| //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Objective-C code as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGDebugInfo.h" |
| #include "CGObjCRuntime.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/CodeGen/CGFunctionInfo.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/InlineAsm.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; |
| static TryEmitResult |
| tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); |
| static RValue AdjustObjCObjectType(CodeGenFunction &CGF, |
| QualType ET, |
| RValue Result); |
| |
| /// Given the address of a variable of pointer type, find the correct |
| /// null to store into it. |
| static llvm::Constant *getNullForVariable(Address addr) { |
| llvm::Type *type = addr.getElementType(); |
| return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); |
| } |
| |
| /// Emits an instance of NSConstantString representing the object. |
| llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) |
| { |
| llvm::Constant *C = |
| CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); |
| // FIXME: This bitcast should just be made an invariant on the Runtime. |
| return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); |
| } |
| |
| /// EmitObjCBoxedExpr - This routine generates code to call |
| /// the appropriate expression boxing method. This will either be |
| /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], |
| /// or [NSValue valueWithBytes:objCType:]. |
| /// |
| llvm::Value * |
| CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
| // Generate the correct selector for this literal's concrete type. |
| // Get the method. |
| const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); |
| const Expr *SubExpr = E->getSubExpr(); |
| assert(BoxingMethod && "BoxingMethod is null"); |
| assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); |
| Selector Sel = BoxingMethod->getSelector(); |
| |
| // Generate a reference to the class pointer, which will be the receiver. |
| // Assumes that the method was introduced in the class that should be |
| // messaged (avoids pulling it out of the result type). |
| CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); |
| llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); |
| |
| CallArgList Args; |
| const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); |
| QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); |
| |
| // ObjCBoxedExpr supports boxing of structs and unions |
| // via [NSValue valueWithBytes:objCType:] |
| const QualType ValueType(SubExpr->getType().getCanonicalType()); |
| if (ValueType->isObjCBoxableRecordType()) { |
| // Emit CodeGen for first parameter |
| // and cast value to correct type |
| Address Temporary = CreateMemTemp(SubExpr->getType()); |
| EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); |
| Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); |
| Args.add(RValue::get(BitCast.getPointer()), ArgQT); |
| |
| // Create char array to store type encoding |
| std::string Str; |
| getContext().getObjCEncodingForType(ValueType, Str); |
| llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); |
| |
| // Cast type encoding to correct type |
| const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; |
| QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); |
| llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); |
| |
| Args.add(RValue::get(Cast), EncodingQT); |
| } else { |
| Args.add(EmitAnyExpr(SubExpr), ArgQT); |
| } |
| |
| RValue result = Runtime.GenerateMessageSend( |
| *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, |
| Args, ClassDecl, BoxingMethod); |
| return Builder.CreateBitCast(result.getScalarVal(), |
| ConvertType(E->getType())); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, |
| const ObjCMethodDecl *MethodWithObjects) { |
| ASTContext &Context = CGM.getContext(); |
| const ObjCDictionaryLiteral *DLE = nullptr; |
| const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); |
| if (!ALE) |
| DLE = cast<ObjCDictionaryLiteral>(E); |
| |
| // Optimize empty collections by referencing constants, when available. |
| uint64_t NumElements = |
| ALE ? ALE->getNumElements() : DLE->getNumElements(); |
| if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { |
| StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; |
| QualType IdTy(CGM.getContext().getObjCIdType()); |
| llvm::Constant *Constant = |
| CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); |
| LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); |
| llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getLocStart()); |
| cast<llvm::LoadInst>(Ptr)->setMetadata( |
| CGM.getModule().getMDKindID("invariant.load"), |
| llvm::MDNode::get(getLLVMContext(), None)); |
| return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); |
| } |
| |
| // Compute the type of the array we're initializing. |
| llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), |
| NumElements); |
| QualType ElementType = Context.getObjCIdType().withConst(); |
| QualType ElementArrayType |
| = Context.getConstantArrayType(ElementType, APNumElements, |
| ArrayType::Normal, /*IndexTypeQuals=*/0); |
| |
| // Allocate the temporary array(s). |
| Address Objects = CreateMemTemp(ElementArrayType, "objects"); |
| Address Keys = Address::invalid(); |
| if (DLE) |
| Keys = CreateMemTemp(ElementArrayType, "keys"); |
| |
| // In ARC, we may need to do extra work to keep all the keys and |
| // values alive until after the call. |
| SmallVector<llvm::Value *, 16> NeededObjects; |
| bool TrackNeededObjects = |
| (getLangOpts().ObjCAutoRefCount && |
| CGM.getCodeGenOpts().OptimizationLevel != 0); |
| |
| // Perform the actual initialialization of the array(s). |
| for (uint64_t i = 0; i < NumElements; i++) { |
| if (ALE) { |
| // Emit the element and store it to the appropriate array slot. |
| const Expr *Rhs = ALE->getElement(i); |
| LValue LV = MakeAddrLValue( |
| Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), |
| ElementType, AlignmentSource::Decl); |
| |
| llvm::Value *value = EmitScalarExpr(Rhs); |
| EmitStoreThroughLValue(RValue::get(value), LV, true); |
| if (TrackNeededObjects) { |
| NeededObjects.push_back(value); |
| } |
| } else { |
| // Emit the key and store it to the appropriate array slot. |
| const Expr *Key = DLE->getKeyValueElement(i).Key; |
| LValue KeyLV = MakeAddrLValue( |
| Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), |
| ElementType, AlignmentSource::Decl); |
| llvm::Value *keyValue = EmitScalarExpr(Key); |
| EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); |
| |
| // Emit the value and store it to the appropriate array slot. |
| const Expr *Value = DLE->getKeyValueElement(i).Value; |
| LValue ValueLV = MakeAddrLValue( |
| Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), |
| ElementType, AlignmentSource::Decl); |
| llvm::Value *valueValue = EmitScalarExpr(Value); |
| EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); |
| if (TrackNeededObjects) { |
| NeededObjects.push_back(keyValue); |
| NeededObjects.push_back(valueValue); |
| } |
| } |
| } |
| |
| // Generate the argument list. |
| CallArgList Args; |
| ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); |
| const ParmVarDecl *argDecl = *PI++; |
| QualType ArgQT = argDecl->getType().getUnqualifiedType(); |
| Args.add(RValue::get(Objects.getPointer()), ArgQT); |
| if (DLE) { |
| argDecl = *PI++; |
| ArgQT = argDecl->getType().getUnqualifiedType(); |
| Args.add(RValue::get(Keys.getPointer()), ArgQT); |
| } |
| argDecl = *PI; |
| ArgQT = argDecl->getType().getUnqualifiedType(); |
| llvm::Value *Count = |
| llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); |
| Args.add(RValue::get(Count), ArgQT); |
| |
| // Generate a reference to the class pointer, which will be the receiver. |
| Selector Sel = MethodWithObjects->getSelector(); |
| QualType ResultType = E->getType(); |
| const ObjCObjectPointerType *InterfacePointerType |
| = ResultType->getAsObjCInterfacePointerType(); |
| ObjCInterfaceDecl *Class |
| = InterfacePointerType->getObjectType()->getInterface(); |
| CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| llvm::Value *Receiver = Runtime.GetClass(*this, Class); |
| |
| // Generate the message send. |
| RValue result = Runtime.GenerateMessageSend( |
| *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, |
| Receiver, Args, Class, MethodWithObjects); |
| |
| // The above message send needs these objects, but in ARC they are |
| // passed in a buffer that is essentially __unsafe_unretained. |
| // Therefore we must prevent the optimizer from releasing them until |
| // after the call. |
| if (TrackNeededObjects) { |
| EmitARCIntrinsicUse(NeededObjects); |
| } |
| |
| return Builder.CreateBitCast(result.getScalarVal(), |
| ConvertType(E->getType())); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { |
| return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( |
| const ObjCDictionaryLiteral *E) { |
| return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); |
| } |
| |
| /// Emit a selector. |
| llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { |
| // Untyped selector. |
| // Note that this implementation allows for non-constant strings to be passed |
| // as arguments to @selector(). Currently, the only thing preventing this |
| // behaviour is the type checking in the front end. |
| return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { |
| // FIXME: This should pass the Decl not the name. |
| return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); |
| } |
| |
| /// Adjust the type of an Objective-C object that doesn't match up due |
| /// to type erasure at various points, e.g., related result types or the use |
| /// of parameterized classes. |
| static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, |
| RValue Result) { |
| if (!ExpT->isObjCRetainableType()) |
| return Result; |
| |
| // If the converted types are the same, we're done. |
| llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); |
| if (ExpLLVMTy == Result.getScalarVal()->getType()) |
| return Result; |
| |
| // We have applied a substitution. Cast the rvalue appropriately. |
| return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), |
| ExpLLVMTy)); |
| } |
| |
| /// Decide whether to extend the lifetime of the receiver of a |
| /// returns-inner-pointer message. |
| static bool |
| shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { |
| switch (message->getReceiverKind()) { |
| |
| // For a normal instance message, we should extend unless the |
| // receiver is loaded from a variable with precise lifetime. |
| case ObjCMessageExpr::Instance: { |
| const Expr *receiver = message->getInstanceReceiver(); |
| |
| // Look through OVEs. |
| if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { |
| if (opaque->getSourceExpr()) |
| receiver = opaque->getSourceExpr()->IgnoreParens(); |
| } |
| |
| const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); |
| if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; |
| receiver = ice->getSubExpr()->IgnoreParens(); |
| |
| // Look through OVEs. |
| if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { |
| if (opaque->getSourceExpr()) |
| receiver = opaque->getSourceExpr()->IgnoreParens(); |
| } |
| |
| // Only __strong variables. |
| if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) |
| return true; |
| |
| // All ivars and fields have precise lifetime. |
| if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) |
| return false; |
| |
| // Otherwise, check for variables. |
| const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); |
| if (!declRef) return true; |
| const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); |
| if (!var) return true; |
| |
| // All variables have precise lifetime except local variables with |
| // automatic storage duration that aren't specially marked. |
| return (var->hasLocalStorage() && |
| !var->hasAttr<ObjCPreciseLifetimeAttr>()); |
| } |
| |
| case ObjCMessageExpr::Class: |
| case ObjCMessageExpr::SuperClass: |
| // It's never necessary for class objects. |
| return false; |
| |
| case ObjCMessageExpr::SuperInstance: |
| // We generally assume that 'self' lives throughout a method call. |
| return false; |
| } |
| |
| llvm_unreachable("invalid receiver kind"); |
| } |
| |
| /// Given an expression of ObjC pointer type, check whether it was |
| /// immediately loaded from an ARC __weak l-value. |
| static const Expr *findWeakLValue(const Expr *E) { |
| assert(E->getType()->isObjCRetainableType()); |
| E = E->IgnoreParens(); |
| if (auto CE = dyn_cast<CastExpr>(E)) { |
| if (CE->getCastKind() == CK_LValueToRValue) { |
| if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
| return CE->getSubExpr(); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, |
| ReturnValueSlot Return) { |
| // Only the lookup mechanism and first two arguments of the method |
| // implementation vary between runtimes. We can get the receiver and |
| // arguments in generic code. |
| |
| bool isDelegateInit = E->isDelegateInitCall(); |
| |
| const ObjCMethodDecl *method = E->getMethodDecl(); |
| |
| // If the method is -retain, and the receiver's being loaded from |
| // a __weak variable, peephole the entire operation to objc_loadWeakRetained. |
| if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && |
| method->getMethodFamily() == OMF_retain) { |
| if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { |
| LValue lvalue = EmitLValue(lvalueExpr); |
| llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); |
| return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); |
| } |
| } |
| |
| // We don't retain the receiver in delegate init calls, and this is |
| // safe because the receiver value is always loaded from 'self', |
| // which we zero out. We don't want to Block_copy block receivers, |
| // though. |
| bool retainSelf = |
| (!isDelegateInit && |
| CGM.getLangOpts().ObjCAutoRefCount && |
| method && |
| method->hasAttr<NSConsumesSelfAttr>()); |
| |
| CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| bool isSuperMessage = false; |
| bool isClassMessage = false; |
| ObjCInterfaceDecl *OID = nullptr; |
| // Find the receiver |
| QualType ReceiverType; |
| llvm::Value *Receiver = nullptr; |
| switch (E->getReceiverKind()) { |
| case ObjCMessageExpr::Instance: |
| ReceiverType = E->getInstanceReceiver()->getType(); |
| if (retainSelf) { |
| TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, |
| E->getInstanceReceiver()); |
| Receiver = ter.getPointer(); |
| if (ter.getInt()) retainSelf = false; |
| } else |
| Receiver = EmitScalarExpr(E->getInstanceReceiver()); |
| break; |
| |
| case ObjCMessageExpr::Class: { |
| ReceiverType = E->getClassReceiver(); |
| const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); |
| assert(ObjTy && "Invalid Objective-C class message send"); |
| OID = ObjTy->getInterface(); |
| assert(OID && "Invalid Objective-C class message send"); |
| Receiver = Runtime.GetClass(*this, OID); |
| isClassMessage = true; |
| break; |
| } |
| |
| case ObjCMessageExpr::SuperInstance: |
| ReceiverType = E->getSuperType(); |
| Receiver = LoadObjCSelf(); |
| isSuperMessage = true; |
| break; |
| |
| case ObjCMessageExpr::SuperClass: |
| ReceiverType = E->getSuperType(); |
| Receiver = LoadObjCSelf(); |
| isSuperMessage = true; |
| isClassMessage = true; |
| break; |
| } |
| |
| if (retainSelf) |
| Receiver = EmitARCRetainNonBlock(Receiver); |
| |
| // In ARC, we sometimes want to "extend the lifetime" |
| // (i.e. retain+autorelease) of receivers of returns-inner-pointer |
| // messages. |
| if (getLangOpts().ObjCAutoRefCount && method && |
| method->hasAttr<ObjCReturnsInnerPointerAttr>() && |
| shouldExtendReceiverForInnerPointerMessage(E)) |
| Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); |
| |
| QualType ResultType = method ? method->getReturnType() : E->getType(); |
| |
| CallArgList Args; |
| EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); |
| |
| // For delegate init calls in ARC, do an unsafe store of null into |
| // self. This represents the call taking direct ownership of that |
| // value. We have to do this after emitting the other call |
| // arguments because they might also reference self, but we don't |
| // have to worry about any of them modifying self because that would |
| // be an undefined read and write of an object in unordered |
| // expressions. |
| if (isDelegateInit) { |
| assert(getLangOpts().ObjCAutoRefCount && |
| "delegate init calls should only be marked in ARC"); |
| |
| // Do an unsafe store of null into self. |
| Address selfAddr = |
| GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); |
| Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); |
| } |
| |
| RValue result; |
| if (isSuperMessage) { |
| // super is only valid in an Objective-C method |
| const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); |
| bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); |
| result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, |
| E->getSelector(), |
| OMD->getClassInterface(), |
| isCategoryImpl, |
| Receiver, |
| isClassMessage, |
| Args, |
| method); |
| } else { |
| result = Runtime.GenerateMessageSend(*this, Return, ResultType, |
| E->getSelector(), |
| Receiver, Args, OID, |
| method); |
| } |
| |
| // For delegate init calls in ARC, implicitly store the result of |
| // the call back into self. This takes ownership of the value. |
| if (isDelegateInit) { |
| Address selfAddr = |
| GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); |
| llvm::Value *newSelf = result.getScalarVal(); |
| |
| // The delegate return type isn't necessarily a matching type; in |
| // fact, it's quite likely to be 'id'. |
| llvm::Type *selfTy = selfAddr.getElementType(); |
| newSelf = Builder.CreateBitCast(newSelf, selfTy); |
| |
| Builder.CreateStore(newSelf, selfAddr); |
| } |
| |
| return AdjustObjCObjectType(*this, E->getType(), result); |
| } |
| |
| namespace { |
| struct FinishARCDealloc final : EHScopeStack::Cleanup { |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); |
| |
| const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); |
| const ObjCInterfaceDecl *iface = impl->getClassInterface(); |
| if (!iface->getSuperClass()) return; |
| |
| bool isCategory = isa<ObjCCategoryImplDecl>(impl); |
| |
| // Call [super dealloc] if we have a superclass. |
| llvm::Value *self = CGF.LoadObjCSelf(); |
| |
| CallArgList args; |
| CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), |
| CGF.getContext().VoidTy, |
| method->getSelector(), |
| iface, |
| isCategory, |
| self, |
| /*is class msg*/ false, |
| args, |
| method); |
| } |
| }; |
| } |
| |
| /// StartObjCMethod - Begin emission of an ObjCMethod. This generates |
| /// the LLVM function and sets the other context used by |
| /// CodeGenFunction. |
| void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, |
| const ObjCContainerDecl *CD) { |
| SourceLocation StartLoc = OMD->getLocStart(); |
| FunctionArgList args; |
| // Check if we should generate debug info for this method. |
| if (OMD->hasAttr<NoDebugAttr>()) |
| DebugInfo = nullptr; // disable debug info indefinitely for this function |
| |
| llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); |
| |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); |
| CGM.SetInternalFunctionAttributes(OMD, Fn, FI); |
| |
| args.push_back(OMD->getSelfDecl()); |
| args.push_back(OMD->getCmdDecl()); |
| |
| args.append(OMD->param_begin(), OMD->param_end()); |
| |
| CurGD = OMD; |
| CurEHLocation = OMD->getLocEnd(); |
| |
| StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, |
| OMD->getLocation(), StartLoc); |
| |
| // In ARC, certain methods get an extra cleanup. |
| if (CGM.getLangOpts().ObjCAutoRefCount && |
| OMD->isInstanceMethod() && |
| OMD->getSelector().isUnarySelector()) { |
| const IdentifierInfo *ident = |
| OMD->getSelector().getIdentifierInfoForSlot(0); |
| if (ident->isStr("dealloc")) |
| EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); |
| } |
| } |
| |
| static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| LValue lvalue, QualType type); |
| |
| /// Generate an Objective-C method. An Objective-C method is a C function with |
| /// its pointer, name, and types registered in the class struture. |
| void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { |
| StartObjCMethod(OMD, OMD->getClassInterface()); |
| PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); |
| assert(isa<CompoundStmt>(OMD->getBody())); |
| incrementProfileCounter(OMD->getBody()); |
| EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); |
| FinishFunction(OMD->getBodyRBrace()); |
| } |
| |
| /// emitStructGetterCall - Call the runtime function to load a property |
| /// into the return value slot. |
| static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, |
| bool isAtomic, bool hasStrong) { |
| ASTContext &Context = CGF.getContext(); |
| |
| Address src = |
| CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) |
| .getAddress(); |
| |
| // objc_copyStruct (ReturnValue, &structIvar, |
| // sizeof (Type of Ivar), isAtomic, false); |
| CallArgList args; |
| |
| Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); |
| args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); |
| |
| src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); |
| args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); |
| |
| CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); |
| args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); |
| args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); |
| args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); |
| |
| llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); |
| CGCallee callee = CGCallee::forDirect(fn); |
| CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), |
| callee, ReturnValueSlot(), args); |
| } |
| |
| /// Determine whether the given architecture supports unaligned atomic |
| /// accesses. They don't have to be fast, just faster than a function |
| /// call and a mutex. |
| static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { |
| // FIXME: Allow unaligned atomic load/store on x86. (It is not |
| // currently supported by the backend.) |
| return 0; |
| } |
| |
| /// Return the maximum size that permits atomic accesses for the given |
| /// architecture. |
| static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, |
| llvm::Triple::ArchType arch) { |
| // ARM has 8-byte atomic accesses, but it's not clear whether we |
| // want to rely on them here. |
| |
| // In the default case, just assume that any size up to a pointer is |
| // fine given adequate alignment. |
| return CharUnits::fromQuantity(CGM.PointerSizeInBytes); |
| } |
| |
| namespace { |
| class PropertyImplStrategy { |
| public: |
| enum StrategyKind { |
| /// The 'native' strategy is to use the architecture's provided |
| /// reads and writes. |
| Native, |
| |
| /// Use objc_setProperty and objc_getProperty. |
| GetSetProperty, |
| |
| /// Use objc_setProperty for the setter, but use expression |
| /// evaluation for the getter. |
| SetPropertyAndExpressionGet, |
| |
| /// Use objc_copyStruct. |
| CopyStruct, |
| |
| /// The 'expression' strategy is to emit normal assignment or |
| /// lvalue-to-rvalue expressions. |
| Expression |
| }; |
| |
| StrategyKind getKind() const { return StrategyKind(Kind); } |
| |
| bool hasStrongMember() const { return HasStrong; } |
| bool isAtomic() const { return IsAtomic; } |
| bool isCopy() const { return IsCopy; } |
| |
| CharUnits getIvarSize() const { return IvarSize; } |
| CharUnits getIvarAlignment() const { return IvarAlignment; } |
| |
| PropertyImplStrategy(CodeGenModule &CGM, |
| const ObjCPropertyImplDecl *propImpl); |
| |
| private: |
| unsigned Kind : 8; |
| unsigned IsAtomic : 1; |
| unsigned IsCopy : 1; |
| unsigned HasStrong : 1; |
| |
| CharUnits IvarSize; |
| CharUnits IvarAlignment; |
| }; |
| } |
| |
| /// Pick an implementation strategy for the given property synthesis. |
| PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, |
| const ObjCPropertyImplDecl *propImpl) { |
| const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); |
| ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); |
| |
| IsCopy = (setterKind == ObjCPropertyDecl::Copy); |
| IsAtomic = prop->isAtomic(); |
| HasStrong = false; // doesn't matter here. |
| |
| // Evaluate the ivar's size and alignment. |
| ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| QualType ivarType = ivar->getType(); |
| std::tie(IvarSize, IvarAlignment) = |
| CGM.getContext().getTypeInfoInChars(ivarType); |
| |
| // If we have a copy property, we always have to use getProperty/setProperty. |
| // TODO: we could actually use setProperty and an expression for non-atomics. |
| if (IsCopy) { |
| Kind = GetSetProperty; |
| return; |
| } |
| |
| // Handle retain. |
| if (setterKind == ObjCPropertyDecl::Retain) { |
| // In GC-only, there's nothing special that needs to be done. |
| if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { |
| // fallthrough |
| |
| // In ARC, if the property is non-atomic, use expression emission, |
| // which translates to objc_storeStrong. This isn't required, but |
| // it's slightly nicer. |
| } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { |
| // Using standard expression emission for the setter is only |
| // acceptable if the ivar is __strong, which won't be true if |
| // the property is annotated with __attribute__((NSObject)). |
| // TODO: falling all the way back to objc_setProperty here is |
| // just laziness, though; we could still use objc_storeStrong |
| // if we hacked it right. |
| if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) |
| Kind = Expression; |
| else |
| Kind = SetPropertyAndExpressionGet; |
| return; |
| |
| // Otherwise, we need to at least use setProperty. However, if |
| // the property isn't atomic, we can use normal expression |
| // emission for the getter. |
| } else if (!IsAtomic) { |
| Kind = SetPropertyAndExpressionGet; |
| return; |
| |
| // Otherwise, we have to use both setProperty and getProperty. |
| } else { |
| Kind = GetSetProperty; |
| return; |
| } |
| } |
| |
| // If we're not atomic, just use expression accesses. |
| if (!IsAtomic) { |
| Kind = Expression; |
| return; |
| } |
| |
| // Properties on bitfield ivars need to be emitted using expression |
| // accesses even if they're nominally atomic. |
| if (ivar->isBitField()) { |
| Kind = Expression; |
| return; |
| } |
| |
| // GC-qualified or ARC-qualified ivars need to be emitted as |
| // expressions. This actually works out to being atomic anyway, |
| // except for ARC __strong, but that should trigger the above code. |
| if (ivarType.hasNonTrivialObjCLifetime() || |
| (CGM.getLangOpts().getGC() && |
| CGM.getContext().getObjCGCAttrKind(ivarType))) { |
| Kind = Expression; |
| return; |
| } |
| |
| // Compute whether the ivar has strong members. |
| if (CGM.getLangOpts().getGC()) |
| if (const RecordType *recordType = ivarType->getAs<RecordType>()) |
| HasStrong = recordType->getDecl()->hasObjectMember(); |
| |
| // We can never access structs with object members with a native |
| // access, because we need to use write barriers. This is what |
| // objc_copyStruct is for. |
| if (HasStrong) { |
| Kind = CopyStruct; |
| return; |
| } |
| |
| // Otherwise, this is target-dependent and based on the size and |
| // alignment of the ivar. |
| |
| // If the size of the ivar is not a power of two, give up. We don't |
| // want to get into the business of doing compare-and-swaps. |
| if (!IvarSize.isPowerOfTwo()) { |
| Kind = CopyStruct; |
| return; |
| } |
| |
| llvm::Triple::ArchType arch = |
| CGM.getTarget().getTriple().getArch(); |
| |
| // Most architectures require memory to fit within a single cache |
| // line, so the alignment has to be at least the size of the access. |
| // Otherwise we have to grab a lock. |
| if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { |
| Kind = CopyStruct; |
| return; |
| } |
| |
| // If the ivar's size exceeds the architecture's maximum atomic |
| // access size, we have to use CopyStruct. |
| if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { |
| Kind = CopyStruct; |
| return; |
| } |
| |
| // Otherwise, we can use native loads and stores. |
| Kind = Native; |
| } |
| |
| /// Generate an Objective-C property getter function. |
| /// |
| /// The given Decl must be an ObjCImplementationDecl. \@synthesize |
| /// is illegal within a category. |
| void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, |
| const ObjCPropertyImplDecl *PID) { |
| llvm::Constant *AtomicHelperFn = |
| CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); |
| const ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); |
| assert(OMD && "Invalid call to generate getter (empty method)"); |
| StartObjCMethod(OMD, IMP->getClassInterface()); |
| |
| generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); |
| |
| FinishFunction(); |
| } |
| |
| static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { |
| const Expr *getter = propImpl->getGetterCXXConstructor(); |
| if (!getter) return true; |
| |
| // Sema only makes only of these when the ivar has a C++ class type, |
| // so the form is pretty constrained. |
| |
| // If the property has a reference type, we might just be binding a |
| // reference, in which case the result will be a gl-value. We should |
| // treat this as a non-trivial operation. |
| if (getter->isGLValue()) |
| return false; |
| |
| // If we selected a trivial copy-constructor, we're okay. |
| if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) |
| return (construct->getConstructor()->isTrivial()); |
| |
| // The constructor might require cleanups (in which case it's never |
| // trivial). |
| assert(isa<ExprWithCleanups>(getter)); |
| return false; |
| } |
| |
| /// emitCPPObjectAtomicGetterCall - Call the runtime function to |
| /// copy the ivar into the resturn slot. |
| static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, |
| llvm::Value *returnAddr, |
| ObjCIvarDecl *ivar, |
| llvm::Constant *AtomicHelperFn) { |
| // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, |
| // AtomicHelperFn); |
| CallArgList args; |
| |
| // The 1st argument is the return Slot. |
| args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); |
| |
| // The 2nd argument is the address of the ivar. |
| llvm::Value *ivarAddr = |
| CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), |
| CGF.LoadObjCSelf(), ivar, 0).getPointer(); |
| ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); |
| args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); |
| |
| // Third argument is the helper function. |
| args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); |
| |
| llvm::Constant *copyCppAtomicObjectFn = |
| CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); |
| CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); |
| CGF.EmitCall( |
| CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), |
| callee, ReturnValueSlot(), args); |
| } |
| |
| void |
| CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
| const ObjCPropertyImplDecl *propImpl, |
| const ObjCMethodDecl *GetterMethodDecl, |
| llvm::Constant *AtomicHelperFn) { |
| // If there's a non-trivial 'get' expression, we just have to emit that. |
| if (!hasTrivialGetExpr(propImpl)) { |
| if (!AtomicHelperFn) { |
| ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), |
| /*nrvo*/ nullptr); |
| EmitReturnStmt(ret); |
| } |
| else { |
| ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), |
| ivar, AtomicHelperFn); |
| } |
| return; |
| } |
| |
| const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); |
| QualType propType = prop->getType(); |
| ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); |
| |
| ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| |
| // Pick an implementation strategy. |
| PropertyImplStrategy strategy(CGM, propImpl); |
| switch (strategy.getKind()) { |
| case PropertyImplStrategy::Native: { |
| // We don't need to do anything for a zero-size struct. |
| if (strategy.getIvarSize().isZero()) |
| return; |
| |
| LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); |
| |
| // Currently, all atomic accesses have to be through integer |
| // types, so there's no point in trying to pick a prettier type. |
| uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); |
| llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); |
| bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay |
| |
| // Perform an atomic load. This does not impose ordering constraints. |
| Address ivarAddr = LV.getAddress(); |
| ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); |
| llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); |
| load->setAtomic(llvm::AtomicOrdering::Unordered); |
| |
| // Store that value into the return address. Doing this with a |
| // bitcast is likely to produce some pretty ugly IR, but it's not |
| // the *most* terrible thing in the world. |
| llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); |
| uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); |
| llvm::Value *ivarVal = load; |
| if (ivarSize > retTySize) { |
| llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); |
| ivarVal = Builder.CreateTrunc(load, newTy); |
| bitcastType = newTy->getPointerTo(); |
| } |
| Builder.CreateStore(ivarVal, |
| Builder.CreateBitCast(ReturnValue, bitcastType)); |
| |
| // Make sure we don't do an autorelease. |
| AutoreleaseResult = false; |
| return; |
| } |
| |
| case PropertyImplStrategy::GetSetProperty: { |
| llvm::Constant *getPropertyFn = |
| CGM.getObjCRuntime().GetPropertyGetFunction(); |
| if (!getPropertyFn) { |
| CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); |
| return; |
| } |
| CGCallee callee = CGCallee::forDirect(getPropertyFn); |
| |
| // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). |
| // FIXME: Can't this be simpler? This might even be worse than the |
| // corresponding gcc code. |
| llvm::Value *cmd = |
| Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); |
| llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); |
| llvm::Value *ivarOffset = |
| EmitIvarOffset(classImpl->getClassInterface(), ivar); |
| |
| CallArgList args; |
| args.add(RValue::get(self), getContext().getObjCIdType()); |
| args.add(RValue::get(cmd), getContext().getObjCSelType()); |
| args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); |
| args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), |
| getContext().BoolTy); |
| |
| // FIXME: We shouldn't need to get the function info here, the |
| // runtime already should have computed it to build the function. |
| llvm::Instruction *CallInstruction; |
| RValue RV = EmitCall( |
| getTypes().arrangeBuiltinFunctionCall(propType, args), |
| callee, ReturnValueSlot(), args, &CallInstruction); |
| if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) |
| call->setTailCall(); |
| |
| // We need to fix the type here. Ivars with copy & retain are |
| // always objects so we don't need to worry about complex or |
| // aggregates. |
| RV = RValue::get(Builder.CreateBitCast( |
| RV.getScalarVal(), |
| getTypes().ConvertType(getterMethod->getReturnType()))); |
| |
| EmitReturnOfRValue(RV, propType); |
| |
| // objc_getProperty does an autorelease, so we should suppress ours. |
| AutoreleaseResult = false; |
| |
| return; |
| } |
| |
| case PropertyImplStrategy::CopyStruct: |
| emitStructGetterCall(*this, ivar, strategy.isAtomic(), |
| strategy.hasStrongMember()); |
| return; |
| |
| case PropertyImplStrategy::Expression: |
| case PropertyImplStrategy::SetPropertyAndExpressionGet: { |
| LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); |
| |
| QualType ivarType = ivar->getType(); |
| switch (getEvaluationKind(ivarType)) { |
| case TEK_Complex: { |
| ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); |
| EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), |
| /*init*/ true); |
| return; |
| } |
| case TEK_Aggregate: { |
| // The return value slot is guaranteed to not be aliased, but |
| // that's not necessarily the same as "on the stack", so |
| // we still potentially need objc_memmove_collectable. |
| EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), |
| /* Src= */ LV, ivarType, overlapForReturnValue()); |
| return; |
| } |
| case TEK_Scalar: { |
| llvm::Value *value; |
| if (propType->isReferenceType()) { |
| value = LV.getAddress().getPointer(); |
| } else { |
| // We want to load and autoreleaseReturnValue ARC __weak ivars. |
| if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| if (getLangOpts().ObjCAutoRefCount) { |
| value = emitARCRetainLoadOfScalar(*this, LV, ivarType); |
| } else { |
| value = EmitARCLoadWeak(LV.getAddress()); |
| } |
| |
| // Otherwise we want to do a simple load, suppressing the |
| // final autorelease. |
| } else { |
| value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); |
| AutoreleaseResult = false; |
| } |
| |
| value = Builder.CreateBitCast( |
| value, ConvertType(GetterMethodDecl->getReturnType())); |
| } |
| |
| EmitReturnOfRValue(RValue::get(value), propType); |
| return; |
| } |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| } |
| llvm_unreachable("bad @property implementation strategy!"); |
| } |
| |
| /// emitStructSetterCall - Call the runtime function to store the value |
| /// from the first formal parameter into the given ivar. |
| static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, |
| ObjCIvarDecl *ivar) { |
| // objc_copyStruct (&structIvar, &Arg, |
| // sizeof (struct something), true, false); |
| CallArgList args; |
| |
| // The first argument is the address of the ivar. |
| llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), |
| CGF.LoadObjCSelf(), ivar, 0) |
| .getPointer(); |
| ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); |
| args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); |
| |
| // The second argument is the address of the parameter variable. |
| ParmVarDecl *argVar = *OMD->param_begin(); |
| DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), |
| VK_LValue, SourceLocation()); |
| llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); |
| argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); |
| args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); |
| |
| // The third argument is the sizeof the type. |
| llvm::Value *size = |
| CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); |
| args.add(RValue::get(size), CGF.getContext().getSizeType()); |
| |
| // The fourth argument is the 'isAtomic' flag. |
| args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); |
| |
| // The fifth argument is the 'hasStrong' flag. |
| // FIXME: should this really always be false? |
| args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); |
| |
| llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); |
| CGCallee callee = CGCallee::forDirect(fn); |
| CGF.EmitCall( |
| CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), |
| callee, ReturnValueSlot(), args); |
| } |
| |
| /// emitCPPObjectAtomicSetterCall - Call the runtime function to store |
| /// the value from the first formal parameter into the given ivar, using |
| /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. |
| static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, |
| ObjCMethodDecl *OMD, |
| ObjCIvarDecl *ivar, |
| llvm::Constant *AtomicHelperFn) { |
| // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, |
| // AtomicHelperFn); |
| CallArgList args; |
| |
| // The first argument is the address of the ivar. |
| llvm::Value *ivarAddr = |
| CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), |
| CGF.LoadObjCSelf(), ivar, 0).getPointer(); |
| ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); |
| args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); |
| |
| // The second argument is the address of the parameter variable. |
| ParmVarDecl *argVar = *OMD->param_begin(); |
| DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), |
| VK_LValue, SourceLocation()); |
| llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); |
| argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); |
| args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); |
| |
| // Third argument is the helper function. |
| args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); |
| |
| llvm::Constant *fn = |
| CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); |
| CGCallee callee = CGCallee::forDirect(fn); |
| CGF.EmitCall( |
| CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), |
| callee, ReturnValueSlot(), args); |
| } |
| |
| |
| static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { |
| Expr *setter = PID->getSetterCXXAssignment(); |
| if (!setter) return true; |
| |
| // Sema only makes only of these when the ivar has a C++ class type, |
| // so the form is pretty constrained. |
| |
| // An operator call is trivial if the function it calls is trivial. |
| // This also implies that there's nothing non-trivial going on with |
| // the arguments, because operator= can only be trivial if it's a |
| // synthesized assignment operator and therefore both parameters are |
| // references. |
| if (CallExpr *call = dyn_cast<CallExpr>(setter)) { |
| if (const FunctionDecl *callee |
| = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) |
| if (callee->isTrivial()) |
| return true; |
| return false; |
| } |
| |
| assert(isa<ExprWithCleanups>(setter)); |
| return false; |
| } |
| |
| static bool UseOptimizedSetter(CodeGenModule &CGM) { |
| if (CGM.getLangOpts().getGC() != LangOptions::NonGC) |
| return false; |
| return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); |
| } |
| |
| void |
| CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
| const ObjCPropertyImplDecl *propImpl, |
| llvm::Constant *AtomicHelperFn) { |
| const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); |
| ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); |
| |
| // Just use the setter expression if Sema gave us one and it's |
| // non-trivial. |
| if (!hasTrivialSetExpr(propImpl)) { |
| if (!AtomicHelperFn) |
| // If non-atomic, assignment is called directly. |
| EmitStmt(propImpl->getSetterCXXAssignment()); |
| else |
| // If atomic, assignment is called via a locking api. |
| emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, |
| AtomicHelperFn); |
| return; |
| } |
| |
| PropertyImplStrategy strategy(CGM, propImpl); |
| switch (strategy.getKind()) { |
| case PropertyImplStrategy::Native: { |
| // We don't need to do anything for a zero-size struct. |
| if (strategy.getIvarSize().isZero()) |
| return; |
| |
| Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); |
| |
| LValue ivarLValue = |
| EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); |
| Address ivarAddr = ivarLValue.getAddress(); |
| |
| // Currently, all atomic accesses have to be through integer |
| // types, so there's no point in trying to pick a prettier type. |
| llvm::Type *bitcastType = |
| llvm::Type::getIntNTy(getLLVMContext(), |
| getContext().toBits(strategy.getIvarSize())); |
| |
| // Cast both arguments to the chosen operation type. |
| argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); |
| ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); |
| |
| // This bitcast load is likely to cause some nasty IR. |
| llvm::Value *load = Builder.CreateLoad(argAddr); |
| |
| // Perform an atomic store. There are no memory ordering requirements. |
| llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); |
| store->setAtomic(llvm::AtomicOrdering::Unordered); |
| return; |
| } |
| |
| case PropertyImplStrategy::GetSetProperty: |
| case PropertyImplStrategy::SetPropertyAndExpressionGet: { |
| |
| llvm::Constant *setOptimizedPropertyFn = nullptr; |
| llvm::Constant *setPropertyFn = nullptr; |
| if (UseOptimizedSetter(CGM)) { |
| // 10.8 and iOS 6.0 code and GC is off |
| setOptimizedPropertyFn = |
| CGM.getObjCRuntime() |
| .GetOptimizedPropertySetFunction(strategy.isAtomic(), |
| strategy.isCopy()); |
| if (!setOptimizedPropertyFn) { |
| CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); |
| return; |
| } |
| } |
| else { |
| setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); |
| if (!setPropertyFn) { |
| CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); |
| return; |
| } |
| } |
| |
| // Emit objc_setProperty((id) self, _cmd, offset, arg, |
| // <is-atomic>, <is-copy>). |
| llvm::Value *cmd = |
| Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); |
| llvm::Value *self = |
| Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); |
| llvm::Value *ivarOffset = |
| EmitIvarOffset(classImpl->getClassInterface(), ivar); |
| Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); |
| llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); |
| arg = Builder.CreateBitCast(arg, VoidPtrTy); |
| |
| CallArgList args; |
| args.add(RValue::get(self), getContext().getObjCIdType()); |
| args.add(RValue::get(cmd), getContext().getObjCSelType()); |
| if (setOptimizedPropertyFn) { |
| args.add(RValue::get(arg), getContext().getObjCIdType()); |
| args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); |
| CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); |
| EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), |
| callee, ReturnValueSlot(), args); |
| } else { |
| args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); |
| args.add(RValue::get(arg), getContext().getObjCIdType()); |
| args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), |
| getContext().BoolTy); |
| args.add(RValue::get(Builder.getInt1(strategy.isCopy())), |
| getContext().BoolTy); |
| // FIXME: We shouldn't need to get the function info here, the runtime |
| // already should have computed it to build the function. |
| CGCallee callee = CGCallee::forDirect(setPropertyFn); |
| EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), |
| callee, ReturnValueSlot(), args); |
| } |
| |
| return; |
| } |
| |
| case PropertyImplStrategy::CopyStruct: |
| emitStructSetterCall(*this, setterMethod, ivar); |
| return; |
| |
| case PropertyImplStrategy::Expression: |
| break; |
| } |
| |
| // Otherwise, fake up some ASTs and emit a normal assignment. |
| ValueDecl *selfDecl = setterMethod->getSelfDecl(); |
| DeclRefExpr self(selfDecl, false, selfDecl->getType(), |
| VK_LValue, SourceLocation()); |
| ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, |
| selfDecl->getType(), CK_LValueToRValue, &self, |
| VK_RValue); |
| ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), |
| SourceLocation(), SourceLocation(), |
| &selfLoad, true, true); |
| |
| ParmVarDecl *argDecl = *setterMethod->param_begin(); |
| QualType argType = argDecl->getType().getNonReferenceType(); |
| DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); |
| ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, |
| argType.getUnqualifiedType(), CK_LValueToRValue, |
| &arg, VK_RValue); |
| |
| // The property type can differ from the ivar type in some situations with |
| // Objective-C pointer types, we can always bit cast the RHS in these cases. |
| // The following absurdity is just to ensure well-formed IR. |
| CastKind argCK = CK_NoOp; |
| if (ivarRef.getType()->isObjCObjectPointerType()) { |
| if (argLoad.getType()->isObjCObjectPointerType()) |
| argCK = CK_BitCast; |
| else if (argLoad.getType()->isBlockPointerType()) |
| argCK = CK_BlockPointerToObjCPointerCast; |
| else |
| argCK = CK_CPointerToObjCPointerCast; |
| } else if (ivarRef.getType()->isBlockPointerType()) { |
| if (argLoad.getType()->isBlockPointerType()) |
| argCK = CK_BitCast; |
| else |
| argCK = CK_AnyPointerToBlockPointerCast; |
| } else if (ivarRef.getType()->isPointerType()) { |
| argCK = CK_BitCast; |
| } |
| ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, |
| ivarRef.getType(), argCK, &argLoad, |
| VK_RValue); |
| Expr *finalArg = &argLoad; |
| if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), |
| argLoad.getType())) |
| finalArg = &argCast; |
| |
| |
| BinaryOperator assign(&ivarRef, finalArg, BO_Assign, |
| ivarRef.getType(), VK_RValue, OK_Ordinary, |
| SourceLocation(), FPOptions()); |
| EmitStmt(&assign); |
| } |
| |
| /// Generate an Objective-C property setter function. |
| /// |
| /// The given Decl must be an ObjCImplementationDecl. \@synthesize |
| /// is illegal within a category. |
| void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, |
| const ObjCPropertyImplDecl *PID) { |
| llvm::Constant *AtomicHelperFn = |
| CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); |
| const ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); |
| assert(OMD && "Invalid call to generate setter (empty method)"); |
| StartObjCMethod(OMD, IMP->getClassInterface()); |
| |
| generateObjCSetterBody(IMP, PID, AtomicHelperFn); |
| |
| FinishFunction(); |
| } |
| |
| namespace { |
| struct DestroyIvar final : EHScopeStack::Cleanup { |
| private: |
| llvm::Value *addr; |
| const ObjCIvarDecl *ivar; |
| CodeGenFunction::Destroyer *destroyer; |
| bool useEHCleanupForArray; |
| public: |
| DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, |
| CodeGenFunction::Destroyer *destroyer, |
| bool useEHCleanupForArray) |
| : addr(addr), ivar(ivar), destroyer(destroyer), |
| useEHCleanupForArray(useEHCleanupForArray) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| LValue lvalue |
| = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); |
| CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, |
| flags.isForNormalCleanup() && useEHCleanupForArray); |
| } |
| }; |
| } |
| |
| /// Like CodeGenFunction::destroyARCStrong, but do it with a call. |
| static void destroyARCStrongWithStore(CodeGenFunction &CGF, |
| Address addr, |
| QualType type) { |
| llvm::Value *null = getNullForVariable(addr); |
| CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); |
| } |
| |
| static void emitCXXDestructMethod(CodeGenFunction &CGF, |
| ObjCImplementationDecl *impl) { |
| CodeGenFunction::RunCleanupsScope scope(CGF); |
| |
| llvm::Value *self = CGF.LoadObjCSelf(); |
| |
| const ObjCInterfaceDecl *iface = impl->getClassInterface(); |
| for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); |
| ivar; ivar = ivar->getNextIvar()) { |
| QualType type = ivar->getType(); |
| |
| // Check whether the ivar is a destructible type. |
| QualType::DestructionKind dtorKind = type.isDestructedType(); |
| if (!dtorKind) continue; |
| |
| CodeGenFunction::Destroyer *destroyer = nullptr; |
| |
| // Use a call to objc_storeStrong to destroy strong ivars, for the |
| // general benefit of the tools. |
| if (dtorKind == QualType::DK_objc_strong_lifetime) { |
| destroyer = destroyARCStrongWithStore; |
| |
| // Otherwise use the default for the destruction kind. |
| } else { |
| destroyer = CGF.getDestroyer(dtorKind); |
| } |
| |
| CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); |
| |
| CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, |
| cleanupKind & EHCleanup); |
| } |
| |
| assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); |
| } |
| |
| void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
| ObjCMethodDecl *MD, |
| bool ctor) { |
| MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); |
| StartObjCMethod(MD, IMP->getClassInterface()); |
| |
| // Emit .cxx_construct. |
| if (ctor) { |
| // Suppress the final autorelease in ARC. |
| AutoreleaseResult = false; |
| |
| for (const auto *IvarInit : IMP->inits()) { |
| FieldDecl *Field = IvarInit->getAnyMember(); |
| ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); |
| LValue LV = EmitLValueForIvar(TypeOfSelfObject(), |
| LoadObjCSelf(), Ivar, 0); |
| EmitAggExpr(IvarInit->getInit(), |
| AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased, |
| AggValueSlot::DoesNotOverlap)); |
| } |
| // constructor returns 'self'. |
| CodeGenTypes &Types = CGM.getTypes(); |
| QualType IdTy(CGM.getContext().getObjCIdType()); |
| llvm::Value *SelfAsId = |
| Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); |
| EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); |
| |
| // Emit .cxx_destruct. |
| } else { |
| emitCXXDestructMethod(*this, IMP); |
| } |
| FinishFunction(); |
| } |
| |
| llvm::Value *CodeGenFunction::LoadObjCSelf() { |
| VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); |
| DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), |
| Self->getType(), VK_LValue, SourceLocation()); |
| return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); |
| } |
| |
| QualType CodeGenFunction::TypeOfSelfObject() { |
| const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); |
| ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); |
| const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( |
| getContext().getCanonicalType(selfDecl->getType())); |
| return PTy->getPointeeType(); |
| } |
| |
| void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ |
| llvm::Constant *EnumerationMutationFnPtr = |
| CGM.getObjCRuntime().EnumerationMutationFunction(); |
| if (!EnumerationMutationFnPtr) { |
| CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); |
| return; |
| } |
| CGCallee EnumerationMutationFn = |
| CGCallee::forDirect(EnumerationMutationFnPtr); |
| |
| CGDebugInfo *DI = getDebugInfo(); |
| if (DI) |
| DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); |
| |
| RunCleanupsScope ForScope(*this); |
| |
| // The local variable comes into scope immediately. |
| AutoVarEmission variable = AutoVarEmission::invalid(); |
| if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) |
| variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); |
| |
| JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); |
| |
| // Fast enumeration state. |
| QualType StateTy = CGM.getObjCFastEnumerationStateType(); |
| Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); |
| EmitNullInitialization(StatePtr, StateTy); |
| |
| // Number of elements in the items array. |
| static const unsigned NumItems = 16; |
| |
| // Fetch the countByEnumeratingWithState:objects:count: selector. |
| IdentifierInfo *II[] = { |
| &CGM.getContext().Idents.get("countByEnumeratingWithState"), |
| &CGM.getContext().Idents.get("objects"), |
| &CGM.getContext().Idents.get("count") |
| }; |
| Selector FastEnumSel = |
| CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); |
| |
| QualType ItemsTy = |
| getContext().getConstantArrayType(getContext().getObjCIdType(), |
| llvm::APInt(32, NumItems), |
| ArrayType::Normal, 0); |
| Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); |
| |
| // Emit the collection pointer. In ARC, we do a retain. |
| llvm::Value *Collection; |
| if (getLangOpts().ObjCAutoRefCount) { |
| Collection = EmitARCRetainScalarExpr(S.getCollection()); |
| |
| // Enter a cleanup to do the release. |
| EmitObjCConsumeObject(S.getCollection()->getType(), Collection); |
| } else { |
| Collection = EmitScalarExpr(S.getCollection()); |
| } |
| |
| // The 'continue' label needs to appear within the cleanup for the |
| // collection object. |
| JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); |
| |
| // Send it our message: |
| CallArgList Args; |
| |
| // The first argument is a temporary of the enumeration-state type. |
| Args.add(RValue::get(StatePtr.getPointer()), |
| getContext().getPointerType(StateTy)); |
| |
| // The second argument is a temporary array with space for NumItems |
| // pointers. We'll actually be loading elements from the array |
| // pointer written into the control state; this buffer is so that |
| // collections that *aren't* backed by arrays can still queue up |
| // batches of elements. |
| Args.add(RValue::get(ItemsPtr.getPointer()), |
| getContext().getPointerType(ItemsTy)); |
| |
| // The third argument is the capacity of that temporary array. |
| llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); |
| llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); |
| Args.add(RValue::get(Count), getContext().getNSUIntegerType()); |
| |
| // Start the enumeration. |
| RValue CountRV = |
| CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().getNSUIntegerType(), |
| FastEnumSel, Collection, Args); |
| |
| // The initial number of objects that were returned in the buffer. |
| llvm::Value *initialBufferLimit = CountRV.getScalarVal(); |
| |
| llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); |
| llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); |
| |
| llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); |
| |
| // If the limit pointer was zero to begin with, the collection is |
| // empty; skip all this. Set the branch weight assuming this has the same |
| // probability of exiting the loop as any other loop exit. |
| uint64_t EntryCount = getCurrentProfileCount(); |
| Builder.CreateCondBr( |
| Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, |
| LoopInitBB, |
| createProfileWeights(EntryCount, getProfileCount(S.getBody()))); |
| |
| // Otherwise, initialize the loop. |
| EmitBlock(LoopInitBB); |
| |
| // Save the initial mutations value. This is the value at an |
| // address that was written into the state object by |
| // countByEnumeratingWithState:objects:count:. |
| Address StateMutationsPtrPtr = Builder.CreateStructGEP( |
| StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); |
| llvm::Value *StateMutationsPtr |
| = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); |
| |
| llvm::Value *initialMutations = |
| Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), |
| "forcoll.initial-mutations"); |
| |
| // Start looping. This is the point we return to whenever we have a |
| // fresh, non-empty batch of objects. |
| llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); |
| EmitBlock(LoopBodyBB); |
| |
| // The current index into the buffer. |
| llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); |
| index->addIncoming(zero, LoopInitBB); |
| |
| // The current buffer size. |
| llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); |
| count->addIncoming(initialBufferLimit, LoopInitBB); |
| |
| incrementProfileCounter(&S); |
| |
| // Check whether the mutations value has changed from where it was |
| // at start. StateMutationsPtr should actually be invariant between |
| // refreshes. |
| StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); |
| llvm::Value *currentMutations |
| = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), |
| "statemutations"); |
| |
| llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); |
| llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); |
| |
| Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), |
| WasNotMutatedBB, WasMutatedBB); |
| |
| // If so, call the enumeration-mutation function. |
| EmitBlock(WasMutatedBB); |
| llvm::Value *V = |
| Builder.CreateBitCast(Collection, |
| ConvertType(getContext().getObjCIdType())); |
| CallArgList Args2; |
| Args2.add(RValue::get(V), getContext().getObjCIdType()); |
| // FIXME: We shouldn't need to get the function info here, the runtime already |
| // should have computed it to build the function. |
| EmitCall( |
| CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), |
| EnumerationMutationFn, ReturnValueSlot(), Args2); |
| |
| // Otherwise, or if the mutation function returns, just continue. |
| EmitBlock(WasNotMutatedBB); |
| |
| // Initialize the element variable. |
| RunCleanupsScope elementVariableScope(*this); |
| bool elementIsVariable; |
| LValue elementLValue; |
| QualType elementType; |
| if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { |
| // Initialize the variable, in case it's a __block variable or something. |
| EmitAutoVarInit(variable); |
| |
| const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); |
| DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), |
| VK_LValue, SourceLocation()); |
| elementLValue = EmitLValue(&tempDRE); |
| elementType = D->getType(); |
| elementIsVariable = true; |
| |
| if (D->isARCPseudoStrong()) |
| elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); |
| } else { |
| elementLValue = LValue(); // suppress warning |
| elementType = cast<Expr>(S.getElement())->getType(); |
| elementIsVariable = false; |
| } |
| llvm::Type *convertedElementType = ConvertType(elementType); |
| |
| // Fetch the buffer out of the enumeration state. |
| // TODO: this pointer should actually be invariant between |
| // refreshes, which would help us do certain loop optimizations. |
| Address StateItemsPtr = Builder.CreateStructGEP( |
| StatePtr, 1, getPointerSize(), "stateitems.ptr"); |
| llvm::Value *EnumStateItems = |
| Builder.CreateLoad(StateItemsPtr, "stateitems"); |
| |
| // Fetch the value at the current index from the buffer. |
| llvm::Value *CurrentItemPtr = |
| Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); |
| llvm::Value *CurrentItem = |
| Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); |
| |
| // Cast that value to the right type. |
| CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, |
| "currentitem"); |
| |
| // Make sure we have an l-value. Yes, this gets evaluated every |
| // time through the loop. |
| if (!elementIsVariable) { |
| elementLValue = EmitLValue(cast<Expr>(S.getElement())); |
| EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); |
| } else { |
| EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, |
| /*isInit*/ true); |
| } |
| |
| // If we do have an element variable, this assignment is the end of |
| // its initialization. |
| if (elementIsVariable) |
| EmitAutoVarCleanups(variable); |
| |
| // Perform the loop body, setting up break and continue labels. |
| BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); |
| { |
| RunCleanupsScope Scope(*this); |
| EmitStmt(S.getBody()); |
| } |
| BreakContinueStack.pop_back(); |
| |
| // Destroy the element variable now. |
| elementVariableScope.ForceCleanup(); |
| |
| // Check whether there are more elements. |
| EmitBlock(AfterBody.getBlock()); |
| |
| llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); |
| |
| // First we check in the local buffer. |
| llvm::Value *indexPlusOne = |
| Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); |
| |
| // If we haven't overrun the buffer yet, we can continue. |
| // Set the branch weights based on the simplifying assumption that this is |
| // like a while-loop, i.e., ignoring that the false branch fetches more |
| // elements and then returns to the loop. |
| Builder.CreateCondBr( |
| Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, |
| createProfileWeights(getProfileCount(S.getBody()), EntryCount)); |
| |
| index->addIncoming(indexPlusOne, AfterBody.getBlock()); |
| count->addIncoming(count, AfterBody.getBlock()); |
| |
| // Otherwise, we have to fetch more elements. |
| EmitBlock(FetchMoreBB); |
| |
| CountRV = |
| CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().getNSUIntegerType(), |
| FastEnumSel, Collection, Args); |
| |
| // If we got a zero count, we're done. |
| llvm::Value *refetchCount = CountRV.getScalarVal(); |
| |
| // (note that the message send might split FetchMoreBB) |
| index->addIncoming(zero, Builder.GetInsertBlock()); |
| count->addIncoming(refetchCount, Builder.GetInsertBlock()); |
| |
| Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), |
| EmptyBB, LoopBodyBB); |
| |
| // No more elements. |
| EmitBlock(EmptyBB); |
| |
| if (!elementIsVariable) { |
| // If the element was not a declaration, set it to be null. |
| |
| llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); |
| elementLValue = EmitLValue(cast<Expr>(S.getElement())); |
| EmitStoreThroughLValue(RValue::get(null), elementLValue); |
| } |
| |
| if (DI) |
| DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); |
| |
| ForScope.ForceCleanup(); |
| EmitBlock(LoopEnd.getBlock()); |
| } |
| |
| void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { |
| CGM.getObjCRuntime().EmitTryStmt(*this, S); |
| } |
| |
| void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { |
| CGM.getObjCRuntime().EmitThrowStmt(*this, S); |
| } |
| |
| void CodeGenFunction::EmitObjCAtSynchronizedStmt( |
| const ObjCAtSynchronizedStmt &S) { |
| CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); |
| } |
| |
| namespace { |
| struct CallObjCRelease final : EHScopeStack::Cleanup { |
| CallObjCRelease(llvm::Value *object) : object(object) {} |
| llvm::Value *object; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| // Releases at the end of the full-expression are imprecise. |
| CGF.EmitARCRelease(object, ARCImpreciseLifetime); |
| } |
| }; |
| } |
| |
| /// Produce the code for a CK_ARCConsumeObject. Does a primitive |
| /// release at the end of the full-expression. |
| llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, |
| llvm::Value *object) { |
| // If we're in a conditional branch, we need to make the cleanup |
| // conditional. |
| pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); |
| return object; |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, |
| llvm::Value *value) { |
| return EmitARCRetainAutorelease(type, value); |
| } |
| |
| /// Given a number of pointers, inform the optimizer that they're |
| /// being intrinsically used up until this point in the program. |
| void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { |
| llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; |
| if (!fn) { |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(CGM.VoidTy, None, true); |
| fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); |
| } |
| |
| // This isn't really a "runtime" function, but as an intrinsic it |
| // doesn't really matter as long as we align things up. |
| EmitNounwindRuntimeCall(fn, values); |
| } |
| |
| |
| static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, |
| llvm::FunctionType *FTy, |
| StringRef Name) { |
| llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name); |
| |
| if (auto *F = dyn_cast<llvm::Function>(RTF)) { |
| // If the target runtime doesn't naturally support ARC, emit weak |
| // references to the runtime support library. We don't really |
| // permit this to fail, but we need a particular relocation style. |
| if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && |
| !CGM.getTriple().isOSBinFormatCOFF()) { |
| F->setLinkage(llvm::Function::ExternalWeakLinkage); |
| } else if (Name == "objc_retain" || Name == "objc_release") { |
| // If we have Native ARC, set nonlazybind attribute for these APIs for |
| // performance. |
| F->addFnAttr(llvm::Attribute::NonLazyBind); |
| } |
| } |
| |
| return RTF; |
| } |
| |
| /// Perform an operation having the signature |
| /// i8* (i8*) |
| /// where a null input causes a no-op and returns null. |
| static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, |
| llvm::Value *value, |
| llvm::Constant *&fn, |
| StringRef fnName, |
| bool isTailCall = false) { |
| if (isa<llvm::ConstantPointerNull>(value)) |
| return value; |
| |
| if (!fn) { |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); |
| fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); |
| } |
| |
| // Cast the argument to 'id'. |
| llvm::Type *origType = value->getType(); |
| value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); |
| |
| // Call the function. |
| llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); |
| if (isTailCall) |
| call->setTailCall(); |
| |
| // Cast the result back to the original type. |
| return CGF.Builder.CreateBitCast(call, origType); |
| } |
| |
| /// Perform an operation having the following signature: |
| /// i8* (i8**) |
| static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, |
| Address addr, |
| llvm::Constant *&fn, |
| StringRef fnName) { |
| if (!fn) { |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); |
| fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); |
| } |
| |
| // Cast the argument to 'id*'. |
| llvm::Type *origType = addr.getElementType(); |
| addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); |
| |
| // Call the function. |
| llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); |
| |
| // Cast the result back to a dereference of the original type. |
| if (origType != CGF.Int8PtrTy) |
| result = CGF.Builder.CreateBitCast(result, origType); |
| |
| return result; |
| } |
| |
| /// Perform an operation having the following signature: |
| /// i8* (i8**, i8*) |
| static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, |
| Address addr, |
| llvm::Value *value, |
| llvm::Constant *&fn, |
| StringRef fnName, |
| bool ignored) { |
| assert(addr.getElementType() == value->getType()); |
| |
| if (!fn) { |
| llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; |
| |
| llvm::FunctionType *fnType |
| = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); |
| fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); |
| } |
| |
| llvm::Type *origType = value->getType(); |
| |
| llvm::Value *args[] = { |
| CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), |
| CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) |
| }; |
| llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); |
| |
| if (ignored) return nullptr; |
| |
| return CGF.Builder.CreateBitCast(result, origType); |
| } |
| |
| /// Perform an operation having the following signature: |
| /// void (i8**, i8**) |
| static void emitARCCopyOperation(CodeGenFunction &CGF, |
| Address dst, |
| Address src, |
| llvm::Constant *&fn, |
| StringRef fnName) { |
| assert(dst.getType() == src.getType()); |
| |
| if (!fn) { |
| llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; |
| |
| llvm::FunctionType *fnType |
| = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); |
| fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); |
| } |
| |
| llvm::Value *args[] = { |
| CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), |
| CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) |
| }; |
| CGF.EmitNounwindRuntimeCall(fn, args); |
| } |
| |
| /// Produce the code to do a retain. Based on the type, calls one of: |
| /// call i8* \@objc_retain(i8* %value) |
| /// call i8* \@objc_retainBlock(i8* %value) |
| llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { |
| if (type->isBlockPointerType()) |
| return EmitARCRetainBlock(value, /*mandatory*/ false); |
| else |
| return EmitARCRetainNonBlock(value); |
| } |
| |
| /// Retain the given object, with normal retain semantics. |
| /// call i8* \@objc_retain(i8* %value) |
| llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getObjCEntrypoints().objc_retain, |
| "objc_retain"); |
| } |
| |
| /// Retain the given block, with _Block_copy semantics. |
| /// call i8* \@objc_retainBlock(i8* %value) |
| /// |
| /// \param mandatory - If false, emit the call with metadata |
| /// indicating that it's okay for the optimizer to eliminate this call |
| /// if it can prove that the block never escapes except down the stack. |
| llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, |
| bool mandatory) { |
| llvm::Value *result |
| = emitARCValueOperation(*this, value, |
| CGM.getObjCEntrypoints().objc_retainBlock, |
| "objc_retainBlock"); |
| |
| // If the copy isn't mandatory, add !clang.arc.copy_on_escape to |
| // tell the optimizer that it doesn't need to do this copy if the |
| // block doesn't escape, where being passed as an argument doesn't |
| // count as escaping. |
| if (!mandatory && isa<llvm::Instruction>(result)) { |
| llvm::CallInst *call |
| = cast<llvm::CallInst>(result->stripPointerCasts()); |
| assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); |
| |
| call->setMetadata("clang.arc.copy_on_escape", |
| llvm::MDNode::get(Builder.getContext(), None)); |
| } |
| |
| return result; |
| } |
| |
| static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { |
| // Fetch the void(void) inline asm which marks that we're going to |
| // do something with the autoreleased return value. |
| llvm::InlineAsm *&marker |
| = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; |
| if (!marker) { |
| StringRef assembly |
| = CGF.CGM.getTargetCodeGenInfo() |
| .getARCRetainAutoreleasedReturnValueMarker(); |
| |
| // If we have an empty assembly string, there's nothing to do. |
| if (assembly.empty()) { |
| |
| // Otherwise, at -O0, build an inline asm that we're going to call |
| // in a moment. |
| } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { |
| llvm::FunctionType *type = |
| llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); |
| |
| marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); |
| |
| // If we're at -O1 and above, we don't want to litter the code |
| // with this marker yet, so leave a breadcrumb for the ARC |
| // optimizer to pick up. |
| } else { |
| llvm::NamedMDNode *metadata = |
| CGF.CGM.getModule().getOrInsertNamedMetadata( |
| "clang.arc.retainAutoreleasedReturnValueMarker"); |
| assert(metadata->getNumOperands() <= 1); |
| if (metadata->getNumOperands() == 0) { |
| auto &ctx = CGF.getLLVMContext(); |
| metadata->addOperand(llvm::MDNode::get(ctx, |
| llvm::MDString::get(ctx, assembly))); |
| } |
| } |
| } |
| |
| // Call the marker asm if we made one, which we do only at -O0. |
| if (marker) |
| CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); |
| } |
| |
| /// Retain the given object which is the result of a function call. |
| /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) |
| /// |
| /// Yes, this function name is one character away from a different |
| /// call with completely different semantics. |
| llvm::Value * |
| CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { |
| emitAutoreleasedReturnValueMarker(*this); |
| return emitARCValueOperation(*this, value, |
| CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, |
| "objc_retainAutoreleasedReturnValue"); |
| } |
| |
| /// Claim a possibly-autoreleased return value at +0. This is only |
| /// valid to do in contexts which do not rely on the retain to keep |
| /// the object valid for all of its uses; for example, when |
| /// the value is ignored, or when it is being assigned to an |
| /// __unsafe_unretained variable. |
| /// |
| /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) |
| llvm::Value * |
| CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { |
| emitAutoreleasedReturnValueMarker(*this); |
| return emitARCValueOperation(*this, value, |
| CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, |
| "objc_unsafeClaimAutoreleasedReturnValue"); |
| } |
| |
| /// Release the given object. |
| /// call void \@objc_release(i8* %value) |
| void CodeGenFunction::EmitARCRelease(llvm::Value *value, |
| ARCPreciseLifetime_t precise) { |
| if (isa<llvm::ConstantPointerNull>(value)) return; |
| |
| llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; |
| if (!fn) { |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); |
| } |
| |
| // Cast the argument to 'id'. |
| value = Builder.CreateBitCast(value, Int8PtrTy); |
| |
| // Call objc_release. |
| llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); |
| |
| if (precise == ARCImpreciseLifetime) { |
| call->setMetadata("clang.imprecise_release", |
| llvm::MDNode::get(Builder.getContext(), None)); |
| } |
| } |
| |
| /// Destroy a __strong variable. |
| /// |
| /// At -O0, emit a call to store 'null' into the address; |
| /// instrumenting tools prefer this because the address is exposed, |
| /// but it's relatively cumbersome to optimize. |
| /// |
| /// At -O1 and above, just load and call objc_release. |
| /// |
| /// call void \@objc_storeStrong(i8** %addr, i8* null) |
| void CodeGenFunction::EmitARCDestroyStrong(Address addr, |
| ARCPreciseLifetime_t precise) { |
| if (CGM.getCodeGenOpts().OptimizationLevel == 0) { |
| llvm::Value *null = getNullForVariable(addr); |
| EmitARCStoreStrongCall(addr, null, /*ignored*/ true); |
| return; |
| } |
| |
| llvm::Value *value = Builder.CreateLoad(addr); |
| EmitARCRelease(value, precise); |
| } |
| |
| /// Store into a strong object. Always calls this: |
| /// call void \@objc_storeStrong(i8** %addr, i8* %value) |
| llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, |
| llvm::Value *value, |
| bool ignored) { |
| assert(addr.getElementType() == value->getType()); |
| |
| llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; |
| if (!fn) { |
| llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; |
| llvm::FunctionType *fnType |
| = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); |
| } |
| |
| llvm::Value *args[] = { |
| Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), |
| Builder.CreateBitCast(value, Int8PtrTy) |
| }; |
| EmitNounwindRuntimeCall(fn, args); |
| |
| if (ignored) return nullptr; |
| return value; |
| } |
| |
| /// Store into a strong object. Sometimes calls this: |
| /// call void \@objc_storeStrong(i8** %addr, i8* %value) |
| /// Other times, breaks it down into components. |
| llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, |
| llvm::Value *newValue, |
| bool ignored) { |
| QualType type = dst.getType(); |
| bool isBlock = type->isBlockPointerType(); |
| |
| // Use a store barrier at -O0 unless this is a block type or the |
| // lvalue is inadequately aligned. |
| if (shouldUseFusedARCCalls() && |
| !isBlock && |
| (dst.getAlignment().isZero() || |
| dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { |
| return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); |
| } |
| |
| // Otherwise, split it out. |
| |
| // Retain the new value. |
| newValue = EmitARCRetain(type, newValue); |
| |
| // Read the old value. |
| llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); |
| |
| // Store. We do this before the release so that any deallocs won't |
| // see the old value. |
| EmitStoreOfScalar(newValue, dst); |
| |
| // Finally, release the old value. |
| EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); |
| |
| return newValue; |
| } |
| |
| /// Autorelease the given object. |
| /// call i8* \@objc_autorelease(i8* %value) |
| llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getObjCEntrypoints().objc_autorelease, |
| "objc_autorelease"); |
| } |
| |
| /// Autorelease the given object. |
| /// call i8* \@objc_autoreleaseReturnValue(i8* %value) |
| llvm::Value * |
| CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, |
| "objc_autoreleaseReturnValue", |
| /*isTailCall*/ true); |
| } |
| |
| /// Do a fused retain/autorelease of the given object. |
| /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) |
| llvm::Value * |
| CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, |
| "objc_retainAutoreleaseReturnValue", |
| /*isTailCall*/ true); |
| } |
| |
| /// Do a fused retain/autorelease of the given object. |
| /// call i8* \@objc_retainAutorelease(i8* %value) |
| /// or |
| /// %retain = call i8* \@objc_retainBlock(i8* %value) |
| /// call i8* \@objc_autorelease(i8* %retain) |
| llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, |
| llvm::Value *value) { |
| if (!type->isBlockPointerType()) |
| return EmitARCRetainAutoreleaseNonBlock(value); |
| |
| if (isa<llvm::ConstantPointerNull>(value)) return value; |
| |
| llvm::Type *origType = value->getType(); |
| value = Builder.CreateBitCast(value, Int8PtrTy); |
| value = EmitARCRetainBlock(value, /*mandatory*/ true); |
| value = EmitARCAutorelease(value); |
| return Builder.CreateBitCast(value, origType); |
| } |
| |
| /// Do a fused retain/autorelease of the given object. |
| /// call i8* \@objc_retainAutorelease(i8* %value) |
| llvm::Value * |
| CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getObjCEntrypoints().objc_retainAutorelease, |
| "objc_retainAutorelease"); |
| } |
| |
| /// i8* \@objc_loadWeak(i8** %addr) |
| /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). |
| llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { |
| return emitARCLoadOperation(*this, addr, |
| CGM.getObjCEntrypoints().objc_loadWeak, |
| "objc_loadWeak"); |
| } |
| |
| /// i8* \@objc_loadWeakRetained(i8** %addr) |
| llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { |
| return emitARCLoadOperation(*this, addr, |
| CGM.getObjCEntrypoints().objc_loadWeakRetained, |
| "objc_loadWeakRetained"); |
| } |
| |
| /// i8* \@objc_storeWeak(i8** %addr, i8* %value) |
| /// Returns %value. |
| llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, |
| llvm::Value *value, |
| bool ignored) { |
| return emitARCStoreOperation(*this, addr, value, |
| CGM.getObjCEntrypoints().objc_storeWeak, |
| "objc_storeWeak", ignored); |
| } |
| |
| /// i8* \@objc_initWeak(i8** %addr, i8* %value) |
| /// Returns %value. %addr is known to not have a current weak entry. |
| /// Essentially equivalent to: |
| /// *addr = nil; objc_storeWeak(addr, value); |
| void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { |
| // If we're initializing to null, just write null to memory; no need |
| // to get the runtime involved. But don't do this if optimization |
| // is enabled, because accounting for this would make the optimizer |
| // much more complicated. |
| if (isa<llvm::ConstantPointerNull>(value) && |
| CGM.getCodeGenOpts().OptimizationLevel == 0) { |
| Builder.CreateStore(value, addr); |
| return; |
| } |
| |
| emitARCStoreOperation(*this, addr, value, |
| CGM.getObjCEntrypoints().objc_initWeak, |
| "objc_initWeak", /*ignored*/ true); |
| } |
| |
| /// void \@objc_destroyWeak(i8** %addr) |
| /// Essentially objc_storeWeak(addr, nil). |
| void CodeGenFunction::EmitARCDestroyWeak(Address addr) { |
| llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; |
| if (!fn) { |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); |
| } |
| |
| // Cast the argument to 'id*'. |
| addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); |
| |
| EmitNounwindRuntimeCall(fn, addr.getPointer()); |
| } |
| |
| /// void \@objc_moveWeak(i8** %dest, i8** %src) |
| /// Disregards the current value in %dest. Leaves %src pointing to nothing. |
| /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). |
| void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { |
| emitARCCopyOperation(*this, dst, src, |
| CGM.getObjCEntrypoints().objc_moveWeak, |
| "objc_moveWeak"); |
| } |
| |
| /// void \@objc_copyWeak(i8** %dest, i8** %src) |
| /// Disregards the current value in %dest. Essentially |
| /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) |
| void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { |
| emitARCCopyOperation(*this, dst, src, |
| CGM.getObjCEntrypoints().objc_copyWeak, |
| "objc_copyWeak"); |
| } |
| |
| void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, |
| Address SrcAddr) { |
| llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); |
| Object = EmitObjCConsumeObject(Ty, Object); |
| EmitARCStoreWeak(DstAddr, Object, false); |
| } |
| |
| void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, |
| Address SrcAddr) { |
| llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); |
| Object = EmitObjCConsumeObject(Ty, Object); |
| EmitARCStoreWeak(DstAddr, Object, false); |
| EmitARCDestroyWeak(SrcAddr); |
| } |
| |
| /// Produce the code to do a objc_autoreleasepool_push. |
| /// call i8* \@objc_autoreleasePoolPush(void) |
| llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { |
| llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; |
| if (!fn) { |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(Int8PtrTy, false); |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); |
| } |
| |
| return EmitNounwindRuntimeCall(fn); |
| } |
| |
| /// Produce the code to do a primitive release. |
| /// call void \@objc_autoreleasePoolPop(i8* %ptr) |
| void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { |
| assert(value->getType() == Int8PtrTy); |
| |
| llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; |
| if (!fn) { |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); |
| |
| // We don't want to use a weak import here; instead we should not |
| // fall into this path. |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); |
| } |
| |
| // objc_autoreleasePoolPop can throw. |
| EmitRuntimeCallOrInvoke(fn, value); |
| } |
| |
| /// Produce the code to do an MRR version objc_autoreleasepool_push. |
| /// Which is: [[NSAutoreleasePool alloc] init]; |
| /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. |
| /// init is declared as: - (id) init; in its NSObject super class. |
| /// |
| llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { |
| CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); |
| // [NSAutoreleasePool alloc] |
| IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); |
| Selector AllocSel = getContext().Selectors.getSelector(0, &II); |
| CallArgList Args; |
| RValue AllocRV = |
| Runtime.GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().getObjCIdType(), |
| AllocSel, Receiver, Args); |
| |
| // [Receiver init] |
| Receiver = AllocRV.getScalarVal(); |
| II = &CGM.getContext().Idents.get("init"); |
| Selector InitSel = getContext().Selectors.getSelector(0, &II); |
| RValue InitRV = |
| Runtime.GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().getObjCIdType(), |
| InitSel, Receiver, Args); |
| return InitRV.getScalarVal(); |
| } |
| |
| /// Produce the code to do a primitive release. |
| /// [tmp drain]; |
| void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { |
| IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); |
| Selector DrainSel = getContext().Selectors.getSelector(0, &II); |
| CallArgList Args; |
| CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().VoidTy, DrainSel, Arg, Args); |
| } |
| |
| void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, |
| Address addr, |
| QualType type) { |
| CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); |
| } |
| |
| void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, |
| Address addr, |
| QualType type) { |
| CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); |
| } |
| |
| void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, |
| Address addr, |
| QualType type) { |
| CGF.EmitARCDestroyWeak(addr); |
| } |
| |
| void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, |
| QualType type) { |
| llvm::Value *value = CGF.Builder.CreateLoad(addr); |
| CGF.EmitARCIntrinsicUse(value); |
| } |
| |
| namespace { |
| struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { |
| llvm::Value *Token; |
| |
| CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| CGF.EmitObjCAutoreleasePoolPop(Token); |
| } |
| }; |
| struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { |
| llvm::Value *Token; |
| |
| CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| CGF.EmitObjCMRRAutoreleasePoolPop(Token); |
| } |
| }; |
| } |
| |
| void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { |
| if (CGM.getLangOpts().ObjCAutoRefCount) |
| EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); |
| else |
| EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); |
| } |
| |
| static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| LValue lvalue, |
| QualType type) { |
| switch (type.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| case Qualifiers::OCL_Strong: |
| case Qualifiers::OCL_Autoreleasing: |
| return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, |
| SourceLocation()).getScalarVal(), |
| false); |
| |
| case Qualifiers::OCL_Weak: |
| return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), |
| true); |
| } |
| |
| llvm_unreachable("impossible lifetime!"); |
| } |
| |
| static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| const Expr *e) { |
| e = e->IgnoreParens(); |
| QualType type = e->getType(); |
| |
| // If we're loading retained from a __strong xvalue, we can avoid |
| // an extra retain/release pair by zeroing out the source of this |
| // "move" operation. |
| if (e->isXValue() && |
| !type.isConstQualified() && |
| type.getObjCLifetime() == Qualifiers::OCL_Strong) { |
| // Emit the lvalue. |
| LValue lv = CGF.EmitLValue(e); |
| |
| // Load the object pointer. |
| llvm::Value *result = CGF.EmitLoadOfLValue(lv, |
| SourceLocation()).getScalarVal(); |
| |
| // Set the source pointer to NULL. |
| CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); |
| |
| return TryEmitResult(result, true); |
| } |
| |
| // As a very special optimization, in ARC++, if the l-value is the |
| // result of a non-volatile assignment, do a simple retain of the |
| // result of the call to objc_storeWeak instead of reloading. |
| if (CGF.getLangOpts().CPlusPlus && |
| !type.isVolatileQualified() && |
| type.getObjCLifetime() == Qualifiers::OCL_Weak && |
| isa<BinaryOperator>(e) && |
| cast<BinaryOperator>(e)->getOpcode() == BO_Assign) |
| return TryEmitResult(CGF.EmitScalarExpr(e), false); |
| |
| return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); |
| } |
| |
| typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, |
| llvm::Value *value)> |
| ValueTransform; |
| |
| /// Insert code immediately after a call. |
| static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, |
| llvm::Value *value, |
| ValueTransform doAfterCall, |
| ValueTransform doFallback) { |
| if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { |
| CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); |
| |
| // Place the retain immediately following the call. |
| CGF.Builder.SetInsertPoint(call->getParent(), |
| ++llvm::BasicBlock::iterator(call)); |
| value = doAfterCall(CGF, value); |
| |
| CGF.Builder.restoreIP(ip); |
| return value; |
| } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { |
| CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); |
| |
| // Place the retain at the beginning of the normal destination block. |
| llvm::BasicBlock *BB = invoke->getNormalDest(); |
| CGF.Builder.SetInsertPoint(BB, BB->begin()); |
| value = doAfterCall(CGF, value); |
| |
| CGF.Builder.restoreIP(ip); |
| return value; |
| |
| // Bitcasts can arise because of related-result returns. Rewrite |
| // the operand. |
| } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { |
| llvm::Value *operand = bitcast->getOperand(0); |
| operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); |
| bitcast->setOperand(0, operand); |
| return bitcast; |
| |
| // Generic fall-back case. |
| } else { |
| // Retain using the non-block variant: we never need to do a copy |
| // of a block that's been returned to us. |
| return doFallback(CGF, value); |
| } |
| } |
| |
| /// Given that the given expression is some sort of call (which does |
| /// not return retained), emit a retain following it. |
| static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, |
| const Expr *e) { |
| llvm::Value *value = CGF.EmitScalarExpr(e); |
| return emitARCOperationAfterCall(CGF, value, |
| [](CodeGenFunction &CGF, llvm::Value *value) { |
| return CGF.EmitARCRetainAutoreleasedReturnValue(value); |
| }, |
| [](CodeGenFunction &CGF, llvm::Value *value) { |
| return CGF.EmitARCRetainNonBlock(value); |
| }); |
| } |
| |
| /// Given that the given expression is some sort of call (which does |
| /// not return retained), perform an unsafeClaim following it. |
| static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, |
| const Expr *e) { |
| llvm::Value *value = CGF.EmitScalarExpr(e); |
| return emitARCOperationAfterCall(CGF, value, |
| [](CodeGenFunction &CGF, llvm::Value *value) { |
| return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); |
| }, |
| [](CodeGenFunction &CGF, llvm::Value *value) { |
| return value; |
| }); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, |
| bool allowUnsafeClaim) { |
| if (allowUnsafeClaim && |
| CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { |
| return emitARCUnsafeClaimCallResult(*this, E); |
| } else { |
| llvm::Value *value = emitARCRetainCallResult(*this, E); |
| return EmitObjCConsumeObject(E->getType(), value); |
| } |
| } |
| |
| /// Determine whether it might be important to emit a separate |
| /// objc_retain_block on the result of the given expression, or |
| /// whether it's okay to just emit it in a +1 context. |
| static bool shouldEmitSeparateBlockRetain(const Expr *e) { |
| assert(e->getType()->isBlockPointerType()); |
| e = e->IgnoreParens(); |
| |
| // For future goodness, emit block expressions directly in +1 |
| // contexts if we can. |
| if (isa<BlockExpr>(e)) |
| return false; |
| |
| if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { |
| switch (cast->getCastKind()) { |
| // Emitting these operations in +1 contexts is goodness. |
| case CK_LValueToRValue: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCProduceObject: |
| return false; |
| |
| // These operations preserve a block type. |
| case CK_NoOp: |
| case CK_BitCast: |
| return shouldEmitSeparateBlockRetain(cast->getSubExpr()); |
| |
| // These operations are known to be bad (or haven't been considered). |
| case CK_AnyPointerToBlockPointerCast: |
| default: |
| return true; |
| } |
| } |
| |
| return true; |
| } |
| |
| namespace { |
| /// A CRTP base class for emitting expressions of retainable object |
| /// pointer type in ARC. |
| template <typename Impl, typename Result> class ARCExprEmitter { |
| protected: |
| CodeGenFunction &CGF; |
| Impl &asImpl() { return *static_cast<Impl*>(this); } |
| |
| ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} |
| |
| public: |
| Result visit(const Expr *e); |
| Result visitCastExpr(const CastExpr *e); |
| Result visitPseudoObjectExpr(const PseudoObjectExpr *e); |
| Result visitBinaryOperator(const BinaryOperator *e); |
| Result visitBinAssign(const BinaryOperator *e); |
| Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); |
| Result visitBinAssignAutoreleasing(const BinaryOperator *e); |
| Result visitBinAssignWeak(const BinaryOperator *e); |
| Result visitBinAssignStrong(const BinaryOperator *e); |
| |
| // Minimal implementation: |
| // Result visitLValueToRValue(const Expr *e) |
| // Result visitConsumeObject(const Expr *e) |
| // Result visitExtendBlockObject(const Expr *e) |
| // Result visitReclaimReturnedObject(const Expr *e) |
| // Result visitCall(const Expr *e) |
| // Result visitExpr(const Expr *e) |
| // |
| // Result emitBitCast(Result result, llvm::Type *resultType) |
| // llvm::Value *getValueOfResult(Result result) |
| }; |
| } |
| |
| /// Try to emit a PseudoObjectExpr under special ARC rules. |
| /// |
| /// This massively duplicates emitPseudoObjectRValue. |
| template <typename Impl, typename Result> |
| Result |
| ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { |
| SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; |
| |
| // Find the result expression. |
| const Expr *resultExpr = E->getResultExpr(); |
| assert(resultExpr); |
| Result result; |
| |
| for (PseudoObjectExpr::const_semantics_iterator |
| i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { |
| const Expr *semantic = *i; |
| |
| // If this semantic expression is an opaque value, bind it |
| // to the result of its source expression. |
| if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { |
| typedef CodeGenFunction::OpaqueValueMappingData OVMA; |
| OVMA opaqueData; |
| |
| // If this semantic is the result of the pseudo-object |
| // expression, try to evaluate the source as +1. |
| if (ov == resultExpr) { |
| assert(!OVMA::shouldBindAsLValue(ov)); |
| result = asImpl().visit(ov->getSourceExpr()); |
| opaqueData = OVMA::bind(CGF, ov, |
| RValue::get(asImpl().getValueOfResult(result))); |
| |
| // Otherwise, just bind it. |
| } else { |
| opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); |
| } |
| opaques.push_back(opaqueData); |
| |
| // Otherwise, if the expression is the result, evaluate it |
| // and remember the result. |
| } else if (semantic == resultExpr) { |
| result = asImpl().visit(semantic); |
| |
| // Otherwise, evaluate the expression in an ignored context. |
| } else { |
| CGF.EmitIgnoredExpr(semantic); |
| } |
| } |
| |
| // Unbind all the opaques now. |
| for (unsigned i = 0, e = opaques.size(); i != e; ++i) |
| opaques[i].unbind(CGF); |
| |
| return result; |
| } |
| |
| template <typename Impl, typename Result> |
| Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { |
| switch (e->getCastKind()) { |
| |
| // No-op casts don't change the type, so we just ignore them. |
| case CK_NoOp: |
| return asImpl().visit(e->getSubExpr()); |
| |
| // These casts can change the type. |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_BitCast: { |
| llvm::Type *resultType = CGF.ConvertType(e->getType()); |
| assert(e->getSubExpr()->getType()->hasPointerRepresentation()); |
| Result result = asImpl().visit(e->getSubExpr()); |
| return asImpl().emitBitCast(result, resultType); |
| } |
| |
| // Handle some casts specially. |
| case CK_LValueToRValue: |
| return asImpl().visitLValueToRValue(e->getSubExpr()); |
| case CK_ARCConsumeObject: |
| return asImpl().visitConsumeObject(e->getSubExpr()); |
| case CK_ARCExtendBlockObject: |
| return asImpl().visitExtendBlockObject(e->getSubExpr()); |
| case CK_ARCReclaimReturnedObject: |
| return asImpl().visitReclaimReturnedObject(e->getSubExpr()); |
| |
| // Otherwise, use the default logic. |
| default: |
| return asImpl().visitExpr(e); |
| } |
| } |
| |
| template <typename Impl, typename Result> |
| Result |
| ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { |
| switch (e->getOpcode()) { |
| case BO_Comma: |
| CGF.EmitIgnoredExpr(e->getLHS()); |
| CGF.EnsureInsertPoint(); |
| return asImpl().visit(e->getRHS()); |
| |
| case BO_Assign: |
| return asImpl().visitBinAssign(e); |
| |
| default: |
| return asImpl().visitExpr(e); |
| } |
| } |
| |
| template <typename Impl, typename Result> |
| Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { |
| switch (e->getLHS()->getType().getObjCLifetime()) { |
| case Qualifiers::OCL_ExplicitNone: |
| return asImpl().visitBinAssignUnsafeUnretained(e); |
| |
| case Qualifiers::OCL_Weak: |
| return asImpl().visitBinAssignWeak(e); |
| |
| case Qualifiers::OCL_Autoreleasing: |
| return asImpl().visitBinAssignAutoreleasing(e); |
| |
| case Qualifiers::OCL_Strong: |
| return asImpl().visitBinAssignStrong(e); |
| |
| case Qualifiers::OCL_None: |
| return asImpl().visitExpr(e); |
| } |
| llvm_unreachable("bad ObjC ownership qualifier"); |
| } |
| |
| /// The default rule for __unsafe_unretained emits the RHS recursively, |
| /// stores into the unsafe variable, and propagates the result outward. |
| template <typename Impl, typename Result> |
| Result ARCExprEmitter<Impl,Result>:: |
| visitBinAssignUnsafeUnretained(const BinaryOperator *e) { |
| // Recursively emit the RHS. |
| // For __block safety, do this before emitting the LHS. |
| Result result = asImpl().visit(e->getRHS()); |
| |
| // Perform the store. |
| LValue lvalue = |
| CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); |
| CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), |
| lvalue); |
| |
| return result; |
| } |
| |
| template <typename Impl, typename Result> |
| Result |
| ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { |
| return asImpl().visitExpr(e); |
| } |
| |
| template <typename Impl, typename Result> |
| Result |
| ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { |
| return asImpl().visitExpr(e); |
| } |
| |
| template <typename Impl, typename Result> |
| Result |
| ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { |
| return asImpl().visitExpr(e); |
| } |
| |
| /// The general expression-emission logic. |
| template <typename Impl, typename Result> |
| Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { |
| // We should *never* see a nested full-expression here, because if |
| // we fail to emit at +1, our caller must not retain after we close |
| // out the full-expression. This isn't as important in the unsafe |
| // emitter. |
| assert(!isa<ExprWithCleanups>(e)); |
| |
| // Look through parens, __extension__, generic selection, etc. |
| e = e->IgnoreParens(); |
| |
| // Handle certain kinds of casts. |
| if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { |
| return asImpl().visitCastExpr(ce); |
| |
| // Handle the comma operator. |
| } else if (auto op = dyn_cast<BinaryOperator>(e)) { |
| return asImpl().visitBinaryOperator(op); |
| |
| // TODO: handle conditional operators here |
| |
| // For calls and message sends, use the retained-call logic. |
| // Delegate inits are a special case in that they're the only |
| // returns-retained expression that *isn't* surrounded by |
| // a consume. |
| } else if (isa<CallExpr>(e) || |
| (isa<ObjCMessageExpr>(e) && |
| !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { |
| return asImpl().visitCall(e); |
| |
| // Look through pseudo-object expressions. |
| } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { |
| return asImpl().visitPseudoObjectExpr(pseudo); |
| } |
| |
| return asImpl().visitExpr(e); |
| } |
| |
| namespace { |
| |
| /// An emitter for +1 results. |
| struct ARCRetainExprEmitter : |
| public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { |
| |
| ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} |
| |
| llvm::Value *getValueOfResult(TryEmitResult result) { |
| return result.getPointer(); |
| } |
| |
| TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { |
| llvm::Value *value = result.getPointer(); |
| value = CGF.Builder.CreateBitCast(value, resultType); |
| result.setPointer(value); |
| return result; |
| } |
| |
| TryEmitResult visitLValueToRValue(const Expr *e) { |
| return tryEmitARCRetainLoadOfScalar(CGF, e); |
| } |
| |
| /// For consumptions, just emit the subexpression and thus elide |
| /// the retain/release pair. |
| TryEmitResult visitConsumeObject(const Expr *e) { |
| llvm::Value *result = CGF.EmitScalarExpr(e); |
| return TryEmitResult(result, true); |
| } |
| |
| /// Block extends are net +0. Naively, we could just recurse on |
| /// the subexpression, but actually we need to ensure that the |
| /// value is copied as a block, so there's a little filter here. |
| TryEmitResult visitExtendBlockObject(const Expr *e) { |
| llvm::Value *result; // will be a +0 value |
| |
| // If we can't safely assume the sub-expression will produce a |
| // block-copied value, emit the sub-expression at +0. |
| if (shouldEmitSeparateBlockRetain(e)) { |
| result = CGF.EmitScalarExpr(e); |
| |
| // Otherwise, try to emit the sub-expression at +1 recursively. |
| } else { |
| TryEmitResult subresult = asImpl().visit(e); |
| |
| // If that produced a retained value, just use that. |
| if (subresult.getInt()) { |
| return subresult; |
| } |
| |
| // Otherwise it's +0. |
| result = subresult.getPointer(); |
| } |
| |
| // Retain the object as a block. |
| result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); |
| return TryEmitResult(result, true); |
| } |
| |
| /// For reclaims, emit the subexpression as a retained call and |
| /// skip the consumption. |
| TryEmitResult visitReclaimReturnedObject(const Expr *e) { |
| llvm::Value *result = emitARCRetainCallResult(CGF, e); |
| return TryEmitResult(result, true); |
| } |
| |
| /// When we have an undecorated call, retroactively do a claim. |
| TryEmitResult visitCall(const Expr *e) { |
| llvm::Value *result = emitARCRetainCallResult(CGF, e); |
| return TryEmitResult(result, true); |
| } |
| |
| // TODO: maybe special-case visitBinAssignWeak? |
| |
| TryEmitResult visitExpr(const Expr *e) { |
| // We didn't find an obvious production, so emit what we've got and |
| // tell the caller that we didn't manage to retain. |
| llvm::Value *result = CGF.EmitScalarExpr(e); |
| return TryEmitResult(result, false); |
| } |
| }; |
| } |
| |
| static TryEmitResult |
| tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { |
| return ARCRetainExprEmitter(CGF).visit(e); |
| } |
| |
| static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| LValue lvalue, |
| QualType type) { |
| TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); |
| llvm::Value *value = result.getPointer(); |
| if (!result.getInt()) |
| value = CGF.EmitARCRetain(type, value); |
| return value; |
| } |
| |
| /// EmitARCRetainScalarExpr - Semantically equivalent to |
| /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a |
| /// best-effort attempt to peephole expressions that naturally produce |
| /// retained objects. |
| llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { |
| // The retain needs to happen within the full-expression. |
| if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { |
| enterFullExpression(cleanups); |
| RunCleanupsScope scope(*this); |
| return EmitARCRetainScalarExpr(cleanups->getSubExpr()); |
| } |
| |
| TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); |
| llvm::Value *value = result.getPointer(); |
| if (!result.getInt()) |
| value = EmitARCRetain(e->getType(), value); |
| return value; |
| } |
| |
| llvm::Value * |
| CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { |
| // The retain needs to happen within the full-expression. |
| if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { |
| enterFullExpression(cleanups); |
| RunCleanupsScope scope(*this); |
| return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); |
| } |
| |
| TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); |
| llvm::Value *value = result.getPointer(); |
| if (result.getInt()) |
| value = EmitARCAutorelease(value); |
| else |
| value = EmitARCRetainAutorelease(e->getType(), value); |
| return value; |
| } |
| |
| llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { |
| llvm::Value *result; |
| bool doRetain; |
| |
| if (shouldEmitSeparateBlockRetain(e)) { |
| result = EmitScalarExpr(e); |
| doRetain = true; |
| } else { |
| TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); |
| result = subresult.getPointer(); |
| doRetain = !subresult.getInt(); |
| } |
| |
| if (doRetain) |
| result = EmitARCRetainBlock(result, /*mandatory*/ true); |
| return EmitObjCConsumeObject(e->getType(), result); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { |
| // In ARC, retain and autorelease the expression. |
| if (getLangOpts().ObjCAutoRefCount) { |
| // Do so before running any cleanups for the full-expression. |
| // EmitARCRetainAutoreleaseScalarExpr does this for us. |
| return EmitARCRetainAutoreleaseScalarExpr(expr); |
| } |
| |
| // Otherwise, use the normal scalar-expression emission. The |
| // exception machinery doesn't do anything special with the |
| // exception like retaining it, so there's no safety associated with |
| // only running cleanups after the throw has started, and when it |
| // matters it tends to be substantially inferior code. |
| return EmitScalarExpr(expr); |
| } |
| |
| namespace { |
| |
| /// An emitter for assigning into an __unsafe_unretained context. |
| struct ARCUnsafeUnretainedExprEmitter : |
| public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { |
| |
| ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} |
| |
| llvm::Value *getValueOfResult(llvm::Value *value) { |
| return value; |
| } |
| |
| llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { |
| return CGF.Builder.CreateBitCast(value, resultType); |
| } |
| |
| llvm::Value *visitLValueToRValue(const Expr *e) { |
| return CGF.EmitScalarExpr(e); |
| } |
| |
| /// For consumptions, just emit the subexpression and perform the |
| /// consumption like normal. |
| llvm::Value *visitConsumeObject(const Expr *e) { |
| llvm::Value *value = CGF.EmitScalarExpr(e); |
| return CGF.EmitObjCConsumeObject(e->getType(), value); |
| } |
| |
| /// No special logic for block extensions. (This probably can't |
| /// actually happen in this emitter, though.) |
| llvm::Value *visitExtendBlockObject(const Expr *e) { |
| return CGF.EmitARCExtendBlockObject(e); |
| } |
| |
| /// For reclaims, perform an unsafeClaim if that's enabled. |
| llvm::Value *visitReclaimReturnedObject(const Expr *e) { |
| return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); |
| } |
| |
| /// When we have an undecorated call, just emit it without adding |
| /// the unsafeClaim. |
| llvm::Value *visitCall(const Expr *e) { |
| return CGF.EmitScalarExpr(e); |
| } |
| |
| /// Just do normal scalar emission in the default case. |
| llvm::Value *visitExpr(const Expr *e) { |
| return CGF.EmitScalarExpr(e); |
| } |
| }; |
| } |
| |
| static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, |
| const Expr *e) { |
| return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); |
| } |
| |
| /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to |
| /// immediately releasing the resut of EmitARCRetainScalarExpr, but |
| /// avoiding any spurious retains, including by performing reclaims |
| /// with objc_unsafeClaimAutoreleasedReturnValue. |
| llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { |
| // Look through full-expressions. |
| if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { |
| enterFullExpression(cleanups); |
| RunCleanupsScope scope(*this); |
| return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); |
| } |
| |
| return emitARCUnsafeUnretainedScalarExpr(*this, e); |
| } |
| |
| std::pair<LValue,llvm::Value*> |
| CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, |
| bool ignored) { |
| // Evaluate the RHS first. If we're ignoring the result, assume |
| // that we can emit at an unsafe +0. |
| llvm::Value *value; |
| if (ignored) { |
| value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); |
| } else { |
| value = EmitScalarExpr(e->getRHS()); |
| } |
| |
| // Emit the LHS and perform the store. |
| LValue lvalue = EmitLValue(e->getLHS()); |
| EmitStoreOfScalar(value, lvalue); |
| |
| return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); |
| } |
| |
| std::pair<LValue,llvm::Value*> |
| CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, |
| bool ignored) { |
| // Evaluate the RHS first. |
| TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); |
| llvm::Value *value = result.getPointer(); |
| |
| bool hasImmediateRetain = result.getInt(); |
| |
| // If we didn't emit a retained object, and the l-value is of block |
| // type, then we need to emit the block-retain immediately in case |
| // it invalidates the l-value. |
| if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { |
| value = EmitARCRetainBlock(value, /*mandatory*/ false); |
| hasImmediateRetain = true; |
| } |
| |
| LValue lvalue = EmitLValue(e->getLHS()); |
| |
| // If the RHS was emitted retained, expand this. |
| if (hasImmediateRetain) { |
| llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); |
| EmitStoreOfScalar(value, lvalue); |
| EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); |
| } else { |
| value = EmitARCStoreStrong(lvalue, value, ignored); |
| } |
| |
| return std::pair<LValue,llvm::Value*>(lvalue, value); |
| } |
| |
| std::pair<LValue,llvm::Value*> |
| CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { |
| llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); |
| LValue lvalue = EmitLValue(e->getLHS()); |
| |
| EmitStoreOfScalar(value, lvalue); |
| |
| return std::pair<LValue,llvm::Value*>(lvalue, value); |
| } |
| |
| void CodeGenFunction::EmitObjCAutoreleasePoolStmt( |
| const ObjCAutoreleasePoolStmt &ARPS) { |
| const Stmt *subStmt = ARPS.getSubStmt(); |
| const CompoundStmt &S = cast<CompoundStmt>(*subStmt); |
| |
| CGDebugInfo *DI = getDebugInfo(); |
| if (DI) |
| DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); |
| |
| // Keep track of the current cleanup stack depth. |
| RunCleanupsScope Scope(*this); |
| if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { |
| llvm::Value *token = EmitObjCAutoreleasePoolPush(); |
| EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); |
| } else { |
| llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); |
| EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); |
| } |
| |
| for (const auto *I : S.body()) |
| EmitStmt(I); |
| |
| if (DI) |
| DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); |
| } |
| |
| /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
| /// make sure it survives garbage collection until this point. |
| void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { |
| // We just use an inline assembly. |
| llvm::FunctionType *extenderType |
| = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); |
| llvm::Value *extender |
| = llvm::InlineAsm::get(extenderType, |
| /* assembly */ "", |
| /* constraints */ "r", |
| /* side effects */ true); |
| |
| object = Builder.CreateBitCast(object, VoidPtrTy); |
| EmitNounwindRuntimeCall(extender, object); |
| } |
| |
| /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with |
| /// non-trivial copy assignment function, produce following helper function. |
| /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } |
| /// |
| llvm::Constant * |
| CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( |
| const ObjCPropertyImplDecl *PID) { |
| if (!getLangOpts().CPlusPlus || |
| !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) |
| return nullptr; |
| QualType Ty = PID->getPropertyIvarDecl()->getType(); |
| if (!Ty->isRecordType()) |
| return nullptr; |
| const ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) |
| return nullptr; |
| llvm::Constant *HelperFn = nullptr; |
| if (hasTrivialSetExpr(PID)) |
| return nullptr; |
| assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); |
| if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) |
| return HelperFn; |
| |
| ASTContext &C = getContext(); |
| IdentifierInfo *II |
| = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); |
| FunctionDecl *FD = FunctionDecl::Create(C, |
| C.getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), II, C.VoidTy, |
| nullptr, SC_Static, |
| false, |
| false); |
| |
| QualType DestTy = C.getPointerType(Ty); |
| QualType SrcTy = Ty; |
| SrcTy.addConst(); |
| SrcTy = C.getPointerType(SrcTy); |
| |
| FunctionArgList args; |
| ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, |
| DestTy, ImplicitParamDecl::Other); |
| args.push_back(&DstDecl); |
| ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, |
| SrcTy, ImplicitParamDecl::Other); |
| args.push_back(&SrcDecl); |
| |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); |
| |
| llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); |
| |
| llvm::Function *Fn = |
| llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, |
| "__assign_helper_atomic_property_", |
| &CGM.getModule()); |
| |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); |
| |
| StartFunction(FD, C.VoidTy, Fn, FI, args); |
| |
| DeclRefExpr DstExpr(&DstDecl, false, DestTy, |
| VK_RValue, SourceLocation()); |
| UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), |
| VK_LValue, OK_Ordinary, SourceLocation(), false); |
| |
| DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy, |
| VK_RValue, SourceLocation()); |
| UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), |
| VK_LValue, OK_Ordinary, SourceLocation(), false); |
| |
| Expr *Args[2] = { &DST, &SRC }; |
| CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); |
| CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), |
| Args, DestTy->getPointeeType(), |
| VK_LValue, SourceLocation(), FPOptions()); |
| |
| EmitStmt(&TheCall); |
| |
| FinishFunction(); |
| HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); |
| CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); |
| return HelperFn; |
| } |
| |
| llvm::Constant * |
| CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( |
| const ObjCPropertyImplDecl *PID) { |
| if (!getLangOpts().CPlusPlus || |
| !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) |
| return nullptr; |
| const ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| QualType Ty = PD->getType(); |
| if (!Ty->isRecordType()) |
| return nullptr; |
| if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) |
| return nullptr; |
| llvm::Constant *HelperFn = nullptr; |
| |
| if (hasTrivialGetExpr(PID)) |
| return nullptr; |
| assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); |
| if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) |
| return HelperFn; |
| |
| |
| ASTContext &C = getContext(); |
| IdentifierInfo *II |
| = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); |
| FunctionDecl *FD = FunctionDecl::Create(C, |
| C.getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), II, C.VoidTy, |
| nullptr, SC_Static, |
| false, |
| false); |
| |
| QualType DestTy = C.getPointerType(Ty); |
| QualType SrcTy = Ty; |
| SrcTy.addConst(); |
| SrcTy = C.getPointerType(SrcTy); |
| |
| FunctionArgList args; |
| ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, |
| DestTy, ImplicitParamDecl::Other); |
| args.push_back(&DstDecl); |
| ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, |
| SrcTy, ImplicitParamDecl::Other); |
| args.push_back(&SrcDecl); |
| |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); |
| |
| llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); |
| |
| llvm::Function *Fn = |
| llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, |
| "__copy_helper_atomic_property_", &CGM.getModule()); |
| |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); |
| |
| StartFunction(FD, C.VoidTy, Fn, FI, args); |
| |
| DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy, |
| VK_RValue, SourceLocation()); |
| |
| UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), |
| VK_LValue, OK_Ordinary, SourceLocation(), false); |
| |
| CXXConstructExpr *CXXConstExpr = |
| cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); |
| |
| SmallVector<Expr*, 4> ConstructorArgs; |
| ConstructorArgs.push_back(&SRC); |
| ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), |
| CXXConstExpr->arg_end()); |
| |
| CXXConstructExpr *TheCXXConstructExpr = |
| CXXConstructExpr::Create(C, Ty, SourceLocation(), |
| CXXConstExpr->getConstructor(), |
| CXXConstExpr->isElidable(), |
| ConstructorArgs, |
| CXXConstExpr->hadMultipleCandidates(), |
| CXXConstExpr->isListInitialization(), |
| CXXConstExpr->isStdInitListInitialization(), |
| CXXConstExpr->requiresZeroInitialization(), |
| CXXConstExpr->getConstructionKind(), |
| SourceRange()); |
| |
| DeclRefExpr DstExpr(&DstDecl, false, DestTy, |
| VK_RValue, SourceLocation()); |
| |
| RValue DV = EmitAnyExpr(&DstExpr); |
| CharUnits Alignment |
| = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); |
| EmitAggExpr(TheCXXConstructExpr, |
| AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), |
| Qualifiers(), |
| AggValueSlot::IsDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased, |
| AggValueSlot::DoesNotOverlap)); |
| |
| FinishFunction(); |
| HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); |
| CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); |
| return HelperFn; |
| } |
| |
| llvm::Value * |
| CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { |
| // Get selectors for retain/autorelease. |
| IdentifierInfo *CopyID = &getContext().Idents.get("copy"); |
| Selector CopySelector = |
| getContext().Selectors.getNullarySelector(CopyID); |
| IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); |
| Selector AutoreleaseSelector = |
| getContext().Selectors.getNullarySelector(AutoreleaseID); |
| |
| // Emit calls to retain/autorelease. |
| CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| llvm::Value *Val = Block; |
| RValue Result; |
| Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), |
| Ty, CopySelector, |
| Val, CallArgList(), nullptr, nullptr); |
| Val = Result.getScalarVal(); |
| Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), |
| Ty, AutoreleaseSelector, |
| Val, CallArgList(), nullptr, nullptr); |
| Val = Result.getScalarVal(); |
| return Val; |
| } |
| |
| llvm::Value * |
| CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { |
| assert(Args.size() == 3 && "Expected 3 argument here!"); |
| |
| if (!CGM.IsOSVersionAtLeastFn) { |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); |
| CGM.IsOSVersionAtLeastFn = |
| CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); |
| } |
| |
| llvm::Value *CallRes = |
| EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); |
| |
| return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); |
| } |
| |
| void CodeGenModule::emitAtAvailableLinkGuard() { |
| if (!IsOSVersionAtLeastFn) |
| return; |
| // @available requires CoreFoundation only on Darwin. |
| if (!Target.getTriple().isOSDarwin()) |
| return; |
| // Add -framework CoreFoundation to the linker commands. We still want to |
| // emit the core foundation reference down below because otherwise if |
| // CoreFoundation is not used in the code, the linker won't link the |
| // framework. |
| auto &Context = getLLVMContext(); |
| llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), |
| llvm::MDString::get(Context, "CoreFoundation")}; |
| LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); |
| // Emit a reference to a symbol from CoreFoundation to ensure that |
| // CoreFoundation is linked into the final binary. |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); |
| llvm::Constant *CFFunc = |
| CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); |
| |
| llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); |
| llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction( |
| CheckFTy, "__clang_at_available_requires_core_foundation_framework")); |
| CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); |
| CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| CodeGenFunction CGF(*this); |
| CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); |
| CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy)); |
| CGF.Builder.CreateUnreachable(); |
| addCompilerUsedGlobal(CFLinkCheckFunc); |
| } |
| |
| CGObjCRuntime::~CGObjCRuntime() {} |