| //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements semantic analysis for CUDA constructs. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/SemaDiagnostic.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Template.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallVector.h" |
| using namespace clang; |
| |
| void Sema::PushForceCUDAHostDevice() { |
| assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); |
| ForceCUDAHostDeviceDepth++; |
| } |
| |
| bool Sema::PopForceCUDAHostDevice() { |
| assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); |
| if (ForceCUDAHostDeviceDepth == 0) |
| return false; |
| ForceCUDAHostDeviceDepth--; |
| return true; |
| } |
| |
| ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, |
| MultiExprArg ExecConfig, |
| SourceLocation GGGLoc) { |
| FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); |
| if (!ConfigDecl) |
| return ExprError( |
| Diag(LLLLoc, diag::err_undeclared_var_use) |
| << (getLangOpts().HIP ? "hipConfigureCall" : "cudaConfigureCall")); |
| QualType ConfigQTy = ConfigDecl->getType(); |
| |
| DeclRefExpr *ConfigDR = new (Context) |
| DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc); |
| MarkFunctionReferenced(LLLLoc, ConfigDecl); |
| |
| return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr, |
| /*IsExecConfig=*/true); |
| } |
| |
| Sema::CUDAFunctionTarget |
| Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) { |
| bool HasHostAttr = false; |
| bool HasDeviceAttr = false; |
| bool HasGlobalAttr = false; |
| bool HasInvalidTargetAttr = false; |
| for (const ParsedAttr &AL : Attrs) { |
| switch (AL.getKind()) { |
| case ParsedAttr::AT_CUDAGlobal: |
| HasGlobalAttr = true; |
| break; |
| case ParsedAttr::AT_CUDAHost: |
| HasHostAttr = true; |
| break; |
| case ParsedAttr::AT_CUDADevice: |
| HasDeviceAttr = true; |
| break; |
| case ParsedAttr::AT_CUDAInvalidTarget: |
| HasInvalidTargetAttr = true; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (HasInvalidTargetAttr) |
| return CFT_InvalidTarget; |
| |
| if (HasGlobalAttr) |
| return CFT_Global; |
| |
| if (HasHostAttr && HasDeviceAttr) |
| return CFT_HostDevice; |
| |
| if (HasDeviceAttr) |
| return CFT_Device; |
| |
| return CFT_Host; |
| } |
| |
| template <typename A> |
| static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) { |
| return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) { |
| return isa<A>(Attribute) && |
| !(IgnoreImplicitAttr && Attribute->isImplicit()); |
| }); |
| } |
| |
| /// IdentifyCUDATarget - Determine the CUDA compilation target for this function |
| Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D, |
| bool IgnoreImplicitHDAttr) { |
| // Code that lives outside a function is run on the host. |
| if (D == nullptr) |
| return CFT_Host; |
| |
| if (D->hasAttr<CUDAInvalidTargetAttr>()) |
| return CFT_InvalidTarget; |
| |
| if (D->hasAttr<CUDAGlobalAttr>()) |
| return CFT_Global; |
| |
| if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) { |
| if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) |
| return CFT_HostDevice; |
| return CFT_Device; |
| } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) { |
| return CFT_Host; |
| } else if (D->isImplicit() && !IgnoreImplicitHDAttr) { |
| // Some implicit declarations (like intrinsic functions) are not marked. |
| // Set the most lenient target on them for maximal flexibility. |
| return CFT_HostDevice; |
| } |
| |
| return CFT_Host; |
| } |
| |
| // * CUDA Call preference table |
| // |
| // F - from, |
| // T - to |
| // Ph - preference in host mode |
| // Pd - preference in device mode |
| // H - handled in (x) |
| // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never. |
| // |
| // | F | T | Ph | Pd | H | |
| // |----+----+-----+-----+-----+ |
| // | d | d | N | N | (c) | |
| // | d | g | -- | -- | (a) | |
| // | d | h | -- | -- | (e) | |
| // | d | hd | HD | HD | (b) | |
| // | g | d | N | N | (c) | |
| // | g | g | -- | -- | (a) | |
| // | g | h | -- | -- | (e) | |
| // | g | hd | HD | HD | (b) | |
| // | h | d | -- | -- | (e) | |
| // | h | g | N | N | (c) | |
| // | h | h | N | N | (c) | |
| // | h | hd | HD | HD | (b) | |
| // | hd | d | WS | SS | (d) | |
| // | hd | g | SS | -- |(d/a)| |
| // | hd | h | SS | WS | (d) | |
| // | hd | hd | HD | HD | (b) | |
| |
| Sema::CUDAFunctionPreference |
| Sema::IdentifyCUDAPreference(const FunctionDecl *Caller, |
| const FunctionDecl *Callee) { |
| assert(Callee && "Callee must be valid."); |
| CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller); |
| CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee); |
| |
| // If one of the targets is invalid, the check always fails, no matter what |
| // the other target is. |
| if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget) |
| return CFP_Never; |
| |
| // (a) Can't call global from some contexts until we support CUDA's |
| // dynamic parallelism. |
| if (CalleeTarget == CFT_Global && |
| (CallerTarget == CFT_Global || CallerTarget == CFT_Device)) |
| return CFP_Never; |
| |
| // (b) Calling HostDevice is OK for everyone. |
| if (CalleeTarget == CFT_HostDevice) |
| return CFP_HostDevice; |
| |
| // (c) Best case scenarios |
| if (CalleeTarget == CallerTarget || |
| (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) || |
| (CallerTarget == CFT_Global && CalleeTarget == CFT_Device)) |
| return CFP_Native; |
| |
| // (d) HostDevice behavior depends on compilation mode. |
| if (CallerTarget == CFT_HostDevice) { |
| // It's OK to call a compilation-mode matching function from an HD one. |
| if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) || |
| (!getLangOpts().CUDAIsDevice && |
| (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))) |
| return CFP_SameSide; |
| |
| // Calls from HD to non-mode-matching functions (i.e., to host functions |
| // when compiling in device mode or to device functions when compiling in |
| // host mode) are allowed at the sema level, but eventually rejected if |
| // they're ever codegened. TODO: Reject said calls earlier. |
| return CFP_WrongSide; |
| } |
| |
| // (e) Calling across device/host boundary is not something you should do. |
| if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) || |
| (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) || |
| (CallerTarget == CFT_Global && CalleeTarget == CFT_Host)) |
| return CFP_Never; |
| |
| llvm_unreachable("All cases should've been handled by now."); |
| } |
| |
| void Sema::EraseUnwantedCUDAMatches( |
| const FunctionDecl *Caller, |
| SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) { |
| if (Matches.size() <= 1) |
| return; |
| |
| using Pair = std::pair<DeclAccessPair, FunctionDecl*>; |
| |
| // Gets the CUDA function preference for a call from Caller to Match. |
| auto GetCFP = [&](const Pair &Match) { |
| return IdentifyCUDAPreference(Caller, Match.second); |
| }; |
| |
| // Find the best call preference among the functions in Matches. |
| CUDAFunctionPreference BestCFP = GetCFP(*std::max_element( |
| Matches.begin(), Matches.end(), |
| [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); })); |
| |
| // Erase all functions with lower priority. |
| llvm::erase_if(Matches, |
| [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }); |
| } |
| |
| /// When an implicitly-declared special member has to invoke more than one |
| /// base/field special member, conflicts may occur in the targets of these |
| /// members. For example, if one base's member __host__ and another's is |
| /// __device__, it's a conflict. |
| /// This function figures out if the given targets \param Target1 and |
| /// \param Target2 conflict, and if they do not it fills in |
| /// \param ResolvedTarget with a target that resolves for both calls. |
| /// \return true if there's a conflict, false otherwise. |
| static bool |
| resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1, |
| Sema::CUDAFunctionTarget Target2, |
| Sema::CUDAFunctionTarget *ResolvedTarget) { |
| // Only free functions and static member functions may be global. |
| assert(Target1 != Sema::CFT_Global); |
| assert(Target2 != Sema::CFT_Global); |
| |
| if (Target1 == Sema::CFT_HostDevice) { |
| *ResolvedTarget = Target2; |
| } else if (Target2 == Sema::CFT_HostDevice) { |
| *ResolvedTarget = Target1; |
| } else if (Target1 != Target2) { |
| return true; |
| } else { |
| *ResolvedTarget = Target1; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, |
| CXXSpecialMember CSM, |
| CXXMethodDecl *MemberDecl, |
| bool ConstRHS, |
| bool Diagnose) { |
| llvm::Optional<CUDAFunctionTarget> InferredTarget; |
| |
| // We're going to invoke special member lookup; mark that these special |
| // members are called from this one, and not from its caller. |
| ContextRAII MethodContext(*this, MemberDecl); |
| |
| // Look for special members in base classes that should be invoked from here. |
| // Infer the target of this member base on the ones it should call. |
| // Skip direct and indirect virtual bases for abstract classes. |
| llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases; |
| for (const auto &B : ClassDecl->bases()) { |
| if (!B.isVirtual()) { |
| Bases.push_back(&B); |
| } |
| } |
| |
| if (!ClassDecl->isAbstract()) { |
| for (const auto &VB : ClassDecl->vbases()) { |
| Bases.push_back(&VB); |
| } |
| } |
| |
| for (const auto *B : Bases) { |
| const RecordType *BaseType = B->getType()->getAs<RecordType>(); |
| if (!BaseType) { |
| continue; |
| } |
| |
| CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
| Sema::SpecialMemberOverloadResult SMOR = |
| LookupSpecialMember(BaseClassDecl, CSM, |
| /* ConstArg */ ConstRHS, |
| /* VolatileArg */ false, |
| /* RValueThis */ false, |
| /* ConstThis */ false, |
| /* VolatileThis */ false); |
| |
| if (!SMOR.getMethod()) |
| continue; |
| |
| CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod()); |
| if (!InferredTarget.hasValue()) { |
| InferredTarget = BaseMethodTarget; |
| } else { |
| bool ResolutionError = resolveCalleeCUDATargetConflict( |
| InferredTarget.getValue(), BaseMethodTarget, |
| InferredTarget.getPointer()); |
| if (ResolutionError) { |
| if (Diagnose) { |
| Diag(ClassDecl->getLocation(), |
| diag::note_implicit_member_target_infer_collision) |
| << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget; |
| } |
| MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); |
| return true; |
| } |
| } |
| } |
| |
| // Same as for bases, but now for special members of fields. |
| for (const auto *F : ClassDecl->fields()) { |
| if (F->isInvalidDecl()) { |
| continue; |
| } |
| |
| const RecordType *FieldType = |
| Context.getBaseElementType(F->getType())->getAs<RecordType>(); |
| if (!FieldType) { |
| continue; |
| } |
| |
| CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl()); |
| Sema::SpecialMemberOverloadResult SMOR = |
| LookupSpecialMember(FieldRecDecl, CSM, |
| /* ConstArg */ ConstRHS && !F->isMutable(), |
| /* VolatileArg */ false, |
| /* RValueThis */ false, |
| /* ConstThis */ false, |
| /* VolatileThis */ false); |
| |
| if (!SMOR.getMethod()) |
| continue; |
| |
| CUDAFunctionTarget FieldMethodTarget = |
| IdentifyCUDATarget(SMOR.getMethod()); |
| if (!InferredTarget.hasValue()) { |
| InferredTarget = FieldMethodTarget; |
| } else { |
| bool ResolutionError = resolveCalleeCUDATargetConflict( |
| InferredTarget.getValue(), FieldMethodTarget, |
| InferredTarget.getPointer()); |
| if (ResolutionError) { |
| if (Diagnose) { |
| Diag(ClassDecl->getLocation(), |
| diag::note_implicit_member_target_infer_collision) |
| << (unsigned)CSM << InferredTarget.getValue() |
| << FieldMethodTarget; |
| } |
| MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); |
| return true; |
| } |
| } |
| } |
| |
| if (InferredTarget.hasValue()) { |
| if (InferredTarget.getValue() == CFT_Device) { |
| MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); |
| } else if (InferredTarget.getValue() == CFT_Host) { |
| MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); |
| } else { |
| MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); |
| MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); |
| } |
| } else { |
| // If no target was inferred, mark this member as __host__ __device__; |
| // it's the least restrictive option that can be invoked from any target. |
| MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); |
| MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); |
| } |
| |
| return false; |
| } |
| |
| bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) { |
| if (!CD->isDefined() && CD->isTemplateInstantiation()) |
| InstantiateFunctionDefinition(Loc, CD->getFirstDecl()); |
| |
| // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered |
| // empty at a point in the translation unit, if it is either a |
| // trivial constructor |
| if (CD->isTrivial()) |
| return true; |
| |
| // ... or it satisfies all of the following conditions: |
| // The constructor function has been defined. |
| // The constructor function has no parameters, |
| // and the function body is an empty compound statement. |
| if (!(CD->hasTrivialBody() && CD->getNumParams() == 0)) |
| return false; |
| |
| // Its class has no virtual functions and no virtual base classes. |
| if (CD->getParent()->isDynamicClass()) |
| return false; |
| |
| // The only form of initializer allowed is an empty constructor. |
| // This will recursively check all base classes and member initializers |
| if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) { |
| if (const CXXConstructExpr *CE = |
| dyn_cast<CXXConstructExpr>(CI->getInit())) |
| return isEmptyCudaConstructor(Loc, CE->getConstructor()); |
| return false; |
| })) |
| return false; |
| |
| return true; |
| } |
| |
| bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) { |
| // No destructor -> no problem. |
| if (!DD) |
| return true; |
| |
| if (!DD->isDefined() && DD->isTemplateInstantiation()) |
| InstantiateFunctionDefinition(Loc, DD->getFirstDecl()); |
| |
| // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered |
| // empty at a point in the translation unit, if it is either a |
| // trivial constructor |
| if (DD->isTrivial()) |
| return true; |
| |
| // ... or it satisfies all of the following conditions: |
| // The destructor function has been defined. |
| // and the function body is an empty compound statement. |
| if (!DD->hasTrivialBody()) |
| return false; |
| |
| const CXXRecordDecl *ClassDecl = DD->getParent(); |
| |
| // Its class has no virtual functions and no virtual base classes. |
| if (ClassDecl->isDynamicClass()) |
| return false; |
| |
| // Only empty destructors are allowed. This will recursively check |
| // destructors for all base classes... |
| if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) { |
| if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl()) |
| return isEmptyCudaDestructor(Loc, RD->getDestructor()); |
| return true; |
| })) |
| return false; |
| |
| // ... and member fields. |
| if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) { |
| if (CXXRecordDecl *RD = Field->getType() |
| ->getBaseElementTypeUnsafe() |
| ->getAsCXXRecordDecl()) |
| return isEmptyCudaDestructor(Loc, RD->getDestructor()); |
| return true; |
| })) |
| return false; |
| |
| return true; |
| } |
| |
| void Sema::checkAllowedCUDAInitializer(VarDecl *VD) { |
| if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage()) |
| return; |
| const Expr *Init = VD->getInit(); |
| if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() || |
| VD->hasAttr<CUDASharedAttr>()) { |
| assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>()); |
| bool AllowedInit = false; |
| if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) |
| AllowedInit = |
| isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor()); |
| // We'll allow constant initializers even if it's a non-empty |
| // constructor according to CUDA rules. This deviates from NVCC, |
| // but allows us to handle things like constexpr constructors. |
| if (!AllowedInit && |
| (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) |
| AllowedInit = VD->getInit()->isConstantInitializer( |
| Context, VD->getType()->isReferenceType()); |
| |
| // Also make sure that destructor, if there is one, is empty. |
| if (AllowedInit) |
| if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl()) |
| AllowedInit = |
| isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor()); |
| |
| if (!AllowedInit) { |
| Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>() |
| ? diag::err_shared_var_init |
| : diag::err_dynamic_var_init) |
| << Init->getSourceRange(); |
| VD->setInvalidDecl(); |
| } |
| } else { |
| // This is a host-side global variable. Check that the initializer is |
| // callable from the host side. |
| const FunctionDecl *InitFn = nullptr; |
| if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) { |
| InitFn = CE->getConstructor(); |
| } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) { |
| InitFn = CE->getDirectCallee(); |
| } |
| if (InitFn) { |
| CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn); |
| if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) { |
| Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer) |
| << InitFnTarget << InitFn; |
| Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn; |
| VD->setInvalidDecl(); |
| } |
| } |
| } |
| } |
| |
| // With -fcuda-host-device-constexpr, an unattributed constexpr function is |
| // treated as implicitly __host__ __device__, unless: |
| // * it is a variadic function (device-side variadic functions are not |
| // allowed), or |
| // * a __device__ function with this signature was already declared, in which |
| // case in which case we output an error, unless the __device__ decl is in a |
| // system header, in which case we leave the constexpr function unattributed. |
| // |
| // In addition, all function decls are treated as __host__ __device__ when |
| // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a |
| // #pragma clang force_cuda_host_device_begin/end |
| // pair). |
| void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD, |
| const LookupResult &Previous) { |
| assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); |
| |
| if (ForceCUDAHostDeviceDepth > 0) { |
| if (!NewD->hasAttr<CUDAHostAttr>()) |
| NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); |
| if (!NewD->hasAttr<CUDADeviceAttr>()) |
| NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); |
| return; |
| } |
| |
| if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() || |
| NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() || |
| NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>()) |
| return; |
| |
| // Is D a __device__ function with the same signature as NewD, ignoring CUDA |
| // attributes? |
| auto IsMatchingDeviceFn = [&](NamedDecl *D) { |
| if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D)) |
| D = Using->getTargetDecl(); |
| FunctionDecl *OldD = D->getAsFunction(); |
| return OldD && OldD->hasAttr<CUDADeviceAttr>() && |
| !OldD->hasAttr<CUDAHostAttr>() && |
| !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false, |
| /* ConsiderCudaAttrs = */ false); |
| }; |
| auto It = llvm::find_if(Previous, IsMatchingDeviceFn); |
| if (It != Previous.end()) { |
| // We found a __device__ function with the same name and signature as NewD |
| // (ignoring CUDA attrs). This is an error unless that function is defined |
| // in a system header, in which case we simply return without making NewD |
| // host+device. |
| NamedDecl *Match = *It; |
| if (!getSourceManager().isInSystemHeader(Match->getLocation())) { |
| Diag(NewD->getLocation(), |
| diag::err_cuda_unattributed_constexpr_cannot_overload_device) |
| << NewD; |
| Diag(Match->getLocation(), |
| diag::note_cuda_conflicting_device_function_declared_here); |
| } |
| return; |
| } |
| |
| NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); |
| NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); |
| } |
| |
| // In CUDA, there are some constructs which may appear in semantically-valid |
| // code, but trigger errors if we ever generate code for the function in which |
| // they appear. Essentially every construct you're not allowed to use on the |
| // device falls into this category, because you are allowed to use these |
| // constructs in a __host__ __device__ function, but only if that function is |
| // never codegen'ed on the device. |
| // |
| // To handle semantic checking for these constructs, we keep track of the set of |
| // functions we know will be emitted, either because we could tell a priori that |
| // they would be emitted, or because they were transitively called by a |
| // known-emitted function. |
| // |
| // We also keep a partial call graph of which not-known-emitted functions call |
| // which other not-known-emitted functions. |
| // |
| // When we see something which is illegal if the current function is emitted |
| // (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or |
| // CheckCUDACall), we first check if the current function is known-emitted. If |
| // so, we immediately output the diagnostic. |
| // |
| // Otherwise, we "defer" the diagnostic. It sits in Sema::CUDADeferredDiags |
| // until we discover that the function is known-emitted, at which point we take |
| // it out of this map and emit the diagnostic. |
| |
| Sema::CUDADiagBuilder::CUDADiagBuilder(Kind K, SourceLocation Loc, |
| unsigned DiagID, FunctionDecl *Fn, |
| Sema &S) |
| : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn), |
| ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) { |
| switch (K) { |
| case K_Nop: |
| break; |
| case K_Immediate: |
| case K_ImmediateWithCallStack: |
| ImmediateDiag.emplace(S.Diag(Loc, DiagID)); |
| break; |
| case K_Deferred: |
| assert(Fn && "Must have a function to attach the deferred diag to."); |
| PartialDiag.emplace(S.PDiag(DiagID)); |
| break; |
| } |
| } |
| |
| // Print notes showing how we can reach FD starting from an a priori |
| // known-callable function. |
| static void EmitCallStackNotes(Sema &S, FunctionDecl *FD) { |
| auto FnIt = S.CUDAKnownEmittedFns.find(FD); |
| while (FnIt != S.CUDAKnownEmittedFns.end()) { |
| DiagnosticBuilder Builder( |
| S.Diags.Report(FnIt->second.Loc, diag::note_called_by)); |
| Builder << FnIt->second.FD; |
| Builder.setForceEmit(); |
| |
| FnIt = S.CUDAKnownEmittedFns.find(FnIt->second.FD); |
| } |
| } |
| |
| Sema::CUDADiagBuilder::~CUDADiagBuilder() { |
| if (ImmediateDiag) { |
| // Emit our diagnostic and, if it was a warning or error, output a callstack |
| // if Fn isn't a priori known-emitted. |
| bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel( |
| DiagID, Loc) >= DiagnosticsEngine::Warning; |
| ImmediateDiag.reset(); // Emit the immediate diag. |
| if (IsWarningOrError && ShowCallStack) |
| EmitCallStackNotes(S, Fn); |
| } else if (PartialDiag) { |
| assert(ShowCallStack && "Must always show call stack for deferred diags."); |
| S.CUDADeferredDiags[Fn].push_back({Loc, std::move(*PartialDiag)}); |
| } |
| } |
| |
| // Do we know that we will eventually codegen the given function? |
| static bool IsKnownEmitted(Sema &S, FunctionDecl *FD) { |
| // Templates are emitted when they're instantiated. |
| if (FD->isDependentContext()) |
| return false; |
| |
| // When compiling for device, host functions are never emitted. Similarly, |
| // when compiling for host, device and global functions are never emitted. |
| // (Technically, we do emit a host-side stub for global functions, but this |
| // doesn't count for our purposes here.) |
| Sema::CUDAFunctionTarget T = S.IdentifyCUDATarget(FD); |
| if (S.getLangOpts().CUDAIsDevice && T == Sema::CFT_Host) |
| return false; |
| if (!S.getLangOpts().CUDAIsDevice && |
| (T == Sema::CFT_Device || T == Sema::CFT_Global)) |
| return false; |
| |
| // Check whether this function is externally visible -- if so, it's |
| // known-emitted. |
| // |
| // We have to check the GVA linkage of the function's *definition* -- if we |
| // only have a declaration, we don't know whether or not the function will be |
| // emitted, because (say) the definition could include "inline". |
| FunctionDecl *Def = FD->getDefinition(); |
| |
| if (Def && |
| !isDiscardableGVALinkage(S.getASTContext().GetGVALinkageForFunction(Def))) |
| return true; |
| |
| // Otherwise, the function is known-emitted if it's in our set of |
| // known-emitted functions. |
| return S.CUDAKnownEmittedFns.count(FD) > 0; |
| } |
| |
| Sema::CUDADiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc, |
| unsigned DiagID) { |
| assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); |
| CUDADiagBuilder::Kind DiagKind = [&] { |
| switch (CurrentCUDATarget()) { |
| case CFT_Global: |
| case CFT_Device: |
| return CUDADiagBuilder::K_Immediate; |
| case CFT_HostDevice: |
| // An HD function counts as host code if we're compiling for host, and |
| // device code if we're compiling for device. Defer any errors in device |
| // mode until the function is known-emitted. |
| if (getLangOpts().CUDAIsDevice) { |
| return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext)) |
| ? CUDADiagBuilder::K_ImmediateWithCallStack |
| : CUDADiagBuilder::K_Deferred; |
| } |
| return CUDADiagBuilder::K_Nop; |
| |
| default: |
| return CUDADiagBuilder::K_Nop; |
| } |
| }(); |
| return CUDADiagBuilder(DiagKind, Loc, DiagID, |
| dyn_cast<FunctionDecl>(CurContext), *this); |
| } |
| |
| Sema::CUDADiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc, |
| unsigned DiagID) { |
| assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); |
| CUDADiagBuilder::Kind DiagKind = [&] { |
| switch (CurrentCUDATarget()) { |
| case CFT_Host: |
| return CUDADiagBuilder::K_Immediate; |
| case CFT_HostDevice: |
| // An HD function counts as host code if we're compiling for host, and |
| // device code if we're compiling for device. Defer any errors in device |
| // mode until the function is known-emitted. |
| if (getLangOpts().CUDAIsDevice) |
| return CUDADiagBuilder::K_Nop; |
| |
| return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext)) |
| ? CUDADiagBuilder::K_ImmediateWithCallStack |
| : CUDADiagBuilder::K_Deferred; |
| default: |
| return CUDADiagBuilder::K_Nop; |
| } |
| }(); |
| return CUDADiagBuilder(DiagKind, Loc, DiagID, |
| dyn_cast<FunctionDecl>(CurContext), *this); |
| } |
| |
| // Emit any deferred diagnostics for FD and erase them from the map in which |
| // they're stored. |
| static void EmitDeferredDiags(Sema &S, FunctionDecl *FD) { |
| auto It = S.CUDADeferredDiags.find(FD); |
| if (It == S.CUDADeferredDiags.end()) |
| return; |
| bool HasWarningOrError = false; |
| for (PartialDiagnosticAt &PDAt : It->second) { |
| const SourceLocation &Loc = PDAt.first; |
| const PartialDiagnostic &PD = PDAt.second; |
| HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel( |
| PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning; |
| DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID())); |
| Builder.setForceEmit(); |
| PD.Emit(Builder); |
| } |
| S.CUDADeferredDiags.erase(It); |
| |
| // FIXME: Should this be called after every warning/error emitted in the loop |
| // above, instead of just once per function? That would be consistent with |
| // how we handle immediate errors, but it also seems like a bit much. |
| if (HasWarningOrError) |
| EmitCallStackNotes(S, FD); |
| } |
| |
| // Indicate that this function (and thus everything it transtively calls) will |
| // be codegen'ed, and emit any deferred diagnostics on this function and its |
| // (transitive) callees. |
| static void MarkKnownEmitted(Sema &S, FunctionDecl *OrigCaller, |
| FunctionDecl *OrigCallee, SourceLocation OrigLoc) { |
| // Nothing to do if we already know that FD is emitted. |
| if (IsKnownEmitted(S, OrigCallee)) { |
| assert(!S.CUDACallGraph.count(OrigCallee)); |
| return; |
| } |
| |
| // We've just discovered that OrigCallee is known-emitted. Walk our call |
| // graph to see what else we can now discover also must be emitted. |
| |
| struct CallInfo { |
| FunctionDecl *Caller; |
| FunctionDecl *Callee; |
| SourceLocation Loc; |
| }; |
| llvm::SmallVector<CallInfo, 4> Worklist = {{OrigCaller, OrigCallee, OrigLoc}}; |
| llvm::SmallSet<CanonicalDeclPtr<FunctionDecl>, 4> Seen; |
| Seen.insert(OrigCallee); |
| while (!Worklist.empty()) { |
| CallInfo C = Worklist.pop_back_val(); |
| assert(!IsKnownEmitted(S, C.Callee) && |
| "Worklist should not contain known-emitted functions."); |
| S.CUDAKnownEmittedFns[C.Callee] = {C.Caller, C.Loc}; |
| EmitDeferredDiags(S, C.Callee); |
| |
| // If this is a template instantiation, explore its callgraph as well: |
| // Non-dependent calls are part of the template's callgraph, while dependent |
| // calls are part of to the instantiation's call graph. |
| if (auto *Templ = C.Callee->getPrimaryTemplate()) { |
| FunctionDecl *TemplFD = Templ->getAsFunction(); |
| if (!Seen.count(TemplFD) && !S.CUDAKnownEmittedFns.count(TemplFD)) { |
| Seen.insert(TemplFD); |
| Worklist.push_back( |
| {/* Caller = */ C.Caller, /* Callee = */ TemplFD, C.Loc}); |
| } |
| } |
| |
| // Add all functions called by Callee to our worklist. |
| auto CGIt = S.CUDACallGraph.find(C.Callee); |
| if (CGIt == S.CUDACallGraph.end()) |
| continue; |
| |
| for (std::pair<CanonicalDeclPtr<FunctionDecl>, SourceLocation> FDLoc : |
| CGIt->second) { |
| FunctionDecl *NewCallee = FDLoc.first; |
| SourceLocation CallLoc = FDLoc.second; |
| if (Seen.count(NewCallee) || IsKnownEmitted(S, NewCallee)) |
| continue; |
| Seen.insert(NewCallee); |
| Worklist.push_back( |
| {/* Caller = */ C.Callee, /* Callee = */ NewCallee, CallLoc}); |
| } |
| |
| // C.Callee is now known-emitted, so we no longer need to maintain its list |
| // of callees in CUDACallGraph. |
| S.CUDACallGraph.erase(CGIt); |
| } |
| } |
| |
| bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) { |
| assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); |
| assert(Callee && "Callee may not be null."); |
| // FIXME: Is bailing out early correct here? Should we instead assume that |
| // the caller is a global initializer? |
| FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); |
| if (!Caller) |
| return true; |
| |
| // If the caller is known-emitted, mark the callee as known-emitted. |
| // Otherwise, mark the call in our call graph so we can traverse it later. |
| bool CallerKnownEmitted = IsKnownEmitted(*this, Caller); |
| if (CallerKnownEmitted) { |
| // Host-side references to a __global__ function refer to the stub, so the |
| // function itself is never emitted and therefore should not be marked. |
| if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global) |
| MarkKnownEmitted(*this, Caller, Callee, Loc); |
| } else { |
| // If we have |
| // host fn calls kernel fn calls host+device, |
| // the HD function does not get instantiated on the host. We model this by |
| // omitting at the call to the kernel from the callgraph. This ensures |
| // that, when compiling for host, only HD functions actually called from the |
| // host get marked as known-emitted. |
| if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global) |
| CUDACallGraph[Caller].insert({Callee, Loc}); |
| } |
| |
| CUDADiagBuilder::Kind DiagKind = [&] { |
| switch (IdentifyCUDAPreference(Caller, Callee)) { |
| case CFP_Never: |
| return CUDADiagBuilder::K_Immediate; |
| case CFP_WrongSide: |
| assert(Caller && "WrongSide calls require a non-null caller"); |
| // If we know the caller will be emitted, we know this wrong-side call |
| // will be emitted, so it's an immediate error. Otherwise, defer the |
| // error until we know the caller is emitted. |
| return CallerKnownEmitted ? CUDADiagBuilder::K_ImmediateWithCallStack |
| : CUDADiagBuilder::K_Deferred; |
| default: |
| return CUDADiagBuilder::K_Nop; |
| } |
| }(); |
| |
| if (DiagKind == CUDADiagBuilder::K_Nop) |
| return true; |
| |
| // Avoid emitting this error twice for the same location. Using a hashtable |
| // like this is unfortunate, but because we must continue parsing as normal |
| // after encountering a deferred error, it's otherwise very tricky for us to |
| // ensure that we only emit this deferred error once. |
| if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second) |
| return true; |
| |
| CUDADiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this) |
| << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller); |
| CUDADiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl, |
| Caller, *this) |
| << Callee; |
| return DiagKind != CUDADiagBuilder::K_Immediate && |
| DiagKind != CUDADiagBuilder::K_ImmediateWithCallStack; |
| } |
| |
| void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) { |
| assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); |
| if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>()) |
| return; |
| FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext); |
| if (!CurFn) |
| return; |
| CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn); |
| if (Target == CFT_Global || Target == CFT_Device) { |
| Method->addAttr(CUDADeviceAttr::CreateImplicit(Context)); |
| } else if (Target == CFT_HostDevice) { |
| Method->addAttr(CUDADeviceAttr::CreateImplicit(Context)); |
| Method->addAttr(CUDAHostAttr::CreateImplicit(Context)); |
| } |
| } |
| |
| void Sema::checkCUDATargetOverload(FunctionDecl *NewFD, |
| const LookupResult &Previous) { |
| assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); |
| CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD); |
| for (NamedDecl *OldND : Previous) { |
| FunctionDecl *OldFD = OldND->getAsFunction(); |
| if (!OldFD) |
| continue; |
| |
| CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD); |
| // Don't allow HD and global functions to overload other functions with the |
| // same signature. We allow overloading based on CUDA attributes so that |
| // functions can have different implementations on the host and device, but |
| // HD/global functions "exist" in some sense on both the host and device, so |
| // should have the same implementation on both sides. |
| if (NewTarget != OldTarget && |
| ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) || |
| (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) && |
| !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false, |
| /* ConsiderCudaAttrs = */ false)) { |
| Diag(NewFD->getLocation(), diag::err_cuda_ovl_target) |
| << NewTarget << NewFD->getDeclName() << OldTarget << OldFD; |
| Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| break; |
| } |
| } |
| } |
| |
| template <typename AttrTy> |
| static void copyAttrIfPresent(Sema &S, FunctionDecl *FD, |
| const FunctionDecl &TemplateFD) { |
| if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) { |
| AttrTy *Clone = Attribute->clone(S.Context); |
| Clone->setInherited(true); |
| FD->addAttr(Clone); |
| } |
| } |
| |
| void Sema::inheritCUDATargetAttrs(FunctionDecl *FD, |
| const FunctionTemplateDecl &TD) { |
| const FunctionDecl &TemplateFD = *TD.getTemplatedDecl(); |
| copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD); |
| copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD); |
| copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD); |
| } |