
EXPECT_TRUE(requests_[2]->HasOneAddress("192.168.1.42", 80));
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveStaleFromCache(),
IsOk());
EXPECT_TRUE(requests_[3]->HasOneAddress("192.168.1.42", 80));
EXPECT_FALSE(requests_[3]->staleness().is_stale());
MakeCacheStale();
proc_->AddRuleForAllFamilies("just.testing", "");
proc_->SignalMultiple(1u);
// Now make another query, and return an error this time.
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->Resolve(),
IsError(ERR_IO_PENDING));
EXPECT_THAT(requests_[4]->WaitForResult(), IsError(ERR_NAME_NOT_RESOLVED));
// Now we should be able to fetch from the cache only if we use
// ResolveStaleFromCache, and the result should be the older good result, not
// the error.
EXPECT_EQ(ERR_DNS_CACHE_MISS,
CreateRequest(info, DEFAULT_PRIORITY)->ResolveFromCache());
EXPECT_THAT(CreateRequest(info, DEFAULT_PRIORITY)->ResolveStaleFromCache(),
IsOk());
EXPECT_TRUE(requests_[6]->HasOneAddress("192.168.1.42", 80));
EXPECT_TRUE(requests_[6]->staleness().is_stale());
}
// TODO(mgersh): add a test case for errors with positive TTL after
// https://crbug.com/115051 is fixed.
// Test the retry attempts simulating host resolver proc that takes too long.
#if defined(STARBOARD)
TEST_F(HostResolverImplTest, FLAKY_MultipleAttempts) {
#else
TEST_F(HostResolverImplTest, MultipleAttempts) {
#endif
// Total number of attempts would be 3 and we want the 3rd attempt to resolve
// the host. First and second attempt will be forced to wait until they get
// word that a resolution has completed. The 3rd resolution attempt will try
// to get done ASAP, and won't wait.
int kAttemptNumberToResolve = 3;
int kTotalAttempts = 3;
// Add a little bit of extra fudge to the delay to allow reasonable
// flexibility for time > vs >= etc. We don't need to fail the test if we
// retry at t=6001 instead of t=6000.
#if defined(STARBOARD)
// The 1 millisecond delay is not enough on some of Cobalt's Linux platforms
// to ensure all delayed tasks are executed.
base::TimeDelta kSleepFudgeFactor = base::TimeDelta::FromMilliseconds(30);
#else
base::TimeDelta kSleepFudgeFactor = base::TimeDelta::FromMilliseconds(1);
#endif
scoped_refptr<LookupAttemptHostResolverProc> resolver_proc(
new LookupAttemptHostResolverProc(
NULL, kAttemptNumberToResolve, kTotalAttempts));
HostResolverImpl::ProcTaskParams params = DefaultParams(resolver_proc.get());
base::TimeDelta unresponsive_delay = params.unresponsive_delay;
int retry_factor = params.retry_factor;
resolver_.reset(new TestHostResolverImpl(DefaultOptions(), NULL));
resolver_->set_proc_params_for_test(params);
// Override the current thread task runner, so we can simulate the passage of
// time and avoid any actual sleeps.
auto test_task_runner = base::MakeRefCounted<base::TestMockTimeTaskRunner>();
base::ScopedClosureRunner task_runner_override_scoped_cleanup =
base::ThreadTaskRunnerHandle::OverrideForTesting(test_task_runner);
// Resolve "host1".
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("host1", 70), NetLogWithSource(), base::nullopt));
EXPECT_FALSE(response.complete());
resolver_proc->WaitForNAttemptsToBeBlocked(1);
EXPECT_FALSE(response.complete());
test_task_runner->FastForwardBy(unresponsive_delay + kSleepFudgeFactor);
resolver_proc->WaitForNAttemptsToBeBlocked(2);
EXPECT_FALSE(response.complete());
test_task_runner->FastForwardBy(unresponsive_delay * retry_factor +
kSleepFudgeFactor);
resolver_proc->WaitForAllAttemptsToFinish();
test_task_runner->RunUntilIdle();
// Resolve returns -4 to indicate that 3rd attempt has resolved the host.
// Since we're using a TestMockTimeTaskRunner, the RunLoop stuff in
// result_error() will fail if it actually has to wait, but unless there's an
// error, the result should be immediately ready by this point.
EXPECT_EQ(-4, response.result_error());
// We should be done with retries, but make sure none erroneously happen.
test_task_runner->FastForwardUntilNoTasksRemain();
EXPECT_EQ(resolver_proc->total_attempts_resolved(), kTotalAttempts);
EXPECT_EQ(resolver_proc->resolved_attempt_number(), kAttemptNumberToResolve);
}
// Test the retry attempts simulating host resolver proc that takes too long.
TEST_F(HostResolverImplTest, MultipleAttempts_ResolveHost) {
// Total number of attempts would be 3 and we want the 3rd attempt to resolve
// the host. First and second attempt will be forced to wait until they get
// word that a resolution has completed. The 3rd resolution attempt will try
// to get done ASAP, and won't wait.
int kAttemptNumberToResolve = 3;
int kTotalAttempts = 3;
// Add a little bit of extra fudge to the delay to allow reasonable
// flexibility for time > vs >= etc. We don't need to fail the test if we
// retry at t=6001 instead of t=6000.
base::TimeDelta kSleepFudgeFactor = base::TimeDelta::FromMilliseconds(1);
scoped_refptr<LookupAttemptHostResolverProc> resolver_proc(
new LookupAttemptHostResolverProc(NULL, kAttemptNumberToResolve,
kTotalAttempts));
HostResolverImpl::ProcTaskParams params = DefaultParams(resolver_proc.get());
base::TimeDelta unresponsive_delay = params.unresponsive_delay;
int retry_factor = params.retry_factor;
CreateResolverWithLimitsAndParams(kMaxJobs, params,
#if !defined(STARBOARD) || SB_HAS(IPV6)
true /* ipv6_reachable */);
#else
false /* ipv6_reachable */);
#endif
// Override the current thread task runner, so we can simulate the passage of
// time and avoid any actual sleeps.
auto test_task_runner = base::MakeRefCounted<base::TestMockTimeTaskRunner>();
base::ScopedClosureRunner task_runner_override_scoped_cleanup =
base::ThreadTaskRunnerHandle::OverrideForTesting(test_task_runner);
// Resolve "host1".
ResolveHostResponseHelper response(resolver_->CreateRequest(
HostPortPair("host1", 70), NetLogWithSource(), base::nullopt));
EXPECT_FALSE(response.complete());
resolver_proc->WaitForNAttemptsToBeBlocked(1);
EXPECT_FALSE(response.complete());
test_task_runner->FastForwardBy(unresponsive_delay + kSleepFudgeFactor);
resolver_proc->WaitForNAttemptsToBeBlocked(2);
EXPECT_FALSE(response.complete());
test_task_runner->FastForwardBy(unresponsive_delay * retry_factor +
kSleepFudgeFactor);
resolver_proc->WaitForAllAttemptsToFinish();
test_task_runner->RunUntilIdle();
// Resolve returns -4 to indicate that 3rd attempt has resolved the host.
// Since we're using a TestMockTimeTaskRunner, the RunLoop stuff in
// result_error() will fail if it actually has to wait, but unless there's an
// error, the result should be immediately ready by this point.
EXPECT_EQ(-4, response.result_error());
// We should be done with retries, but make sure none erroneously happen.
test_task_runner->FastForwardUntilNoTasksRemain();
EXPECT_EQ(resolver_proc->total_attempts_resolved(), kTotalAttempts);
EXPECT_EQ(resolver_proc->resolved_attempt_number(), kAttemptNumberToResolve);
}
// If a host resolves to a list that includes 127.0.53.53, this is treated as
// an error. 127.0.53.53 is a localhost address, however it has been given a
// special significance by ICANN to help surface name collision resulting from
// the new gTLDs.
TEST_F(HostResolverImplTest, NameCollisionIcann) {
proc_->AddRuleForAllFamilies("single", "127.0.53.53");
proc_->AddRuleForAllFamilies("multiple", "127.0.0.1,127.0.53.53");
#if !defined(STARBOARD) || SB_HAS(IPV6)
proc_->AddRuleForAllFamilies("ipv6", "::127.0.53.53");
#endif
proc_->AddRuleForAllFamilies("not_reserved1", "53.53.0.127");
proc_->AddRuleForAllFamilies("not_reserved2", "127.0.53.54");
proc_->AddRuleForAllFamilies("not_reserved3", "10.0.53.53");
proc_->SignalMultiple(6u);
Request* request;
request = CreateRequest("single");
EXPECT_THAT(request->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(request->WaitForResult(), IsError(ERR_ICANN_NAME_COLLISION));
// ERR_ICANN_NAME_COLLISION is cached like any other error, using a
// fixed TTL for failed entries from proc-based resolver. That said, the
// fixed TTL is 0, so it will never be cached.
request = CreateRequest("single");
EXPECT_THAT(request->ResolveFromCache(), IsError(ERR_DNS_CACHE_MISS));
request = CreateRequest("multiple");
EXPECT_THAT(request->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(request->WaitForResult(), IsError(ERR_ICANN_NAME_COLLISION));
// Resolving an IP literal of 127.0.53.53 however is allowed.
EXPECT_THAT(CreateRequest("127.0.53.53")->Resolve(), IsOk());
#if !defined(STARBOARD) || SB_HAS(IPV6)
// Moreover the address should not be recognized when embedded in an IPv6
// address.
request = CreateRequest("ipv6");
EXPECT_THAT(request->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(request->WaitForResult(), IsOk());
#endif
// Try some other IPs which are similar, but NOT an exact match on
// 127.0.53.53.
request = CreateRequest("not_reserved1");
EXPECT_THAT(request->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(request->WaitForResult(), IsOk());
request = CreateRequest("not_reserved2");
EXPECT_THAT(request->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(request->WaitForResult(), IsOk());
request = CreateRequest("not_reserved3");
EXPECT_THAT(request->Resolve(), IsError(ERR_IO_PENDING));
EXPECT_THAT(request