| //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for initializers. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ExprOpenMP.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Sema Initialization Checking |
| //===----------------------------------------------------------------------===// |
| |
| /// Check whether T is compatible with a wide character type (wchar_t, |
| /// char16_t or char32_t). |
| static bool IsWideCharCompatible(QualType T, ASTContext &Context) { |
| if (Context.typesAreCompatible(Context.getWideCharType(), T)) |
| return true; |
| if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { |
| return Context.typesAreCompatible(Context.Char16Ty, T) || |
| Context.typesAreCompatible(Context.Char32Ty, T); |
| } |
| return false; |
| } |
| |
| enum StringInitFailureKind { |
| SIF_None, |
| SIF_NarrowStringIntoWideChar, |
| SIF_WideStringIntoChar, |
| SIF_IncompatWideStringIntoWideChar, |
| SIF_UTF8StringIntoPlainChar, |
| SIF_PlainStringIntoUTF8Char, |
| SIF_Other |
| }; |
| |
| /// Check whether the array of type AT can be initialized by the Init |
| /// expression by means of string initialization. Returns SIF_None if so, |
| /// otherwise returns a StringInitFailureKind that describes why the |
| /// initialization would not work. |
| static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, |
| ASTContext &Context) { |
| if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) |
| return SIF_Other; |
| |
| // See if this is a string literal or @encode. |
| Init = Init->IgnoreParens(); |
| |
| // Handle @encode, which is a narrow string. |
| if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) |
| return SIF_None; |
| |
| // Otherwise we can only handle string literals. |
| StringLiteral *SL = dyn_cast<StringLiteral>(Init); |
| if (!SL) |
| return SIF_Other; |
| |
| const QualType ElemTy = |
| Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); |
| |
| switch (SL->getKind()) { |
| case StringLiteral::UTF8: |
| // char8_t array can be initialized with a UTF-8 string. |
| if (ElemTy->isChar8Type()) |
| return SIF_None; |
| LLVM_FALLTHROUGH; |
| case StringLiteral::Ascii: |
| // char array can be initialized with a narrow string. |
| // Only allow char x[] = "foo"; not char x[] = L"foo"; |
| if (ElemTy->isCharType()) |
| return (SL->getKind() == StringLiteral::UTF8 && |
| Context.getLangOpts().Char8) |
| ? SIF_UTF8StringIntoPlainChar |
| : SIF_None; |
| if (ElemTy->isChar8Type()) |
| return SIF_PlainStringIntoUTF8Char; |
| if (IsWideCharCompatible(ElemTy, Context)) |
| return SIF_NarrowStringIntoWideChar; |
| return SIF_Other; |
| // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: |
| // "An array with element type compatible with a qualified or unqualified |
| // version of wchar_t, char16_t, or char32_t may be initialized by a wide |
| // string literal with the corresponding encoding prefix (L, u, or U, |
| // respectively), optionally enclosed in braces. |
| case StringLiteral::UTF16: |
| if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) |
| return SIF_None; |
| if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
| return SIF_WideStringIntoChar; |
| if (IsWideCharCompatible(ElemTy, Context)) |
| return SIF_IncompatWideStringIntoWideChar; |
| return SIF_Other; |
| case StringLiteral::UTF32: |
| if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) |
| return SIF_None; |
| if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
| return SIF_WideStringIntoChar; |
| if (IsWideCharCompatible(ElemTy, Context)) |
| return SIF_IncompatWideStringIntoWideChar; |
| return SIF_Other; |
| case StringLiteral::Wide: |
| if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) |
| return SIF_None; |
| if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
| return SIF_WideStringIntoChar; |
| if (IsWideCharCompatible(ElemTy, Context)) |
| return SIF_IncompatWideStringIntoWideChar; |
| return SIF_Other; |
| } |
| |
| llvm_unreachable("missed a StringLiteral kind?"); |
| } |
| |
| static StringInitFailureKind IsStringInit(Expr *init, QualType declType, |
| ASTContext &Context) { |
| const ArrayType *arrayType = Context.getAsArrayType(declType); |
| if (!arrayType) |
| return SIF_Other; |
| return IsStringInit(init, arrayType, Context); |
| } |
| |
| /// Update the type of a string literal, including any surrounding parentheses, |
| /// to match the type of the object which it is initializing. |
| static void updateStringLiteralType(Expr *E, QualType Ty) { |
| while (true) { |
| E->setType(Ty); |
| if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) |
| break; |
| else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) |
| E = PE->getSubExpr(); |
| else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) |
| E = UO->getSubExpr(); |
| else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) |
| E = GSE->getResultExpr(); |
| else |
| llvm_unreachable("unexpected expr in string literal init"); |
| } |
| } |
| |
| static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, |
| Sema &S) { |
| // Get the length of the string as parsed. |
| auto *ConstantArrayTy = |
| cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); |
| uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); |
| |
| if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
| // C99 6.7.8p14. We have an array of character type with unknown size |
| // being initialized to a string literal. |
| llvm::APInt ConstVal(32, StrLength); |
| // Return a new array type (C99 6.7.8p22). |
| DeclT = S.Context.getConstantArrayType(IAT->getElementType(), |
| ConstVal, |
| ArrayType::Normal, 0); |
| updateStringLiteralType(Str, DeclT); |
| return; |
| } |
| |
| const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); |
| |
| // We have an array of character type with known size. However, |
| // the size may be smaller or larger than the string we are initializing. |
| // FIXME: Avoid truncation for 64-bit length strings. |
| if (S.getLangOpts().CPlusPlus) { |
| if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { |
| // For Pascal strings it's OK to strip off the terminating null character, |
| // so the example below is valid: |
| // |
| // unsigned char a[2] = "\pa"; |
| if (SL->isPascal()) |
| StrLength--; |
| } |
| |
| // [dcl.init.string]p2 |
| if (StrLength > CAT->getSize().getZExtValue()) |
| S.Diag(Str->getLocStart(), |
| diag::err_initializer_string_for_char_array_too_long) |
| << Str->getSourceRange(); |
| } else { |
| // C99 6.7.8p14. |
| if (StrLength-1 > CAT->getSize().getZExtValue()) |
| S.Diag(Str->getLocStart(), |
| diag::ext_initializer_string_for_char_array_too_long) |
| << Str->getSourceRange(); |
| } |
| |
| // Set the type to the actual size that we are initializing. If we have |
| // something like: |
| // char x[1] = "foo"; |
| // then this will set the string literal's type to char[1]. |
| updateStringLiteralType(Str, DeclT); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Semantic checking for initializer lists. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Semantic checking for initializer lists. |
| /// |
| /// The InitListChecker class contains a set of routines that each |
| /// handle the initialization of a certain kind of entity, e.g., |
| /// arrays, vectors, struct/union types, scalars, etc. The |
| /// InitListChecker itself performs a recursive walk of the subobject |
| /// structure of the type to be initialized, while stepping through |
| /// the initializer list one element at a time. The IList and Index |
| /// parameters to each of the Check* routines contain the active |
| /// (syntactic) initializer list and the index into that initializer |
| /// list that represents the current initializer. Each routine is |
| /// responsible for moving that Index forward as it consumes elements. |
| /// |
| /// Each Check* routine also has a StructuredList/StructuredIndex |
| /// arguments, which contains the current "structured" (semantic) |
| /// initializer list and the index into that initializer list where we |
| /// are copying initializers as we map them over to the semantic |
| /// list. Once we have completed our recursive walk of the subobject |
| /// structure, we will have constructed a full semantic initializer |
| /// list. |
| /// |
| /// C99 designators cause changes in the initializer list traversal, |
| /// because they make the initialization "jump" into a specific |
| /// subobject and then continue the initialization from that |
| /// point. CheckDesignatedInitializer() recursively steps into the |
| /// designated subobject and manages backing out the recursion to |
| /// initialize the subobjects after the one designated. |
| class InitListChecker { |
| Sema &SemaRef; |
| bool hadError; |
| bool VerifyOnly; // no diagnostics, no structure building |
| bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. |
| llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; |
| InitListExpr *FullyStructuredList; |
| |
| void CheckImplicitInitList(const InitializedEntity &Entity, |
| InitListExpr *ParentIList, QualType T, |
| unsigned &Index, InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckExplicitInitList(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &T, |
| InitListExpr *StructuredList, |
| bool TopLevelObject = false); |
| void CheckListElementTypes(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &DeclType, |
| bool SubobjectIsDesignatorContext, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject = false); |
| void CheckSubElementType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType ElemType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckComplexType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckScalarType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckReferenceType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckVectorType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckStructUnionTypes(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| CXXRecordDecl::base_class_range Bases, |
| RecordDecl::field_iterator Field, |
| bool SubobjectIsDesignatorContext, unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject = false); |
| void CheckArrayType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &DeclType, |
| llvm::APSInt elementIndex, |
| bool SubobjectIsDesignatorContext, unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| bool CheckDesignatedInitializer(const InitializedEntity &Entity, |
| InitListExpr *IList, DesignatedInitExpr *DIE, |
| unsigned DesigIdx, |
| QualType &CurrentObjectType, |
| RecordDecl::field_iterator *NextField, |
| llvm::APSInt *NextElementIndex, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool FinishSubobjectInit, |
| bool TopLevelObject); |
| InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
| QualType CurrentObjectType, |
| InitListExpr *StructuredList, |
| unsigned StructuredIndex, |
| SourceRange InitRange, |
| bool IsFullyOverwritten = false); |
| void UpdateStructuredListElement(InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| Expr *expr); |
| int numArrayElements(QualType DeclType); |
| int numStructUnionElements(QualType DeclType); |
| |
| static ExprResult PerformEmptyInit(Sema &SemaRef, |
| SourceLocation Loc, |
| const InitializedEntity &Entity, |
| bool VerifyOnly, |
| bool TreatUnavailableAsInvalid); |
| |
| // Explanation on the "FillWithNoInit" mode: |
| // |
| // Assume we have the following definitions (Case#1): |
| // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; |
| // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; |
| // |
| // l.lp.x[1][0..1] should not be filled with implicit initializers because the |
| // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". |
| // |
| // But if we have (Case#2): |
| // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; |
| // |
| // l.lp.x[1][0..1] are implicitly initialized and do not use values from the |
| // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". |
| // |
| // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" |
| // in the InitListExpr, the "holes" in Case#1 are filled not with empty |
| // initializers but with special "NoInitExpr" place holders, which tells the |
| // CodeGen not to generate any initializers for these parts. |
| void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, |
| const InitializedEntity &ParentEntity, |
| InitListExpr *ILE, bool &RequiresSecondPass, |
| bool FillWithNoInit); |
| void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
| const InitializedEntity &ParentEntity, |
| InitListExpr *ILE, bool &RequiresSecondPass, |
| bool FillWithNoInit = false); |
| void FillInEmptyInitializations(const InitializedEntity &Entity, |
| InitListExpr *ILE, bool &RequiresSecondPass, |
| InitListExpr *OuterILE, unsigned OuterIndex, |
| bool FillWithNoInit = false); |
| bool CheckFlexibleArrayInit(const InitializedEntity &Entity, |
| Expr *InitExpr, FieldDecl *Field, |
| bool TopLevelObject); |
| void CheckEmptyInitializable(const InitializedEntity &Entity, |
| SourceLocation Loc); |
| |
| public: |
| InitListChecker(Sema &S, const InitializedEntity &Entity, |
| InitListExpr *IL, QualType &T, bool VerifyOnly, |
| bool TreatUnavailableAsInvalid); |
| bool HadError() { return hadError; } |
| |
| // Retrieves the fully-structured initializer list used for |
| // semantic analysis and code generation. |
| InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } |
| }; |
| |
| } // end anonymous namespace |
| |
| ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, |
| SourceLocation Loc, |
| const InitializedEntity &Entity, |
| bool VerifyOnly, |
| bool TreatUnavailableAsInvalid) { |
| InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, |
| true); |
| MultiExprArg SubInit; |
| Expr *InitExpr; |
| InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); |
| |
| // C++ [dcl.init.aggr]p7: |
| // If there are fewer initializer-clauses in the list than there are |
| // members in the aggregate, then each member not explicitly initialized |
| // ... |
| bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && |
| Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); |
| if (EmptyInitList) { |
| // C++1y / DR1070: |
| // shall be initialized [...] from an empty initializer list. |
| // |
| // We apply the resolution of this DR to C++11 but not C++98, since C++98 |
| // does not have useful semantics for initialization from an init list. |
| // We treat this as copy-initialization, because aggregate initialization |
| // always performs copy-initialization on its elements. |
| // |
| // Only do this if we're initializing a class type, to avoid filling in |
| // the initializer list where possible. |
| InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) |
| InitListExpr(SemaRef.Context, Loc, None, Loc); |
| InitExpr->setType(SemaRef.Context.VoidTy); |
| SubInit = InitExpr; |
| Kind = InitializationKind::CreateCopy(Loc, Loc); |
| } else { |
| // C++03: |
| // shall be value-initialized. |
| } |
| |
| InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); |
| // libstdc++4.6 marks the vector default constructor as explicit in |
| // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. |
| // stlport does so too. Look for std::__debug for libstdc++, and for |
| // std:: for stlport. This is effectively a compiler-side implementation of |
| // LWG2193. |
| if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == |
| InitializationSequence::FK_ExplicitConstructor) { |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult O = |
| InitSeq.getFailedCandidateSet() |
| .BestViableFunction(SemaRef, Kind.getLocation(), Best); |
| (void)O; |
| assert(O == OR_Success && "Inconsistent overload resolution"); |
| CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
| CXXRecordDecl *R = CtorDecl->getParent(); |
| |
| if (CtorDecl->getMinRequiredArguments() == 0 && |
| CtorDecl->isExplicit() && R->getDeclName() && |
| SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { |
| bool IsInStd = false; |
| for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); |
| ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { |
| if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) |
| IsInStd = true; |
| } |
| |
| if (IsInStd && llvm::StringSwitch<bool>(R->getName()) |
| .Cases("basic_string", "deque", "forward_list", true) |
| .Cases("list", "map", "multimap", "multiset", true) |
| .Cases("priority_queue", "queue", "set", "stack", true) |
| .Cases("unordered_map", "unordered_set", "vector", true) |
| .Default(false)) { |
| InitSeq.InitializeFrom( |
| SemaRef, Entity, |
| InitializationKind::CreateValue(Loc, Loc, Loc, true), |
| MultiExprArg(), /*TopLevelOfInitList=*/false, |
| TreatUnavailableAsInvalid); |
| // Emit a warning for this. System header warnings aren't shown |
| // by default, but people working on system headers should see it. |
| if (!VerifyOnly) { |
| SemaRef.Diag(CtorDecl->getLocation(), |
| diag::warn_invalid_initializer_from_system_header); |
| if (Entity.getKind() == InitializedEntity::EK_Member) |
| SemaRef.Diag(Entity.getDecl()->getLocation(), |
| diag::note_used_in_initialization_here); |
| else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) |
| SemaRef.Diag(Loc, diag::note_used_in_initialization_here); |
| } |
| } |
| } |
| } |
| if (!InitSeq) { |
| if (!VerifyOnly) { |
| InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); |
| if (Entity.getKind() == InitializedEntity::EK_Member) |
| SemaRef.Diag(Entity.getDecl()->getLocation(), |
| diag::note_in_omitted_aggregate_initializer) |
| << /*field*/1 << Entity.getDecl(); |
| else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
| bool IsTrailingArrayNewMember = |
| Entity.getParent() && |
| Entity.getParent()->isVariableLengthArrayNew(); |
| SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) |
| << (IsTrailingArrayNewMember ? 2 : /*array element*/0) |
| << Entity.getElementIndex(); |
| } |
| } |
| return ExprError(); |
| } |
| |
| return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) |
| : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); |
| } |
| |
| void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, |
| SourceLocation Loc) { |
| assert(VerifyOnly && |
| "CheckEmptyInitializable is only inteded for verification mode."); |
| if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true, |
| TreatUnavailableAsInvalid).isInvalid()) |
| hadError = true; |
| } |
| |
| void InitListChecker::FillInEmptyInitForBase( |
| unsigned Init, const CXXBaseSpecifier &Base, |
| const InitializedEntity &ParentEntity, InitListExpr *ILE, |
| bool &RequiresSecondPass, bool FillWithNoInit) { |
| assert(Init < ILE->getNumInits() && "should have been expanded"); |
| |
| InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
| SemaRef.Context, &Base, false, &ParentEntity); |
| |
| if (!ILE->getInit(Init)) { |
| ExprResult BaseInit = |
| FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType()) |
| : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity, |
| /*VerifyOnly*/ false, |
| TreatUnavailableAsInvalid); |
| if (BaseInit.isInvalid()) { |
| hadError = true; |
| return; |
| } |
| |
| ILE->setInit(Init, BaseInit.getAs<Expr>()); |
| } else if (InitListExpr *InnerILE = |
| dyn_cast<InitListExpr>(ILE->getInit(Init))) { |
| FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, |
| ILE, Init, FillWithNoInit); |
| } else if (DesignatedInitUpdateExpr *InnerDIUE = |
| dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { |
| FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), |
| RequiresSecondPass, ILE, Init, |
| /*FillWithNoInit =*/true); |
| } |
| } |
| |
| void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
| const InitializedEntity &ParentEntity, |
| InitListExpr *ILE, |
| bool &RequiresSecondPass, |
| bool FillWithNoInit) { |
| SourceLocation Loc = ILE->getLocEnd(); |
| unsigned NumInits = ILE->getNumInits(); |
| InitializedEntity MemberEntity |
| = InitializedEntity::InitializeMember(Field, &ParentEntity); |
| |
| if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) |
| if (!RType->getDecl()->isUnion()) |
| assert(Init < NumInits && "This ILE should have been expanded"); |
| |
| if (Init >= NumInits || !ILE->getInit(Init)) { |
| if (FillWithNoInit) { |
| Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); |
| if (Init < NumInits) |
| ILE->setInit(Init, Filler); |
| else |
| ILE->updateInit(SemaRef.Context, Init, Filler); |
| return; |
| } |
| // C++1y [dcl.init.aggr]p7: |
| // If there are fewer initializer-clauses in the list than there are |
| // members in the aggregate, then each member not explicitly initialized |
| // shall be initialized from its brace-or-equal-initializer [...] |
| if (Field->hasInClassInitializer()) { |
| ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); |
| if (DIE.isInvalid()) { |
| hadError = true; |
| return; |
| } |
| SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); |
| if (Init < NumInits) |
| ILE->setInit(Init, DIE.get()); |
| else { |
| ILE->updateInit(SemaRef.Context, Init, DIE.get()); |
| RequiresSecondPass = true; |
| } |
| return; |
| } |
| |
| if (Field->getType()->isReferenceType()) { |
| // C++ [dcl.init.aggr]p9: |
| // If an incomplete or empty initializer-list leaves a |
| // member of reference type uninitialized, the program is |
| // ill-formed. |
| SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) |
| << Field->getType() |
| << ILE->getSyntacticForm()->getSourceRange(); |
| SemaRef.Diag(Field->getLocation(), |
| diag::note_uninit_reference_member); |
| hadError = true; |
| return; |
| } |
| |
| ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, |
| /*VerifyOnly*/false, |
| TreatUnavailableAsInvalid); |
| if (MemberInit.isInvalid()) { |
| hadError = true; |
| return; |
| } |
| |
| if (hadError) { |
| // Do nothing |
| } else if (Init < NumInits) { |
| ILE->setInit(Init, MemberInit.getAs<Expr>()); |
| } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { |
| // Empty initialization requires a constructor call, so |
| // extend the initializer list to include the constructor |
| // call and make a note that we'll need to take another pass |
| // through the initializer list. |
| ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); |
| RequiresSecondPass = true; |
| } |
| } else if (InitListExpr *InnerILE |
| = dyn_cast<InitListExpr>(ILE->getInit(Init))) |
| FillInEmptyInitializations(MemberEntity, InnerILE, |
| RequiresSecondPass, ILE, Init, FillWithNoInit); |
| else if (DesignatedInitUpdateExpr *InnerDIUE |
| = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) |
| FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), |
| RequiresSecondPass, ILE, Init, |
| /*FillWithNoInit =*/true); |
| } |
| |
| /// Recursively replaces NULL values within the given initializer list |
| /// with expressions that perform value-initialization of the |
| /// appropriate type, and finish off the InitListExpr formation. |
| void |
| InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, |
| InitListExpr *ILE, |
| bool &RequiresSecondPass, |
| InitListExpr *OuterILE, |
| unsigned OuterIndex, |
| bool FillWithNoInit) { |
| assert((ILE->getType() != SemaRef.Context.VoidTy) && |
| "Should not have void type"); |
| |
| // If this is a nested initializer list, we might have changed its contents |
| // (and therefore some of its properties, such as instantiation-dependence) |
| // while filling it in. Inform the outer initializer list so that its state |
| // can be updated to match. |
| // FIXME: We should fully build the inner initializers before constructing |
| // the outer InitListExpr instead of mutating AST nodes after they have |
| // been used as subexpressions of other nodes. |
| struct UpdateOuterILEWithUpdatedInit { |
| InitListExpr *Outer; |
| unsigned OuterIndex; |
| ~UpdateOuterILEWithUpdatedInit() { |
| if (Outer) |
| Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); |
| } |
| } UpdateOuterRAII = {OuterILE, OuterIndex}; |
| |
| // A transparent ILE is not performing aggregate initialization and should |
| // not be filled in. |
| if (ILE->isTransparent()) |
| return; |
| |
| if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { |
| const RecordDecl *RDecl = RType->getDecl(); |
| if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) |
| FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), |
| Entity, ILE, RequiresSecondPass, FillWithNoInit); |
| else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && |
| cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { |
| for (auto *Field : RDecl->fields()) { |
| if (Field->hasInClassInitializer()) { |
| FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, |
| FillWithNoInit); |
| break; |
| } |
| } |
| } else { |
| // The fields beyond ILE->getNumInits() are default initialized, so in |
| // order to leave them uninitialized, the ILE is expanded and the extra |
| // fields are then filled with NoInitExpr. |
| unsigned NumElems = numStructUnionElements(ILE->getType()); |
| if (RDecl->hasFlexibleArrayMember()) |
| ++NumElems; |
| if (ILE->getNumInits() < NumElems) |
| ILE->resizeInits(SemaRef.Context, NumElems); |
| |
| unsigned Init = 0; |
| |
| if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { |
| for (auto &Base : CXXRD->bases()) { |
| if (hadError) |
| return; |
| |
| FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, |
| FillWithNoInit); |
| ++Init; |
| } |
| } |
| |
| for (auto *Field : RDecl->fields()) { |
| if (Field->isUnnamedBitfield()) |
| continue; |
| |
| if (hadError) |
| return; |
| |
| FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, |
| FillWithNoInit); |
| if (hadError) |
| return; |
| |
| ++Init; |
| |
| // Only look at the first initialization of a union. |
| if (RDecl->isUnion()) |
| break; |
| } |
| } |
| |
| return; |
| } |
| |
| QualType ElementType; |
| |
| InitializedEntity ElementEntity = Entity; |
| unsigned NumInits = ILE->getNumInits(); |
| unsigned NumElements = NumInits; |
| if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { |
| ElementType = AType->getElementType(); |
| if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) |
| NumElements = CAType->getSize().getZExtValue(); |
| // For an array new with an unknown bound, ask for one additional element |
| // in order to populate the array filler. |
| if (Entity.isVariableLengthArrayNew()) |
| ++NumElements; |
| ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
| 0, Entity); |
| } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { |
| ElementType = VType->getElementType(); |
| NumElements = VType->getNumElements(); |
| ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
| 0, Entity); |
| } else |
| ElementType = ILE->getType(); |
| |
| for (unsigned Init = 0; Init != NumElements; ++Init) { |
| if (hadError) |
| return; |
| |
| if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || |
| ElementEntity.getKind() == InitializedEntity::EK_VectorElement) |
| ElementEntity.setElementIndex(Init); |
| |
| if (Init >= NumInits && ILE->hasArrayFiller()) |
| return; |
| |
| Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); |
| if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) |
| ILE->setInit(Init, ILE->getArrayFiller()); |
| else if (!InitExpr && !ILE->hasArrayFiller()) { |
| Expr *Filler = nullptr; |
| |
| if (FillWithNoInit) |
| Filler = new (SemaRef.Context) NoInitExpr(ElementType); |
| else { |
| ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(), |
| ElementEntity, |
| /*VerifyOnly*/false, |
| TreatUnavailableAsInvalid); |
| if (ElementInit.isInvalid()) { |
| hadError = true; |
| return; |
| } |
| |
| Filler = ElementInit.getAs<Expr>(); |
| } |
| |
| if (hadError) { |
| // Do nothing |
| } else if (Init < NumInits) { |
| // For arrays, just set the expression used for value-initialization |
| // of the "holes" in the array. |
| if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) |
| ILE->setArrayFiller(Filler); |
| else |
| ILE->setInit(Init, Filler); |
| } else { |
| // For arrays, just set the expression used for value-initialization |
| // of the rest of elements and exit. |
| if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { |
| ILE->setArrayFiller(Filler); |
| return; |
| } |
| |
| if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { |
| // Empty initialization requires a constructor call, so |
| // extend the initializer list to include the constructor |
| // call and make a note that we'll need to take another pass |
| // through the initializer list. |
| ILE->updateInit(SemaRef.Context, Init, Filler); |
| RequiresSecondPass = true; |
| } |
| } |
| } else if (InitListExpr *InnerILE |
| = dyn_cast_or_null<InitListExpr>(InitExpr)) |
| FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, |
| ILE, Init, FillWithNoInit); |
| else if (DesignatedInitUpdateExpr *InnerDIUE |
| = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) |
| FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), |
| RequiresSecondPass, ILE, Init, |
| /*FillWithNoInit =*/true); |
| } |
| } |
| |
| InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, |
| InitListExpr *IL, QualType &T, |
| bool VerifyOnly, |
| bool TreatUnavailableAsInvalid) |
| : SemaRef(S), VerifyOnly(VerifyOnly), |
| TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) { |
| // FIXME: Check that IL isn't already the semantic form of some other |
| // InitListExpr. If it is, we'd create a broken AST. |
| |
| hadError = false; |
| |
| FullyStructuredList = |
| getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); |
| CheckExplicitInitList(Entity, IL, T, FullyStructuredList, |
| /*TopLevelObject=*/true); |
| |
| if (!hadError && !VerifyOnly) { |
| bool RequiresSecondPass = false; |
| FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, |
| /*OuterILE=*/nullptr, /*OuterIndex=*/0); |
| if (RequiresSecondPass && !hadError) |
| FillInEmptyInitializations(Entity, FullyStructuredList, |
| RequiresSecondPass, nullptr, 0); |
| } |
| } |
| |
| int InitListChecker::numArrayElements(QualType DeclType) { |
| // FIXME: use a proper constant |
| int maxElements = 0x7FFFFFFF; |
| if (const ConstantArrayType *CAT = |
| SemaRef.Context.getAsConstantArrayType(DeclType)) { |
| maxElements = static_cast<int>(CAT->getSize().getZExtValue()); |
| } |
| return maxElements; |
| } |
| |
| int InitListChecker::numStructUnionElements(QualType DeclType) { |
| RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); |
| int InitializableMembers = 0; |
| if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) |
| InitializableMembers += CXXRD->getNumBases(); |
| for (const auto *Field : structDecl->fields()) |
| if (!Field->isUnnamedBitfield()) |
| ++InitializableMembers; |
| |
| if (structDecl->isUnion()) |
| return std::min(InitializableMembers, 1); |
| return InitializableMembers - structDecl->hasFlexibleArrayMember(); |
| } |
| |
| /// Determine whether Entity is an entity for which it is idiomatic to elide |
| /// the braces in aggregate initialization. |
| static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { |
| // Recursive initialization of the one and only field within an aggregate |
| // class is considered idiomatic. This case arises in particular for |
| // initialization of std::array, where the C++ standard suggests the idiom of |
| // |
| // std::array<T, N> arr = {1, 2, 3}; |
| // |
| // (where std::array is an aggregate struct containing a single array field. |
| |
| // FIXME: Should aggregate initialization of a struct with a single |
| // base class and no members also suppress the warning? |
| if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) |
| return false; |
| |
| auto *ParentRD = |
| Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
| if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) |
| if (CXXRD->getNumBases()) |
| return false; |
| |
| auto FieldIt = ParentRD->field_begin(); |
| assert(FieldIt != ParentRD->field_end() && |
| "no fields but have initializer for member?"); |
| return ++FieldIt == ParentRD->field_end(); |
| } |
| |
| /// Check whether the range of the initializer \p ParentIList from element |
| /// \p Index onwards can be used to initialize an object of type \p T. Update |
| /// \p Index to indicate how many elements of the list were consumed. |
| /// |
| /// This also fills in \p StructuredList, from element \p StructuredIndex |
| /// onwards, with the fully-braced, desugared form of the initialization. |
| void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, |
| InitListExpr *ParentIList, |
| QualType T, unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| int maxElements = 0; |
| |
| if (T->isArrayType()) |
| maxElements = numArrayElements(T); |
| else if (T->isRecordType()) |
| maxElements = numStructUnionElements(T); |
| else if (T->isVectorType()) |
| maxElements = T->getAs<VectorType>()->getNumElements(); |
| else |
| llvm_unreachable("CheckImplicitInitList(): Illegal type"); |
| |
| if (maxElements == 0) { |
| if (!VerifyOnly) |
| SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), |
| diag::err_implicit_empty_initializer); |
| ++Index; |
| hadError = true; |
| return; |
| } |
| |
| // Build a structured initializer list corresponding to this subobject. |
| InitListExpr *StructuredSubobjectInitList |
| = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, |
| StructuredIndex, |
| SourceRange(ParentIList->getInit(Index)->getLocStart(), |
| ParentIList->getSourceRange().getEnd())); |
| unsigned StructuredSubobjectInitIndex = 0; |
| |
| // Check the element types and build the structural subobject. |
| unsigned StartIndex = Index; |
| CheckListElementTypes(Entity, ParentIList, T, |
| /*SubobjectIsDesignatorContext=*/false, Index, |
| StructuredSubobjectInitList, |
| StructuredSubobjectInitIndex); |
| |
| if (!VerifyOnly) { |
| StructuredSubobjectInitList->setType(T); |
| |
| unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); |
| // Update the structured sub-object initializer so that it's ending |
| // range corresponds with the end of the last initializer it used. |
| if (EndIndex < ParentIList->getNumInits() && |
| ParentIList->getInit(EndIndex)) { |
| SourceLocation EndLoc |
| = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); |
| StructuredSubobjectInitList->setRBraceLoc(EndLoc); |
| } |
| |
| // Complain about missing braces. |
| if ((T->isArrayType() || T->isRecordType()) && |
| !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && |
| !isIdiomaticBraceElisionEntity(Entity)) { |
| SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), |
| diag::warn_missing_braces) |
| << StructuredSubobjectInitList->getSourceRange() |
| << FixItHint::CreateInsertion( |
| StructuredSubobjectInitList->getLocStart(), "{") |
| << FixItHint::CreateInsertion( |
| SemaRef.getLocForEndOfToken( |
| StructuredSubobjectInitList->getLocEnd()), |
| "}"); |
| } |
| } |
| } |
| |
| /// Warn that \p Entity was of scalar type and was initialized by a |
| /// single-element braced initializer list. |
| static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, |
| SourceRange Braces) { |
| // Don't warn during template instantiation. If the initialization was |
| // non-dependent, we warned during the initial parse; otherwise, the |
| // type might not be scalar in some uses of the template. |
| if (S.inTemplateInstantiation()) |
| return; |
| |
| unsigned DiagID = 0; |
| |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Parameter_CF_Audited: |
| case InitializedEntity::EK_Result: |
| // Extra braces here are suspicious. |
| DiagID = diag::warn_braces_around_scalar_init; |
| break; |
| |
| case InitializedEntity::EK_Member: |
| // Warn on aggregate initialization but not on ctor init list or |
| // default member initializer. |
| if (Entity.getParent()) |
| DiagID = diag::warn_braces_around_scalar_init; |
| break; |
| |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_LambdaCapture: |
| // No warning, might be direct-list-initialization. |
| // FIXME: Should we warn for copy-list-initialization in these cases? |
| break; |
| |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| // No warning, braces are part of the syntax of the underlying construct. |
| break; |
| |
| case InitializedEntity::EK_RelatedResult: |
| // No warning, we already warned when initializing the result. |
| break; |
| |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| case InitializedEntity::EK_Binding: |
| case InitializedEntity::EK_StmtExprResult: |
| llvm_unreachable("unexpected braced scalar init"); |
| } |
| |
| if (DiagID) { |
| S.Diag(Braces.getBegin(), DiagID) |
| << Braces |
| << FixItHint::CreateRemoval(Braces.getBegin()) |
| << FixItHint::CreateRemoval(Braces.getEnd()); |
| } |
| } |
| |
| /// Check whether the initializer \p IList (that was written with explicit |
| /// braces) can be used to initialize an object of type \p T. |
| /// |
| /// This also fills in \p StructuredList with the fully-braced, desugared |
| /// form of the initialization. |
| void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &T, |
| InitListExpr *StructuredList, |
| bool TopLevelObject) { |
| if (!VerifyOnly) { |
| SyntacticToSemantic[IList] = StructuredList; |
| StructuredList->setSyntacticForm(IList); |
| } |
| |
| unsigned Index = 0, StructuredIndex = 0; |
| CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, |
| Index, StructuredList, StructuredIndex, TopLevelObject); |
| if (!VerifyOnly) { |
| QualType ExprTy = T; |
| if (!ExprTy->isArrayType()) |
| ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); |
| IList->setType(ExprTy); |
| StructuredList->setType(ExprTy); |
| } |
| if (hadError) |
| return; |
| |
| if (Index < IList->getNumInits()) { |
| // We have leftover initializers |
| if (VerifyOnly) { |
| if (SemaRef.getLangOpts().CPlusPlus || |
| (SemaRef.getLangOpts().OpenCL && |
| IList->getType()->isVectorType())) { |
| hadError = true; |
| } |
| return; |
| } |
| |
| if (StructuredIndex == 1 && |
| IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == |
| SIF_None) { |
| unsigned DK = diag::ext_excess_initializers_in_char_array_initializer; |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| DK = diag::err_excess_initializers_in_char_array_initializer; |
| hadError = true; |
| } |
| // Special-case |
| SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) |
| << IList->getInit(Index)->getSourceRange(); |
| } else if (!T->isIncompleteType()) { |
| // Don't complain for incomplete types, since we'll get an error |
| // elsewhere |
| QualType CurrentObjectType = StructuredList->getType(); |
| int initKind = |
| CurrentObjectType->isArrayType()? 0 : |
| CurrentObjectType->isVectorType()? 1 : |
| CurrentObjectType->isScalarType()? 2 : |
| CurrentObjectType->isUnionType()? 3 : |
| 4; |
| |
| unsigned DK = diag::ext_excess_initializers; |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| DK = diag::err_excess_initializers; |
| hadError = true; |
| } |
| if (SemaRef.getLangOpts().OpenCL && initKind == 1) { |
| DK = diag::err_excess_initializers; |
| hadError = true; |
| } |
| |
| SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) |
| << initKind << IList->getInit(Index)->getSourceRange(); |
| } |
| } |
| |
| if (!VerifyOnly && T->isScalarType() && |
| IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0))) |
| warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); |
| } |
| |
| void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, |
| InitListExpr *IList, |
| QualType &DeclType, |
| bool SubobjectIsDesignatorContext, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject) { |
| if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { |
| // Explicitly braced initializer for complex type can be real+imaginary |
| // parts. |
| CheckComplexType(Entity, IList, DeclType, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isScalarType()) { |
| CheckScalarType(Entity, IList, DeclType, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isVectorType()) { |
| CheckVectorType(Entity, IList, DeclType, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isRecordType()) { |
| assert(DeclType->isAggregateType() && |
| "non-aggregate records should be handed in CheckSubElementType"); |
| RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); |
| auto Bases = |
| CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
| CXXRecordDecl::base_class_iterator()); |
| if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
| Bases = CXXRD->bases(); |
| CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), |
| SubobjectIsDesignatorContext, Index, StructuredList, |
| StructuredIndex, TopLevelObject); |
| } else if (DeclType->isArrayType()) { |
| llvm::APSInt Zero( |
| SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), |
| false); |
| CheckArrayType(Entity, IList, DeclType, Zero, |
| SubobjectIsDesignatorContext, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { |
| // This type is invalid, issue a diagnostic. |
| ++Index; |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) |
| << DeclType; |
| hadError = true; |
| } else if (DeclType->isReferenceType()) { |
| CheckReferenceType(Entity, IList, DeclType, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isObjCObjectType()) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) |
| << DeclType; |
| hadError = true; |
| } else { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) |
| << DeclType; |
| hadError = true; |
| } |
| } |
| |
| void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, |
| InitListExpr *IList, |
| QualType ElemType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| Expr *expr = IList->getInit(Index); |
| |
| if (ElemType->isReferenceType()) |
| return CheckReferenceType(Entity, IList, ElemType, Index, |
| StructuredList, StructuredIndex); |
| |
| if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { |
| if (SubInitList->getNumInits() == 1 && |
| IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == |
| SIF_None) { |
| expr = SubInitList->getInit(0); |
| } else if (!SemaRef.getLangOpts().CPlusPlus) { |
| InitListExpr *InnerStructuredList |
| = getStructuredSubobjectInit(IList, Index, ElemType, |
| StructuredList, StructuredIndex, |
| SubInitList->getSourceRange(), true); |
| CheckExplicitInitList(Entity, SubInitList, ElemType, |
| InnerStructuredList); |
| |
| if (!hadError && !VerifyOnly) { |
| bool RequiresSecondPass = false; |
| FillInEmptyInitializations(Entity, InnerStructuredList, |
| RequiresSecondPass, StructuredList, |
| StructuredIndex); |
| if (RequiresSecondPass && !hadError) |
| FillInEmptyInitializations(Entity, InnerStructuredList, |
| RequiresSecondPass, StructuredList, |
| StructuredIndex); |
| } |
| ++StructuredIndex; |
| ++Index; |
| return; |
| } |
| // C++ initialization is handled later. |
| } else if (isa<ImplicitValueInitExpr>(expr)) { |
| // This happens during template instantiation when we see an InitListExpr |
| // that we've already checked once. |
| assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && |
| "found implicit initialization for the wrong type"); |
| if (!VerifyOnly) |
| UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
| ++Index; |
| return; |
| } |
| |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| // C++ [dcl.init.aggr]p2: |
| // Each member is copy-initialized from the corresponding |
| // initializer-clause. |
| |
| // FIXME: Better EqualLoc? |
| InitializationKind Kind = |
| InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); |
| InitializationSequence Seq(SemaRef, Entity, Kind, expr, |
| /*TopLevelOfInitList*/ true); |
| |
| // C++14 [dcl.init.aggr]p13: |
| // If the assignment-expression can initialize a member, the member is |
| // initialized. Otherwise [...] brace elision is assumed |
| // |
| // Brace elision is never performed if the element is not an |
| // assignment-expression. |
| if (Seq || isa<InitListExpr>(expr)) { |
| if (!VerifyOnly) { |
| ExprResult Result = |
| Seq.Perform(SemaRef, Entity, Kind, expr); |
| if (Result.isInvalid()) |
| hadError = true; |
| |
| UpdateStructuredListElement(StructuredList, StructuredIndex, |
| Result.getAs<Expr>()); |
| } else if (!Seq) |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| // Fall through for subaggregate initialization |
| } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { |
| // FIXME: Need to handle atomic aggregate types with implicit init lists. |
| return CheckScalarType(Entity, IList, ElemType, Index, |
| StructuredList, StructuredIndex); |
| } else if (const ArrayType *arrayType = |
| SemaRef.Context.getAsArrayType(ElemType)) { |
| // arrayType can be incomplete if we're initializing a flexible |
| // array member. There's nothing we can do with the completed |
| // type here, though. |
| |
| if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { |
| if (!VerifyOnly) { |
| CheckStringInit(expr, ElemType, arrayType, SemaRef); |
| UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
| } |
| ++Index; |
| return; |
| } |
| |
| // Fall through for subaggregate initialization. |
| |
| } else { |
| assert((ElemType->isRecordType() || ElemType->isVectorType() || |
| ElemType->isOpenCLSpecificType()) && "Unexpected type"); |
| |
| // C99 6.7.8p13: |
| // |
| // The initializer for a structure or union object that has |
| // automatic storage duration shall be either an initializer |
| // list as described below, or a single expression that has |
| // compatible structure or union type. In the latter case, the |
| // initial value of the object, including unnamed members, is |
| // that of the expression. |
| ExprResult ExprRes = expr; |
| if (SemaRef.CheckSingleAssignmentConstraints( |
| ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { |
| if (ExprRes.isInvalid()) |
| hadError = true; |
| else { |
| ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); |
| if (ExprRes.isInvalid()) |
| hadError = true; |
| } |
| UpdateStructuredListElement(StructuredList, StructuredIndex, |
| ExprRes.getAs<Expr>()); |
| ++Index; |
| return; |
| } |
| ExprRes.get(); |
| // Fall through for subaggregate initialization |
| } |
| |
| // C++ [dcl.init.aggr]p12: |
| // |
| // [...] Otherwise, if the member is itself a non-empty |
| // subaggregate, brace elision is assumed and the initializer is |
| // considered for the initialization of the first member of |
| // the subaggregate. |
| // OpenCL vector initializer is handled elsewhere. |
| if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || |
| ElemType->isAggregateType()) { |
| CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, |
| StructuredIndex); |
| ++StructuredIndex; |
| } else { |
| if (!VerifyOnly) { |
| // We cannot initialize this element, so let |
| // PerformCopyInitialization produce the appropriate diagnostic. |
| SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, |
| /*TopLevelOfInitList=*/true); |
| } |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| } |
| } |
| |
| void InitListChecker::CheckComplexType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| assert(Index == 0 && "Index in explicit init list must be zero"); |
| |
| // As an extension, clang supports complex initializers, which initialize |
| // a complex number component-wise. When an explicit initializer list for |
| // a complex number contains two two initializers, this extension kicks in: |
| // it exepcts the initializer list to contain two elements convertible to |
| // the element type of the complex type. The first element initializes |
| // the real part, and the second element intitializes the imaginary part. |
| |
| if (IList->getNumInits() != 2) |
| return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
| StructuredIndex); |
| |
| // This is an extension in C. (The builtin _Complex type does not exist |
| // in the C++ standard.) |
| if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) |
| << IList->getSourceRange(); |
| |
| // Initialize the complex number. |
| QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| ElementEntity.setElementIndex(Index); |
| CheckSubElementType(ElementEntity, IList, elementType, Index, |
| StructuredList, StructuredIndex); |
| } |
| } |
| |
| void InitListChecker::CheckScalarType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| if (Index >= IList->getNumInits()) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), |
| SemaRef.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_empty_scalar_initializer : |
| diag::err_empty_scalar_initializer) |
| << IList->getSourceRange(); |
| hadError = !SemaRef.getLangOpts().CPlusPlus11; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| Expr *expr = IList->getInit(Index); |
| if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { |
| // FIXME: This is invalid, and accepting it causes overload resolution |
| // to pick the wrong overload in some corner cases. |
| if (!VerifyOnly) |
| SemaRef.Diag(SubIList->getLocStart(), |
| diag::ext_many_braces_around_scalar_init) |
| << SubIList->getSourceRange(); |
| |
| CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, |
| StructuredIndex); |
| return; |
| } else if (isa<DesignatedInitExpr>(expr)) { |
| if (!VerifyOnly) |
| SemaRef.Diag(expr->getLocStart(), |
| diag::err_designator_for_scalar_init) |
| << DeclType << expr->getSourceRange(); |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| if (VerifyOnly) { |
| if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| ExprResult Result = |
| SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, |
| /*TopLevelOfInitList=*/true); |
| |
| Expr *ResultExpr = nullptr; |
| |
| if (Result.isInvalid()) |
| hadError = true; // types weren't compatible. |
| else { |
| ResultExpr = Result.getAs<Expr>(); |
| |
| if (ResultExpr != expr) { |
| // The type was promoted, update initializer list. |
| IList->setInit(Index, ResultExpr); |
| } |
| } |
| if (hadError) |
| ++StructuredIndex; |
| else |
| UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); |
| ++Index; |
| } |
| |
| void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| if (Index >= IList->getNumInits()) { |
| // FIXME: It would be wonderful if we could point at the actual member. In |
| // general, it would be useful to pass location information down the stack, |
| // so that we know the location (or decl) of the "current object" being |
| // initialized. |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), |
| diag::err_init_reference_member_uninitialized) |
| << DeclType |
| << IList->getSourceRange(); |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| Expr *expr = IList->getInit(Index); |
| if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) |
| << DeclType << IList->getSourceRange(); |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| if (VerifyOnly) { |
| if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| ExprResult Result = |
| SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, |
| /*TopLevelOfInitList=*/true); |
| |
| if (Result.isInvalid()) |
| hadError = true; |
| |
| expr = Result.getAs<Expr>(); |
| IList->setInit(Index, expr); |
| |
| if (hadError) |
| ++StructuredIndex; |
| else |
| UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
| ++Index; |
| } |
| |
| void InitListChecker::CheckVectorType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| const VectorType *VT = DeclType->getAs<VectorType>(); |
| unsigned maxElements = VT->getNumElements(); |
| unsigned numEltsInit = 0; |
| QualType elementType = VT->getElementType(); |
| |
| if (Index >= IList->getNumInits()) { |
| // Make sure the element type can be value-initialized. |
| if (VerifyOnly) |
| CheckEmptyInitializable( |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), |
| IList->getLocEnd()); |
| return; |
| } |
| |
| if (!SemaRef.getLangOpts().OpenCL) { |
| // If the initializing element is a vector, try to copy-initialize |
| // instead of breaking it apart (which is doomed to failure anyway). |
| Expr *Init = IList->getInit(Index); |
| if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { |
| if (VerifyOnly) { |
| if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| ExprResult Result = |
| SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init, |
| /*TopLevelOfInitList=*/true); |
| |
| Expr *ResultExpr = nullptr; |
| if (Result.isInvalid()) |
| hadError = true; // types weren't compatible. |
| else { |
| ResultExpr = Result.getAs<Expr>(); |
| |
| if (ResultExpr != Init) { |
| // The type was promoted, update initializer list. |
| IList->setInit(Index, ResultExpr); |
| } |
| } |
| if (hadError) |
| ++StructuredIndex; |
| else |
| UpdateStructuredListElement(StructuredList, StructuredIndex, |
| ResultExpr); |
| ++Index; |
| return; |
| } |
| |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
| |
| for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { |
| // Don't attempt to go past the end of the init list |
| if (Index >= IList->getNumInits()) { |
| if (VerifyOnly) |
| CheckEmptyInitializable(ElementEntity, IList->getLocEnd()); |
| break; |
| } |
| |
| ElementEntity.setElementIndex(Index); |
| CheckSubElementType(ElementEntity, IList, elementType, Index, |
| StructuredList, StructuredIndex); |
| } |
| |
| if (VerifyOnly) |
| return; |
| |
| bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); |
| const VectorType *T = Entity.getType()->getAs<VectorType>(); |
| if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || |
| T->getVectorKind() == VectorType::NeonPolyVector)) { |
| // The ability to use vector initializer lists is a GNU vector extension |
| // and is unrelated to the NEON intrinsics in arm_neon.h. On little |
| // endian machines it works fine, however on big endian machines it |
| // exhibits surprising behaviour: |
| // |
| // uint32x2_t x = {42, 64}; |
| // return vget_lane_u32(x, 0); // Will return 64. |
| // |
| // Because of this, explicitly call out that it is non-portable. |
| // |
| SemaRef.Diag(IList->getLocStart(), |
| diag::warn_neon_vector_initializer_non_portable); |
| |
| const char *typeCode; |
| unsigned typeSize = SemaRef.Context.getTypeSize(elementType); |
| |
| if (elementType->isFloatingType()) |
| typeCode = "f"; |
| else if (elementType->isSignedIntegerType()) |
| typeCode = "s"; |
| else if (elementType->isUnsignedIntegerType()) |
| typeCode = "u"; |
| else |
| llvm_unreachable("Invalid element type!"); |
| |
| SemaRef.Diag(IList->getLocStart(), |
| SemaRef.Context.getTypeSize(VT) > 64 ? |
| diag::note_neon_vector_initializer_non_portable_q : |
| diag::note_neon_vector_initializer_non_portable) |
| << typeCode << typeSize; |
| } |
| |
| return; |
| } |
| |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
| |
| // OpenCL initializers allows vectors to be constructed from vectors. |
| for (unsigned i = 0; i < maxElements; ++i) { |
| // Don't attempt to go past the end of the init list |
| if (Index >= IList->getNumInits()) |
| break; |
| |
| ElementEntity.setElementIndex(Index); |
| |
| QualType IType = IList->getInit(Index)->getType(); |
| if (!IType->isVectorType()) { |
| CheckSubElementType(ElementEntity, IList, elementType, Index, |
| StructuredList, StructuredIndex); |
| ++numEltsInit; |
| } else { |
| QualType VecType; |
| const VectorType *IVT = IType->getAs<VectorType>(); |
| unsigned numIElts = IVT->getNumElements(); |
| |
| if (IType->isExtVectorType()) |
| VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); |
| else |
| VecType = SemaRef.Context.getVectorType(elementType, numIElts, |
| IVT->getVectorKind()); |
| CheckSubElementType(ElementEntity, IList, VecType, Index, |
| StructuredList, StructuredIndex); |
| numEltsInit += numIElts; |
| } |
| } |
| |
| // OpenCL requires all elements to be initialized. |
| if (numEltsInit != maxElements) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), |
| diag::err_vector_incorrect_num_initializers) |
| << (numEltsInit < maxElements) << maxElements << numEltsInit; |
| hadError = true; |
| } |
| } |
| |
| void InitListChecker::CheckArrayType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &DeclType, |
| llvm::APSInt elementIndex, |
| bool SubobjectIsDesignatorContext, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); |
| |
| // Check for the special-case of initializing an array with a string. |
| if (Index < IList->getNumInits()) { |
| if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == |
| SIF_None) { |
| // We place the string literal directly into the resulting |
| // initializer list. This is the only place where the structure |
| // of the structured initializer list doesn't match exactly, |
| // because doing so would involve allocating one character |
| // constant for each string. |
| if (!VerifyOnly) { |
| CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); |
| UpdateStructuredListElement(StructuredList, StructuredIndex, |
| IList->getInit(Index)); |
| StructuredList->resizeInits(SemaRef.Context, StructuredIndex); |
| } |
| ++Index; |
| return; |
| } |
| } |
| if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { |
| // Check for VLAs; in standard C it would be possible to check this |
| // earlier, but I don't know where clang accepts VLAs (gcc accepts |
| // them in all sorts of strange places). |
| if (!VerifyOnly) |
| SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), |
| diag::err_variable_object_no_init) |
| << VAT->getSizeExpr()->getSourceRange(); |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| // We might know the maximum number of elements in advance. |
| llvm::APSInt maxElements(elementIndex.getBitWidth(), |
| elementIndex.isUnsigned()); |
| bool maxElementsKnown = false; |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { |
| maxElements = CAT->getSize(); |
| elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); |
| elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
| maxElementsKnown = true; |
| } |
| |
| QualType elementType = arrayType->getElementType(); |
| while (Index < IList->getNumInits()) { |
| Expr *Init = IList->getInit(Index); |
| if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
| // If we're not the subobject that matches up with the '{' for |
| // the designator, we shouldn't be handling the |
| // designator. Return immediately. |
| if (!SubobjectIsDesignatorContext) |
| return; |
| |
| // Handle this designated initializer. elementIndex will be |
| // updated to be the next array element we'll initialize. |
| if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
| DeclType, nullptr, &elementIndex, Index, |
| StructuredList, StructuredIndex, true, |
| false)) { |
| hadError = true; |
| continue; |
| } |
| |
| if (elementIndex.getBitWidth() > maxElements.getBitWidth()) |
| maxElements = maxElements.extend(elementIndex.getBitWidth()); |
| else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) |
| elementIndex = elementIndex.extend(maxElements.getBitWidth()); |
| elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
| |
| // If the array is of incomplete type, keep track of the number of |
| // elements in the initializer. |
| if (!maxElementsKnown && elementIndex > maxElements) |
| maxElements = elementIndex; |
| |
| continue; |
| } |
| |
| // If we know the maximum number of elements, and we've already |
| // hit it, stop consuming elements in the initializer list. |
| if (maxElementsKnown && elementIndex == maxElements) |
| break; |
| |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, |
| Entity); |
| // Check this element. |
| CheckSubElementType(ElementEntity, IList, elementType, Index, |
| StructuredList, StructuredIndex); |
| ++elementIndex; |
| |
| // If the array is of incomplete type, keep track of the number of |
| // elements in the initializer. |
| if (!maxElementsKnown && elementIndex > maxElements) |
| maxElements = elementIndex; |
| } |
| if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { |
| // If this is an incomplete array type, the actual type needs to |
| // be calculated here. |
| llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); |
| if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { |
| // Sizing an array implicitly to zero is not allowed by ISO C, |
| // but is supported by GNU. |
| SemaRef.Diag(IList->getLocStart(), |
| diag::ext_typecheck_zero_array_size); |
| } |
| |
| DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, |
| ArrayType::Normal, 0); |
| } |
| if (!hadError && VerifyOnly) { |
| // If there are any members of the array that get value-initialized, check |
| // that is possible. That happens if we know the bound and don't have |
| // enough elements, or if we're performing an array new with an unknown |
| // bound. |
| // FIXME: This needs to detect holes left by designated initializers too. |
| if ((maxElementsKnown && elementIndex < maxElements) || |
| Entity.isVariableLengthArrayNew()) |
| CheckEmptyInitializable(InitializedEntity::InitializeElement( |
| SemaRef.Context, 0, Entity), |
| IList->getLocEnd()); |
| } |
| } |
| |
| bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, |
| Expr *InitExpr, |
| FieldDecl *Field, |
| bool TopLevelObject) { |
| // Handle GNU flexible array initializers. |
| unsigned FlexArrayDiag; |
| if (isa<InitListExpr>(InitExpr) && |
| cast<InitListExpr>(InitExpr)->getNumInits() == 0) { |
| // Empty flexible array init always allowed as an extension |
| FlexArrayDiag = diag::ext_flexible_array_init; |
| } else if (SemaRef.getLangOpts().CPlusPlus) { |
| // Disallow flexible array init in C++; it is not required for gcc |
| // compatibility, and it needs work to IRGen correctly in general. |
| FlexArrayDiag = diag::err_flexible_array_init; |
| } else if (!TopLevelObject) { |
| // Disallow flexible array init on non-top-level object |
| FlexArrayDiag = diag::err_flexible_array_init; |
| } else if (Entity.getKind() != InitializedEntity::EK_Variable) { |
| // Disallow flexible array init on anything which is not a variable. |
| FlexArrayDiag = diag::err_flexible_array_init; |
| } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { |
| // Disallow flexible array init on local variables. |
| FlexArrayDiag = diag::err_flexible_array_init; |
| } else { |
| // Allow other cases. |
| FlexArrayDiag = diag::ext_flexible_array_init; |
| } |
| |
| if (!VerifyOnly) { |
| SemaRef.Diag(InitExpr->getLocStart(), |
| FlexArrayDiag) |
| << InitExpr->getLocStart(); |
| SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| << Field; |
| } |
| |
| return FlexArrayDiag != diag::ext_flexible_array_init; |
| } |
| |
| void InitListChecker::CheckStructUnionTypes( |
| const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, |
| CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, |
| bool SubobjectIsDesignatorContext, unsigned &Index, |
| InitListExpr *StructuredList, unsigned &StructuredIndex, |
| bool TopLevelObject) { |
| RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); |
| |
| // If the record is invalid, some of it's members are invalid. To avoid |
| // confusion, we forgo checking the intializer for the entire record. |
| if (structDecl->isInvalidDecl()) { |
| // Assume it was supposed to consume a single initializer. |
| ++Index; |
| hadError = true; |
| return; |
| } |
| |
| if (DeclType->isUnionType() && IList->getNumInits() == 0) { |
| RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); |
| |
| // If there's a default initializer, use it. |
| if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { |
| if (VerifyOnly) |
| return; |
| for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (Field->hasInClassInitializer()) { |
| StructuredList->setInitializedFieldInUnion(*Field); |
| // FIXME: Actually build a CXXDefaultInitExpr? |
| return; |
| } |
| } |
| } |
| |
| // Value-initialize the first member of the union that isn't an unnamed |
| // bitfield. |
| for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (!Field->isUnnamedBitfield()) { |
| if (VerifyOnly) |
| CheckEmptyInitializable( |
| InitializedEntity::InitializeMember(*Field, &Entity), |
| IList->getLocEnd()); |
| else |
| StructuredList->setInitializedFieldInUnion(*Field); |
| break; |
| } |
| } |
| return; |
| } |
| |
| bool InitializedSomething = false; |
| |
| // If we have any base classes, they are initialized prior to the fields. |
| for (auto &Base : Bases) { |
| Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; |
| SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd(); |
| |
| // Designated inits always initialize fields, so if we see one, all |
| // remaining base classes have no explicit initializer. |
| if (Init && isa<DesignatedInitExpr>(Init)) |
| Init = nullptr; |
| |
| InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
| SemaRef.Context, &Base, false, &Entity); |
| if (Init) { |
| CheckSubElementType(BaseEntity, IList, Base.getType(), Index, |
| StructuredList, StructuredIndex); |
| InitializedSomething = true; |
| } else if (VerifyOnly) { |
| CheckEmptyInitializable(BaseEntity, InitLoc); |
| } |
| } |
| |
| // If structDecl is a forward declaration, this loop won't do |
| // anything except look at designated initializers; That's okay, |
| // because an error should get printed out elsewhere. It might be |
| // worthwhile to skip over the rest of the initializer, though. |
| RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); |
| RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| bool CheckForMissingFields = |
| !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); |
| |
| while (Index < IList->getNumInits()) { |
| Expr *Init = IList->getInit(Index); |
| |
| if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
| // If we're not the subobject that matches up with the '{' for |
| // the designator, we shouldn't be handling the |
| // designator. Return immediately. |
| if (!SubobjectIsDesignatorContext) |
| return; |
| |
| // Handle this designated initializer. Field will be updated to |
| // the next field that we'll be initializing. |
| if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
| DeclType, &Field, nullptr, Index, |
| StructuredList, StructuredIndex, |
| true, TopLevelObject)) |
| hadError = true; |
| |
| InitializedSomething = true; |
| |
| // Disable check for missing fields when designators are used. |
| // This matches gcc behaviour. |
| CheckForMissingFields = false; |
| continue; |
| } |
| |
| if (Field == FieldEnd) { |
| // We've run out of fields. We're done. |
| break; |
| } |
| |
| // We've already initialized a member of a union. We're done. |
| if (InitializedSomething && DeclType->isUnionType()) |
| break; |
| |
| // If we've hit the flexible array member at the end, we're done. |
| if (Field->getType()->isIncompleteArrayType()) |
| break; |
| |
| if (Field->isUnnamedBitfield()) { |
| // Don't initialize unnamed bitfields, e.g. "int : 20;" |
| ++Field; |
| continue; |
| } |
| |
| // Make sure we can use this declaration. |
| bool InvalidUse; |
| if (VerifyOnly) |
| InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
| else |
| InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, |
| IList->getInit(Index)->getLocStart()); |
| if (InvalidUse) { |
| ++Index; |
| ++Field; |
| hadError = true; |
| continue; |
| } |
| |
| InitializedEntity MemberEntity = |
| InitializedEntity::InitializeMember(*Field, &Entity); |
| CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
| StructuredList, StructuredIndex); |
| InitializedSomething = true; |
| |
| if (DeclType->isUnionType() && !VerifyOnly) { |
| // Initialize the first field within the union. |
| StructuredList->setInitializedFieldInUnion(*Field); |
| } |
| |
| ++Field; |
| } |
| |
| // Emit warnings for missing struct field initializers. |
| if (!VerifyOnly && InitializedSomething && CheckForMissingFields && |
| Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && |
| !DeclType->isUnionType()) { |
| // It is possible we have one or more unnamed bitfields remaining. |
| // Find first (if any) named field and emit warning. |
| for (RecordDecl::field_iterator it = Field, end = RD->field_end(); |
| it != end; ++it) { |
| if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { |
| SemaRef.Diag(IList->getSourceRange().getEnd(), |
| diag::warn_missing_field_initializers) << *it; |
| break; |
| } |
| } |
| } |
| |
| // Check that any remaining fields can be value-initialized. |
| if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && |
| !Field->getType()->isIncompleteArrayType()) { |
| // FIXME: Should check for holes left by designated initializers too. |
| for (; Field != FieldEnd && !hadError; ++Field) { |
| if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) |
| CheckEmptyInitializable( |
| InitializedEntity::InitializeMember(*Field, &Entity), |
| IList->getLocEnd()); |
| } |
| } |
| |
| if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || |
| Index >= IList->getNumInits()) |
| return; |
| |
| if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, |
| TopLevelObject)) { |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| InitializedEntity MemberEntity = |
| InitializedEntity::InitializeMember(*Field, &Entity); |
| |
| if (isa<InitListExpr>(IList->getInit(Index))) |
| CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
| StructuredList, StructuredIndex); |
| else |
| CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, |
| StructuredList, StructuredIndex); |
| } |
| |
| /// Expand a field designator that refers to a member of an |
| /// anonymous struct or union into a series of field designators that |
| /// refers to the field within the appropriate subobject. |
| /// |
| static void ExpandAnonymousFieldDesignator(Sema &SemaRef, |
| DesignatedInitExpr *DIE, |
| unsigned DesigIdx, |
| IndirectFieldDecl *IndirectField) { |
| typedef DesignatedInitExpr::Designator Designator; |
| |
| // Build the replacement designators. |
| SmallVector<Designator, 4> Replacements; |
| for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), |
| PE = IndirectField->chain_end(); PI != PE; ++PI) { |
| if (PI + 1 == PE) |
| Replacements.push_back(Designator((IdentifierInfo *)nullptr, |
| DIE->getDesignator(DesigIdx)->getDotLoc(), |
| DIE->getDesignator(DesigIdx)->getFieldLoc())); |
| else |
| Replacements.push_back(Designator((IdentifierInfo *)nullptr, |
| SourceLocation(), SourceLocation())); |
| assert(isa<FieldDecl>(*PI)); |
| Replacements.back().setField(cast<FieldDecl>(*PI)); |
| } |
| |
| // Expand the current designator into the set of replacement |
| // designators, so we have a full subobject path down to where the |
| // member of the anonymous struct/union is actually stored. |
| DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], |
| &Replacements[0] + Replacements.size()); |
| } |
| |
| static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, |
| DesignatedInitExpr *DIE) { |
| unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; |
| SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); |
| for (unsigned I = 0; I < NumIndexExprs; ++I) |
| IndexExprs[I] = DIE->getSubExpr(I + 1); |
| return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), |
| IndexExprs, |
| DIE->getEqualOrColonLoc(), |
| DIE->usesGNUSyntax(), DIE->getInit()); |
| } |
| |
| namespace { |
| |
| // Callback to only accept typo corrections that are for field members of |
| // the given struct or union. |
| class FieldInitializerValidatorCCC : public CorrectionCandidateCallback { |
| public: |
| explicit FieldInitializerValidatorCCC(RecordDecl *RD) |
| : Record(RD) {} |
| |
| bool ValidateCandidate(const TypoCorrection &candidate) override { |
| FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); |
| return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); |
| } |
| |
| private: |
| RecordDecl *Record; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Check the well-formedness of a C99 designated initializer. |
| /// |
| /// Determines whether the designated initializer @p DIE, which |
| /// resides at the given @p Index within the initializer list @p |
| /// IList, is well-formed for a current object of type @p DeclType |
| /// (C99 6.7.8). The actual subobject that this designator refers to |
| /// within the current subobject is returned in either |
| /// @p NextField or @p NextElementIndex (whichever is appropriate). |
| /// |
| /// @param IList The initializer list in which this designated |
| /// initializer occurs. |
| /// |
| /// @param DIE The designated initializer expression. |
| /// |
| /// @param DesigIdx The index of the current designator. |
| /// |
| /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), |
| /// into which the designation in @p DIE should refer. |
| /// |
| /// @param NextField If non-NULL and the first designator in @p DIE is |
| /// a field, this will be set to the field declaration corresponding |
| /// to the field named by the designator. |
| /// |
| /// @param NextElementIndex If non-NULL and the first designator in @p |
| /// DIE is an array designator or GNU array-range designator, this |
| /// will be set to the last index initialized by this designator. |
| /// |
| /// @param Index Index into @p IList where the designated initializer |
| /// @p DIE occurs. |
| /// |
| /// @param StructuredList The initializer list expression that |
| /// describes all of the subobject initializers in the order they'll |
| /// actually be initialized. |
| /// |
| /// @returns true if there was an error, false otherwise. |
| bool |
| InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, |
| InitListExpr *IList, |
| DesignatedInitExpr *DIE, |
| unsigned DesigIdx, |
| QualType &CurrentObjectType, |
| RecordDecl::field_iterator *NextField, |
| llvm::APSInt *NextElementIndex, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool FinishSubobjectInit, |
| bool TopLevelObject) { |
| if (DesigIdx == DIE->size()) { |
| // Check the actual initialization for the designated object type. |
| bool prevHadError = hadError; |
| |
| // Temporarily remove the designator expression from the |
| // initializer list that the child calls see, so that we don't try |
| // to re-process the designator. |
| unsigned OldIndex = Index; |
| IList->setInit(OldIndex, DIE->getInit()); |
| |
| CheckSubElementType(Entity, IList, CurrentObjectType, Index, |
| StructuredList, StructuredIndex); |
| |
| // Restore the designated initializer expression in the syntactic |
| // form of the initializer list. |
| if (IList->getInit(OldIndex) != DIE->getInit()) |
| DIE->setInit(IList->getInit(OldIndex)); |
| IList->setInit(OldIndex, DIE); |
| |
| return hadError && !prevHadError; |
| } |
| |
| DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); |
| bool IsFirstDesignator = (DesigIdx == 0); |
| if (!VerifyOnly) { |
| assert((IsFirstDesignator || StructuredList) && |
| "Need a non-designated initializer list to start from"); |
| |
| // Determine the structural initializer list that corresponds to the |
| // current subobject. |
| if (IsFirstDesignator) |
| StructuredList = SyntacticToSemantic.lookup(IList); |
| else { |
| Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? |
| StructuredList->getInit(StructuredIndex) : nullptr; |
| if (!ExistingInit && StructuredList->hasArrayFiller()) |
| ExistingInit = StructuredList->getArrayFiller(); |
| |
| if (!ExistingInit) |
| StructuredList = |
| getStructuredSubobjectInit(IList, Index, CurrentObjectType, |
| StructuredList, StructuredIndex, |
| SourceRange(D->getLocStart(), |
| DIE->getLocEnd())); |
| else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) |
| StructuredList = Result; |
| else { |
| if (DesignatedInitUpdateExpr *E = |
| dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) |
| StructuredList = E->getUpdater(); |
| else { |
| DesignatedInitUpdateExpr *DIUE = |
| new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context, |
| D->getLocStart(), ExistingInit, |
| DIE->getLocEnd()); |
| StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); |
| StructuredList = DIUE->getUpdater(); |
| } |
| |
| // We need to check on source range validity because the previous |
| // initializer does not have to be an explicit initializer. e.g., |
| // |
| // struct P { int a, b; }; |
| // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; |
| // |
| // There is an overwrite taking place because the first braced initializer |
| // list "{ .a = 2 }" already provides value for .p.b (which is zero). |
| if (ExistingInit->getSourceRange().isValid()) { |
| // We are creating an initializer list that initializes the |
| // subobjects of the current object, but there was already an |
| // initialization that completely initialized the current |
| // subobject, e.g., by a compound literal: |
| // |
| // struct X { int a, b; }; |
| // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
| // |
| // Here, xs[0].a == 0 and xs[0].b == 3, since the second, |
| // designated initializer re-initializes the whole |
| // subobject [0], overwriting previous initializers. |
| SemaRef.Diag(D->getLocStart(), |
| diag::warn_subobject_initializer_overrides) |
| << SourceRange(D->getLocStart(), DIE->getLocEnd()); |
| |
| SemaRef.Diag(ExistingInit->getLocStart(), |
| diag::note_previous_initializer) |
| << /*FIXME:has side effects=*/0 |
| << ExistingInit->getSourceRange(); |
| } |
| } |
| } |
| assert(StructuredList && "Expected a structured initializer list"); |
| } |
| |
| if (D->isFieldDesignator()) { |
| // C99 6.7.8p7: |
| // |
| // If a designator has the form |
| // |
| // . identifier |
| // |
| // then the current object (defined below) shall have |
| // structure or union type and the identifier shall be the |
| // name of a member of that type. |
| const RecordType *RT = CurrentObjectType->getAs<RecordType>(); |
| if (!RT) { |
| SourceLocation Loc = D->getDotLoc(); |
| if (Loc.isInvalid()) |
| Loc = D->getFieldLoc(); |
| if (!VerifyOnly) |
| SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) |
| << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; |
| ++Index; |
| return true; |
| } |
| |
| FieldDecl *KnownField = D->getField(); |
| if (!KnownField) { |
| IdentifierInfo *FieldName = D->getFieldName(); |
| DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); |
| for (NamedDecl *ND : Lookup) { |
| if (auto *FD = dyn_cast<FieldDecl>(ND)) { |
| KnownField = FD; |
| break; |
| } |
| if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { |
| // In verify mode, don't modify the original. |
| if (VerifyOnly) |
| DIE = CloneDesignatedInitExpr(SemaRef, DIE); |
| ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); |
| D = DIE->getDesignator(DesigIdx); |
| KnownField = cast<FieldDecl>(*IFD->chain_begin()); |
| break; |
| } |
| } |
| if (!KnownField) { |
| if (VerifyOnly) { |
| ++Index; |
| return true; // No typo correction when just trying this out. |
| } |
| |
| // Name lookup found something, but it wasn't a field. |
| if (!Lookup.empty()) { |
| SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) |
| << FieldName; |
| SemaRef.Diag(Lookup.front()->getLocation(), |
| diag::note_field_designator_found); |
| ++Index; |
| return true; |
| } |
| |
| // Name lookup didn't find anything. |
| // Determine whether this was a typo for another field name. |
| if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
| DeclarationNameInfo(FieldName, D->getFieldLoc()), |
| Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, |
| llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()), |
| Sema::CTK_ErrorRecovery, RT->getDecl())) { |
| SemaRef.diagnoseTypo( |
| Corrected, |
| SemaRef.PDiag(diag::err_field_designator_unknown_suggest) |
| << FieldName << CurrentObjectType); |
| KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); |
| hadError = true; |
| } else { |
| // Typo correction didn't find anything. |
| SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) |
| << FieldName << CurrentObjectType; |
| ++Index; |
| return true; |
| } |
| } |
| } |
| |
| unsigned FieldIndex = 0; |
| |
| if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) |
| FieldIndex = CXXRD->getNumBases(); |
| |
| for (auto *FI : RT->getDecl()->fields()) { |
| if (FI->isUnnamedBitfield()) |
| continue; |
| if (declaresSameEntity(KnownField, FI)) { |
| KnownField = FI; |
| break; |
| } |
| ++FieldIndex; |
| } |
| |
| RecordDecl::field_iterator Field = |
| RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); |
| |
| // All of the fields of a union are located at the same place in |
| // the initializer list. |
| if (RT->getDecl()->isUnion()) { |
| FieldIndex = 0; |
| if (!VerifyOnly) { |
| FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); |
| if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { |
| assert(StructuredList->getNumInits() == 1 |
| && "A union should never have more than one initializer!"); |
| |
| Expr *ExistingInit = StructuredList->getInit(0); |
| if (ExistingInit) { |
| // We're about to throw away an initializer, emit warning. |
| SemaRef.Diag(D->getFieldLoc(), |
| diag::warn_initializer_overrides) |
| << D->getSourceRange(); |
| SemaRef.Diag(ExistingInit->getLocStart(), |
| diag::note_previous_initializer) |
| << /*FIXME:has side effects=*/0 |
| << ExistingInit->getSourceRange(); |
| } |
| |
| // remove existing initializer |
| StructuredList->resizeInits(SemaRef.Context, 0); |
| StructuredList->setInitializedFieldInUnion(nullptr); |
| } |
| |
| StructuredList->setInitializedFieldInUnion(*Field); |
| } |
| } |
| |
| // Make sure we can use this declaration. |
| bool InvalidUse; |
| if (VerifyOnly) |
| InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
| else |
| InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); |
| if (InvalidUse) { |
| ++Index; |
| return true; |
| } |
| |
| if (!VerifyOnly) { |
| // Update the designator with the field declaration. |
| D->setField(*Field); |
| |
| // Make sure that our non-designated initializer list has space |
| // for a subobject corresponding to this field. |
| if (FieldIndex >= StructuredList->getNumInits()) |
| StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); |
| } |
| |
| // This designator names a flexible array member. |
| if (Field->getType()->isIncompleteArrayType()) { |
| bool Invalid = false; |
| if ((DesigIdx + 1) != DIE->size()) { |
| // We can't designate an object within the flexible array |
| // member (because GCC doesn't allow it). |
| if (!VerifyOnly) { |
| DesignatedInitExpr::Designator *NextD |
| = DIE->getDesignator(DesigIdx + 1); |
| SemaRef.Diag(NextD->getLocStart(), |
| diag::err_designator_into_flexible_array_member) |
| << SourceRange(NextD->getLocStart(), |
| DIE->getLocEnd()); |
| SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| << *Field; |
| } |
| Invalid = true; |
| } |
| |
| if (!hadError && !isa<InitListExpr>(DIE->getInit()) && |
| !isa<StringLiteral>(DIE->getInit())) { |
| // The initializer is not an initializer list. |
| if (!VerifyOnly) { |
| SemaRef.Diag(DIE->getInit()->getLocStart(), |
| diag::err_flexible_array_init_needs_braces) |
| << DIE->getInit()->getSourceRange(); |
| SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| << *Field; |
| } |
| Invalid = true; |
| } |
| |
| // Check GNU flexible array initializer. |
| if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, |
| TopLevelObject)) |
| Invalid = true; |
| |
| if (Invalid) { |
| ++Index; |
| return true; |
| } |
| |
| // Initialize the array. |
| bool prevHadError = hadError; |
| unsigned newStructuredIndex = FieldIndex; |
| unsigned OldIndex = Index; |
| IList->setInit(Index, DIE->getInit()); |
| |
| InitializedEntity MemberEntity = |
| InitializedEntity::InitializeMember(*Field, &Entity); |
| CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
| StructuredList, newStructuredIndex); |
| |
| IList->setInit(OldIndex, DIE); |
| if (hadError && !prevHadError) { |
| ++Field; |
| ++FieldIndex; |
| if (NextField) |
| *NextField = Field; |
| StructuredIndex = FieldIndex; |
| return true; |
| } |
| } else { |
| // Recurse to check later designated subobjects. |
| QualType FieldType = Field->getType(); |
| unsigned newStructuredIndex = FieldIndex; |
| |
| InitializedEntity MemberEntity = |
| InitializedEntity::InitializeMember(*Field, &Entity); |
| if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, |
| FieldType, nullptr, nullptr, Index, |
| StructuredList, newStructuredIndex, |
| FinishSubobjectInit, false)) |
| return true; |
| } |
| |
| // Find the position of the next field to be initialized in this |
| // subobject. |
| ++Field; |
| ++FieldIndex; |
| |
| // If this the first designator, our caller will continue checking |
| // the rest of this struct/class/union subobject. |
| if (IsFirstDesignator) { |
| if (NextField) |
| *NextField = Field; |
| StructuredIndex = FieldIndex; |
| return false; |
| } |
| |
| if (!FinishSubobjectInit) |
| return false; |
| |
| // We've already initialized something in the union; we're done. |
| if (RT->getDecl()->isUnion()) |
| return hadError; |
| |
| // Check the remaining fields within this class/struct/union subobject. |
| bool prevHadError = hadError; |
| |
| auto NoBases = |
| CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
| CXXRecordDecl::base_class_iterator()); |
| CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, |
| false, Index, StructuredList, FieldIndex); |
| return hadError && !prevHadError; |
| } |
| |
| // C99 6.7.8p6: |
| // |
| // If a designator has the form |
| // |
| // [ constant-expression ] |
| // |
| // then the current object (defined below) shall have array |
| // type and the expression shall be an integer constant |
| // expression. If the array is of unknown size, any |
| // nonnegative value is valid. |
| // |
| // Additionally, cope with the GNU extension that permits |
| // designators of the form |
| // |
| // [ constant-expression ... constant-expression ] |
| const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); |
| if (!AT) { |
| if (!VerifyOnly) |
| SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) |
| << CurrentObjectType; |
| ++Index; |
| return true; |
| } |
| |
| Expr *IndexExpr = nullptr; |
| llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; |
| if (D->isArrayDesignator()) { |
| IndexExpr = DIE->getArrayIndex(*D); |
| DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); |
| DesignatedEndIndex = DesignatedStartIndex; |
| } else { |
| assert(D->isArrayRangeDesignator() && "Need array-range designator"); |
| |
| DesignatedStartIndex = |
| DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); |
| DesignatedEndIndex = |
| DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); |
| IndexExpr = DIE->getArrayRangeEnd(*D); |
| |
| // Codegen can't handle evaluating array range designators that have side |
| // effects, because we replicate the AST value for each initialized element. |
| // As such, set the sawArrayRangeDesignator() bit if we initialize multiple |
| // elements with something that has a side effect, so codegen can emit an |
| // "error unsupported" error instead of miscompiling the app. |
| if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& |
| DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) |
| FullyStructuredList->sawArrayRangeDesignator(); |
| } |
| |
| if (isa<ConstantArrayType>(AT)) { |
| llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); |
| DesignatedStartIndex |
| = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); |
| DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); |
| DesignatedEndIndex |
| = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); |
| DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); |
| if (DesignatedEndIndex >= MaxElements) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IndexExpr->getLocStart(), |
| diag::err_array_designator_too_large) |
| << DesignatedEndIndex.toString(10) << MaxElements.toString(10) |
| << IndexExpr->getSourceRange(); |
| ++Index; |
| return true; |
| } |
| } else { |
| unsigned DesignatedIndexBitWidth = |
| ConstantArrayType::getMaxSizeBits(SemaRef.Context); |
| DesignatedStartIndex = |
| DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); |
| DesignatedEndIndex = |
| DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); |
| DesignatedStartIndex.setIsUnsigned(true); |
| DesignatedEndIndex.setIsUnsigned(true); |
| } |
| |
| if (!VerifyOnly && StructuredList->isStringLiteralInit()) { |
| // We're modifying a string literal init; we have to decompose the string |
| // so we can modify the individual characters. |
| ASTContext &Context = SemaRef.Context; |
| Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); |
| |
| // Compute the character type |
| QualType CharTy = AT->getElementType(); |
| |
| // Compute the type of the integer literals. |
| QualType PromotedCharTy = CharTy; |
| if (CharTy->isPromotableIntegerType()) |
| PromotedCharTy = Context.getPromotedIntegerType(CharTy); |
| unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); |
| |
| if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { |
| // Get the length of the string. |
| uint64_t StrLen = SL->getLength(); |
| if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
| StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
| StructuredList->resizeInits(Context, StrLen); |
| |
| // Build a literal for each character in the string, and put them into |
| // the init list. |
| for (unsigned i = 0, e = StrLen; i != e; ++i) { |
| llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); |
| Expr *Init = new (Context) IntegerLiteral( |
| Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
| if (CharTy != PromotedCharTy) |
| Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, |
| Init, nullptr, VK_RValue); |
| StructuredList->updateInit(Context, i, Init); |
| } |
| } else { |
| ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); |
| std::string Str; |
| Context.getObjCEncodingForType(E->getEncodedType(), Str); |
| |
| // Get the length of the string. |
| uint64_t StrLen = Str.size(); |
| if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
| StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
| StructuredList->resizeInits(Context, StrLen); |
| |
| // Build a literal for each character in the string, and put them into |
| // the init list. |
| for (unsigned i = 0, e = StrLen; i != e; ++i) { |
| llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); |
| Expr *Init = new (Context) IntegerLiteral( |
| Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
| if (CharTy != PromotedCharTy) |
| Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, |
| Init, nullptr, VK_RValue); |
| StructuredList->updateInit(Context, i, Init); |
| } |
| } |
| } |
| |
| // Make sure that our non-designated initializer list has space |
| // for a subobject corresponding to this array element. |
| if (!VerifyOnly && |
| DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) |
| StructuredList->resizeInits(SemaRef.Context, |
| DesignatedEndIndex.getZExtValue() + 1); |
| |
| // Repeatedly perform subobject initializations in the range |
| // [DesignatedStartIndex, DesignatedEndIndex]. |
| |
| // Move to the next designator |
| unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); |
| unsigned OldIndex = Index; |
| |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
| |
| while (DesignatedStartIndex <= DesignatedEndIndex) { |
| // Recurse to check later designated subobjects. |
| QualType ElementType = AT->getElementType(); |
| Index = OldIndex; |
| |
| ElementEntity.setElementIndex(ElementIndex); |
| if (CheckDesignatedInitializer( |
| ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, |
| nullptr, Index, StructuredList, ElementIndex, |
| FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), |
| false)) |
| return true; |
| |
| // Move to the next index in the array that we'll be initializing. |
| ++DesignatedStartIndex; |
| ElementIndex = DesignatedStartIndex.getZExtValue(); |
| } |
| |
| // If this the first designator, our caller will continue checking |
| // the rest of this array subobject. |
| if (IsFirstDesignator) { |
| if (NextElementIndex) |
| *NextElementIndex = DesignatedStartIndex; |
| StructuredIndex = ElementIndex; |
| return false; |
| } |
| |
| if (!FinishSubobjectInit) |
| return false; |
| |
| // Check the remaining elements within this array subobject. |
| bool prevHadError = hadError; |
| CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, |
| /*SubobjectIsDesignatorContext=*/false, Index, |
| StructuredList, ElementIndex); |
| return hadError && !prevHadError; |
| } |
| |
| // Get the structured initializer list for a subobject of type |
| // @p CurrentObjectType. |
| InitListExpr * |
| InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
| QualType CurrentObjectType, |
| InitListExpr *StructuredList, |
| unsigned StructuredIndex, |
| SourceRange InitRange, |
| bool IsFullyOverwritten) { |
| if (VerifyOnly) |
| return nullptr; // No structured list in verification-only mode. |
| Expr *ExistingInit = nullptr; |
| if (!StructuredList) |
| ExistingInit = SyntacticToSemantic.lookup(IList); |
| else if (StructuredIndex < StructuredList->getNumInits()) |
| ExistingInit = StructuredList->getInit(StructuredIndex); |
| |
| if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) |
| // There might have already been initializers for subobjects of the current |
| // object, but a subsequent initializer list will overwrite the entirety |
| // of the current object. (See DR 253 and C99 6.7.8p21). e.g., |
| // |
| // struct P { char x[6]; }; |
| // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; |
| // |
| // The first designated initializer is ignored, and l.x is just "f". |
| if (!IsFullyOverwritten) |
| return Result; |
| |
| if (ExistingInit) { |
| // We are creating an initializer list that initializes the |
| // subobjects of the current object, but there was already an |
| // initialization that completely initialized the current |
| // subobject, e.g., by a compound literal: |
| // |
| // struct X { int a, b; }; |
| // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
| // |
| // Here, xs[0].a == 0 and xs[0].b == 3, since the second, |
| // designated initializer re-initializes the whole |
| // subobject [0], overwriting previous initializers. |
| SemaRef.Diag(InitRange.getBegin(), |
| diag::warn_subobject_initializer_overrides) |
| << InitRange; |
| SemaRef.Diag(ExistingInit->getLocStart(), |
| diag::note_previous_initializer) |
| << /*FIXME:has side effects=*/0 |
| << ExistingInit->getSourceRange(); |
| } |
| |
| InitListExpr *Result |
| = new (SemaRef.Context) InitListExpr(SemaRef.Context, |
| InitRange.getBegin(), None, |
| InitRange.getEnd()); |
| |
| QualType ResultType = CurrentObjectType; |
| if (!ResultType->isArrayType()) |
| ResultType = ResultType.getNonLValueExprType(SemaRef.Context); |
| Result->setType(ResultType); |
| |
| // Pre-allocate storage for the structured initializer list. |
| unsigned NumElements = 0; |
| unsigned NumInits = 0; |
| bool GotNumInits = false; |
| if (!StructuredList) { |
| NumInits = IList->getNumInits(); |
| GotNumInits = true; |
| } else if (Index < IList->getNumInits()) { |
| if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { |
| NumInits = SubList->getNumInits(); |
| GotNumInits = true; |
| } |
| } |
| |
| if (const ArrayType *AType |
| = SemaRef.Context.getAsArrayType(CurrentObjectType)) { |
| if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { |
| NumElements = CAType->getSize().getZExtValue(); |
| // Simple heuristic so that we don't allocate a very large |
| // initializer with many empty entries at the end. |
| if (GotNumInits && NumElements > NumInits) |
| NumElements = 0; |
| } |
| } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) |
| NumElements = VType->getNumElements(); |
| else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { |
| RecordDecl *RDecl = RType->getDecl(); |
| if (RDecl->isUnion()) |
| NumElements = 1; |
| else |
| NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); |
| } |
| |
| Result->reserveInits(SemaRef.Context, NumElements); |
| |
| // Link this new initializer list into the structured initializer |
| // lists. |
| if (StructuredList) |
| StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); |
| else { |
| Result->setSyntacticForm(IList); |
| SyntacticToSemantic[IList] = Result; |
| } |
| |
| return Result; |
| } |
| |
| /// Update the initializer at index @p StructuredIndex within the |
| /// structured initializer list to the value @p expr. |
| void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| Expr *expr) { |
| // No structured initializer list to update |
| if (!StructuredList) |
| return; |
| |
| if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, |
| StructuredIndex, expr)) { |
| // This initializer overwrites a previous initializer. Warn. |
| // We need to check on source range validity because the previous |
| // initializer does not have to be an explicit initializer. |
| // struct P { int a, b; }; |
| // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; |
| // There is an overwrite taking place because the first braced initializer |
| // list "{ .a = 2 }' already provides value for .p.b (which is zero). |
| if (PrevInit->getSourceRange().isValid()) { |
| SemaRef.Diag(expr->getLocStart(), |
| diag::warn_initializer_overrides) |
| << expr->getSourceRange(); |
| |
| SemaRef.Diag(PrevInit->getLocStart(), |
| diag::note_previous_initializer) |
| << /*FIXME:has side effects=*/0 |
| << PrevInit->getSourceRange(); |
| } |
| } |
| |
| ++StructuredIndex; |
| } |
| |
| /// Check that the given Index expression is a valid array designator |
| /// value. This is essentially just a wrapper around |
| /// VerifyIntegerConstantExpression that also checks for negative values |
| /// and produces a reasonable diagnostic if there is a |
| /// failure. Returns the index expression, possibly with an implicit cast |
| /// added, on success. If everything went okay, Value will receive the |
| /// value of the constant expression. |
| static ExprResult |
| CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { |
| SourceLocation Loc = Index->getLocStart(); |
| |
| // Make sure this is an integer constant expression. |
| ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); |
| if (Result.isInvalid()) |
| return Result; |
| |
| if (Value.isSigned() && Value.isNegative()) |
| return S.Diag(Loc, diag::err_array_designator_negative) |
| << Value.toString(10) << Index->getSourceRange(); |
| |
| Value.setIsUnsigned(true); |
| return Result; |
| } |
| |
| ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, |
| SourceLocation Loc, |
| bool GNUSyntax, |
| ExprResult Init) { |
| typedef DesignatedInitExpr::Designator ASTDesignator; |
| |
| bool Invalid = false; |
| SmallVector<ASTDesignator, 32> Designators; |
| SmallVector<Expr *, 32> InitExpressions; |
| |
| // Build designators and check array designator expressions. |
| for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { |
| const Designator &D = Desig.getDesignator(Idx); |
| switch (D.getKind()) { |
| case Designator::FieldDesignator: |
| Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), |
| D.getFieldLoc())); |
| break; |
| |
| case Designator::ArrayDesignator: { |
| Expr *Index = static_cast<Expr *>(D.getArrayIndex()); |
| llvm::APSInt IndexValue; |
| if (!Index->isTypeDependent() && !Index->isValueDependent()) |
| Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); |
| if (!Index) |
| Invalid = true; |
| else { |
| Designators.push_back(ASTDesignator(InitExpressions.size(), |
| D.getLBracketLoc(), |
| D.getRBracketLoc())); |
| InitExpressions.push_back(Index); |
| } |
| break; |
| } |
| |
| case Designator::ArrayRangeDesignator: { |
| Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); |
| Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); |
| llvm::APSInt StartValue; |
| llvm::APSInt EndValue; |
| bool StartDependent = StartIndex->isTypeDependent() || |
| StartIndex->isValueDependent(); |
| bool EndDependent = EndIndex->isTypeDependent() || |
| EndIndex->isValueDependent(); |
| if (!StartDependent) |
| StartIndex = |
| CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); |
| if (!EndDependent) |
| EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); |
| |
| if (!StartIndex || !EndIndex) |
| Invalid = true; |
| else { |
| // Make sure we're comparing values with the same bit width. |
| if (StartDependent || EndDependent) { |
| // Nothing to compute. |
| } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) |
| EndValue = EndValue.extend(StartValue.getBitWidth()); |
| else if (StartValue.getBitWidth() < EndValue.getBitWidth()) |
| StartValue = StartValue.extend(EndValue.getBitWidth()); |
| |
| if (!StartDependent && !EndDependent && EndValue < StartValue) { |
| Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) |
| << StartValue.toString(10) << EndValue.toString(10) |
| << StartIndex->getSourceRange() << EndIndex->getSourceRange(); |
| Invalid = true; |
| } else { |
| Designators.push_back(ASTDesignator(InitExpressions.size(), |
| D.getLBracketLoc(), |
| D.getEllipsisLoc(), |
| D.getRBracketLoc())); |
| InitExpressions.push_back(StartIndex); |
| InitExpressions.push_back(EndIndex); |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| if (Invalid || Init.isInvalid()) |
| return ExprError(); |
| |
| // Clear out the expressions within the designation. |
| Desig.ClearExprs(*this); |
| |
| DesignatedInitExpr *DIE |
| = DesignatedInitExpr::Create(Context, |
| Designators, |
| InitExpressions, Loc, GNUSyntax, |
| Init.getAs<Expr>()); |
| |
| if (!getLangOpts().C99) |
| Diag(DIE->getLocStart(), diag::ext_designated_init) |
| << DIE->getSourceRange(); |
| |
| return DIE; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Initialization entity |
| //===----------------------------------------------------------------------===// |
| |
| InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, |
| const InitializedEntity &Parent) |
| : Parent(&Parent), Index(Index) |
| { |
| if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { |
| Kind = EK_ArrayElement; |
| Type = AT->getElementType(); |
| } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { |
| Kind = EK_VectorElement; |
| Type = VT->getElementType(); |
| } else { |
| const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); |
| assert(CT && "Unexpected type"); |
| Kind = EK_ComplexElement; |
| Type = CT->getElementType(); |
| } |
| } |
| |
| InitializedEntity |
| InitializedEntity::InitializeBase(ASTContext &Context, |
| const CXXBaseSpecifier *Base, |
| bool IsInheritedVirtualBase, |
| const InitializedEntity *Parent) { |
| InitializedEntity Result; |
| Result.Kind = EK_Base; |
| Result.Parent = Parent; |
| Result.Base = reinterpret_cast<uintptr_t>(Base); |
| if (IsInheritedVirtualBase) |
| Result.Base |= 0x01; |
| |
| Result.Type = Base->getType(); |
| return Result; |
| } |
| |
| DeclarationName InitializedEntity::getName() const { |
| switch (getKind()) { |
| case EK_Parameter: |
| case EK_Parameter_CF_Audited: { |
| ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); |
| return (D ? D->getDeclName() : DeclarationName()); |
| } |
| |
| case EK_Variable: |
| case EK_Member: |
| case EK_Binding: |
| return Variable.VariableOrMember->getDeclName(); |
| |
| case EK_LambdaCapture: |
| return DeclarationName(Capture.VarID); |
| |
| case EK_Result: |
| case EK_StmtExprResult: |
| case EK_Exception: |
| case EK_New: |
| case EK_Temporary: |
| case EK_Base: |
| case EK_Delegating: |
| case EK_ArrayElement: |
| case EK_VectorElement: |
| case EK_ComplexElement: |
| case EK_BlockElement: |
| case EK_LambdaToBlockConversionBlockElement: |
| case EK_CompoundLiteralInit: |
| case EK_RelatedResult: |
| return DeclarationName(); |
| } |
| |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| ValueDecl *InitializedEntity::getDecl() const { |
| switch (getKind()) { |
| case EK_Variable: |
| case EK_Member: |
| case EK_Binding: |
| return Variable.VariableOrMember; |
| |
| case EK_Parameter: |
| case EK_Parameter_CF_Audited: |
| return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); |
| |
| case EK_Result: |
| case EK_StmtExprResult: |
| case EK_Exception: |
| case EK_New: |
| case EK_Temporary: |
| case EK_Base: |
| case EK_Delegating: |
| case EK_ArrayElement: |
| case EK_VectorElement: |
| case EK_ComplexElement: |
| case EK_BlockElement: |
| case EK_LambdaToBlockConversionBlockElement: |
| case EK_LambdaCapture: |
| case EK_CompoundLiteralInit: |
| case EK_RelatedResult: |
| return nullptr; |
| } |
| |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| bool InitializedEntity::allowsNRVO() const { |
| switch (getKind()) { |
| case EK_Result: |
| case EK_Exception: |
| return LocAndNRVO.NRVO; |
| |
| case EK_StmtExprResult: |
| case EK_Variable: |
| case EK_Parameter: |
| case EK_Parameter_CF_Audited: |
| case EK_Member: |
| case EK_Binding: |
| case EK_New: |
| case EK_Temporary: |
| case EK_CompoundLiteralInit: |
| case EK_Base: |
| case EK_Delegating: |
| case EK_ArrayElement: |
| case EK_VectorElement: |
| case EK_ComplexElement: |
| case EK_BlockElement: |
| case EK_LambdaToBlockConversionBlockElement: |
| case EK_LambdaCapture: |
| case EK_RelatedResult: |
| break; |
| } |
| |
| return false; |
| } |
| |
| unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { |
| assert(getParent() != this); |
| unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; |
| for (unsigned I = 0; I != Depth; ++I) |
| OS << "`-"; |
| |
| switch (getKind()) { |
| case EK_Variable: OS << "Variable"; break; |
| case EK_Parameter: OS << "Parameter"; break; |
| case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; |
| break; |
| case EK_Result: OS << "Result"; break; |
| case EK_StmtExprResult: OS << "StmtExprResult"; break; |
| case EK_Exception: OS << "Exception"; break; |
| case EK_Member: OS << "Member"; break; |
| case EK_Binding: OS << "Binding"; break; |
| case EK_New: OS << "New"; break; |
| case EK_Temporary: OS << "Temporary"; break; |
| case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; |
| case EK_RelatedResult: OS << "RelatedResult"; break; |
| case EK_Base: OS << "Base"; break; |
| case EK_Delegating: OS << "Delegating"; break; |
| case EK_ArrayElement: OS << "ArrayElement " << Index; break; |
| case EK_VectorElement: OS << "VectorElement " << Index; break; |
| case EK_ComplexElement: OS << "ComplexElement " << Index; break; |
| case EK_BlockElement: OS << "Block"; break; |
| case EK_LambdaToBlockConversionBlockElement: |
| OS << "Block (lambda)"; |
| break; |
| case EK_LambdaCapture: |
| OS << "LambdaCapture "; |
| OS << DeclarationName(Capture.VarID); |
| break; |
| } |
| |
| if (auto *D = getDecl()) { |
| OS << " "; |
| D->printQualifiedName(OS); |
| } |
| |
| OS << " '" << getType().getAsString() << "'\n"; |
| |
| return Depth + 1; |
| } |
| |
| LLVM_DUMP_METHOD void InitializedEntity::dump() const { |
| dumpImpl(llvm::errs()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Initialization sequence |
| //===----------------------------------------------------------------------===// |
| |
| void InitializationSequence::Step::Destroy() { |
| switch (Kind) { |
| case SK_ResolveAddressOfOverloadedFunction: |
| case SK_CastDerivedToBaseRValue: |
| case SK_CastDerivedToBaseXValue: |
| case SK_CastDerivedToBaseLValue: |
| case SK_BindReference: |
| case SK_BindReferenceToTemporary: |
| case SK_FinalCopy: |
| case SK_ExtraneousCopyToTemporary: |
| case SK_UserConversion: |
| case SK_QualificationConversionRValue: |
| case SK_QualificationConversionXValue: |
| case SK_QualificationConversionLValue: |
| case SK_AtomicConversion: |
| case SK_LValueToRValue: |
| case SK_ListInitialization: |
| case SK_UnwrapInitList: |
| case SK_RewrapInitList: |
| case SK_ConstructorInitialization: |
| case SK_ConstructorInitializationFromList: |
| case SK_ZeroInitialization: |
| case SK_CAssignment: |
| case SK_StringInit: |
| case SK_ObjCObjectConversion: |
| case SK_ArrayLoopIndex: |
| case SK_ArrayLoopInit: |
| case SK_ArrayInit: |
| case SK_GNUArrayInit: |
| case SK_ParenthesizedArrayInit: |
| case SK_PassByIndirectCopyRestore: |
| case SK_PassByIndirectRestore: |
| case SK_ProduceObjCObject: |
| case SK_StdInitializerList: |
| case SK_StdInitializerListConstructorCall: |
| case SK_OCLSamplerInit: |
| case SK_OCLZeroEvent: |
| case SK_OCLZeroQueue: |
| break; |
| |
| case SK_ConversionSequence: |
| case SK_ConversionSequenceNoNarrowing: |
| delete ICS; |
| } |
| } |
| |
| bool InitializationSequence::isDirectReferenceBinding() const { |
| // There can be some lvalue adjustments after the SK_BindReference step. |
| for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { |
| if (I->Kind == SK_BindReference) |
| return true; |
| if (I->Kind == SK_BindReferenceToTemporary) |
| return false; |
| } |
| return false; |
| } |
| |
| bool InitializationSequence::isAmbiguous() const { |
| if (!Failed()) |
| return false; |
| |
| switch (getFailureKind()) { |
| case FK_TooManyInitsForReference: |
| case FK_ParenthesizedListInitForReference: |
| case FK_ArrayNeedsInitList: |
| case FK_ArrayNeedsInitListOrStringLiteral: |
| case FK_ArrayNeedsInitListOrWideStringLiteral: |
| case FK_NarrowStringIntoWideCharArray: |
| case FK_WideStringIntoCharArray: |
| case FK_IncompatWideStringIntoWideChar: |
| case FK_PlainStringIntoUTF8Char: |
| case FK_UTF8StringIntoPlainChar: |
| case FK_AddressOfOverloadFailed: // FIXME: Could do better |
| case FK_NonConstLValueReferenceBindingToTemporary: |
| case FK_NonConstLValueReferenceBindingToBitfield: |
| case FK_NonConstLValueReferenceBindingToVectorElement: |
| case FK_NonConstLValueReferenceBindingToUnrelated: |
| case FK_RValueReferenceBindingToLValue: |
| case FK_ReferenceInitDropsQualifiers: |
| case FK_ReferenceInitFailed: |
| case FK_ConversionFailed: |
| case FK_ConversionFromPropertyFailed: |
| case FK_TooManyInitsForScalar: |
| case FK_ParenthesizedListInitForScalar: |
| case FK_ReferenceBindingToInitList: |
| case FK_InitListBadDestinationType: |
| case FK_DefaultInitOfConst: |
| case FK_Incomplete: |
| case FK_ArrayTypeMismatch: |
| case FK_NonConstantArrayInit: |
| case FK_ListInitializationFailed: |
| case FK_VariableLengthArrayHasInitializer: |
| case FK_PlaceholderType: |
| case FK_ExplicitConstructor: |
| case FK_AddressOfUnaddressableFunction: |
| return false; |
| |
| case FK_ReferenceInitOverloadFailed: |
| case FK_UserConversionOverloadFailed: |
| case FK_ConstructorOverloadFailed: |
| case FK_ListConstructorOverloadFailed: |
| return FailedOverloadResult == OR_Ambiguous; |
| } |
| |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| bool InitializationSequence::isConstructorInitialization() const { |
| return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; |
| } |
| |
| void |
| InitializationSequence |
| ::AddAddressOverloadResolutionStep(FunctionDecl *Function, |
| DeclAccessPair Found, |
| bool HadMultipleCandidates) { |
| Step S; |
| S.Kind = SK_ResolveAddressOfOverloadedFunction; |
| S.Type = Function->getType(); |
| S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| S.Function.Function = Function; |
| S.Function.FoundDecl = Found; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, |
| ExprValueKind VK) { |
| Step S; |
| switch (VK) { |
| case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; |
| case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; |
| case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; |
| } |
| S.Type = BaseType; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddReferenceBindingStep(QualType T, |
| bool BindingTemporary) { |
| Step S; |
| S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddFinalCopy(QualType T) { |
| Step S; |
| S.Kind = SK_FinalCopy; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { |
| Step S; |
| S.Kind = SK_ExtraneousCopyToTemporary; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void |
| InitializationSequence::AddUserConversionStep(FunctionDecl *Function, |
| DeclAccessPair FoundDecl, |
| QualType T, |
| bool HadMultipleCandidates) { |
| Step S; |
| S.Kind = SK_UserConversion; |
| S.Type = T; |
| S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| S.Function.Function = Function; |
| S.Function.FoundDecl = FoundDecl; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddQualificationConversionStep(QualType Ty, |
| ExprValueKind VK) { |
| Step S; |
| S.Kind = SK_QualificationConversionRValue; // work around a gcc warning |
| switch (VK) { |
| case VK_RValue: |
| S.Kind = SK_QualificationConversionRValue; |
| break; |
| case VK_XValue: |
| S.Kind = SK_QualificationConversionXValue; |
| break; |
| case VK_LValue: |
| S.Kind = SK_QualificationConversionLValue; |
| break; |
| } |
| S.Type = Ty; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddAtomicConversionStep(QualType Ty) { |
| Step S; |
| S.Kind = SK_AtomicConversion; |
| S.Type = Ty; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddLValueToRValueStep(QualType Ty) { |
| assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); |
| |
| Step S; |
| S.Kind = SK_LValueToRValue; |
| S.Type = Ty; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddConversionSequenceStep( |
| const ImplicitConversionSequence &ICS, QualType T, |
| bool TopLevelOfInitList) { |
| Step S; |
| S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing |
| : SK_ConversionSequence; |
| S.Type = T; |
| S.ICS = new ImplicitConversionSequence(ICS); |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddListInitializationStep(QualType T) { |
| Step S; |
| S.Kind = SK_ListInitialization; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddConstructorInitializationStep( |
| DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, |
| bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { |
| Step S; |
| S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall |
| : SK_ConstructorInitializationFromList |
| : SK_ConstructorInitialization; |
| S.Type = T; |
| S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| S.Function.Function = Constructor; |
| S.Function.FoundDecl = FoundDecl; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddZeroInitializationStep(QualType T) { |
| Step S; |
| S.Kind = SK_ZeroInitialization; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddCAssignmentStep(QualType T) { |
| Step S; |
| S.Kind = SK_CAssignment; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddStringInitStep(QualType T) { |
| Step S; |
| S.Kind = SK_StringInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddObjCObjectConversionStep(QualType T) { |
| Step S; |
| S.Kind = SK_ObjCObjectConversion; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { |
| Step S; |
| S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { |
| Step S; |
| S.Kind = SK_ArrayLoopIndex; |
| S.Type = EltT; |
| Steps.insert(Steps.begin(), S); |
| |
| S.Kind = SK_ArrayLoopInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { |
| Step S; |
| S.Kind = SK_ParenthesizedArrayInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, |
| bool shouldCopy) { |
| Step s; |
| s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore |
| : SK_PassByIndirectRestore); |
| s.Type = type; |
| Steps.push_back(s); |
| } |
| |
| void InitializationSequence::AddProduceObjCObjectStep(QualType T) { |
| Step S; |
| S.Kind = SK_ProduceObjCObject; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { |
| Step S; |
| S.Kind = SK_StdInitializerList; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddOCLSamplerInitStep(QualType T) { |
| Step S; |
| S.Kind = SK_OCLSamplerInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddOCLZeroEventStep(QualType T) { |
| Step S; |
| S.Kind = SK_OCLZeroEvent; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddOCLZeroQueueStep(QualType T) { |
| Step S; |
| S.Kind = SK_OCLZeroQueue; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::RewrapReferenceInitList(QualType T, |
| InitListExpr *Syntactic) { |
| assert(Syntactic->getNumInits() == 1 && |
| "Can only rewrap trivial init lists."); |
| Step S; |
| S.Kind = SK_UnwrapInitList; |
| S.Type = Syntactic->getInit(0)->getType(); |
| Steps.insert(Steps.begin(), S); |
| |
| S.Kind = SK_RewrapInitList; |
| S.Type = T; |
| S.WrappingSyntacticList = Syntactic; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::SetOverloadFailure(FailureKind Failure, |
| OverloadingResult Result) { |
| setSequenceKind(FailedSequence); |
| this->Failure = Failure; |
| this->FailedOverloadResult = Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attempt initialization |
| //===----------------------------------------------------------------------===// |
| |
| /// Tries to add a zero initializer. Returns true if that worked. |
| static bool |
| maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, |
| const InitializedEntity &Entity) { |
| if (Entity.getKind() != InitializedEntity::EK_Variable) |
| return false; |
| |
| VarDecl *VD = cast<VarDecl>(Entity.getDecl()); |
| if (VD->getInit() || VD->getLocEnd().isMacroID()) |
| return false; |
| |
| QualType VariableTy = VD->getType().getCanonicalType(); |
| SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd()); |
| std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); |
| if (!Init.empty()) { |
| Sequence.AddZeroInitializationStep(Entity.getType()); |
| Sequence.SetZeroInitializationFixit(Init, Loc); |
| return true; |
| } |
| return false; |
| } |
| |
| static void MaybeProduceObjCObject(Sema &S, |
| InitializationSequence &Sequence, |
| const InitializedEntity &Entity) { |
| if (!S.getLangOpts().ObjCAutoRefCount) return; |
| |
| /// When initializing a parameter, produce the value if it's marked |
| /// __attribute__((ns_consumed)). |
| if (Entity.isParameterKind()) { |
| if (!Entity.isParameterConsumed()) |
| return; |
| |
| assert(Entity.getType()->isObjCRetainableType() && |
| "consuming an object of unretainable type?"); |
| Sequence.AddProduceObjCObjectStep(Entity.getType()); |
| |
| /// When initializing a return value, if the return type is a |
| /// retainable type, then returns need to immediately retain the |
| /// object. If an autorelease is required, it will be done at the |
| /// last instant. |
| } else if (Entity.getKind() == InitializedEntity::EK_Result || |
| Entity.getKind() == InitializedEntity::EK_StmtExprResult) { |
| if (!Entity.getType()->isObjCRetainableType()) |
| return; |
| |
| Sequence.AddProduceObjCObjectStep(Entity.getType()); |
| } |
| } |
| |
| static void TryListInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitListExpr *InitList, |
| InitializationSequence &Sequence, |
| bool TreatUnavailableAsInvalid); |
| |
| /// When initializing from init list via constructor, handle |
| /// initialization of an object of type std::initializer_list<T>. |
| /// |
| /// \return true if we have handled initialization of an object of type |
| /// std::initializer_list<T>, false otherwise. |
| static bool TryInitializerListConstruction(Sema &S, |
| InitListExpr *List, |
| QualType DestType, |
| InitializationSequence &Sequence, |
| bool TreatUnavailableAsInvalid) { |
| QualType E; |
| if (!S.isStdInitializerList(DestType, &E)) |
| return false; |
| |
| if (!S.isCompleteType(List->getExprLoc(), E)) { |
| Sequence.setIncompleteTypeFailure(E); |
| return true; |
| } |
| |
| // Try initializing a temporary array from the init list. |
| QualType ArrayType = S.Context.getConstantArrayType( |
| E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), |
| List->getNumInits()), |
| clang::ArrayType::Normal, 0); |
| InitializedEntity HiddenArray = |
| InitializedEntity::InitializeTemporary(ArrayType); |
| InitializationKind Kind = InitializationKind::CreateDirectList( |
| List->getExprLoc(), List->getLocStart(), List->getLocEnd()); |
| TryListInitialization(S, HiddenArray, Kind, List, Sequence, |
| TreatUnavailableAsInvalid); |
| if (Sequence) |
| Sequence.AddStdInitializerListConstructionStep(DestType); |
| return true; |
| } |
| |
| /// Determine if the constructor has the signature of a copy or move |
| /// constructor for the type T of the class in which it was found. That is, |
| /// determine if its first parameter is of type T or reference to (possibly |
| /// cv-qualified) T. |
| static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, |
| const ConstructorInfo &Info) { |
| if (Info.Constructor->getNumParams() == 0) |
| return false; |
| |
| QualType ParmT = |
| Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); |
| QualType ClassT = |
| Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); |
| |
| return Ctx.hasSameUnqualifiedType(ParmT, ClassT); |
| } |
| |
| static OverloadingResult |
| ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, |
| MultiExprArg Args, |
| OverloadCandidateSet &CandidateSet, |
| QualType DestType, |
| DeclContext::lookup_result Ctors, |
| OverloadCandidateSet::iterator &Best, |
| bool CopyInitializing, bool AllowExplicit, |
| bool OnlyListConstructors, bool IsListInit, |
| bool SecondStepOfCopyInit = false) { |
| CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); |
| |
| for (NamedDecl *D : Ctors) { |
| auto Info = getConstructorInfo(D); |
| if (!Info.Constructor || Info.Constructor->isInvalidDecl()) |
| continue; |
| |
| if (!AllowExplicit && Info.Constructor->isExplicit()) |
| continue; |
| |
| if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) |
| continue; |
| |
| // C++11 [over.best.ics]p4: |
| // ... and the constructor or user-defined conversion function is a |
| // candidate by |
| // - 13.3.1.3, when the argument is the temporary in the second step |
| // of a class copy-initialization, or |
| // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] |
| // - the second phase of 13.3.1.7 when the initializer list has exactly |
| // one element that is itself an initializer list, and the target is |
| // the first parameter of a constructor of class X, and the conversion |
| // is to X or reference to (possibly cv-qualified X), |
| // user-defined conversion sequences are not considered. |
| bool SuppressUserConversions = |
| SecondStepOfCopyInit || |
| (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && |
| hasCopyOrMoveCtorParam(S.Context, Info)); |
| |
| if (Info.ConstructorTmpl) |
| S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, |
| /*ExplicitArgs*/ nullptr, Args, |
| CandidateSet, SuppressUserConversions); |
| else { |
| // C++ [over.match.copy]p1: |
| // - When initializing a temporary to be bound to the first parameter |
| // of a constructor [for type T] that takes a reference to possibly |
| // cv-qualified T as its first argument, called with a single |
| // argument in the context of direct-initialization, explicit |
| // conversion functions are also considered. |
| // FIXME: What if a constructor template instantiates to such a signature? |
| bool AllowExplicitConv = AllowExplicit && !CopyInitializing && |
| Args.size() == 1 && |
| hasCopyOrMoveCtorParam(S.Context, Info); |
| S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, |
| CandidateSet, SuppressUserConversions, |
| /*PartialOverloading=*/false, |
| /*AllowExplicit=*/AllowExplicitConv); |
| } |
| } |
| |
| // FIXME: Work around a bug in C++17 guaranteed copy elision. |
| // |
| // When initializing an object of class type T by constructor |
| // ([over.match.ctor]) or by list-initialization ([over.match.list]) |
| // from a single expression of class type U, conversion functions of |
| // U that convert to the non-reference type cv T are candidates. |
| // Explicit conversion functions are only candidates during |
| // direct-initialization. |
| // |
| // Note: SecondStepOfCopyInit is only ever true in this case when |
| // evaluating whether to produce a C++98 compatibility warning. |
| if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && |
| !SecondStepOfCopyInit) { |
| Expr *Initializer = Args[0]; |
| auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); |
| if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { |
| const auto &Conversions = SourceRD->getVisibleConversionFunctions(); |
| for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| D = D->getUnderlyingDecl(); |
| |
| FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
| CXXConversionDecl *Conv; |
| if (ConvTemplate) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) { |
| if (ConvTemplate) |
| S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), |
| ActingDC, Initializer, DestType, |
| CandidateSet, AllowExplicit, |
| /*AllowResultConversion*/false); |
| else |
| S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, |
| DestType, CandidateSet, AllowExplicit, |
| /*AllowResultConversion*/false); |
| } |
| } |
| } |
| } |
| |
| // Perform overload resolution and return the result. |
| return CandidateSet.BestViableFunction(S, DeclLoc, Best); |
| } |
| |
| /// Attempt initialization by constructor (C++ [dcl.init]), which |
| /// enumerates the constructors of the initialized entity and performs overload |
| /// resolution to select the best. |
| /// \param DestType The destination class type. |
| /// \param DestArrayType The destination type, which is either DestType or |
| /// a (possibly multidimensional) array of DestType. |
| /// \param IsListInit Is this list-initialization? |
| /// \param IsInitListCopy Is this non-list-initialization resulting from a |
| /// list-initialization from {x} where x is the same |
| /// type as the entity? |
| static void TryConstructorInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args, QualType DestType, |
| QualType DestArrayType, |
| InitializationSequence &Sequence, |
| bool IsListInit = false, |
| bool IsInitListCopy = false) { |
| assert(((!IsListInit && !IsInitListCopy) || |
| (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && |
| "IsListInit/IsInitListCopy must come with a single initializer list " |
| "argument."); |
| InitListExpr *ILE = |
| (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; |
| MultiExprArg UnwrappedArgs = |
| ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; |
| |
| // The type we're constructing needs to be complete. |
| if (!S.isCompleteType(Kind.getLocation(), DestType)) { |
| Sequence.setIncompleteTypeFailure(DestType); |
| return; |
| } |
| |
| // C++17 [dcl.init]p17: |
| // - If the initializer expression is a prvalue and the cv-unqualified |
| // version of the source type is the same class as the class of the |
| // destination, the initializer expression is used to initialize the |
| // destination object. |
| // Per DR (no number yet), this does not apply when initializing a base |
| // class or delegating to another constructor from a mem-initializer. |
| // ObjC++: Lambda captured by the block in the lambda to block conversion |
| // should avoid copy elision. |
| if (S.getLangOpts().CPlusPlus17 && |
| Entity.getKind() != InitializedEntity::EK_Base && |
| Entity.getKind() != InitializedEntity::EK_Delegating && |
| Entity.getKind() != |
| InitializedEntity::EK_LambdaToBlockConversionBlockElement && |
| UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && |
| S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { |
| // Convert qualifications if necessary. |
| Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
| if (ILE) |
| Sequence.RewrapReferenceInitList(DestType, ILE); |
| return; |
| } |
| |
| const RecordType *DestRecordType = DestType->getAs<RecordType>(); |
| assert(DestRecordType && "Constructor initialization requires record type"); |
| CXXRecordDecl *DestRecordDecl |
| = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
| |
| // Build the candidate set directly in the initialization sequence |
| // structure, so that it will persist if we fail. |
| OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| |
| // Determine whether we are allowed to call explicit constructors or |
| // explicit conversion operators. |
| bool AllowExplicit = Kind.AllowExplicit() || IsListInit; |
| bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; |
| |
| // - Otherwise, if T is a class type, constructors are considered. The |
| // applicable constructors are enumerated, and the best one is chosen |
| // through overload resolution. |
| DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); |
| |
| OverloadingResult Result = OR_No_Viable_Function; |
| OverloadCandidateSet::iterator Best; |
| bool AsInitializerList = false; |
| |
| // C++11 [over.match.list]p1, per DR1467: |
| // When objects of non-aggregate type T are list-initialized, such that |
| // 8.5.4 [dcl.init.list] specifies that overload resolution is performed |
| // according to the rules in this section, overload resolution selects |
| // the constructor in two phases: |
| // |
| // - Initially, the candidate functions are the initializer-list |
| // constructors of the class T and the argument list consists of the |
| // initializer list as a single argument. |
| if (IsListInit) { |
| AsInitializerList = true; |
| |
| // If the initializer list has no elements and T has a default constructor, |
| // the first phase is omitted. |
| if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) |
| Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, |
| CandidateSet, DestType, Ctors, Best, |
| CopyInitialization, AllowExplicit, |
| /*OnlyListConstructor=*/true, |
| IsListInit); |
| } |
| |
| // C++11 [over.match.list]p1: |
| // - If no viable initializer-list constructor is found, overload resolution |
| // is performed again, where the candidate functions are all the |
| // constructors of the class T and the argument list consists of the |
| // elements of the initializer list. |
| if (Result == OR_No_Viable_Function) { |
| AsInitializerList = false; |
| Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, |
| CandidateSet, DestType, Ctors, Best, |
| CopyInitialization, AllowExplicit, |
| /*OnlyListConstructors=*/false, |
| IsListInit); |
| } |
| if (Result) { |
| Sequence.SetOverloadFailure(IsListInit ? |
| InitializationSequence::FK_ListConstructorOverloadFailed : |
| InitializationSequence::FK_ConstructorOverloadFailed, |
| Result); |
| return; |
| } |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| // In C++17, ResolveConstructorOverload can select a conversion function |
| // instead of a constructor. |
| if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { |
| // Add the user-defined conversion step that calls the conversion function. |
| QualType ConvType = CD->getConversionType(); |
| assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && |
| "should not have selected this conversion function"); |
| Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, |
| HadMultipleCandidates); |
| if (!S.Context.hasSameType(ConvType, DestType)) |
| Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
| if (IsListInit) |
| Sequence.RewrapReferenceInitList(Entity.getType(), ILE); |
| return; |
| } |
| |
| // C++11 [dcl.init]p6: |
| // If a program calls for the default initialization of an object |
| // of a const-qualified type T, T shall be a class type with a |
| // user-provided default constructor. |
| // C++ core issue 253 proposal: |
| // If the implicit default constructor initializes all subobjects, no |
| // initializer should be required. |
| // The 253 proposal is for example needed to process libstdc++ headers in 5.x. |
| CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
| if (Kind.getKind() == InitializationKind::IK_Default && |
| Entity.getType().isConstQualified()) { |
| if (!CtorDecl->getParent()->allowConstDefaultInit()) { |
| if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
| Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
| return; |
| } |
| } |
| |
| // C++11 [over.match.list]p1: |
| // In copy-list-initialization, if an explicit constructor is chosen, the |
| // initializer is ill-formed. |
| if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { |
| Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); |
| return; |
| } |
| |
| // Add the constructor initialization step. Any cv-qualification conversion is |
| // subsumed by the initialization. |
| Sequence.AddConstructorInitializationStep( |
| Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, |
| IsListInit | IsInitListCopy, AsInitializerList); |
| } |
| |
| static bool |
| ResolveOverloadedFunctionForReferenceBinding(Sema &S, |
| Expr *Initializer, |
| QualType &SourceType, |
| QualType &UnqualifiedSourceType, |
| QualType UnqualifiedTargetType, |
| InitializationSequence &Sequence) { |
| if (S.Context.getCanonicalType(UnqualifiedSourceType) == |
| S.Context.OverloadTy) { |
| DeclAccessPair Found; |
| bool HadMultipleCandidates = false; |
| if (FunctionDecl *Fn |
| = S.ResolveAddressOfOverloadedFunction(Initializer, |
| UnqualifiedTargetType, |
| false, Found, |
| &HadMultipleCandidates)) { |
| Sequence.AddAddressOverloadResolutionStep(Fn, Found, |
| HadMultipleCandidates); |
| SourceType = Fn->getType(); |
| UnqualifiedSourceType = SourceType.getUnqualifiedType(); |
| } else if (!UnqualifiedTargetType->isRecordType()) { |
| Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void TryReferenceInitializationCore(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| QualType cv1T1, QualType T1, |
| Qualifiers T1Quals, |
| QualType cv2T2, QualType T2, |
| Qualifiers T2Quals, |
| InitializationSequence &Sequence); |
| |
| static void TryValueInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitializationSequence &Sequence, |
| InitListExpr *InitList = nullptr); |
| |
| /// Attempt list initialization of a reference. |
| static void TryReferenceListInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitListExpr *InitList, |
| InitializationSequence &Sequence, |
| bool TreatUnavailableAsInvalid) { |
| // First, catch C++03 where this isn't possible. |
| if (!S.getLangOpts().CPlusPlus11) { |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
| return; |
| } |
| // Can't reference initialize a compound literal. |
| if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
| return; |
| } |
| |
| QualType DestType = Entity.getType(); |
| QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); |
| Qualifiers T1Quals; |
| QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
| |
| // Reference initialization via an initializer list works thus: |
| // If the initializer list consists of a single element that is |
| // reference-related to the referenced type, bind directly to that element |
| // (possibly creating temporaries). |
| // Otherwise, initialize a temporary with the initializer list and |
| // bind to that. |
| if (InitList->getNumInits() == 1) { |
| Expr *Initializer = InitList->getInit(0); |
| QualType cv2T2 = Initializer->getType(); |
| Qualifiers T2Quals; |
| QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
| |
| // If this fails, creating a temporary wouldn't work either. |
| if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
| T1, Sequence)) |
| return; |
| |
| SourceLocation DeclLoc = Initializer->getLocStart(); |
| bool dummy1, dummy2, dummy3; |
| Sema::ReferenceCompareResult RefRelationship |
| = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, |
| dummy2, dummy3); |
| if (RefRelationship >= Sema::Ref_Related) { |
| // Try to bind the reference here. |
| TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
| T1Quals, cv2T2, T2, T2Quals, Sequence); |
| if (Sequence) |
| Sequence.RewrapReferenceInitList(cv1T1, InitList); |
| return; |
| } |
| |
| // Update the initializer if we've resolved an overloaded function. |
| if (Sequence.step_begin() != Sequence.step_end()) |
| Sequence.RewrapReferenceInitList(cv1T1, InitList); |
| } |
| |
| // Not reference-related. Create a temporary and bind to that. |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); |
| |
| TryListInitialization(S, TempEntity, Kind, InitList, Sequence, |
| TreatUnavailableAsInvalid); |
| if (Sequence) { |
| if (DestType->isRValueReferenceType() || |
| (T1Quals.hasConst() && !T1Quals.hasVolatile())) |
| Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); |
| else |
| Sequence.SetFailed( |
| InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
| } |
| } |
| |
| /// Attempt list initialization (C++0x [dcl.init.list]) |
| static void TryListInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitListExpr *InitList, |
| InitializationSequence &Sequence, |
| bool TreatUnavailableAsInvalid) { |
| QualType DestType = Entity.getType(); |
| |
| // C++ doesn't allow scalar initialization with more than one argument. |
| // But C99 complex numbers are scalars and it makes sense there. |
| if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && |
| !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { |
| Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); |
| return; |
| } |
| if (DestType->isReferenceType()) { |
| TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, |
| TreatUnavailableAsInvalid); |
| return; |
| } |
| |
| if (DestType->isRecordType() && |
| !S.isCompleteType(InitList->getLocStart(), DestType)) { |
| Sequence.setIncompleteTypeFailure(DestType); |
| return; |
| } |
| |
| // C++11 [dcl.init.list]p3, per DR1467: |
| // - If T is a class type and the initializer list has a single element of |
| // type cv U, where U is T or a class derived from T, the object is |
| // initialized from that element (by copy-initialization for |
| // copy-list-initialization, or by direct-initialization for |
| // direct-list-initialization). |
| // - Otherwise, if T is a character array and the initializer list has a |
| // single element that is an appropriately-typed string literal |
| // (8.5.2 [dcl.init.string]), initialization is performed as described |
| // in that section. |
| // - Otherwise, if T is an aggregate, [...] (continue below). |
| if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { |
| if (DestType->isRecordType()) { |
| QualType InitType = InitList->getInit(0)->getType(); |
| if (S.Context.hasSameUnqualifiedType(InitType, DestType) || |
| S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) { |
| Expr *InitListAsExpr = InitList; |
| TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
| DestType, Sequence, |
| /*InitListSyntax*/false, |
| /*IsInitListCopy*/true); |
| return; |
| } |
| } |
| if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { |
| Expr *SubInit[1] = {InitList->getInit(0)}; |
| if (!isa<VariableArrayType>(DestAT) && |
| IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { |
| InitializationKind SubKind = |
| Kind.getKind() == InitializationKind::IK_DirectList |
| ? InitializationKind::CreateDirect(Kind.getLocation(), |
| InitList->getLBraceLoc(), |
| InitList->getRBraceLoc()) |
| : Kind; |
| Sequence.InitializeFrom(S, Entity, SubKind, SubInit, |
| /*TopLevelOfInitList*/ true, |
| TreatUnavailableAsInvalid); |
| |
| // TryStringLiteralInitialization() (in InitializeFrom()) will fail if |
| // the element is not an appropriately-typed string literal, in which |
| // case we should proceed as in C++11 (below). |
| if (Sequence) { |
| Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
| return; |
| } |
| } |
| } |
| } |
| |
| // C++11 [dcl.init.list]p3: |
| // - If T is an aggregate, aggregate initialization is performed. |
| if ((DestType->isRecordType() && !DestType->isAggregateType()) || |
| (S.getLangOpts().CPlusPlus11 && |
| S.isStdInitializerList(DestType, nullptr))) { |
| if (S.getLangOpts().CPlusPlus11) { |
| // - Otherwise, if the initializer list has no elements and T is a |
| // class type with a default constructor, the object is |
| // value-initialized. |
| if (InitList->getNumInits() == 0) { |
| CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); |
| if (RD->hasDefaultConstructor()) { |
| TryValueInitialization(S, Entity, Kind, Sequence, InitList); |
| return; |
| } |
| } |
| |
| // - Otherwise, if T is a specialization of std::initializer_list<E>, |
| // an initializer_list object constructed [...] |
| if (TryInitializerListConstruction(S, InitList, DestType, Sequence, |
| TreatUnavailableAsInvalid)) |
| return; |
| |
| // - Otherwise, if T is a class type, constructors are considered. |
| Expr *InitListAsExpr = InitList; |
| TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
| DestType, Sequence, /*InitListSyntax*/true); |
| } else |
| Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); |
| return; |
| } |
| |
| if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && |
| InitList->getNumInits() == 1) { |
| Expr *E = InitList->getInit(0); |
| |
| // - Otherwise, if T is an enumeration with a fixed underlying type, |
| // the initializer-list has a single element v, and the initialization |
| // is direct-list-initialization, the object is initialized with the |
| // value T(v); if a narrowing conversion is required to convert v to |
| // the underlying type of T, the program is ill-formed. |
| auto *ET = DestType->getAs<EnumType>(); |
| if (S.getLangOpts().CPlusPlus17 && |
| Kind.getKind() == InitializationKind::IK_DirectList && |
| ET && ET->getDecl()->isFixed() && |
| !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && |
| (E->getType()->isIntegralOrEnumerationType() || |
| E->getType()->isFloatingType())) { |
| // There are two ways that T(v) can work when T is an enumeration type. |
| // If there is either an implicit conversion sequence from v to T or |
| // a conversion function that can convert from v to T, then we use that. |
| // Otherwise, if v is of integral, enumeration, or floating-point type, |
| // it is converted to the enumeration type via its underlying type. |
| // There is no overlap possible between these two cases (except when the |
| // source value is already of the destination type), and the first |
| // case is handled by the general case for single-element lists below. |
| ImplicitConversionSequence ICS; |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| if (!E->isRValue()) |
| ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
| // If E is of a floating-point type, then the conversion is ill-formed |
| // due to narrowing, but go through the motions in order to produce the |
| // right diagnostic. |
| ICS.Standard.Second = E->getType()->isFloatingType() |
| ? ICK_Floating_Integral |
| : ICK_Integral_Conversion; |
| ICS.Standard.setFromType(E->getType()); |
| ICS.Standard.setToType(0, E->getType()); |
| ICS.Standard.setToType(1, DestType); |
| ICS.Standard.setToType(2, DestType); |
| Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), |
| /*TopLevelOfInitList*/true); |
| Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
| return; |
| } |
| |
| // - Otherwise, if the initializer list has a single element of type E |
| // [...references are handled above...], the object or reference is |
| // initialized from that element (by copy-initialization for |
| // copy-list-initialization, or by direct-initialization for |
| // direct-list-initialization); if a narrowing conversion is required |
| // to convert the element to T, the program is ill-formed. |
| // |
| // Per core-24034, this is direct-initialization if we were performing |
| // direct-list-initialization and copy-initialization otherwise. |
| // We can't use InitListChecker for this, because it always performs |
| // copy-initialization. This only matters if we might use an 'explicit' |
| // conversion operator, so we only need to handle the cases where the source |
| // is of record type. |
| if (InitList->getInit(0)->getType()->isRecordType()) { |
| InitializationKind SubKind = |
| Kind.getKind() == InitializationKind::IK_DirectList |
| ? InitializationKind::CreateDirect(Kind.getLocation(), |
| InitList->getLBraceLoc(), |
| InitList->getRBraceLoc()) |
| : Kind; |
| Expr *SubInit[1] = { InitList->getInit(0) }; |
| Sequence.InitializeFrom(S, Entity, SubKind, SubInit, |
| /*TopLevelOfInitList*/true, |
| TreatUnavailableAsInvalid); |
| if (Sequence) |
| Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
| return; |
| } |
| } |
| |
| InitListChecker CheckInitList(S, Entity, InitList, |
| DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); |
| if (CheckInitList.HadError()) { |
| Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); |
| return; |
| } |
| |
| // Add the list initialization step with the built init list. |
| Sequence.AddListInitializationStep(DestType); |
| } |
| |
| /// Try a reference initialization that involves calling a conversion |
| /// function. |
| static OverloadingResult TryRefInitWithConversionFunction( |
| Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
| Expr *Initializer, bool AllowRValues, bool IsLValueRef, |
| InitializationSequence &Sequence) { |
| QualType DestType = Entity.getType(); |
| QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); |
| QualType T1 = cv1T1.getUnqualifiedType(); |
| QualType cv2T2 = Initializer->getType(); |
| QualType T2 = cv2T2.getUnqualifiedType(); |
| |
| bool DerivedToBase; |
| bool ObjCConversion; |
| bool ObjCLifetimeConversion; |
| assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), |
| T1, T2, DerivedToBase, |
| ObjCConversion, |
| ObjCLifetimeConversion) && |
| "Must have incompatible references when binding via conversion"); |
| (void)DerivedToBase; |
| (void)ObjCConversion; |
| (void)ObjCLifetimeConversion; |
| |
| // Build the candidate set directly in the initialization sequence |
| // structure, so that it will persist if we fail. |
| OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| |
| // Determine whether we are allowed to call explicit conversion operators. |
| // Note that none of [over.match.copy], [over.match.conv], nor |
| // [over.match.ref] permit an explicit constructor to be chosen when |
| // initializing a reference, not even for direct-initialization. |
| bool AllowExplicitCtors = false; |
| bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); |
| |
| const RecordType *T1RecordType = nullptr; |
| if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && |
| S.isCompleteType(Kind.getLocation(), T1)) { |
| // The type we're converting to is a class type. Enumerate its constructors |
| // to see if there is a suitable conversion. |
| CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); |
| |
| for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { |
| auto Info = getConstructorInfo(D); |
| if (!Info.Constructor) |
| continue; |
| |
| if (!Info.Constructor->isInvalidDecl() && |
| Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { |
| if (Info.ConstructorTmpl) |
| S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, |
| /*ExplicitArgs*/ nullptr, |
| Initializer, CandidateSet, |
| /*SuppressUserConversions=*/true); |
| else |
| S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
| Initializer, CandidateSet, |
| /*SuppressUserConversions=*/true); |
| } |
| } |
| } |
| if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) |
| return OR_No_Viable_Function; |
| |
| const RecordType *T2RecordType = nullptr; |
| if ((T2RecordType = T2->getAs<RecordType>()) && |
| S.isCompleteType(Kind.getLocation(), T2)) { |
| // The type we're converting from is a class type, enumerate its conversion |
| // functions. |
| CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); |
| |
| const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
| for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
| CXXConversionDecl *Conv; |
| if (ConvTemplate) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| // If the conversion function doesn't return a reference type, |
| // it can't be considered for this conversion unless we're allowed to |
| // consider rvalues. |
| // FIXME: Do we need to make sure that we only consider conversion |
| // candidates with reference-compatible results? That might be needed to |
| // break recursion. |
| if ((AllowExplicitConvs || !Conv->isExplicit()) && |
| (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ |
| if (ConvTemplate) |
| S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), |
| ActingDC, Initializer, |
| DestType, CandidateSet, |
| /*AllowObjCConversionOnExplicit=*/ |
| false); |
| else |
| S.AddConversionCandidate(Conv, I.getPair(), ActingDC, |
| Initializer, DestType, CandidateSet, |
| /*AllowObjCConversionOnExplicit=*/false); |
| } |
| } |
| } |
| if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) |
| return OR_No_Viable_Function; |
| |
| SourceLocation DeclLoc = Initializer->getLocStart(); |
| |
| // Perform overload resolution. If it fails, return the failed result. |
| OverloadCandidateSet::iterator Best; |
| if (OverloadingResult Result |
| = CandidateSet.BestViableFunction(S, DeclLoc, Best)) |
| return Result; |
| |
| FunctionDecl *Function = Best->Function; |
| // This is the overload that will be used for this initialization step if we |
| // use this initialization. Mark it as referenced. |
| Function->setReferenced(); |
| |
| // Compute the returned type and value kind of the conversion. |
| QualType cv3T3; |
| if (isa<CXXConversionDecl>(Function)) |
| cv3T3 = Function->getReturnType(); |
| else |
| cv3T3 = T1; |
| |
| ExprValueKind VK = VK_RValue; |
| if (cv3T3->isLValueReferenceType()) |
| VK = VK_LValue; |
| else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) |
| VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; |
| cv3T3 = cv3T3.getNonLValueExprType(S.Context); |
| |
| // Add the user-defined conversion step. |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, |
| HadMultipleCandidates); |
| |
| // Determine whether we'll need to perform derived-to-base adjustments or |
| // other conversions. |
| bool NewDerivedToBase = false; |
| bool NewObjCConversion = false; |
| bool NewObjCLifetimeConversion = false; |
| Sema::ReferenceCompareResult NewRefRelationship |
| = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, |
| NewDerivedToBase, NewObjCConversion, |
| NewObjCLifetimeConversion); |
| |
| // Add the final conversion sequence, if necessary. |
| if (NewRefRelationship == Sema::Ref_Incompatible) { |
| assert(!isa<CXXConstructorDecl>(Function) && |
| "should not have conversion after constructor"); |
| |
| ImplicitConversionSequence ICS; |
| ICS.setStandard(); |
| ICS.Standard = Best->FinalConversion; |
| Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); |
| |
| // Every implicit conversion results in a prvalue, except for a glvalue |
| // derived-to-base conversion, which we handle below. |
| cv3T3 = ICS.Standard.getToType(2); |
| VK = VK_RValue; |
| } |
| |
| // If the converted initializer is a prvalue, its type T4 is adjusted to |
| // type "cv1 T4" and the temporary materialization conversion is applied. |
| // |
| // We adjust the cv-qualifications to match the reference regardless of |
| // whether we have a prvalue so that the AST records the change. In this |
| // case, T4 is "cv3 T3". |
| QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); |
| if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) |
| Sequence.AddQualificationConversionStep(cv1T4, VK); |
| Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); |
| VK = IsLValueRef ? VK_LValue : VK_XValue; |
| |
| if (NewDerivedToBase) |
| Sequence.AddDerivedToBaseCastStep(cv1T1, VK); |
| else if (NewObjCConversion) |
| Sequence.AddObjCObjectConversionStep(cv1T1); |
| |
| return OR_Success; |
| } |
| |
| static void CheckCXX98CompatAccessibleCopy(Sema &S, |
| const InitializedEntity &Entity, |
| Expr *CurInitExpr); |
| |
| /// Attempt reference initialization (C++0x [dcl.init.ref]) |
| static void TryReferenceInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| InitializationSequence &Sequence) { |
| QualType DestType = Entity.getType(); |
| QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); |
| Qualifiers T1Quals; |
| QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
| QualType cv2T2 = Initializer->getType(); |
| Qualifiers T2Quals; |
| QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
| |
| // If the initializer is the address of an overloaded function, try |
| // to resolve the overloaded function. If all goes well, T2 is the |
| // type of the resulting function. |
| if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
| T1, Sequence)) |
| return; |
| |
| // Delegate everything else to a subfunction. |
| TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
| T1Quals, cv2T2, T2, T2Quals, Sequence); |
| } |
| |
| /// Determine whether an expression is a non-referenceable glvalue (one to |
| /// which a reference can never bind). Attempting to bind a reference to |
| /// such a glvalue will always create a temporary. |
| static bool isNonReferenceableGLValue(Expr *E) { |
| return E->refersToBitField() || E->refersToVectorElement(); |
| } |
| |
| /// Reference initialization without resolving overloaded functions. |
| static void TryReferenceInitializationCore(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| QualType cv1T1, QualType T1, |
| Qualifiers T1Quals, |
| QualType cv2T2, QualType T2, |
| Qualifiers T2Quals, |
| InitializationSequence &Sequence) { |
| QualType DestType = Entity.getType(); |
| SourceLocation DeclLoc = Initializer->getLocStart(); |
| // Compute some basic properties of the types and the initializer. |
| bool isLValueRef = DestType->isLValueReferenceType(); |
| bool isRValueRef = !isLValueRef; |
| bool DerivedToBase = false; |
| bool ObjCConversion = false; |
| bool ObjCLifetimeConversion = false; |
| Expr::Classification InitCategory = Initializer->Classify(S.Context); |
| Sema::ReferenceCompareResult RefRelationship |
| = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, |
| ObjCConversion, ObjCLifetimeConversion); |
| |
| // C++0x [dcl.init.ref]p5: |
| // A reference to type "cv1 T1" is initialized by an expression of type |
| // "cv2 T2" as follows: |
| // |
| // - If the reference is an lvalue reference and the initializer |
| // expression |
| // Note the analogous bullet points for rvalue refs to functions. Because |
| // there are no function rvalues in C++, rvalue refs to functions are treated |
| // like lvalue refs. |
| OverloadingResult ConvOvlResult = OR_Success; |
| bool T1Function = T1->isFunctionType(); |
| if (isLValueRef || T1Function) { |
| if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && |
| (RefRelationship == Sema::Ref_Compatible || |
| (Kind.isCStyleOrFunctionalCast() && |
| RefRelationship == Sema::Ref_Related))) { |
| // - is an lvalue (but is not a bit-field), and "cv1 T1" is |
| // reference-compatible with "cv2 T2," or |
| if (T1Quals != T2Quals) |
| // Convert to cv1 T2. This should only add qualifiers unless this is a |
| // c-style cast. The removal of qualifiers in that case notionally |
| // happens after the reference binding, but that doesn't matter. |
| Sequence.AddQualificationConversionStep( |
| S.Context.getQualifiedType(T2, T1Quals), |
| Initializer->getValueKind()); |
| if (DerivedToBase) |
| Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); |
| else if (ObjCConversion) |
| Sequence.AddObjCObjectConversionStep(cv1T1); |
| |
| // We only create a temporary here when binding a reference to a |
| // bit-field or vector element. Those cases are't supposed to be |
| // handled by this bullet, but the outcome is the same either way. |
| Sequence.AddReferenceBindingStep(cv1T1, false); |
| return; |
| } |
| |
| // - has a class type (i.e., T2 is a class type), where T1 is not |
| // reference-related to T2, and can be implicitly converted to an |
| // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible |
| // with "cv3 T3" (this conversion is selected by enumerating the |
| // applicable conversion functions (13.3.1.6) and choosing the best |
| // one through overload resolution (13.3)), |
| // If we have an rvalue ref to function type here, the rhs must be |
| // an rvalue. DR1287 removed the "implicitly" here. |
| if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && |
| (isLValueRef || InitCategory.isRValue())) { |
| ConvOvlResult = TryRefInitWithConversionFunction( |
| S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, |
| /*IsLValueRef*/ isLValueRef, Sequence); |
| if (ConvOvlResult == OR_Success) |
| return; |
| if (ConvOvlResult != OR_No_Viable_Function) |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_ReferenceInitOverloadFailed, |
| ConvOvlResult); |
| } |
| } |
| |
| // - Otherwise, the reference shall be an lvalue reference to a |
| // non-volatile const type (i.e., cv1 shall be const), or the reference |
| // shall be an rvalue reference. |
| if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { |
| if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
| Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_ReferenceInitOverloadFailed, |
| ConvOvlResult); |
| else if (!InitCategory.isLValue()) |
| Sequence.SetFailed( |
| InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
| else { |
| InitializationSequence::FailureKind FK; |
| switch (RefRelationship) { |
| case Sema::Ref_Compatible: |
| if (Initializer->refersToBitField()) |
| FK = InitializationSequence:: |
| FK_NonConstLValueReferenceBindingToBitfield; |
| else if (Initializer->refersToVectorElement()) |
| FK = InitializationSequence:: |
| FK_NonConstLValueReferenceBindingToVectorElement; |
| else |
| llvm_unreachable("unexpected kind of compatible initializer"); |
| break; |
| case Sema::Ref_Related: |
| FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; |
| break; |
| case Sema::Ref_Incompatible: |
| FK = InitializationSequence:: |
| FK_NonConstLValueReferenceBindingToUnrelated; |
| break; |
| } |
| Sequence.SetFailed(FK); |
| } |
| return; |
| } |
| |
| // - If the initializer expression |
| // - is an |
| // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or |
| // [1z] rvalue (but not a bit-field) or |
| // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" |
| // |
| // Note: functions are handled above and below rather than here... |
| if (!T1Function && |
| (RefRelationship == Sema::Ref_Compatible || |
| (Kind.isCStyleOrFunctionalCast() && |
| RefRelationship == Sema::Ref_Related)) && |
| ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || |
| (InitCategory.isPRValue() && |
| (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || |
| T2->isArrayType())))) { |
| ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; |
| if (InitCategory.isPRValue() && T2->isRecordType()) { |
| // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the |
| // compiler the freedom to perform a copy here or bind to the |
| // object, while C++0x requires that we bind directly to the |
| // object. Hence, we always bind to the object without making an |
| // extra copy. However, in C++03 requires that we check for the |
| // presence of a suitable copy constructor: |
| // |
| // The constructor that would be used to make the copy shall |
| // be callable whether or not the copy is actually done. |
| if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) |
| Sequence.AddExtraneousCopyToTemporary(cv2T2); |
| else if (S.getLangOpts().CPlusPlus11) |
| CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); |
| } |
| |
| // C++1z [dcl.init.ref]/5.2.1.2: |
| // If the converted initializer is a prvalue, its type T4 is adjusted |
| // to type "cv1 T4" and the temporary materialization conversion is |
| // applied. |
| QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals); |
| if (T1Quals != T2Quals) |
| Sequence.AddQualificationConversionStep(cv1T4, ValueKind); |
| Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); |
| ValueKind = isLValueRef ? VK_LValue : VK_XValue; |
| |
| // In any case, the reference is bound to the resulting glvalue (or to |
| // an appropriate base class subobject). |
| if (DerivedToBase) |
| Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); |
| else if (ObjCConversion) |
| Sequence.AddObjCObjectConversionStep(cv1T1); |
| return; |
| } |
| |
| // - has a class type (i.e., T2 is a class type), where T1 is not |
| // reference-related to T2, and can be implicitly converted to an |
| // xvalue, class prvalue, or function lvalue of type "cv3 T3", |
| // where "cv1 T1" is reference-compatible with "cv3 T3", |
| // |
| // DR1287 removes the "implicitly" here. |
| if (T2->isRecordType()) { |
| if (RefRelationship == Sema::Ref_Incompatible) { |
| ConvOvlResult = TryRefInitWithConversionFunction( |
| S, Entity, Kind, Initializer, /*AllowRValues*/ true, |
| /*IsLValueRef*/ isLValueRef, Sequence); |
| if (ConvOvlResult) |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_ReferenceInitOverloadFailed, |
| ConvOvlResult); |
| |
| return; |
| } |
| |
| if (RefRelationship == Sema::Ref_Compatible && |
| isRValueRef && InitCategory.isLValue()) { |
| Sequence.SetFailed( |
| InitializationSequence::FK_RValueReferenceBindingToLValue); |
| return; |
| } |
| |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
| return; |
| } |
| |
| // - Otherwise, a temporary of type "cv1 T1" is created and initialized |
| // from the initializer expression using the rules for a non-reference |
| // copy-initialization (8.5). The reference is then bound to the |
| // temporary. [...] |
| |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); |
| |
| // FIXME: Why do we use an implicit conversion here rather than trying |
| // copy-initialization? |
| ImplicitConversionSequence ICS |
| = S.TryImplicitConversion(Initializer, TempEntity.getType(), |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*FIXME:InOverloadResolution=*/false, |
| /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
| /*AllowObjCWritebackConversion=*/false); |
| |
| if (ICS.isBad()) { |
| // FIXME: Use the conversion function set stored in ICS to turn |
| // this into an overloading ambiguity diagnostic. However, we need |
| // to keep that set as an OverloadCandidateSet rather than as some |
| // other kind of set. |
| if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_ReferenceInitOverloadFailed, |
| ConvOvlResult); |
| else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
| Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| else |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); |
| return; |
| } else { |
| Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); |
| } |
| |
| // [...] If T1 is reference-related to T2, cv1 must be the |
| // same cv-qualification as, or greater cv-qualification |
| // than, cv2; otherwise, the program is ill-formed. |
| unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); |
| unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); |
| if (RefRelationship == Sema::Ref_Related && |
| (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
| return; |
| } |
| |
| // [...] If T1 is reference-related to T2 and the reference is an rvalue |
| // reference, the initializer expression shall not be an lvalue. |
| if (RefRelationship >= Sema::Ref_Related && !isLValueRef && |
| InitCategory.isLValue()) { |
| Sequence.SetFailed( |
| InitializationSequence::FK_RValueReferenceBindingToLValue); |
| return; |
| } |
| |
| Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); |
| } |
| |
| /// Attempt character array initialization from a string literal |
| /// (C++ [dcl.init.string], C99 6.7.8). |
| static void TryStringLiteralInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| InitializationSequence &Sequence) { |
| Sequence.AddStringInitStep(Entity.getType()); |
| } |
| |
| /// Attempt value initialization (C++ [dcl.init]p7). |
| static void TryValueInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitializationSequence &Sequence, |
| InitListExpr *InitList) { |
| assert((!InitList || InitList->getNumInits() == 0) && |
| "Shouldn't use value-init for non-empty init lists"); |
| |
| // C++98 [dcl.init]p5, C++11 [dcl.init]p7: |
| // |
| // To value-initialize an object of type T means: |
| QualType T = Entity.getType(); |
| |
| // -- if T is an array type, then each element is value-initialized; |
| T = S.Context.getBaseElementType(T); |
| |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
| bool NeedZeroInitialization = true; |
| // C++98: |
| // -- if T is a class type (clause 9) with a user-declared constructor |
| // (12.1), then the default constructor for T is called (and the |
| // initialization is ill-formed if T has no accessible default |
| // constructor); |
| // C++11: |
| // -- if T is a class type (clause 9) with either no default constructor |
| // (12.1 [class.ctor]) or a default constructor that is user-provided |
| // or deleted, then the object is default-initialized; |
| // |
| // Note that the C++11 rule is the same as the C++98 rule if there are no |
| // defaulted or deleted constructors, so we just use it unconditionally. |
| CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); |
| if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) |
| NeedZeroInitialization = false; |
| |
| // -- if T is a (possibly cv-qualified) non-union class type without a |
| // user-provided or deleted default constructor, then the object is |
| // zero-initialized and, if T has a non-trivial default constructor, |
| // default-initialized; |
| // The 'non-union' here was removed by DR1502. The 'non-trivial default |
| // constructor' part was removed by DR1507. |
| if (NeedZeroInitialization) |
| Sequence.AddZeroInitializationStep(Entity.getType()); |
| |
| // C++03: |
| // -- if T is a non-union class type without a user-declared constructor, |
| // then every non-static data member and base class component of T is |
| // value-initialized; |
| // [...] A program that calls for [...] value-initialization of an |
| // entity of reference type is ill-formed. |
| // |
| // C++11 doesn't need this handling, because value-initialization does not |
| // occur recursively there, and the implicit default constructor is |
| // defined as deleted in the problematic cases. |
| if (!S.getLangOpts().CPlusPlus11 && |
| ClassDecl->hasUninitializedReferenceMember()) { |
| Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); |
| return; |
| } |
| |
| // If this is list-value-initialization, pass the empty init list on when |
| // building the constructor call. This affects the semantics of a few |
| // things (such as whether an explicit default constructor can be called). |
| Expr *InitListAsExpr = InitList; |
| MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); |
| bool InitListSyntax = InitList; |
| |
| // FIXME: Instead of creating a CXXConstructExpr of array type here, |
| // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. |
| return TryConstructorInitialization( |
| S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); |
| } |
| } |
| |
| Sequence.AddZeroInitializationStep(Entity.getType()); |
| } |
| |
| /// Attempt default initialization (C++ [dcl.init]p6). |
| static void TryDefaultInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitializationSequence &Sequence) { |
| assert(Kind.getKind() == InitializationKind::IK_Default); |
| |
| // C++ [dcl.init]p6: |
| // To default-initialize an object of type T means: |
| // - if T is an array type, each element is default-initialized; |
| QualType DestType = S.Context.getBaseElementType(Entity.getType()); |
| |
| // - if T is a (possibly cv-qualified) class type (Clause 9), the default |
| // constructor for T is called (and the initialization is ill-formed if |
| // T has no accessible default constructor); |
| if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { |
| TryConstructorInitialization(S, Entity, Kind, None, DestType, |
| Entity.getType(), Sequence); |
| return; |
| } |
| |
| // - otherwise, no initialization is performed. |
| |
| // If a program calls for the default initialization of an object of |
| // a const-qualified type T, T shall be a class type with a user-provided |
| // default constructor. |
| if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { |
| if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
| Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
| return; |
| } |
| |
| // If the destination type has a lifetime property, zero-initialize it. |
| if (DestType.getQualifiers().hasObjCLifetime()) { |
| Sequence.AddZeroInitializationStep(Entity.getType()); |
| return; |
| } |
| } |
| |
| /// Attempt a user-defined conversion between two types (C++ [dcl.init]), |
| /// which enumerates all conversion functions and performs overload resolution |
| /// to select the best. |
| static void TryUserDefinedConversion(Sema &S, |
| QualType DestType, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| InitializationSequence &Sequence, |
| bool TopLevelOfInitList) { |
| assert(!DestType->isReferenceType() && "References are handled elsewhere"); |
| QualType SourceType = Initializer->getType(); |
| assert((DestType->isRecordType() || SourceType->isRecordType()) && |
| "Must have a class type to perform a user-defined conversion"); |
| |
| // Build the candidate set directly in the initialization sequence |
| // structure, so that it will persist if we fail. |
| OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| |
| // Determine whether we are allowed to call explicit constructors or |
| // explicit conversion operators. |
| bool AllowExplicit = Kind.AllowExplicit(); |
| |
| if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { |
| // The type we're converting to is a class type. Enumerate its constructors |
| // to see if there is a suitable conversion. |
| CXXRecordDecl *DestRecordDecl |
| = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
| |
| // Try to complete the type we're converting to. |
| if (S.isCompleteType(Kind.getLocation(), DestType)) { |
| for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { |
| auto Info = getConstructorInfo(D); |
| if (!Info.Constructor) |
| continue; |
| |
| if (!Info.Constructor->isInvalidDecl() && |
| Info.Constructor->isConvertingConstructor(AllowExplicit)) { |
| if (Info.ConstructorTmpl) |
| S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, |
| /*ExplicitArgs*/ nullptr, |
| Initializer, CandidateSet, |
| /*SuppressUserConversions=*/true); |
| else |
| S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
| Initializer, CandidateSet, |
| /*SuppressUserConversions=*/true); |
| } |
| } |
| } |
| } |
| |
| SourceLocation DeclLoc = Initializer->getLocStart(); |
| |
| if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { |
| // The type we're converting from is a class type, enumerate its conversion |
| // functions. |
| |
| // We can only enumerate the conversion functions for a complete type; if |
| // the type isn't complete, simply skip this step. |
| if (S.isCompleteType(DeclLoc, SourceType)) { |
| CXXRecordDecl *SourceRecordDecl |
| = cast<CXXRecordDecl>(SourceRecordType->getDecl()); |
| |
| const auto &Conversions = |
| SourceRecordDecl->getVisibleConversionFunctions(); |
| for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
| CXXConversionDecl *Conv; |
| if (ConvTemplate) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| if (AllowExplicit || !Conv->isExplicit()) { |
| if (ConvTemplate) |
| S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), |
| ActingDC, Initializer, DestType, |
| CandidateSet, AllowExplicit); |
| else |
| S.AddConversionCandidate(Conv, I.getPair(), ActingDC, |
| Initializer, DestType, CandidateSet, |
| AllowExplicit); |
| } |
| } |
| } |
| } |
| |
| // Perform overload resolution. If it fails, return the failed result. |
| OverloadCandidateSet::iterator Best; |
| if (OverloadingResult Result |
| = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_UserConversionOverloadFailed, |
| Result); |
| return; |
| } |
| |
| FunctionDecl *Function = Best->Function; |
| Function->setReferenced(); |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| if (isa<CXXConstructorDecl>(Function)) { |
| // Add the user-defined conversion step. Any cv-qualification conversion is |
| // subsumed by the initialization. Per DR5, the created temporary is of the |
| // cv-unqualified type of the destination. |
| Sequence.AddUserConversionStep(Function, Best->FoundDecl, |
| DestType.getUnqualifiedType(), |
| HadMultipleCandidates); |
| |
| // C++14 and before: |
| // - if the function is a constructor, the call initializes a temporary |
| // of the cv-unqualified version of the destination type. The [...] |
| // temporary [...] is then used to direct-initialize, according to the |
| // rules above, the object that is the destination of the |
| // copy-initialization. |
| // Note that this just performs a simple object copy from the temporary. |
| // |
| // C++17: |
| // - if the function is a constructor, the call is a prvalue of the |
| // cv-unqualified version of the destination type whose return object |
| // is initialized by the constructor. The call is used to |
| // direct-initialize, according to the rules above, the object that |
| // is the destination of the copy-initialization. |
| // Therefore we need to do nothing further. |
| // |
| // FIXME: Mark this copy as extraneous. |
| if (!S.getLangOpts().CPlusPlus17) |
| Sequence.AddFinalCopy(DestType); |
| else if (DestType.hasQualifiers()) |
| Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
| return; |
| } |
| |
| // Add the user-defined conversion step that calls the conversion function. |
| QualType ConvType = Function->getCallResultType(); |
| Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, |
| HadMultipleCandidates); |
| |
| if (ConvType->getAs<RecordType>()) { |
| // The call is used to direct-initialize [...] the object that is the |
| // destination of the copy-initialization. |
| // |
| // In C++17, this does not call a constructor if we enter /17.6.1: |
| // - If the initializer expression is a prvalue and the cv-unqualified |
| // version of the source type is the same as the class of the |
| // destination [... do not make an extra copy] |
| // |
| // FIXME: Mark this copy as extraneous. |
| if (!S.getLangOpts().CPlusPlus17 || |
| Function->getReturnType()->isReferenceType() || |
| !S.Context.hasSameUnqualifiedType(ConvType, DestType)) |
| Sequence.AddFinalCopy(DestType); |
| else if (!S.Context.hasSameType(ConvType, DestType)) |
| Sequence.AddQualificationConversionStep(DestType, VK_RValue); |
| return; |
| } |
| |
| // If the conversion following the call to the conversion function |
| // is interesting, add it as a separate step. |
| if (Best->FinalConversion.First || Best->FinalConversion.Second || |
| Best->FinalConversion.Third) { |
| ImplicitConversionSequence ICS; |
| ICS.setStandard(); |
| ICS.Standard = Best->FinalConversion; |
| Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); |
| } |
| } |
| |
| /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, |
| /// a function with a pointer return type contains a 'return false;' statement. |
| /// In C++11, 'false' is not a null pointer, so this breaks the build of any |
| /// code using that header. |
| /// |
| /// Work around this by treating 'return false;' as zero-initializing the result |
| /// if it's used in a pointer-returning function in a system header. |
| static bool isLibstdcxxPointerReturnFalseHack(Sema &S, |
| const InitializedEntity &Entity, |
| const Expr *Init) { |
| return S.getLangOpts().CPlusPlus11 && |
| Entity.getKind() == InitializedEntity::EK_Result && |
| Entity.getType()->isPointerType() && |
| isa<CXXBoolLiteralExpr>(Init) && |
| !cast<CXXBoolLiteralExpr>(Init)->getValue() && |
| S.getSourceManager().isInSystemHeader(Init->getExprLoc()); |
| } |
| |
| /// The non-zero enum values here are indexes into diagnostic alternatives. |
| enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; |
| |
| /// Determines whether this expression is an acceptable ICR source. |
| static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, |
| bool isAddressOf, bool &isWeakAccess) { |
| // Skip parens. |
| e = e->IgnoreParens(); |
| |
| // Skip address-of nodes. |
| if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { |
| if (op->getOpcode() == UO_AddrOf) |
| return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, |
| isWeakAccess); |
| |
| // Skip certain casts. |
| } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { |
| switch (ce->getCastKind()) { |
| case CK_Dependent: |
| case CK_BitCast: |
| case CK_LValueBitCast: |
| case CK_NoOp: |
| return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); |
| |
| case CK_ArrayToPointerDecay: |
| return IIK_nonscalar; |
| |
| case CK_NullToPointer: |
| return IIK_okay; |
| |
| default: |
| break; |
| } |
| |
| // If we have a declaration reference, it had better be a local variable. |
| } else if (isa<DeclRefExpr>(e)) { |
| // set isWeakAccess to true, to mean that there will be an implicit |
| // load which requires a cleanup. |
| if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
| isWeakAccess = true; |
| |
| if (!isAddressOf) return IIK_nonlocal; |
| |
| VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); |
| if (!var) return IIK_nonlocal; |
| |
| return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); |
| |
| // If we have a conditional operator, check both sides. |
| } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { |
| if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, |
| isWeakAccess)) |
| return iik; |
| |
| return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); |
| |
| // These are never scalar. |
| } else if (isa<ArraySubscriptExpr>(e)) { |
| return IIK_nonscalar; |
| |
| // Otherwise, it needs to be a null pointer constant. |
| } else { |
| return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) |
| ? IIK_okay : IIK_nonlocal); |
| } |
| |
| return IIK_nonlocal; |
| } |
| |
| /// Check whether the given expression is a valid operand for an |
| /// indirect copy/restore. |
| static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { |
| assert(src->isRValue()); |
| bool isWeakAccess = false; |
| InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); |
| // If isWeakAccess to true, there will be an implicit |
| // load which requires a cleanup. |
| if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) |
| S.Cleanup.setExprNeedsCleanups(true); |
| |
| if (iik == IIK_okay) return; |
| |
| S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) |
| << ((unsigned) iik - 1) // shift index into diagnostic explanations |
| << src->getSourceRange(); |
| } |
| |
| /// Determine whether we have compatible array types for the |
| /// purposes of GNU by-copy array initialization. |
| static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, |
| const ArrayType *Source) { |
| // If the source and destination array types are equivalent, we're |
| // done. |
| if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) |
| return true; |
| |
| // Make sure that the element types are the same. |
| if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) |
| return false; |
| |
| // The only mismatch we allow is when the destination is an |
| // incomplete array type and the source is a constant array type. |
| return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); |
| } |
| |
| static bool tryObjCWritebackConversion(Sema &S, |
| InitializationSequence &Sequence, |
| const InitializedEntity &Entity, |
| Expr *Initializer) { |
| bool ArrayDecay = false; |
| QualType ArgType = Initializer->getType(); |
| QualType ArgPointee; |
| if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { |
| ArrayDecay = true; |
| ArgPointee = ArgArrayType->getElementType(); |
| ArgType = S.Context.getPointerType(ArgPointee); |
| } |
| |
| // Handle write-back conversion. |
| QualType ConvertedArgType; |
| if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), |
| ConvertedArgType)) |
| return false; |
| |
| // We should copy unless we're passing to an argument explicitly |
| // marked 'out'. |
| bool ShouldCopy = true; |
| if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
| ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
| |
| // Do we need an lvalue conversion? |
| if (ArrayDecay || Initializer->isGLValue()) { |
| ImplicitConversionSequence ICS; |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| |
| QualType ResultType; |
| if (ArrayDecay) { |
| ICS.Standard.First = ICK_Array_To_Pointer; |
| ResultType = S.Context.getPointerType(ArgPointee); |
| } else { |
| ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
| ResultType = Initializer->getType().getNonLValueExprType(S.Context); |
| } |
| |
| Sequence.AddConversionSequenceStep(ICS, ResultType); |
| } |
| |
| Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); |
| return true; |
| } |
| |
| static bool TryOCLSamplerInitialization(Sema &S, |
| InitializationSequence &Sequence, |
| QualType DestType, |
| Expr *Initializer) { |
| if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || |
| (!Initializer->isIntegerConstantExpr(S.Context) && |
| !Initializer->getType()->isSamplerT())) |
| return false; |
| |
| Sequence.AddOCLSamplerInitStep(DestType); |
| return true; |
| } |
| |
| // |
| // OpenCL 1.2 spec, s6.12.10 |
| // |
| // The event argument can also be used to associate the |
| // async_work_group_copy with a previous async copy allowing |
| // an event to be shared by multiple async copies; otherwise |
| // event should be zero. |
| // |
| static bool TryOCLZeroEventInitialization(Sema &S, |
| InitializationSequence &Sequence, |
| QualType DestType, |
| Expr *Initializer) { |
| if (!S.getLangOpts().OpenCL || !DestType->isEventT() || |
| !Initializer->isIntegerConstantExpr(S.getASTContext()) || |
| (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0)) |
| return false; |
| |
| Sequence.AddOCLZeroEventStep(DestType); |
| return true; |
| } |
| |
| static bool TryOCLZeroQueueInitialization(Sema &S, |
| InitializationSequence &Sequence, |
| QualType DestType, |
| Expr *Initializer) { |
| if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 || |
| !DestType->isQueueT() || |
| !Initializer->isIntegerConstantExpr(S.getASTContext()) || |
| (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0)) |
| return false; |
| |
| Sequence.AddOCLZeroQueueStep(DestType); |
| return true; |
| } |
| |
| InitializationSequence::InitializationSequence(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args, |
| bool TopLevelOfInitList, |
| bool TreatUnavailableAsInvalid) |
| : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { |
| InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, |
| TreatUnavailableAsInvalid); |
| } |
| |
| /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the |
| /// address of that function, this returns true. Otherwise, it returns false. |
| static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { |
| auto *DRE = dyn_cast<DeclRefExpr>(E); |
| if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) |
| return false; |
| |
| return !S.checkAddressOfFunctionIsAvailable( |
| cast<FunctionDecl>(DRE->getDecl())); |
| } |
| |
| /// Determine whether we can perform an elementwise array copy for this kind |
| /// of entity. |
| static bool canPerformArrayCopy(const InitializedEntity &Entity) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_LambdaCapture: |
| // C++ [expr.prim.lambda]p24: |
| // For array members, the array elements are direct-initialized in |
| // increasing subscript order. |
| return true; |
| |
| case InitializedEntity::EK_Variable: |
| // C++ [dcl.decomp]p1: |
| // [...] each element is copy-initialized or direct-initialized from the |
| // corresponding element of the assignment-expression [...] |
| return isa<DecompositionDecl>(Entity.getDecl()); |
| |
| case InitializedEntity::EK_Member: |
| // C++ [class.copy.ctor]p14: |
| // - if the member is an array, each element is direct-initialized with |
| // the corresponding subobject of x |
| return Entity.isImplicitMemberInitializer(); |
| |
| case InitializedEntity::EK_ArrayElement: |
| // All the above cases are intended to apply recursively, even though none |
| // of them actually say that. |
| if (auto *E = Entity.getParent()) |
| return canPerformArrayCopy(*E); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| void InitializationSequence::InitializeFrom(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args, |
| bool TopLevelOfInitList, |
| bool TreatUnavailableAsInvalid) { |
| ASTContext &Context = S.Context; |
| |
| // Eliminate non-overload placeholder types in the arguments. We |
| // need to do this before checking whether types are dependent |
| // because lowering a pseudo-object expression might well give us |
| // something of dependent type. |
| for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| if (Args[I]->getType()->isNonOverloadPlaceholderType()) { |
| // FIXME: should we be doing this here? |
| ExprResult result = S.CheckPlaceholderExpr(Args[I]); |
| if (result.isInvalid()) { |
| SetFailed(FK_PlaceholderType); |
| return; |
| } |
| Args[I] = result.get(); |
| } |
| |
| // C++0x [dcl.init]p16: |
| // The semantics of initializers are as follows. The destination type is |
| // the type of the object or reference being initialized and the source |
| // type is the type of the initializer expression. The source type is not |
| // defined when the initializer is a braced-init-list or when it is a |
| // parenthesized list of expressions. |
| QualType DestType = Entity.getType(); |
| |
| if (DestType->isDependentType() || |
| Expr::hasAnyTypeDependentArguments(Args)) { |
| SequenceKind = DependentSequence; |
| return; |
| } |
| |
| // Almost everything is a normal sequence. |
| setSequenceKind(NormalSequence); |
| |
| QualType SourceType; |
| Expr *Initializer = nullptr; |
| if (Args.size() == 1) { |
| Initializer = Args[0]; |
| if (S.getLangOpts().ObjC1) { |
| if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(), |
| DestType, Initializer->getType(), |
| Initializer) || |
| S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) |
| Args[0] = Initializer; |
| } |
| if (!isa<InitListExpr>(Initializer)) |
| SourceType = Initializer->getType(); |
| } |
| |
| // - If the initializer is a (non-parenthesized) braced-init-list, the |
| // object is list-initialized (8.5.4). |
| if (Kind.getKind() != InitializationKind::IK_Direct) { |
| if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { |
| TryListInitialization(S, Entity, Kind, InitList, *this, |
| TreatUnavailableAsInvalid); |
| return; |
| } |
| } |
| |
| // - If the destination type is a reference type, see 8.5.3. |
| if (DestType->isReferenceType()) { |
| // C++0x [dcl.init.ref]p1: |
| // A variable declared to be a T& or T&&, that is, "reference to type T" |
| // (8.3.2), shall be initialized by an object, or function, of type T or |
| // by an object that can be converted into a T. |
| // (Therefore, multiple arguments are not permitted.) |
| if (Args.size() != 1) |
| SetFailed(FK_TooManyInitsForReference); |
| // C++17 [dcl.init.ref]p5: |
| // A reference [...] is initialized by an expression [...] as follows: |
| // If the initializer is not an expression, presumably we should reject, |
| // but the standard fails to actually say so. |
| else if (isa<InitListExpr>(Args[0])) |
| SetFailed(FK_ParenthesizedListInitForReference); |
| else |
| TryReferenceInitialization(S, Entity, Kind, Args[0], *this); |
| return; |
| } |
| |
| // - If the initializer is (), the object is value-initialized. |
| if (Kind.getKind() == InitializationKind::IK_Value || |
| (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { |
| TryValueInitialization(S, Entity, Kind, *this); |
| return; |
| } |
| |
| // Handle default initialization. |
| if (Kind.getKind() == InitializationKind::IK_Default) { |
| TryDefaultInitialization(S, Entity, Kind, *this); |
| return; |
| } |
| |
| // - If the destination type is an array of characters, an array of |
| // char16_t, an array of char32_t, or an array of wchar_t, and the |
| // initializer is a string literal, see 8.5.2. |
| // - Otherwise, if the destination type is an array, the program is |
| // ill-formed. |
| if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { |
| if (Initializer && isa<VariableArrayType>(DestAT)) { |
| SetFailed(FK_VariableLengthArrayHasInitializer); |
| return; |
| } |
| |
| if (Initializer) { |
| switch (IsStringInit(Initializer, DestAT, Context)) { |
| case SIF_None: |
| TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); |
| return; |
| case SIF_NarrowStringIntoWideChar: |
| SetFailed(FK_NarrowStringIntoWideCharArray); |
| return; |
| case SIF_WideStringIntoChar: |
| SetFailed(FK_WideStringIntoCharArray); |
| return; |
| case SIF_IncompatWideStringIntoWideChar: |
| SetFailed(FK_IncompatWideStringIntoWideChar); |
| return; |
| case SIF_PlainStringIntoUTF8Char: |
| SetFailed(FK_PlainStringIntoUTF8Char); |
| return; |
| case SIF_UTF8StringIntoPlainChar: |
| SetFailed(FK_UTF8StringIntoPlainChar); |
| return; |
| case SIF_Other: |
| break; |
| } |
| } |
| |
| // Some kinds of initialization permit an array to be initialized from |
| // another array of the same type, and perform elementwise initialization. |
| if (Initializer && isa<ConstantArrayType>(DestAT) && |
| S.Context.hasSameUnqualifiedType(Initializer->getType(), |
| Entity.getType()) && |
| canPerformArrayCopy(Entity)) { |
| // If source is a prvalue, use it directly. |
| if (Initializer->getValueKind() == VK_RValue) { |
| AddArrayInitStep(DestType, /*IsGNUExtension*/false); |
| return; |
| } |
| |
| // Emit element-at-a-time copy loop. |
| InitializedEntity Element = |
| InitializedEntity::InitializeElement(S.Context, 0, Entity); |
| QualType InitEltT = |
| Context.getAsArrayType(Initializer->getType())->getElementType(); |
| OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, |
| Initializer->getValueKind(), |
| Initializer->getObjectKind()); |
| Expr *OVEAsExpr = &OVE; |
| InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, |
| TreatUnavailableAsInvalid); |
| if (!Failed()) |
| AddArrayInitLoopStep(Entity.getType(), InitEltT); |
| return; |
| } |
| |
| // Note: as an GNU C extension, we allow initialization of an |
| // array from a compound literal that creates an array of the same |
| // type, so long as the initializer has no side effects. |
| if (!S.getLangOpts().CPlusPlus && Initializer && |
| isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && |
| Initializer->getType()->isArrayType()) { |
| const ArrayType *SourceAT |
| = Context.getAsArrayType(Initializer->getType()); |
| if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) |
| SetFailed(FK_ArrayTypeMismatch); |
| else if (Initializer->HasSideEffects(S.Context)) |
| SetFailed(FK_NonConstantArrayInit); |
| else { |
| AddArrayInitStep(DestType, /*IsGNUExtension*/true); |
| } |
| } |
| // Note: as a GNU C++ extension, we allow list-initialization of a |
| // class member of array type from a parenthesized initializer list. |
| else if (S.getLangOpts().CPlusPlus && |
| Entity.getKind() == InitializedEntity::EK_Member && |
| Initializer && isa<InitListExpr>(Initializer)) { |
| TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), |
| *this, TreatUnavailableAsInvalid); |
| AddParenthesizedArrayInitStep(DestType); |
| } else if (DestAT->getElementType()->isCharType()) |
| SetFailed(FK_ArrayNeedsInitListOrStringLiteral); |
| else if (IsWideCharCompatible(DestAT->getElementType(), Context)) |
| SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); |
| else |
| SetFailed(FK_ArrayNeedsInitList); |
| |
| return; |
| } |
| |
| // Determine whether we should consider writeback conversions for |
| // Objective-C ARC. |
| bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && |
| Entity.isParameterKind(); |
| |
| // We're at the end of the line for C: it's either a write-back conversion |
| // or it's a C assignment. There's no need to check anything else. |
| if (!S.getLangOpts().CPlusPlus) { |
| // If allowed, check whether this is an Objective-C writeback conversion. |
| if (allowObjCWritebackConversion && |
| tryObjCWritebackConversion(S, *this, Entity, Initializer)) { |
| return; |
| } |
| |
| if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) |
| return; |
| |
| if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer)) |
| return; |
| |
| if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer)) |
| return; |
| |
| // Handle initialization in C |
| AddCAssignmentStep(DestType); |
| MaybeProduceObjCObject(S, *this, Entity); |
| return; |
| } |
| |
| assert(S.getLangOpts().CPlusPlus); |
| |
| // - If the destination type is a (possibly cv-qualified) class type: |
| if (DestType->isRecordType()) { |
| // - If the initialization is direct-initialization, or if it is |
| // copy-initialization where the cv-unqualified version of the |
| // source type is the same class as, or a derived class of, the |
| // class of the destination, constructors are considered. [...] |
| if (Kind.getKind() == InitializationKind::IK_Direct || |
| (Kind.getKind() == InitializationKind::IK_Copy && |
| (Context.hasSameUnqualifiedType(SourceType, DestType) || |
| S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType)))) |
| TryConstructorInitialization(S, Entity, Kind, Args, |
| DestType, DestType, *this); |
| // - Otherwise (i.e., for the remaining copy-initialization cases), |
| // user-defined conversion sequences that can convert from the source |
| // type to the destination type or (when a conversion function is |
| // used) to a derived class thereof are enumerated as described in |
| // 13.3.1.4, and the best one is chosen through overload resolution |
| // (13.3). |
| else |
| TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, |
| TopLevelOfInitList); |
| return; |
| } |
| |
| assert(Args.size() >= 1 && "Zero-argument case handled above"); |
| |
| // The remaining cases all need a source type. |
| if (Args.size() > 1) { |
| SetFailed(FK_TooManyInitsForScalar); |
| return; |
| } else if (isa<InitListExpr>(Args[0])) { |
| SetFailed(FK_ParenthesizedListInitForScalar); |
| return; |
| } |
| |
| // - Otherwise, if the source type is a (possibly cv-qualified) class |
| // type, conversion functions are considered. |
| if (!SourceType.isNull() && SourceType->isRecordType()) { |
| // For a conversion to _Atomic(T) from either T or a class type derived |
| // from T, initialize the T object then convert to _Atomic type. |
| bool NeedAtomicConversion = false; |
| if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { |
| if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || |
| S.IsDerivedFrom(Initializer->getLocStart(), SourceType, |
| Atomic->getValueType())) { |
| DestType = Atomic->getValueType(); |
| NeedAtomicConversion = true; |
| } |
| } |
| |
| TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, |
| TopLevelOfInitList); |
| MaybeProduceObjCObject(S, *this, Entity); |
| if (!Failed() && NeedAtomicConversion) |
| AddAtomicConversionStep(Entity.getType()); |
| return; |
| } |
| |
| // - Otherwise, the initial value of the object being initialized is the |
| // (possibly converted) value of the initializer expression. Standard |
| // conversions (Clause 4) will be used, if necessary, to convert the |
| // initializer expression to the cv-unqualified version of the |
| // destination type; no user-defined conversions are considered. |
| |
| ImplicitConversionSequence ICS |
| = S.TryImplicitConversion(Initializer, DestType, |
| /*SuppressUserConversions*/true, |
| /*AllowExplicitConversions*/ false, |
| /*InOverloadResolution*/ false, |
| /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
| allowObjCWritebackConversion); |
| |
| if (ICS.isStandard() && |
| ICS.Standard.Second == ICK_Writeback_Conversion) { |
| // Objective-C ARC writeback conversion. |
| |
| // We should copy unless we're passing to an argument explicitly |
| // marked 'out'. |
| bool ShouldCopy = true; |
| if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
| ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
| |
| // If there was an lvalue adjustment, add it as a separate conversion. |
| if (ICS.Standard.First == ICK_Array_To_Pointer || |
| ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
| ImplicitConversionSequence LvalueICS; |
| LvalueICS.setStandard(); |
| LvalueICS.Standard.setAsIdentityConversion(); |
| LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); |
| LvalueICS.Standard.First = ICS.Standard.First; |
| AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); |
| } |
| |
| AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); |
| } else if (ICS.isBad()) { |
| DeclAccessPair dap; |
| if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { |
| AddZeroInitializationStep(Entity.getType()); |
| } else if (Initializer->getType() == Context.OverloadTy && |
| !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, |
| false, dap)) |
| SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| else if (Initializer->getType()->isFunctionType() && |
| isExprAnUnaddressableFunction(S, Initializer)) |
| SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); |
| else |
| SetFailed(InitializationSequence::FK_ConversionFailed); |
| } else { |
| AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); |
| |
| MaybeProduceObjCObject(S, *this, Entity); |
| } |
| } |
| |
| InitializationSequence::~InitializationSequence() { |
| for (auto &S : Steps) |
| S.Destroy(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Perform initialization |
| //===----------------------------------------------------------------------===// |
| static Sema::AssignmentAction |
| getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { |
| switch(Entity.getKind()) { |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| return Sema::AA_Initializing; |
| |
| case InitializedEntity::EK_Parameter: |
| if (Entity.getDecl() && |
| isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
| return Sema::AA_Sending; |
| |
| return Sema::AA_Passing; |
| |
| case InitializedEntity::EK_Parameter_CF_Audited: |
| if (Entity.getDecl() && |
| isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
| return Sema::AA_Sending; |
| |
| return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; |
| |
| case InitializedEntity::EK_Result: |
| case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. |
| return Sema::AA_Returning; |
| |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_RelatedResult: |
| // FIXME: Can we tell apart casting vs. converting? |
| return Sema::AA_Casting; |
| |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_Binding: |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| return Sema::AA_Initializing; |
| } |
| |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| /// Whether we should bind a created object as a temporary when |
| /// initializing the given entity. |
| static bool shouldBindAsTemporary(const InitializedEntity &Entity) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_Result: |
| case InitializedEntity::EK_StmtExprResult: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| return false; |
| |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Parameter_CF_Audited: |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_RelatedResult: |
| case InitializedEntity::EK_Binding: |
| return true; |
| } |
| |
| llvm_unreachable("missed an InitializedEntity kind?"); |
| } |
| |
| /// Whether the given entity, when initialized with an object |
| /// created for that initialization, requires destruction. |
| static bool shouldDestroyEntity(const InitializedEntity &Entity) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_Result: |
| case InitializedEntity::EK_StmtExprResult: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| return false; |
| |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_Binding: |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Parameter_CF_Audited: |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| case InitializedEntity::EK_RelatedResult: |
| return true; |
| } |
| |
| llvm_unreachable("missed an InitializedEntity kind?"); |
| } |
| |
| /// Get the location at which initialization diagnostics should appear. |
| static SourceLocation getInitializationLoc(const InitializedEntity &Entity, |
| Expr *Initializer) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_Result: |
| case InitializedEntity::EK_StmtExprResult: |
| return Entity.getReturnLoc(); |
| |
| case InitializedEntity::EK_Exception: |
| return Entity.getThrowLoc(); |
| |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_Binding: |
| return Entity.getDecl()->getLocation(); |
| |
| case InitializedEntity::EK_LambdaCapture: |
| return Entity.getCaptureLoc(); |
| |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Parameter_CF_Audited: |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| case InitializedEntity::EK_RelatedResult: |
| return Initializer->getLocStart(); |
| } |
| llvm_unreachable("missed an InitializedEntity kind?"); |
| } |
| |
| /// Make a (potentially elidable) temporary copy of the object |
| /// provided by the given initializer by calling the appropriate copy |
| /// constructor. |
| /// |
| /// \param S The Sema object used for type-checking. |
| /// |
| /// \param T The type of the temporary object, which must either be |
| /// the type of the initializer expression or a superclass thereof. |
| /// |
| /// \param Entity The entity being initialized. |
| /// |
| /// \param CurInit The initializer expression. |
| /// |
| /// \param IsExtraneousCopy Whether this is an "extraneous" copy that |
| /// is permitted in C++03 (but not C++0x) when binding a reference to |
| /// an rvalue. |
| /// |
| /// \returns An expression that copies the initializer expression into |
| /// a temporary object, or an error expression if a copy could not be |
| /// created. |
| static ExprResult CopyObject(Sema &S, |
| QualType T, |
| const InitializedEntity &Entity, |
| ExprResult CurInit, |
| bool IsExtraneousCopy) { |
| if (CurInit.isInvalid()) |
| return CurInit; |
| // Determine which class type we're copying to. |
| Expr *CurInitExpr = (Expr *)CurInit.get(); |
| CXXRecordDecl *Class = nullptr; |
| if (const RecordType *Record = T->getAs<RecordType>()) |
| Class = cast<CXXRecordDecl>(Record->getDecl()); |
| if (!Class) |
| return CurInit; |
| |
| SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); |
| |
| // Make sure that the type we are copying is complete. |
| if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) |
| return CurInit; |
| |
| // Perform overload resolution using the class's constructors. Per |
| // C++11 [dcl.init]p16, second bullet for class types, this initialization |
| // is direct-initialization. |
| OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
| DeclContext::lookup_result Ctors = S.LookupConstructors(Class); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (ResolveConstructorOverload( |
| S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, |
| /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
| /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
| /*SecondStepOfCopyInit=*/true)) { |
| case OR_Success: |
| break; |
| |
| case OR_No_Viable_Function: |
| S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() |
| ? diag::ext_rvalue_to_reference_temp_copy_no_viable |
| : diag::err_temp_copy_no_viable) |
| << (int)Entity.getKind() << CurInitExpr->getType() |
| << CurInitExpr->getSourceRange(); |
| CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); |
| if (!IsExtraneousCopy || S.isSFINAEContext()) |
| return ExprError(); |
| return CurInit; |
| |
| case OR_Ambiguous: |
| S.Diag(Loc, diag::err_temp_copy_ambiguous) |
| << (int)Entity.getKind() << CurInitExpr->getType() |
| << CurInitExpr->getSourceRange(); |
| CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); |
| return ExprError(); |
| |
| case OR_Deleted: |
| S.Diag(Loc, diag::err_temp_copy_deleted) |
| << (int)Entity.getKind() << CurInitExpr->getType() |
| << CurInitExpr->getSourceRange(); |
| S.NoteDeletedFunction(Best->Function); |
| return ExprError(); |
| } |
| |
| bool HadMultipleCandidates = CandidateSet.size() > 1; |
| |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); |
| SmallVector<Expr*, 8> ConstructorArgs; |
| CurInit.get(); // Ownership transferred into MultiExprArg, below. |
| |
| S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, |
| IsExtraneousCopy); |
| |
| if (IsExtraneousCopy) { |
| // If this is a totally extraneous copy for C++03 reference |
| // binding purposes, just return the original initialization |
| // expression. We don't generate an (elided) copy operation here |
| // because doing so would require us to pass down a flag to avoid |
| // infinite recursion, where each step adds another extraneous, |
| // elidable copy. |
| |
| // Instantiate the default arguments of any extra parameters in |
| // the selected copy constructor, as if we were going to create a |
| // proper call to the copy constructor. |
| for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { |
| ParmVarDecl *Parm = Constructor->getParamDecl(I); |
| if (S.RequireCompleteType(Loc, Parm->getType(), |
| diag::err_call_incomplete_argument)) |
| break; |
| |
| // Build the default argument expression; we don't actually care |
| // if this succeeds or not, because this routine will complain |
| // if there was a problem. |
| S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); |
| } |
| |
| return CurInitExpr; |
| } |
| |
| // Determine the arguments required to actually perform the |
| // constructor call (we might have derived-to-base conversions, or |
| // the copy constructor may have default arguments). |
| if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) |
| return ExprError(); |
| |
| // C++0x [class.copy]p32: |
| // When certain criteria are met, an implementation is allowed to |
| // omit the copy/move construction of a class object, even if the |
| // copy/move constructor and/or destructor for the object have |
| // side effects. [...] |
| // - when a temporary class object that has not been bound to a |
| // reference (12.2) would be copied/moved to a class object |
| // with the same cv-unqualified type, the copy/move operation |
| // can be omitted by constructing the temporary object |
| // directly into the target of the omitted copy/move |
| // |
| // Note that the other three bullets are handled elsewhere. Copy |
| // elision for return statements and throw expressions are handled as part |
| // of constructor initialization, while copy elision for exception handlers |
| // is handled by the run-time. |
| // |
| // FIXME: If the function parameter is not the same type as the temporary, we |
| // should still be able to elide the copy, but we don't have a way to |
| // represent in the AST how much should be elided in this case. |
| bool Elidable = |
| CurInitExpr->isTemporaryObject(S.Context, Class) && |
| S.Context.hasSameUnqualifiedType( |
| Best->Function->getParamDecl(0)->getType().getNonReferenceType(), |
| CurInitExpr->getType()); |
| |
| // Actually perform the constructor call. |
| CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, |
| Elidable, |
| ConstructorArgs, |
| HadMultipleCandidates, |
| /*ListInit*/ false, |
| /*StdInitListInit*/ false, |
| /*ZeroInit*/ false, |
| CXXConstructExpr::CK_Complete, |
| SourceRange()); |
| |
| // If we're supposed to bind temporaries, do so. |
| if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) |
| CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); |
| return CurInit; |
| } |
| |
| /// Check whether elidable copy construction for binding a reference to |
| /// a temporary would have succeeded if we were building in C++98 mode, for |
| /// -Wc++98-compat. |
| static void CheckCXX98CompatAccessibleCopy(Sema &S, |
| const InitializedEntity &Entity, |
| Expr *CurInitExpr) { |
| assert(S.getLangOpts().CPlusPlus11); |
| |
| const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); |
| if (!Record) |
| return; |
| |
| SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); |
| if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) |
| return; |
| |
| // Find constructors which would have been considered. |
| OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
| DeclContext::lookup_result Ctors = |
| S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult OR = ResolveConstructorOverload( |
| S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, |
| /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
| /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
| /*SecondStepOfCopyInit=*/true); |
| |
| PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) |
| << OR << (int)Entity.getKind() << CurInitExpr->getType() |
| << CurInitExpr->getSourceRange(); |
| |
| switch (OR) { |
| case OR_Success: |
| S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), |
| Best->FoundDecl, Entity, Diag); |
| // FIXME: Check default arguments as far as that's possible. |
| break; |
| |
| case OR_No_Viable_Function: |
| S.Diag(Loc, Diag); |
| CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); |
| break; |
| |
| case OR_Ambiguous: |
| S.Diag(Loc, Diag); |
| CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); |
| break; |
| |
| case OR_Deleted: |
| S.Diag(Loc, Diag); |
| S.NoteDeletedFunction(Best->Function); |
| break; |
| } |
| } |
| |
| void InitializationSequence::PrintInitLocationNote(Sema &S, |
| const InitializedEntity &Entity) { |
| if (Entity.isParameterKind() && Entity.getDecl()) { |
| if (Entity.getDecl()->getLocation().isInvalid()) |
| return; |
| |
| if (Entity.getDecl()->getDeclName()) |
| S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) |
| << Entity.getDecl()->getDeclName(); |
| else |
| S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); |
| } |
| else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && |
| Entity.getMethodDecl()) |
| S.Diag(Entity.getMethodDecl()->getLocation(), |
| diag::note_method_return_type_change) |
| << Entity.getMethodDecl()->getDeclName(); |
| } |
| |
| /// Returns true if the parameters describe a constructor initialization of |
| /// an explicit temporary object, e.g. "Point(x, y)". |
| static bool isExplicitTemporary(const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| unsigned NumArgs) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| case InitializedEntity::EK_RelatedResult: |
| break; |
| default: |
| return false; |
| } |
| |
| switch (Kind.getKind()) { |
| case InitializationKind::IK_DirectList: |
| return true; |
| // FIXME: Hack to work around cast weirdness. |
| case InitializationKind::IK_Direct: |
| case InitializationKind::IK_Value: |
| return NumArgs != 1; |
| default: |
| return false; |
| } |
| } |
| |
| static ExprResult |
| PerformConstructorInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args, |
| const InitializationSequence::Step& Step, |
| bool &ConstructorInitRequiresZeroInit, |
| bool IsListInitialization, |
| bool IsStdInitListInitialization, |
| SourceLocation LBraceLoc, |
| SourceLocation RBraceLoc) { |
| unsigned NumArgs = Args.size(); |
| CXXConstructorDecl *Constructor |
| = cast<CXXConstructorDecl>(Step.Function.Function); |
| bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; |
| |
| // Build a call to the selected constructor. |
| SmallVector<Expr*, 8> ConstructorArgs; |
| SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) |
| ? Kind.getEqualLoc() |
| : Kind.getLocation(); |
| |
| if (Kind.getKind() == InitializationKind::IK_Default) { |
| // Force even a trivial, implicit default constructor to be |
| // semantically checked. We do this explicitly because we don't build |
| // the definition for completely trivial constructors. |
| assert(Constructor->getParent() && "No parent class for constructor."); |
| if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && |
| Constructor->isTrivial() && !Constructor->isUsed(false)) |
| S.DefineImplicitDefaultConstructor(Loc, Constructor); |
| } |
| |
| ExprResult CurInit((Expr *)nullptr); |
| |
| // C++ [over.match.copy]p1: |
| // - When initializing a temporary to be bound to the first parameter |
| // of a constructor that takes a reference to possibly cv-qualified |
| // T as its first argument, called with a single argument in the |
| // context of direct-initialization, explicit conversion functions |
| // are also considered. |
| bool AllowExplicitConv = |
| Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && |
| hasCopyOrMoveCtorParam(S.Context, |
| getConstructorInfo(Step.Function.FoundDecl)); |
| |
| // Determine the arguments required to actually perform the constructor |
| // call. |
| if (S.CompleteConstructorCall(Constructor, Args, |
| Loc, ConstructorArgs, |
| AllowExplicitConv, |
| IsListInitialization)) |
| return ExprError(); |
| |
| |
| if (isExplicitTemporary(Entity, Kind, NumArgs)) { |
| // An explicitly-constructed temporary, e.g., X(1, 2). |
| if (S.DiagnoseUseOfDecl(Constructor, Loc)) |
| return ExprError(); |
| |
| TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
| if (!TSInfo) |
| TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); |
| SourceRange ParenOrBraceRange = |
| (Kind.getKind() == InitializationKind::IK_DirectList) |
| ? SourceRange(LBraceLoc, RBraceLoc) |
| : Kind.getParenOrBraceRange(); |
| |
| if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( |
| Step.Function.FoundDecl.getDecl())) { |
| Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); |
| if (S.DiagnoseUseOfDecl(Constructor, Loc)) |
| return ExprError(); |
| } |
| S.MarkFunctionReferenced(Loc, Constructor); |
| |
| CurInit = new (S.Context) CXXTemporaryObjectExpr( |
| S.Context, Constructor, |
| Entity.getType().getNonLValueExprType(S.Context), TSInfo, |
| ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, |
| IsListInitialization, IsStdInitListInitialization, |
| ConstructorInitRequiresZeroInit); |
| } else { |
| CXXConstructExpr::ConstructionKind ConstructKind = |
| CXXConstructExpr::CK_Complete; |
| |
| if (Entity.getKind() == InitializedEntity::EK_Base) { |
| ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? |
| CXXConstructExpr::CK_VirtualBase : |
| CXXConstructExpr::CK_NonVirtualBase; |
| } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { |
| ConstructKind = CXXConstructExpr::CK_Delegating; |
| } |
| |
| // Only get the parenthesis or brace range if it is a list initialization or |
| // direct construction. |
| SourceRange ParenOrBraceRange; |
| if (IsListInitialization) |
| ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); |
| else if (Kind.getKind() == InitializationKind::IK_Direct) |
| ParenOrBraceRange = Kind.getParenOrBraceRange(); |
| |
| // If the entity allows NRVO, mark the construction as elidable |
| // unconditionally. |
| if (Entity.allowsNRVO()) |
| CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, |
| Step.Function.FoundDecl, |
| Constructor, /*Elidable=*/true, |
| ConstructorArgs, |
| HadMultipleCandidates, |
| IsListInitialization, |
| IsStdInitListInitialization, |
| ConstructorInitRequiresZeroInit, |
| ConstructKind, |
| ParenOrBraceRange); |
| else |
| CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, |
| Step.Function.FoundDecl, |
| Constructor, |
| ConstructorArgs, |
| HadMultipleCandidates, |
| IsListInitialization, |
| IsStdInitListInitialization, |
| ConstructorInitRequiresZeroInit, |
| ConstructKind, |
| ParenOrBraceRange); |
| } |
| if (CurInit.isInvalid()) |
| return ExprError(); |
| |
| // Only check access if all of that succeeded. |
| S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); |
| if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) |
| return ExprError(); |
| |
| if (shouldBindAsTemporary(Entity)) |
| CurInit = S.MaybeBindToTemporary(CurInit.get()); |
| |
| return CurInit; |
| } |
| |
| namespace { |
| enum LifetimeKind { |
| /// The lifetime of a temporary bound to this entity ends at the end of the |
| /// full-expression, and that's (probably) fine. |
| LK_FullExpression, |
| |
| /// The lifetime of a temporary bound to this entity is extended to the |
| /// lifeitme of the entity itself. |
| LK_Extended, |
| |
| /// The lifetime of a temporary bound to this entity probably ends too soon, |
| /// because the entity is allocated in a new-expression. |
| LK_New, |
| |
| /// The lifetime of a temporary bound to this entity ends too soon, because |
| /// the entity is a return object. |
| LK_Return, |
| |
| /// The lifetime of a temporary bound to this entity ends too soon, because |
| /// the entity is the result of a statement expression. |
| LK_StmtExprResult, |
| |
| /// This is a mem-initializer: if it would extend a temporary (other than via |
| /// a default member initializer), the program is ill-formed. |
| LK_MemInitializer, |
| }; |
| using LifetimeResult = |
| llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; |
| } |
| |
| /// Determine the declaration which an initialized entity ultimately refers to, |
| /// for the purpose of lifetime-extending a temporary bound to a reference in |
| /// the initialization of \p Entity. |
| static LifetimeResult getEntityLifetime( |
| const InitializedEntity *Entity, |
| const InitializedEntity *InitField = nullptr) { |
| // C++11 [class.temporary]p5: |
| switch (Entity->getKind()) { |
| case InitializedEntity::EK_Variable: |
| // The temporary [...] persists for the lifetime of the reference |
| return {Entity, LK_Extended}; |
| |
| case InitializedEntity::EK_Member: |
| // For subobjects, we look at the complete object. |
| if (Entity->getParent()) |
| return getEntityLifetime(Entity->getParent(), Entity); |
| |
| // except: |
| // C++17 [class.base.init]p8: |
| // A temporary expression bound to a reference member in a |
| // mem-initializer is ill-formed. |
| // C++17 [class.base.init]p11: |
| // A temporary expression bound to a reference member from a |
| // default member initializer is ill-formed. |
| // |
| // The context of p11 and its example suggest that it's only the use of a |
| // default member initializer from a constructor that makes the program |
| // ill-formed, not its mere existence, and that it can even be used by |
| // aggregate initialization. |
| return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended |
| : LK_MemInitializer}; |
| |
| case InitializedEntity::EK_Binding: |
| // Per [dcl.decomp]p3, the binding is treated as a variable of reference |
| // type. |
| return {Entity, LK_Extended}; |
| |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Parameter_CF_Audited: |
| // -- A temporary bound to a reference parameter in a function call |
| // persists until the completion of the full-expression containing |
| // the call. |
| return {nullptr, LK_FullExpression}; |
| |
| case InitializedEntity::EK_Result: |
| // -- The lifetime of a temporary bound to the returned value in a |
| // function return statement is not extended; the temporary is |
| // destroyed at the end of the full-expression in the return statement. |
| return {nullptr, LK_Return}; |
| |
| case InitializedEntity::EK_StmtExprResult: |
| // FIXME: Should we lifetime-extend through the result of a statement |
| // expression? |
| return {nullptr, LK_StmtExprResult}; |
| |
| case InitializedEntity::EK_New: |
| // -- A temporary bound to a reference in a new-initializer persists |
| // until the completion of the full-expression containing the |
| // new-initializer. |
| return {nullptr, LK_New}; |
| |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| case InitializedEntity::EK_RelatedResult: |
| // We don't yet know the storage duration of the surrounding temporary. |
| // Assume it's got full-expression duration for now, it will patch up our |
| // storage duration if that's not correct. |
| return {nullptr, LK_FullExpression}; |
| |
| case InitializedEntity::EK_ArrayElement: |
| // For subobjects, we look at the complete object. |
| return getEntityLifetime(Entity->getParent(), InitField); |
| |
| case InitializedEntity::EK_Base: |
| // For subobjects, we look at the complete object. |
| if (Entity->getParent()) |
| return getEntityLifetime(Entity->getParent(), InitField); |
| return {InitField, LK_MemInitializer}; |
| |
| case InitializedEntity::EK_Delegating: |
| // We can reach this case for aggregate initialization in a constructor: |
| // struct A { int &&r; }; |
| // struct B : A { B() : A{0} {} }; |
| // In this case, use the outermost field decl as the context. |
| return {InitField, LK_MemInitializer}; |
| |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| return {nullptr, LK_FullExpression}; |
| |
| case InitializedEntity::EK_Exception: |
| // FIXME: Can we diagnose lifetime problems with exceptions? |
| return {nullptr, LK_FullExpression}; |
| } |
| llvm_unreachable("unknown entity kind"); |
| } |
| |
| namespace { |
| enum ReferenceKind { |
| /// Lifetime would be extended by a reference binding to a temporary. |
| RK_ReferenceBinding, |
| /// Lifetime would be extended by a std::initializer_list object binding to |
| /// its backing array. |
| RK_StdInitializerList, |
| }; |
| |
| /// A temporary or local variable. This will be one of: |
| /// * A MaterializeTemporaryExpr. |
| /// * A DeclRefExpr whose declaration is a local. |
| /// * An AddrLabelExpr. |
| /// * A BlockExpr for a block with captures. |
| using Local = Expr*; |
| |
| /// Expressions we stepped over when looking for the local state. Any steps |
| /// that would inhibit lifetime extension or take us out of subexpressions of |
| /// the initializer are included. |
| struct IndirectLocalPathEntry { |
| enum EntryKind { |
| DefaultInit, |
| AddressOf, |
| VarInit, |
| LValToRVal, |
| LifetimeBoundCall, |
| } Kind; |
| Expr *E; |
| const Decl *D = nullptr; |
| IndirectLocalPathEntry() {} |
| IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} |
| IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) |
| : Kind(K), E(E), D(D) {} |
| }; |
| |
| using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; |
| |
| struct RevertToOldSizeRAII { |
| IndirectLocalPath &Path; |
| unsigned OldSize = Path.size(); |
| RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} |
| ~RevertToOldSizeRAII() { Path.resize(OldSize); } |
| }; |
| |
| using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, |
| ReferenceKind RK)>; |
| } |
| |
| static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { |
| for (auto E : Path) |
| if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) |
| return true; |
| return false; |
| } |
| |
| static bool pathContainsInit(IndirectLocalPath &Path) { |
| return std::any_of(Path.begin(), Path.end(), [=](IndirectLocalPathEntry E) { |
| return E.Kind == IndirectLocalPathEntry::DefaultInit || |
| E.Kind == IndirectLocalPathEntry::VarInit; |
| }); |
| } |
| |
| static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, |
| Expr *Init, LocalVisitor Visit, |
| bool RevisitSubinits); |
| |
| static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, |
| Expr *Init, ReferenceKind RK, |
| LocalVisitor Visit); |
| |
| static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { |
| const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); |
| if (!TSI) |
| return false; |
| // Don't declare this variable in the second operand of the for-statement; |
| // GCC miscompiles that by ending its lifetime before evaluating the |
| // third operand. See gcc.gnu.org/PR86769. |
| AttributedTypeLoc ATL; |
| for (TypeLoc TL = TSI->getTypeLoc(); |
| (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
| TL = ATL.getModifiedLoc()) { |
| if (ATL.getAttrKind() == AttributedType::attr_lifetimebound) |
| return true; |
| } |
| return false; |
| } |
| |
| static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, |
| LocalVisitor Visit) { |
| const FunctionDecl *Callee; |
| ArrayRef<Expr*> Args; |
| |
| if (auto *CE = dyn_cast<CallExpr>(Call)) { |
| Callee = CE->getDirectCallee(); |
| Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); |
| } else { |
| auto *CCE = cast<CXXConstructExpr>(Call); |
| Callee = CCE->getConstructor(); |
| Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); |
| } |
| if (!Callee) |
| return; |
| |
| Expr *ObjectArg = nullptr; |
| if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { |
| ObjectArg = Args[0]; |
| Args = Args.slice(1); |
| } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { |
| ObjectArg = MCE->getImplicitObjectArgument(); |
| } |
| |
| auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { |
| Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); |
| if (Arg->isGLValue()) |
| visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, |
| Visit); |
| else |
| visitLocalsRetainedByInitializer(Path, Arg, Visit, true); |
| Path.pop_back(); |
| }; |
| |
| if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) |
| VisitLifetimeBoundArg(Callee, ObjectArg); |
| |
| for (unsigned I = 0, |
| N = std::min<unsigned>(Callee->getNumParams(), Args.size()); |
| I != N; ++I) { |
| if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) |
| VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); |
| } |
| } |
| |
| /// Visit the locals that would be reachable through a reference bound to the |
| /// glvalue expression \c Init. |
| static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, |
| Expr *Init, ReferenceKind RK, |
| LocalVisitor Visit) { |
| RevertToOldSizeRAII RAII(Path); |
| |
| // Walk past any constructs which we can lifetime-extend across. |
| Expr *Old; |
| do { |
| Old = Init; |
| |
| if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) |
| Init = EWC->getSubExpr(); |
| |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
| // If this is just redundant braces around an initializer, step over it. |
| if (ILE->isTransparent()) |
| Init = ILE->getInit(0); |
| } |
| |
| // Step over any subobject adjustments; we may have a materialized |
| // temporary inside them. |
| Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); |
| |
| // Per current approach for DR1376, look through casts to reference type |
| // when performing lifetime extension. |
| if (CastExpr *CE = dyn_cast<CastExpr>(Init)) |
| if (CE->getSubExpr()->isGLValue()) |
| Init = CE->getSubExpr(); |
| |
| // Per the current approach for DR1299, look through array element access |
| // on array glvalues when performing lifetime extension. |
| if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { |
| Init = ASE->getBase(); |
| auto *ICE = dyn_cast<ImplicitCastExpr>(Init); |
| if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) |
| Init = ICE->getSubExpr(); |
| else |
| // We can't lifetime extend through this but we might still find some |
| // retained temporaries. |
| return visitLocalsRetainedByInitializer(Path, Init, Visit, true); |
| } |
| |
| // Step into CXXDefaultInitExprs so we can diagnose cases where a |
| // constructor inherits one as an implicit mem-initializer. |
| if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { |
| Path.push_back( |
| {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); |
| Init = DIE->getExpr(); |
| } |
| } while (Init != Old); |
| |
| if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { |
| if (Visit(Path, Local(MTE), RK)) |
| visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit, |
| true); |
| } |
| |
| if (isa<CallExpr>(Init)) |
| return visitLifetimeBoundArguments(Path, Init, Visit); |
| |
| switch (Init->getStmtClass()) { |
| case Stmt::DeclRefExprClass: { |
| // If we find the name of a local non-reference parameter, we could have a |
| // lifetime problem. |
| auto *DRE = cast<DeclRefExpr>(Init); |
| auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (VD && VD->hasLocalStorage() && |
| !DRE->refersToEnclosingVariableOrCapture()) { |
| if (!VD->getType()->isReferenceType()) { |
| Visit(Path, Local(DRE), RK); |
| } else if (isa<ParmVarDecl>(DRE->getDecl())) { |
| // The lifetime of a reference parameter is unknown; assume it's OK |
| // for now. |
| break; |
| } else if (VD->getInit() && !isVarOnPath(Path, VD)) { |
| Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); |
| visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), |
| RK_ReferenceBinding, Visit); |
| } |
| } |
| break; |
| } |
| |
| case Stmt::UnaryOperatorClass: { |
| // The only unary operator that make sense to handle here |
| // is Deref. All others don't resolve to a "name." This includes |
| // handling all sorts of rvalues passed to a unary operator. |
| const UnaryOperator *U = cast<UnaryOperator>(Init); |
| if (U->getOpcode() == UO_Deref) |
| visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true); |
| break; |
| } |
| |
| case Stmt::OMPArraySectionExprClass: { |
| visitLocalsRetainedByInitializer( |
| Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true); |
| break; |
| } |
| |
| case Stmt::ConditionalOperatorClass: |
| case Stmt::BinaryConditionalOperatorClass: { |
| auto *C = cast<AbstractConditionalOperator>(Init); |
| if (!C->getTrueExpr()->getType()->isVoidType()) |
| visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit); |
| if (!C->getFalseExpr()->getType()->isVoidType()) |
| visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit); |
| break; |
| } |
| |
| // FIXME: Visit the left-hand side of an -> or ->*. |
| |
| default: |
| break; |
| } |
| } |
| |
| /// Visit the locals that would be reachable through an object initialized by |
| /// the prvalue expression \c Init. |
| static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, |
| Expr *Init, LocalVisitor Visit, |
| bool RevisitSubinits) { |
| RevertToOldSizeRAII RAII(Path); |
| |
| Expr *Old; |
| do { |
| Old = Init; |
| |
| // Step into CXXDefaultInitExprs so we can diagnose cases where a |
| // constructor inherits one as an implicit mem-initializer. |
| if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { |
| Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); |
| Init = DIE->getExpr(); |
| } |
| |
| if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) |
| Init = EWC->getSubExpr(); |
| |
| // Dig out the expression which constructs the extended temporary. |
| Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); |
| |
| if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) |
| Init = BTE->getSubExpr(); |
| |
| Init = Init->IgnoreParens(); |
| |
| // Step over value-preserving rvalue casts. |
| if (auto *CE = dyn_cast<CastExpr>(Init)) { |
| switch (CE->getCastKind()) { |
| case CK_LValueToRValue: |
| // If we can match the lvalue to a const object, we can look at its |
| // initializer. |
| Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); |
| return visitLocalsRetainedByReferenceBinding( |
| Path, Init, RK_ReferenceBinding, |
| [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { |
| if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { |
| auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (VD && VD->getType().isConstQualified() && VD->getInit() && |
| !isVarOnPath(Path, VD)) { |
| Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); |
| visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true); |
| } |
| } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { |
| if (MTE->getType().isConstQualified()) |
| visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), |
| Visit, true); |
| } |
| return false; |
| }); |
| |
| // We assume that objects can be retained by pointers cast to integers, |
| // but not if the integer is cast to floating-point type or to _Complex. |
| // We assume that casts to 'bool' do not preserve enough information to |
| // retain a local object. |
| case CK_NoOp: |
| case CK_BitCast: |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_UserDefinedConversion: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_AddressSpaceConversion: |
| break; |
| |
| case CK_ArrayToPointerDecay: |
| // Model array-to-pointer decay as taking the address of the array |
| // lvalue. |
| Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); |
| return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), |
| RK_ReferenceBinding, Visit); |
| |
| default: |
| return; |
| } |
| |
| Init = CE->getSubExpr(); |
| } |
| } while (Old != Init); |
| |
| // C++17 [dcl.init.list]p6: |
| // initializing an initializer_list object from the array extends the |
| // lifetime of the array exactly like binding a reference to a temporary. |
| if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) |
| return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), |
| RK_StdInitializerList, Visit); |
| |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
| // We already visited the elements of this initializer list while |
| // performing the initialization. Don't visit them again unless we've |
| // changed the lifetime of the initialized entity. |
| if (!RevisitSubinits) |
| return; |
| |
| if (ILE->isTransparent()) |
| return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, |
| RevisitSubinits); |
| |
| if (ILE->getType()->isArrayType()) { |
| for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) |
| visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, |
| RevisitSubinits); |
| return; |
| } |
| |
| if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { |
| assert(RD->isAggregate() && "aggregate init on non-aggregate"); |
| |
| // If we lifetime-extend a braced initializer which is initializing an |
| // aggregate, and that aggregate contains reference members which are |
| // bound to temporaries, those temporaries are also lifetime-extended. |
| if (RD->isUnion() && ILE->getInitializedFieldInUnion() && |
| ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) |
| visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), |
| RK_ReferenceBinding, Visit); |
| else { |
| unsigned Index = 0; |
| for (const auto *I : RD->fields()) { |
| if (Index >= ILE->getNumInits()) |
| break; |
| if (I->isUnnamedBitfield()) |
| continue; |
| Expr *SubInit = ILE->getInit(Index); |
| if (I->getType()->isReferenceType()) |
| visitLocalsRetainedByReferenceBinding(Path, SubInit, |
| RK_ReferenceBinding, Visit); |
| else |
| // This might be either aggregate-initialization of a member or |
| // initialization of a std::initializer_list object. Regardless, |
| // we should recursively lifetime-extend that initializer. |
| visitLocalsRetainedByInitializer(Path, SubInit, Visit, |
| RevisitSubinits); |
| ++Index; |
| } |
| } |
| } |
| return; |
| } |
| |
| if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) |
| return visitLifetimeBoundArguments(Path, Init, Visit); |
| |
| switch (Init->getStmtClass()) { |
| case Stmt::UnaryOperatorClass: { |
| auto *UO = cast<UnaryOperator>(Init); |
| // If the initializer is the address of a local, we could have a lifetime |
| // problem. |
| if (UO->getOpcode() == UO_AddrOf) { |
| // If this is &rvalue, then it's ill-formed and we have already diagnosed |
| // it. Don't produce a redundant warning about the lifetime of the |
| // temporary. |
| if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) |
| return; |
| |
| Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); |
| visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), |
| RK_ReferenceBinding, Visit); |
| } |
| break; |
| } |
| |
| case Stmt::BinaryOperatorClass: { |
| // Handle pointer arithmetic. |
| auto *BO = cast<BinaryOperator>(Init); |
| BinaryOperatorKind BOK = BO->getOpcode(); |
| if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) |
| break; |
| |
| if (BO->getLHS()->getType()->isPointerType()) |
| visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true); |
| else if (BO->getRHS()->getType()->isPointerType()) |
| visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true); |
| break; |
| } |
| |
| case Stmt::ConditionalOperatorClass: |
| case Stmt::BinaryConditionalOperatorClass: { |
| auto *C = cast<AbstractConditionalOperator>(Init); |
| // In C++, we can have a throw-expression operand, which has 'void' type |
| // and isn't interesting from a lifetime perspective. |
| if (!C->getTrueExpr()->getType()->isVoidType()) |
| visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true); |
| if (!C->getFalseExpr()->getType()->isVoidType()) |
| visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true); |
| break; |
| } |
| |
| case Stmt::BlockExprClass: |
| if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { |
| // This is a local block, whose lifetime is that of the function. |
| Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); |
| } |
| break; |
| |
| case Stmt::AddrLabelExprClass: |
| // We want to warn if the address of a label would escape the function. |
| Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /// Determine whether this is an indirect path to a temporary that we are |
| /// supposed to lifetime-extend along (but don't). |
| static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { |
| for (auto Elem : Path) { |
| if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Find the range for the first interesting entry in the path at or after I. |
| static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, |
| Expr *E) { |
| for (unsigned N = Path.size(); I != N; ++I) { |
| switch (Path[I].Kind) { |
| case IndirectLocalPathEntry::AddressOf: |
| case IndirectLocalPathEntry::LValToRVal: |
| case IndirectLocalPathEntry::LifetimeBoundCall: |
| // These exist primarily to mark the path as not permitting or |
| // supporting lifetime extension. |
| break; |
| |
| case IndirectLocalPathEntry::DefaultInit: |
| case IndirectLocalPathEntry::VarInit: |
| return Path[I].E->getSourceRange(); |
| } |
| } |
| return E->getSourceRange(); |
| } |
| |
| void Sema::checkInitializerLifetime(const InitializedEntity &Entity, |
| Expr *Init) { |
| LifetimeResult LR = getEntityLifetime(&Entity); |
| LifetimeKind LK = LR.getInt(); |
| const InitializedEntity *ExtendingEntity = LR.getPointer(); |
| |
| // If this entity doesn't have an interesting lifetime, don't bother looking |
| // for temporaries within its initializer. |
| if (LK == LK_FullExpression) |
| return; |
| |
| auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, |
| ReferenceKind RK) -> bool { |
| SourceRange DiagRange = nextPathEntryRange(Path, 0, L); |
| SourceLocation DiagLoc = DiagRange.getBegin(); |
| |
| switch (LK) { |
| case LK_FullExpression: |
| llvm_unreachable("already handled this"); |
| |
| case LK_Extended: { |
| auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); |
| if (!MTE) { |
| // The initialized entity has lifetime beyond the full-expression, |
| // and the local entity does too, so don't warn. |
| // |
| // FIXME: We should consider warning if a static / thread storage |
| // duration variable retains an automatic storage duration local. |
| return false; |
| } |
| |
| // Lifetime-extend the temporary. |
| if (Path.empty()) { |
| // Update the storage duration of the materialized temporary. |
| // FIXME: Rebuild the expression instead of mutating it. |
| MTE->setExtendingDecl(ExtendingEntity->getDecl(), |
| ExtendingEntity->allocateManglingNumber()); |
| // Also visit the temporaries lifetime-extended by this initializer. |
| return true; |
| } |
| |
| if (shouldLifetimeExtendThroughPath(Path)) { |
| // We're supposed to lifetime-extend the temporary along this path (per |
| // the resolution of DR1815), but we don't support that yet. |
| // |
| // FIXME: Properly handle this situation. Perhaps the easiest approach |
| // would be to clone the initializer expression on each use that would |
| // lifetime extend its temporaries. |
| Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) |
| << RK << DiagRange; |
| } else { |
| // If the path goes through the initialization of a variable or field, |
| // it can't possibly reach a temporary created in this full-expression. |
| // We will have already diagnosed any problems with the initializer. |
| if (pathContainsInit(Path)) |
| return false; |
| |
| Diag(DiagLoc, diag::warn_dangling_variable) |
| << RK << !Entity.getParent() |
| << ExtendingEntity->getDecl()->isImplicit() |
| << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; |
| } |
| break; |
| } |
| |
| case LK_MemInitializer: { |
| if (isa<MaterializeTemporaryExpr>(L)) { |
| // Under C++ DR1696, if a mem-initializer (or a default member |
| // initializer used by the absence of one) would lifetime-extend a |
| // temporary, the program is ill-formed. |
| if (auto *ExtendingDecl = |
| ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { |
| bool IsSubobjectMember = ExtendingEntity != &Entity; |
| Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) |
| ? diag::err_dangling_member |
| : diag::warn_dangling_member) |
| << ExtendingDecl << IsSubobjectMember << RK << DiagRange; |
| // Don't bother adding a note pointing to the field if we're inside |
| // its default member initializer; our primary diagnostic points to |
| // the same place in that case. |
| if (Path.empty() || |
| Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { |
| Diag(ExtendingDecl->getLocation(), |
| diag::note_lifetime_extending_member_declared_here) |
| << RK << IsSubobjectMember; |
| } |
| } else { |
| // We have a mem-initializer but no particular field within it; this |
| // is either a base class or a delegating initializer directly |
| // initializing the base-class from something that doesn't live long |
| // enough. |
| // |
| // FIXME: Warn on this. |
| return false; |
| } |
| } else { |
| // Paths via a default initializer can only occur during error recovery |
| // (there's no other way that a default initializer can refer to a |
| // local). Don't produce a bogus warning on those cases. |
| if (pathContainsInit(Path)) |
| return false; |
| |
| auto *DRE = dyn_cast<DeclRefExpr>(L); |
| auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; |
| if (!VD) { |
| // A member was initialized to a local block. |
| // FIXME: Warn on this. |
| return false; |
| } |
| |
| if (auto *Member = |
| ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { |
| bool IsPointer = Member->getType()->isAnyPointerType(); |
| Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr |
| : diag::warn_bind_ref_member_to_parameter) |
| << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; |
| Diag(Member->getLocation(), |
| diag::note_ref_or_ptr_member_declared_here) |
| << (unsigned)IsPointer; |
| } |
| } |
| break; |
| } |
| |
| case LK_New: |
| if (isa<MaterializeTemporaryExpr>(L)) { |
| Diag(DiagLoc, RK == RK_ReferenceBinding |
| ? diag::warn_new_dangling_reference |
| : diag::warn_new_dangling_initializer_list) |
| << !Entity.getParent() << DiagRange; |
| } else { |
| // We can't determine if the allocation outlives the local declaration. |
| return false; |
| } |
| break; |
| |
| case LK_Return: |
| case LK_StmtExprResult: |
| if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { |
| // We can't determine if the local variable outlives the statement |
| // expression. |
| if (LK == LK_StmtExprResult) |
| return false; |
| Diag(DiagLoc, diag::warn_ret_stack_addr_ref) |
| << Entity.getType()->isReferenceType() << DRE->getDecl() |
| << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; |
| } else if (isa<BlockExpr>(L)) { |
| Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; |
| } else if (isa<AddrLabelExpr>(L)) { |
| // Don't warn when returning a label from a statement expression. |
| // Leaving the scope doesn't end its lifetime. |
| if (LK == LK_StmtExprResult) |
| return false; |
| Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; |
| } else { |
| Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) |
| << Entity.getType()->isReferenceType() << DiagRange; |
| } |
| break; |
| } |
| |
| for (unsigned I = 0; I != Path.size(); ++I) { |
| auto Elem = Path[I]; |
| |
| switch (Elem.Kind) { |
| case IndirectLocalPathEntry::AddressOf: |
| case IndirectLocalPathEntry::LValToRVal: |
| // These exist primarily to mark the path as not permitting or |
| // supporting lifetime extension. |
| break; |
| |
| case IndirectLocalPathEntry::LifetimeBoundCall: |
| // FIXME: Consider adding a note for this. |
| break; |
| |
| case IndirectLocalPathEntry::DefaultInit: { |
| auto *FD = cast<FieldDecl>(Elem.D); |
| Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) |
| << FD << nextPathEntryRange(Path, I + 1, L); |
| break; |
| } |
| |
| case IndirectLocalPathEntry::VarInit: |
| const VarDecl *VD = cast<VarDecl>(Elem.D); |
| Diag(VD->getLocation(), diag::note_local_var_initializer) |
| << VD->getType()->isReferenceType() |
| << VD->isImplicit() << VD->getDeclName() |
| << nextPathEntryRange(Path, I + 1, L); |
| break; |
| } |
| } |
| |
| // We didn't lifetime-extend, so don't go any further; we don't need more |
| // warnings or errors on inner temporaries within this one's initializer. |
| return false; |
| }; |
| |
| llvm::SmallVector<IndirectLocalPathEntry, 8> Path; |
| if (Init->isGLValue()) |
| visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, |
| TemporaryVisitor); |
| else |
| visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false); |
| } |
| |
| static void DiagnoseNarrowingInInitList(Sema &S, |
| const ImplicitConversionSequence &ICS, |
| QualType PreNarrowingType, |
| QualType EntityType, |
| const Expr *PostInit); |
| |
| /// Provide warnings when std::move is used on construction. |
| static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, |
| bool IsReturnStmt) { |
| if (!InitExpr) |
| return; |
| |
| if (S.inTemplateInstantiation()) |
| return; |
| |
| QualType DestType = InitExpr->getType(); |
| if (!DestType->isRecordType()) |
| return; |
| |
| unsigned DiagID = 0; |
| if (IsReturnStmt) { |
| const CXXConstructExpr *CCE = |
| dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); |
| if (!CCE || CCE->getNumArgs() != 1) |
| return; |
| |
| if (!CCE->getConstructor()->isCopyOrMoveConstructor()) |
| return; |
| |
| InitExpr = CCE->getArg(0)->IgnoreImpCasts(); |
| } |
| |
| // Find the std::move call and get the argument. |
| const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); |
| if (!CE || !CE->isCallToStdMove()) |
| return; |
| |
| const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); |
| |
| if (IsReturnStmt) { |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); |
| if (!DRE || DRE->refersToEnclosingVariableOrCapture()) |
| return; |
| |
| const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (!VD || !VD->hasLocalStorage()) |
| return; |
| |
| // __block variables are not moved implicitly. |
| if (VD->hasAttr<BlocksAttr>()) |
| return; |
| |
| QualType SourceType = VD->getType(); |
| if (!SourceType->isRecordType()) |
| return; |
| |
| if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { |
| return; |
| } |
| |
| // If we're returning a function parameter, copy elision |
| // is not possible. |
| if (isa<ParmVarDecl>(VD)) |
| DiagID = diag::warn_redundant_move_on_return; |
| else |
| DiagID = diag::warn_pessimizing_move_on_return; |
| } else { |
| DiagID = diag::warn_pessimizing_move_on_initialization; |
| const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); |
| if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) |
| return; |
| } |
| |
| S.Diag(CE->getLocStart(), DiagID); |
| |
| // Get all the locations for a fix-it. Don't emit the fix-it if any location |
| // is within a macro. |
| SourceLocation CallBegin = CE->getCallee()->getLocStart(); |
| if (CallBegin.isMacroID()) |
| return; |
| SourceLocation RParen = CE->getRParenLoc(); |
| if (RParen.isMacroID()) |
| return; |
| SourceLocation LParen; |
| SourceLocation ArgLoc = Arg->getLocStart(); |
| |
| // Special testing for the argument location. Since the fix-it needs the |
| // location right before the argument, the argument location can be in a |
| // macro only if it is at the beginning of the macro. |
| while (ArgLoc.isMacroID() && |
| S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { |
| ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); |
| } |
| |
| if (LParen.isMacroID()) |
| return; |
| |
| LParen = ArgLoc.getLocWithOffset(-1); |
| |
| S.Diag(CE->getLocStart(), diag::note_remove_move) |
| << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) |
| << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); |
| } |
| |
| static void CheckForNullPointerDereference(Sema &S, const Expr *E) { |
| // Check to see if we are dereferencing a null pointer. If so, this is |
| // undefined behavior, so warn about it. This only handles the pattern |
| // "*null", which is a very syntactic check. |
| if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) |
| if (UO->getOpcode() == UO_Deref && |
| UO->getSubExpr()->IgnoreParenCasts()-> |
| isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { |
| S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| S.PDiag(diag::warn_binding_null_to_reference) |
| << UO->getSubExpr()->getSourceRange()); |
| } |
| } |
| |
| MaterializeTemporaryExpr * |
| Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, |
| bool BoundToLvalueReference) { |
| auto MTE = new (Context) |
| MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); |
| |
| // Order an ExprWithCleanups for lifetime marks. |
| // |
| // TODO: It'll be good to have a single place to check the access of the |
| // destructor and generate ExprWithCleanups for various uses. Currently these |
| // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, |
| // but there may be a chance to merge them. |
| Cleanup.setExprNeedsCleanups(false); |
| return MTE; |
| } |
| |
| ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { |
| // In C++98, we don't want to implicitly create an xvalue. |
| // FIXME: This means that AST consumers need to deal with "prvalues" that |
| // denote materialized temporaries. Maybe we should add another ValueKind |
| // for "xvalue pretending to be a prvalue" for C++98 support. |
| if (!E->isRValue() || !getLangOpts().CPlusPlus11) |
| return E; |
| |
| // C++1z [conv.rval]/1: T shall be a complete type. |
| // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? |
| // If so, we should check for a non-abstract class type here too. |
| QualType T = E->getType(); |
| if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) |
| return ExprError(); |
| |
| return CreateMaterializeTemporaryExpr(E->getType(), E, false); |
| } |
| |
| ExprResult |
| InitializationSequence::Perform(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args, |
| QualType *ResultType) { |
| if (Failed()) { |
| Diagnose(S, Entity, Kind, Args); |
| return ExprError(); |
| } |
| if (!ZeroInitializationFixit.empty()) { |
| unsigned DiagID = diag::err_default_init_const; |
| if (Decl *D = Entity.getDecl()) |
| if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) |
| DiagID = diag::ext_default_init_const; |
| |
| // The initialization would have succeeded with this fixit. Since the fixit |
| // is on the error, we need to build a valid AST in this case, so this isn't |
| // handled in the Failed() branch above. |
| QualType DestType = Entity.getType(); |
| S.Diag(Kind.getLocation(), DiagID) |
| << DestType << (bool)DestType->getAs<RecordType>() |
| << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, |
| ZeroInitializationFixit); |
| } |
| |
| if (getKind() == DependentSequence) { |
| // If the declaration is a non-dependent, incomplete array type |
| // that has an initializer, then its type will be completed once |
| // the initializer is instantiated. |
| if (ResultType && !Entity.getType()->isDependentType() && |
| Args.size() == 1) { |
| QualType DeclType = Entity.getType(); |
| if (const IncompleteArrayType *ArrayT |
| = S.Context.getAsIncompleteArrayType(DeclType)) { |
| // FIXME: We don't currently have the ability to accurately |
| // compute the length of an initializer list without |
| // performing full type-checking of the initializer list |
| // (since we have to determine where braces are implicitly |
| // introduced and such). So, we fall back to making the array |
| // type a dependently-sized array type with no specified |
| // bound. |
| if (isa<InitListExpr>((Expr *)Args[0])) { |
| SourceRange Brackets; |
| |
| // Scavange the location of the brackets from the entity, if we can. |
| if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { |
| if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { |
| TypeLoc TL = TInfo->getTypeLoc(); |
| if (IncompleteArrayTypeLoc ArrayLoc = |
| TL.getAs<IncompleteArrayTypeLoc>()) |
| Brackets = ArrayLoc.getBracketsRange(); |
| } |
| } |
| |
| *ResultType |
| = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), |
| /*NumElts=*/nullptr, |
| ArrayT->getSizeModifier(), |
| ArrayT->getIndexTypeCVRQualifiers(), |
| Brackets); |
| } |
| |
| } |
| } |
| if (Kind.getKind() == InitializationKind::IK_Direct && |
| !Kind.isExplicitCast()) { |
| // Rebuild the ParenListExpr. |
| SourceRange ParenRange = Kind.getParenOrBraceRange(); |
| return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), |
| Args); |
| } |
| assert(Kind.getKind() == InitializationKind::IK_Copy || |
| Kind.isExplicitCast() || |
| Kind.getKind() == InitializationKind::IK_DirectList); |
| return ExprResult(Args[0]); |
| } |
| |
| // No steps means no initialization. |
| if (Steps.empty()) |
| return ExprResult((Expr *)nullptr); |
| |
| if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && |
| Args.size() == 1 && isa<InitListExpr>(Args[0]) && |
| !Entity.isParameterKind()) { |
| // Produce a C++98 compatibility warning if we are initializing a reference |
| // from an initializer list. For parameters, we produce a better warning |
| // elsewhere. |
| Expr *Init = Args[0]; |
| S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init) |
| << Init->getSourceRange(); |
| } |
| |
| // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope |
| QualType ETy = Entity.getType(); |
| Qualifiers TyQualifiers = ETy.getQualifiers(); |
| bool HasGlobalAS = TyQualifiers.hasAddressSpace() && |
| TyQualifiers.getAddressSpace() == LangAS::opencl_global; |
| |
| if (S.getLangOpts().OpenCLVersion >= 200 && |
| ETy->isAtomicType() && !HasGlobalAS && |
| Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { |
| S.Diag(Args[0]->getLocStart(), diag::err_opencl_atomic_init) << 1 << |
| SourceRange(Entity.getDecl()->getLocStart(), Args[0]->getLocEnd()); |
| return ExprError(); |
| } |
| |
| QualType DestType = Entity.getType().getNonReferenceType(); |
| // FIXME: Ugly hack around the fact that Entity.getType() is not |
| // the same as Entity.getDecl()->getType() in cases involving type merging, |
| // and we want latter when it makes sense. |
| if (ResultType) |
| *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : |
| Entity.getType(); |
| |
| ExprResult CurInit((Expr *)nullptr); |
| SmallVector<Expr*, 4> ArrayLoopCommonExprs; |
| |
| // For initialization steps that start with a single initializer, |
| // grab the only argument out the Args and place it into the "current" |
| // initializer. |
| switch (Steps.front().Kind) { |
| case SK_ResolveAddressOfOverloadedFunction: |
| case SK_CastDerivedToBaseRValue: |
| case SK_CastDerivedToBaseXValue: |
| case SK_CastDerivedToBaseLValue: |
| case SK_BindReference: |
| case SK_BindReferenceToTemporary: |
| case SK_FinalCopy: |
| case SK_ExtraneousCopyToTemporary: |
| case SK_UserConversion: |
| case SK_QualificationConversionLValue: |
| case SK_QualificationConversionXValue: |
| case SK_QualificationConversionRValue: |
| case SK_AtomicConversion: |
| case SK_LValueToRValue: |
| case SK_ConversionSequence: |
| case SK_ConversionSequenceNoNarrowing: |
| case SK_ListInitialization: |
| case SK_UnwrapInitList: |
| case SK_RewrapInitList: |
| case SK_CAssignment: |
| case SK_StringInit: |
| case SK_ObjCObjectConversion: |
| case SK_ArrayLoopIndex: |
| case SK_ArrayLoopInit: |
| case SK_ArrayInit: |
| case SK_GNUArrayInit: |
| case SK_ParenthesizedArrayInit: |
| case SK_PassByIndirectCopyRestore: |
| case SK_PassByIndirectRestore: |
| case SK_ProduceObjCObject: |
| case SK_StdInitializerList: |
| case SK_OCLSamplerInit: |
| case SK_OCLZeroEvent: |
| case SK_OCLZeroQueue: { |
| assert(Args.size() == 1); |
| CurInit = Args[0]; |
| if (!CurInit.get()) return ExprError(); |
| break; |
| } |
| |
| case SK_ConstructorInitialization: |
| case SK_ConstructorInitializationFromList: |
| case SK_StdInitializerListConstructorCall: |
| case SK_ZeroInitialization: |
| break; |
| } |
| |
| // Promote from an unevaluated context to an unevaluated list context in |
| // C++11 list-initialization; we need to instantiate entities usable in |
| // constant expressions here in order to perform narrowing checks =( |
| EnterExpressionEvaluationContext Evaluated( |
| S, EnterExpressionEvaluationContext::InitList, |
| CurInit.get() && isa<InitListExpr>(CurInit.get())); |
| |
| // C++ [class.abstract]p2: |
| // no objects of an abstract class can be created except as subobjects |
| // of a class derived from it |
| auto checkAbstractType = [&](QualType T) -> bool { |
| if (Entity.getKind() == InitializedEntity::EK_Base || |
| Entity.getKind() == InitializedEntity::EK_Delegating) |
| return false; |
| return S.RequireNonAbstractType(Kind.getLocation(), T, |
| diag::err_allocation_of_abstract_type); |
| }; |
| |
| // Walk through the computed steps for the initialization sequence, |
| // performing the specified conversions along the way. |
| bool ConstructorInitRequiresZeroInit = false; |
| for (step_iterator Step = step_begin(), StepEnd = step_end(); |
| Step != StepEnd; ++Step) { |
| if (CurInit.isInvalid()) |
| return ExprError(); |
| |
| QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); |
| |
| switch (Step->Kind) { |
| case SK_ResolveAddressOfOverloadedFunction: |
| // Overload resolution determined which function invoke; update the |
| // initializer to reflect that choice. |
| S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); |
| if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) |
| return ExprError(); |
| CurInit = S.FixOverloadedFunctionReference(CurInit, |
| Step->Function.FoundDecl, |
| Step->Function.Function); |
| break; |
| |
| case SK_CastDerivedToBaseRValue: |
| case SK_CastDerivedToBaseXValue: |
| case SK_CastDerivedToBaseLValue: { |
| // We have a derived-to-base cast that produces either an rvalue or an |
| // lvalue. Perform that cast. |
| |
| CXXCastPath BasePath; |
| |
| // Casts to inaccessible base classes are allowed with C-style casts. |
| bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); |
| if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, |
| CurInit.get()->getLocStart(), |
| CurInit.get()->getSourceRange(), |
| &BasePath, IgnoreBaseAccess)) |
| return ExprError(); |
| |
| ExprValueKind VK = |
| Step->Kind == SK_CastDerivedToBaseLValue ? |
| VK_LValue : |
| (Step->Kind == SK_CastDerivedToBaseXValue ? |
| VK_XValue : |
| VK_RValue); |
| CurInit = |
| ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, |
| CurInit.get(), &BasePath, VK); |
| break; |
| } |
| |
| case SK_BindReference: |
| // Reference binding does not have any corresponding ASTs. |
| |
| // Check exception specifications |
| if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) |
| return ExprError(); |
| |
| // We don't check for e.g. function pointers here, since address |
| // availability checks should only occur when the function first decays |
| // into a pointer or reference. |
| if (CurInit.get()->getType()->isFunctionProtoType()) { |
| if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { |
| if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { |
| if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, |
| DRE->getLocStart())) |
| return ExprError(); |
| } |
| } |
| } |
| |
| CheckForNullPointerDereference(S, CurInit.get()); |
| break; |
| |
| case SK_BindReferenceToTemporary: { |
| // Make sure the "temporary" is actually an rvalue. |
| assert(CurInit.get()->isRValue() && "not a temporary"); |
| |
| // Check exception specifications |
| if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) |
| return ExprError(); |
| |
| // Materialize the temporary into memory. |
| MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
| Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); |
| CurInit = MTE; |
| |
| // If we're extending this temporary to automatic storage duration -- we |
| // need to register its cleanup during the full-expression's cleanups. |
| if (MTE->getStorageDuration() == SD_Automatic && |
| MTE->getType().isDestructedType()) |
| S.Cleanup.setExprNeedsCleanups(true); |
| break; |
| } |
| |
| case SK_FinalCopy: |
| if (checkAbstractType(Step->Type)) |
| return ExprError(); |
| |
| // If the overall initialization is initializing a temporary, we already |
| // bound our argument if it was necessary to do so. If not (if we're |
| // ultimately initializing a non-temporary), our argument needs to be |
| // bound since it's initializing a function parameter. |
| // FIXME: This is a mess. Rationalize temporary destruction. |
| if (!shouldBindAsTemporary(Entity)) |
| CurInit = S.MaybeBindToTemporary(CurInit.get()); |
| CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
| /*IsExtraneousCopy=*/false); |
| break; |
| |
| case SK_ExtraneousCopyToTemporary: |
| CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
| /*IsExtraneousCopy=*/true); |
| break; |
| |
| case SK_UserConversion: { |
| // We have a user-defined conversion that invokes either a constructor |
| // or a conversion function. |
| CastKind CastKind; |
| FunctionDecl *Fn = Step->Function.Function; |
| DeclAccessPair FoundFn = Step->Function.FoundDecl; |
| bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; |
| bool CreatedObject = false; |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { |
| // Build a call to the selected constructor. |
| SmallVector<Expr*, 8> ConstructorArgs; |
| SourceLocation Loc = CurInit.get()->getLocStart(); |
| |
| // Determine the arguments required to actually perform the constructor |
| // call. |
| Expr *Arg = CurInit.get(); |
| if (S.CompleteConstructorCall(Constructor, |
| MultiExprArg(&Arg, 1), |
| Loc, ConstructorArgs)) |
| return ExprError(); |
| |
| // Build an expression that constructs a temporary. |
| CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, |
| FoundFn, Constructor, |
| ConstructorArgs, |
| HadMultipleCandidates, |
| /*ListInit*/ false, |
| /*StdInitListInit*/ false, |
| /*ZeroInit*/ false, |
| CXXConstructExpr::CK_Complete, |
| SourceRange()); |
| if (CurInit.isInvalid()) |
| return ExprError(); |
| |
| S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, |
| Entity); |
| if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) |
| return ExprError(); |
| |
| CastKind = CK_ConstructorConversion; |
| CreatedObject = true; |
| } else { |
| // Build a call to the conversion function. |
| CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); |
| S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, |
| FoundFn); |
| if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) |
| return ExprError(); |
| |
| CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, |
| HadMultipleCandidates); |
| if (CurInit.isInvalid()) |
| return ExprError(); |
| |
| CastKind = CK_UserDefinedConversion; |
| CreatedObject = Conversion->getReturnType()->isRecordType(); |
| } |
| |
| if (CreatedObject && checkAbstractType(CurInit.get()->getType())) |
| return ExprError(); |
| |
| CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), |
| CastKind, CurInit.get(), nullptr, |
| CurInit.get()->getValueKind()); |
| |
| if (shouldBindAsTemporary(Entity)) |
| // The overall entity is temporary, so this expression should be |
| // destroyed at the end of its full-expression. |
| CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); |
| else if (CreatedObject && shouldDestroyEntity(Entity)) { |
| // The object outlasts the full-expression, but we need to prepare for |
| // a destructor being run on it. |
| // FIXME: It makes no sense to do this here. This should happen |
| // regardless of how we initialized the entity. |
| QualType T = CurInit.get()->getType(); |
| if (const RecordType *Record = T->getAs<RecordType>()) { |
| CXXDestructorDecl *Destructor |
| = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); |
| S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, |
| S.PDiag(diag::err_access_dtor_temp) << T); |
| S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor); |
| if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart())) |
| return ExprError(); |
| } |
| } |
| break; |
| } |
| |
| case SK_QualificationConversionLValue: |
| case SK_QualificationConversionXValue: |
| case SK_QualificationConversionRValue: { |
| // Perform a qualification conversion; these can never go wrong. |
| ExprValueKind VK = |
| Step->Kind == SK_QualificationConversionLValue ? |
| VK_LValue : |
| (Step->Kind == SK_QualificationConversionXValue ? |
| VK_XValue : |
| VK_RValue); |
| CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK); |
| break; |
| } |
| |
| case SK_AtomicConversion: { |
| assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); |
| CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, |
| CK_NonAtomicToAtomic, VK_RValue); |
| break; |
| } |
| |
| case SK_LValueToRValue: { |
| assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); |
| CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, |
| CK_LValueToRValue, CurInit.get(), |
| /*BasePath=*/nullptr, VK_RValue); |
| break; |
| } |
| |
| case SK_ConversionSequence: |
| case SK_ConversionSequenceNoNarrowing: { |
| Sema::CheckedConversionKind CCK |
| = Kind.isCStyleCast()? Sema::CCK_CStyleCast |
| : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast |
| : Kind.isExplicitCast()? Sema::CCK_OtherCast |
| : Sema::CCK_ImplicitConversion; |
| ExprResult CurInitExprRes = |
| S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, |
| getAssignmentAction(Entity), CCK); |
| if (CurInitExprRes.isInvalid()) |
| return ExprError(); |
| |
| S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); |
| |
| CurInit = CurInitExprRes; |
| |
| if (Step->Kind == SK_ConversionSequenceNoNarrowing && |
| S.getLangOpts().CPlusPlus) |
| DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), |
| CurInit.get()); |
| |
| break; |
| } |
| |
| case SK_ListInitialization: { |
| if (checkAbstractType(Step->Type)) |
| return ExprError(); |
| |
| InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); |
| // If we're not initializing the top-level entity, we need to create an |
| // InitializeTemporary entity for our target type. |
| QualType Ty = Step->Type; |
| bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); |
| InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; |
| InitListChecker PerformInitList(S, InitEntity, |
| InitList, Ty, /*VerifyOnly=*/false, |
| /*TreatUnavailableAsInvalid=*/false); |
| if (PerformInitList.HadError()) |
| return ExprError(); |
| |
| // Hack: We must update *ResultType if available in order to set the |
| // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. |
| // Worst case: 'const int (&arref)[] = {1, 2, 3};'. |
| if (ResultType && |
| ResultType->getNonReferenceType()->isIncompleteArrayType()) { |
| if ((*ResultType)->isRValueReferenceType()) |
| Ty = S.Context.getRValueReferenceType(Ty); |
| else if ((*ResultType)->isLValueReferenceType()) |
| Ty = S.Context.getLValueReferenceType(Ty, |
| (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); |
| *ResultType = Ty; |
| } |
| |
| InitListExpr *StructuredInitList = |
| PerformInitList.getFullyStructuredList(); |
| CurInit.get(); |
| CurInit = shouldBindAsTemporary(InitEntity) |
| ? S.MaybeBindToTemporary(StructuredInitList) |
| : StructuredInitList; |
| break; |
| } |
| |
| case SK_ConstructorInitializationFromList: { |
| if (checkAbstractType(Step->Type)) |
| return ExprError(); |
| |
| // When an initializer list is passed for a parameter of type "reference |
| // to object", we don't get an EK_Temporary entity, but instead an |
| // EK_Parameter entity with reference type. |
| // FIXME: This is a hack. What we really should do is create a user |
| // conversion step for this case, but this makes it considerably more |
| // complicated. For now, this will do. |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
| Entity.getType().getNonReferenceType()); |
| bool UseTemporary = Entity.getType()->isReferenceType(); |
| assert(Args.size() == 1 && "expected a single argument for list init"); |
| InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
| S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) |
| << InitList->getSourceRange(); |
| MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); |
| CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : |
| Entity, |
| Kind, Arg, *Step, |
| ConstructorInitRequiresZeroInit, |
| /*IsListInitialization*/true, |
| /*IsStdInitListInit*/false, |
| InitList->getLBraceLoc(), |
| InitList->getRBraceLoc()); |
| break; |
| } |
| |
| case SK_UnwrapInitList: |
| CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); |
| break; |
| |
| case SK_RewrapInitList: { |
| Expr *E = CurInit.get(); |
| InitListExpr *Syntactic = Step->WrappingSyntacticList; |
| InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, |
| Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); |
| ILE->setSyntacticForm(Syntactic); |
| ILE->setType(E->getType()); |
| ILE->setValueKind(E->getValueKind()); |
| CurInit = ILE; |
| break; |
| } |
| |
| case SK_ConstructorInitialization: |
| case SK_StdInitializerListConstructorCall: { |
| if (checkAbstractType(Step->Type)) |
| return ExprError(); |
| |
| // When an initializer list is passed for a parameter of type "reference |
| // to object", we don't get an EK_Temporary entity, but instead an |
| // EK_Parameter entity with reference type. |
| // FIXME: This is a hack. What we really should do is create a user |
| // conversion step for this case, but this makes it considerably more |
| // complicated. For now, this will do. |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
| Entity.getType().getNonReferenceType()); |
| bool UseTemporary = Entity.getType()->isReferenceType(); |
| bool IsStdInitListInit = |
| Step->Kind == SK_StdInitializerListConstructorCall; |
| Expr *Source = CurInit.get(); |
| SourceRange Range = Kind.hasParenOrBraceRange() |
| ? Kind.getParenOrBraceRange() |
| : SourceRange(); |
| CurInit = PerformConstructorInitialization( |
| S, UseTemporary ? TempEntity : Entity, Kind, |
| Source ? MultiExprArg(Source) : Args, *Step, |
| ConstructorInitRequiresZeroInit, |
| /*IsListInitialization*/ IsStdInitListInit, |
| /*IsStdInitListInitialization*/ IsStdInitListInit, |
| /*LBraceLoc*/ Range.getBegin(), |
| /*RBraceLoc*/ Range.getEnd()); |
| break; |
| } |
| |
| case SK_ZeroInitialization: { |
| step_iterator NextStep = Step; |
| ++NextStep; |
| if (NextStep != StepEnd && |
| (NextStep->Kind == SK_ConstructorInitialization || |
| NextStep->Kind == SK_ConstructorInitializationFromList)) { |
| // The need for zero-initialization is recorded directly into |
| // the call to the object's constructor within the next step. |
| ConstructorInitRequiresZeroInit = true; |
| } else if (Kind.getKind() == InitializationKind::IK_Value && |
| S.getLangOpts().CPlusPlus && |
| !Kind.isImplicitValueInit()) { |
| TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
| if (!TSInfo) |
| TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, |
| Kind.getRange().getBegin()); |
| |
| CurInit = new (S.Context) CXXScalarValueInitExpr( |
| Entity.getType().getNonLValueExprType(S.Context), TSInfo, |
| Kind.getRange().getEnd()); |
| } else { |
| CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); |
| } |
| break; |
| } |
| |
| case SK_CAssignment: { |
| QualType SourceType = CurInit.get()->getType(); |
| // Save off the initial CurInit in case we need to emit a diagnostic |
| ExprResult InitialCurInit = CurInit; |
| ExprResult Result = CurInit; |
| Sema::AssignConvertType ConvTy = |
| S.CheckSingleAssignmentConstraints(Step->Type, Result, true, |
| Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); |
| if (Result.isInvalid()) |
| return ExprError(); |
| CurInit = Result; |
| |
| // If this is a call, allow conversion to a transparent union. |
| ExprResult CurInitExprRes = CurInit; |
| if (ConvTy != Sema::Compatible && |
| Entity.isParameterKind() && |
| S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) |
| == Sema::Compatible) |
| ConvTy = Sema::Compatible; |
| if (CurInitExprRes.isInvalid()) |
| return ExprError(); |
| CurInit = CurInitExprRes; |
| |
| bool Complained; |
| if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), |
| Step->Type, SourceType, |
| InitialCurInit.get(), |
| getAssignmentAction(Entity, true), |
| &Complained)) { |
| PrintInitLocationNote(S, Entity); |
| return ExprError(); |
| } else if (Complained) |
| PrintInitLocationNote(S, Entity); |
| break; |
| } |
| |
| case SK_StringInit: { |
| QualType Ty = Step->Type; |
| CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, |
| S.Context.getAsArrayType(Ty), S); |
| break; |
| } |
| |
| case SK_ObjCObjectConversion: |
| CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, |
| CK_ObjCObjectLValueCast, |
| CurInit.get()->getValueKind()); |
| break; |
| |
| case SK_ArrayLoopIndex: { |
| Expr *Cur = CurInit.get(); |
| Expr *BaseExpr = new (S.Context) |
| OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), |
| Cur->getValueKind(), Cur->getObjectKind(), Cur); |
| Expr *IndexExpr = |
| new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); |
| CurInit = S.CreateBuiltinArraySubscriptExpr( |
| BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); |
| ArrayLoopCommonExprs.push_back(BaseExpr); |
| break; |
| } |
| |
| case SK_ArrayLoopInit: { |
| assert(!ArrayLoopCommonExprs.empty() && |
| "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); |
| Expr *Common = ArrayLoopCommonExprs.pop_back_val(); |
| CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, |
| CurInit.get()); |
| break; |
| } |
| |
| case SK_GNUArrayInit: |
| // Okay: we checked everything before creating this step. Note that |
| // this is a GNU extension. |
| S.Diag(Kind.getLocation(), diag::ext_array_init_copy) |
| << Step->Type << CurInit.get()->getType() |
| << CurInit.get()->getSourceRange(); |
| LLVM_FALLTHROUGH; |
| case SK_ArrayInit: |
| // If the destination type is an incomplete array type, update the |
| // type accordingly. |
| if (ResultType) { |
| if (const IncompleteArrayType *IncompleteDest |
| = S.Context.getAsIncompleteArrayType(Step->Type)) { |
| if (const ConstantArrayType *ConstantSource |
| = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { |
| *ResultType = S.Context.getConstantArrayType( |
| IncompleteDest->getElementType(), |
| ConstantSource->getSize(), |
| ArrayType::Normal, 0); |
| } |
| } |
| } |
| break; |
| |
| case SK_ParenthesizedArrayInit: |
| // Okay: we checked everything before creating this step. Note that |
| // this is a GNU extension. |
| S.Diag(Kind.getLocation(), diag::ext_array_init_parens) |
| << CurInit.get()->getSourceRange(); |
| break; |
| |
| case SK_PassByIndirectCopyRestore: |
| case SK_PassByIndirectRestore: |
| checkIndirectCopyRestoreSource(S, CurInit.get()); |
| CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( |
| CurInit.get(), Step->Type, |
| Step->Kind == SK_PassByIndirectCopyRestore); |
| break; |
| |
| case SK_ProduceObjCObject: |
| CurInit = |
| ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, |
| CurInit.get(), nullptr, VK_RValue); |
| break; |
| |
| case SK_StdInitializerList: { |
| S.Diag(CurInit.get()->getExprLoc(), |
| diag::warn_cxx98_compat_initializer_list_init) |
| << CurInit.get()->getSourceRange(); |
| |
| // Materialize the temporary into memory. |
| MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
| CurInit.get()->getType(), CurInit.get(), |
| /*BoundToLvalueReference=*/false); |
| |
| // Wrap it in a construction of a std::initializer_list<T>. |
| CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); |
| |
| // Bind the result, in case the library has given initializer_list a |
| // non-trivial destructor. |
| if (shouldBindAsTemporary(Entity)) |
| CurInit = S.MaybeBindToTemporary(CurInit.get()); |
| break; |
| } |
| |
| case SK_OCLSamplerInit: { |
| // Sampler initialzation have 5 cases: |
| // 1. function argument passing |
| // 1a. argument is a file-scope variable |
| // 1b. argument is a function-scope variable |
| // 1c. argument is one of caller function's parameters |
| // 2. variable initialization |
| // 2a. initializing a file-scope variable |
| // 2b. initializing a function-scope variable |
| // |
| // For file-scope variables, since they cannot be initialized by function |
| // call of __translate_sampler_initializer in LLVM IR, their references |
| // need to be replaced by a cast from their literal initializers to |
| // sampler type. Since sampler variables can only be used in function |
| // calls as arguments, we only need to replace them when handling the |
| // argument passing. |
| assert(Step->Type->isSamplerT() && |
| "Sampler initialization on non-sampler type."); |
| Expr *Init = CurInit.get(); |
| QualType SourceType = Init->getType(); |
| // Case 1 |
| if (Entity.isParameterKind()) { |
| if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { |
| S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) |
| << SourceType; |
| break; |
| } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { |
| auto Var = cast<VarDecl>(DRE->getDecl()); |
| // Case 1b and 1c |
| // No cast from integer to sampler is needed. |
| if (!Var->hasGlobalStorage()) { |
| CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, |
| CK_LValueToRValue, Init, |
| /*BasePath=*/nullptr, VK_RValue); |
| break; |
| } |
| // Case 1a |
| // For function call with a file-scope sampler variable as argument, |
| // get the integer literal. |
| // Do not diagnose if the file-scope variable does not have initializer |
| // since this has already been diagnosed when parsing the variable |
| // declaration. |
| if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) |
| break; |
| Init = cast<ImplicitCastExpr>(const_cast<Expr*>( |
| Var->getInit()))->getSubExpr(); |
| SourceType = Init->getType(); |
| } |
| } else { |
| // Case 2 |
| // Check initializer is 32 bit integer constant. |
| // If the initializer is taken from global variable, do not diagnose since |
| // this has already been done when parsing the variable declaration. |
| if (!Init->isConstantInitializer(S.Context, false)) |
| break; |
| |
| if (!SourceType->isIntegerType() || |
| 32 != S.Context.getIntWidth(SourceType)) { |
| S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) |
| << SourceType; |
| break; |
| } |
| |
| llvm::APSInt Result; |
| Init->EvaluateAsInt(Result, S.Context); |
| const uint64_t SamplerValue = Result.getLimitedValue(); |
| // 32-bit value of sampler's initializer is interpreted as |
| // bit-field with the following structure: |
| // |unspecified|Filter|Addressing Mode| Normalized Coords| |
| // |31 6|5 4|3 1| 0| |
| // This structure corresponds to enum values of sampler properties |
| // defined in SPIR spec v1.2 and also opencl-c.h |
| unsigned AddressingMode = (0x0E & SamplerValue) >> 1; |
| unsigned FilterMode = (0x30 & SamplerValue) >> 4; |
| if (FilterMode != 1 && FilterMode != 2) |
| S.Diag(Kind.getLocation(), |
| diag::warn_sampler_initializer_invalid_bits) |
| << "Filter Mode"; |
| if (AddressingMode > 4) |
| S.Diag(Kind.getLocation(), |
| diag::warn_sampler_initializer_invalid_bits) |
| << "Addressing Mode"; |
| } |
| |
| // Cases 1a, 2a and 2b |
| // Insert cast from integer to sampler. |
| CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, |
| CK_IntToOCLSampler); |
| break; |
| } |
| case SK_OCLZeroEvent: { |
| assert(Step->Type->isEventT() && |
| "Event initialization on non-event type."); |
| |
| CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, |
| CK_ZeroToOCLEvent, |
| CurInit.get()->getValueKind()); |
| break; |
| } |
| case SK_OCLZeroQueue: { |
| assert(Step->Type->isQueueT() && |
| "Event initialization on non queue type."); |
| |
| CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, |
| CK_ZeroToOCLQueue, |
| CurInit.get()->getValueKind()); |
| break; |
| } |
| } |
| } |
| |
| // Check whether the initializer has a shorter lifetime than the initialized |
| // entity, and if not, either lifetime-extend or warn as appropriate. |
| if (auto *Init = CurInit.get()) |
| S.checkInitializerLifetime(Entity, Init); |
| |
| // Diagnose non-fatal problems with the completed initialization. |
| if (Entity.getKind() == InitializedEntity::EK_Member && |
| cast<FieldDecl>(Entity.getDecl())->isBitField()) |
| S.CheckBitFieldInitialization(Kind.getLocation(), |
| cast<FieldDecl>(Entity.getDecl()), |
| CurInit.get()); |
| |
| // Check for std::move on construction. |
| if (const Expr *E = CurInit.get()) { |
| CheckMoveOnConstruction(S, E, |
| Entity.getKind() == InitializedEntity::EK_Result); |
| } |
| |
| return CurInit; |
| } |
| |
| /// Somewhere within T there is an uninitialized reference subobject. |
| /// Dig it out and diagnose it. |
| static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, |
| QualType T) { |
| if (T->isReferenceType()) { |
| S.Diag(Loc, diag::err_reference_without_init) |
| << T.getNonReferenceType(); |
| return true; |
| } |
| |
| CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| if (!RD || !RD->hasUninitializedReferenceMember()) |
| return false; |
| |
| for (const auto *FI : RD->fields()) { |
| if (FI->isUnnamedBitfield()) |
| continue; |
| |
| if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { |
| S.Diag(Loc, diag::note_value_initialization_here) << RD; |
| return true; |
| } |
| } |
| |
| for (const auto &BI : RD->bases()) { |
| if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) { |
| S.Diag(Loc, diag::note_value_initialization_here) << RD; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Diagnose initialization failures |
| //===----------------------------------------------------------------------===// |
| |
| /// Emit notes associated with an initialization that failed due to a |
| /// "simple" conversion failure. |
| static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, |
| Expr *op) { |
| QualType destType = entity.getType(); |
| if (destType.getNonReferenceType()->isObjCObjectPointerType() && |
| op->getType()->isObjCObjectPointerType()) { |
| |
| // Emit a possible note about the conversion failing because the |
| // operand is a message send with a related result type. |
| S.EmitRelatedResultTypeNote(op); |
| |
| // Emit a possible note about a return failing because we're |
| // expecting a related result type. |
| if (entity.getKind() == InitializedEntity::EK_Result) |
| S.EmitRelatedResultTypeNoteForReturn(destType); |
| } |
| } |
| |
| static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, |
| InitListExpr *InitList) { |
| QualType DestType = Entity.getType(); |
| |
| QualType E; |
| if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { |
| QualType ArrayType = S.Context.getConstantArrayType( |
| E.withConst(), |
| llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), |
| InitList->getNumInits()), |
| clang::ArrayType::Normal, 0); |
| InitializedEntity HiddenArray = |
| InitializedEntity::InitializeTemporary(ArrayType); |
| return diagnoseListInit(S, HiddenArray, InitList); |
| } |
| |
| if (DestType->isReferenceType()) { |
| // A list-initialization failure for a reference means that we tried to |
| // create a temporary of the inner type (per [dcl.init.list]p3.6) and the |
| // inner initialization failed. |
| QualType T = DestType->getAs<ReferenceType>()->getPointeeType(); |
| diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); |
| SourceLocation Loc = InitList->getLocStart(); |
| if (auto *D = Entity.getDecl()) |
| Loc = D->getLocation(); |
| S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; |
| return; |
| } |
| |
| InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, |
| /*VerifyOnly=*/false, |
| /*TreatUnavailableAsInvalid=*/false); |
| assert(DiagnoseInitList.HadError() && |
| "Inconsistent init list check result."); |
| } |
| |
| bool InitializationSequence::Diagnose(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| ArrayRef<Expr *> Args) { |
| if (!Failed()) |
| return false; |
| |
| // When we want to diagnose only one element of a braced-init-list, |
| // we need to factor it out. |
| Expr *OnlyArg; |
| if (Args.size() == 1) { |
| auto *List = dyn_cast<InitListExpr>(Args[0]); |
| if (List && List->getNumInits() == 1) |
| OnlyArg = List->getInit(0); |
| else |
| OnlyArg = Args[0]; |
| } |
| else |
| OnlyArg = nullptr; |
| |
| QualType DestType = Entity.getType(); |
| switch (Failure) { |
| case FK_TooManyInitsForReference: |
| // FIXME: Customize for the initialized entity? |
| if (Args.empty()) { |
| // Dig out the reference subobject which is uninitialized and diagnose it. |
| // If this is value-initialization, this could be nested some way within |
| // the target type. |
| assert(Kind.getKind() == InitializationKind::IK_Value || |
| DestType->isReferenceType()); |
| bool Diagnosed = |
| DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); |
| assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); |
| (void)Diagnosed; |
| } else // FIXME: diagnostic below could be better! |
| S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) |
| << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd()); |
| break; |
| case FK_ParenthesizedListInitForReference: |
| S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) |
| << 1 << Entity.getType() << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_ArrayNeedsInitList: |
| S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; |
| break; |
| case FK_ArrayNeedsInitListOrStringLiteral: |
| S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; |
| break; |
| case FK_ArrayNeedsInitListOrWideStringLiteral: |
| S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; |
| break; |
| case FK_NarrowStringIntoWideCharArray: |
| S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); |
| break; |
| case FK_WideStringIntoCharArray: |
| S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); |
| break; |
| case FK_IncompatWideStringIntoWideChar: |
| S.Diag(Kind.getLocation(), |
| diag::err_array_init_incompat_wide_string_into_wchar); |
| break; |
| case FK_PlainStringIntoUTF8Char: |
| S.Diag(Kind.getLocation(), |
| diag::err_array_init_plain_string_into_char8_t); |
| S.Diag(Args.front()->getLocStart(), |
| diag::note_array_init_plain_string_into_char8_t) |
| << FixItHint::CreateInsertion(Args.front()->getLocStart(), "u8"); |
| break; |
| case FK_UTF8StringIntoPlainChar: |
| S.Diag(Kind.getLocation(), |
| diag::err_array_init_utf8_string_into_char); |
| break; |
| case FK_ArrayTypeMismatch: |
| case FK_NonConstantArrayInit: |
| S.Diag(Kind.getLocation(), |
| (Failure == FK_ArrayTypeMismatch |
| ? diag::err_array_init_different_type |
| : diag::err_array_init_non_constant_array)) |
| << DestType.getNonReferenceType() |
| << OnlyArg->getType() |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_VariableLengthArrayHasInitializer: |
| S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_AddressOfOverloadFailed: { |
| DeclAccessPair Found; |
| S.ResolveAddressOfOverloadedFunction(OnlyArg, |
| DestType.getNonReferenceType(), |
| true, |
| Found); |
| break; |
| } |
| |
| case FK_AddressOfUnaddressableFunction: { |
| auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); |
| S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, |
| OnlyArg->getLocStart()); |
| break; |
| } |
| |
| case FK_ReferenceInitOverloadFailed: |
| case FK_UserConversionOverloadFailed: |
| switch (FailedOverloadResult) { |
| case OR_Ambiguous: |
| if (Failure == FK_UserConversionOverloadFailed) |
| S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) |
| << OnlyArg->getType() << DestType |
| << Args[0]->getSourceRange(); |
| else |
| S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) |
| << DestType << OnlyArg->getType() |
| << Args[0]->getSourceRange(); |
| |
| FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); |
| break; |
| |
| case OR_No_Viable_Function: |
| if (!S.RequireCompleteType(Kind.getLocation(), |
| DestType.getNonReferenceType(), |
| diag::err_typecheck_nonviable_condition_incomplete, |
| OnlyArg->getType(), Args[0]->getSourceRange())) |
| S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) |
| << (Entity.getKind() == InitializedEntity::EK_Result) |
| << OnlyArg->getType() << Args[0]->getSourceRange() |
| << DestType.getNonReferenceType(); |
| |
| FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); |
| break; |
| |
| case OR_Deleted: { |
| S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) |
| << OnlyArg->getType() << DestType.getNonReferenceType() |
| << Args[0]->getSourceRange(); |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult Ovl |
| = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); |
| if (Ovl == OR_Deleted) { |
| S.NoteDeletedFunction(Best->Function); |
| } else { |
| llvm_unreachable("Inconsistent overload resolution?"); |
| } |
| break; |
| } |
| |
| case OR_Success: |
| llvm_unreachable("Conversion did not fail!"); |
| } |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToTemporary: |
| if (isa<InitListExpr>(Args[0])) { |
| S.Diag(Kind.getLocation(), |
| diag::err_lvalue_reference_bind_to_initlist) |
| << DestType.getNonReferenceType().isVolatileQualified() |
| << DestType.getNonReferenceType() |
| << Args[0]->getSourceRange(); |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| |
| case FK_NonConstLValueReferenceBindingToUnrelated: |
| S.Diag(Kind.getLocation(), |
| Failure == FK_NonConstLValueReferenceBindingToTemporary |
| ? diag::err_lvalue_reference_bind_to_temporary |
| : diag::err_lvalue_reference_bind_to_unrelated) |
| << DestType.getNonReferenceType().isVolatileQualified() |
| << DestType.getNonReferenceType() |
| << OnlyArg->getType() |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToBitfield: { |
| // We don't necessarily have an unambiguous source bit-field. |
| FieldDecl *BitField = Args[0]->getSourceBitField(); |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) |
| << DestType.isVolatileQualified() |
| << (BitField ? BitField->getDeclName() : DeclarationName()) |
| << (BitField != nullptr) |
| << Args[0]->getSourceRange(); |
| if (BitField) |
| S.Diag(BitField->getLocation(), diag::note_bitfield_decl); |
| break; |
| } |
| |
| case FK_NonConstLValueReferenceBindingToVectorElement: |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) |
| << DestType.isVolatileQualified() |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_RValueReferenceBindingToLValue: |
| S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) |
| << DestType.getNonReferenceType() << OnlyArg->getType() |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_ReferenceInitDropsQualifiers: { |
| QualType SourceType = OnlyArg->getType(); |
| QualType NonRefType = DestType.getNonReferenceType(); |
| Qualifiers DroppedQualifiers = |
| SourceType.getQualifiers() - NonRefType.getQualifiers(); |
| |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
| << SourceType |
| << NonRefType |
| << DroppedQualifiers.getCVRQualifiers() |
| << Args[0]->getSourceRange(); |
| break; |
| } |
| |
| case FK_ReferenceInitFailed: |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) |
| << DestType.getNonReferenceType() |
| << OnlyArg->isLValue() |
| << OnlyArg->getType() |
| << Args[0]->getSourceRange(); |
| emitBadConversionNotes(S, Entity, Args[0]); |
| break; |
| |
| case FK_ConversionFailed: { |
| QualType FromType = OnlyArg->getType(); |
| PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) |
| << (int)Entity.getKind() |
| << DestType |
| << OnlyArg->isLValue() |
| << FromType |
| << Args[0]->getSourceRange(); |
| S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); |
| S.Diag(Kind.getLocation(), PDiag); |
| emitBadConversionNotes(S, Entity, Args[0]); |
| break; |
| } |
| |
| case FK_ConversionFromPropertyFailed: |
| // No-op. This error has already been reported. |
| break; |
| |
| case FK_TooManyInitsForScalar: { |
| SourceRange R; |
| |
| auto *InitList = dyn_cast<InitListExpr>(Args[0]); |
| if (InitList && InitList->getNumInits() >= 1) { |
| R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd()); |
| } else { |
| assert(Args.size() > 1 && "Expected multiple initializers!"); |
| R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd()); |
| } |
| |
| R.setBegin(S.getLocForEndOfToken(R.getBegin())); |
| if (Kind.isCStyleOrFunctionalCast()) |
| S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) |
| << R; |
| else |
| S.Diag(Kind.getLocation(), diag::err_excess_initializers) |
| << /*scalar=*/2 << R; |
| break; |
| } |
| |
| case FK_ParenthesizedListInitForScalar: |
| S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) |
| << 0 << Entity.getType() << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_ReferenceBindingToInitList: |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) |
| << DestType.getNonReferenceType() << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_InitListBadDestinationType: |
| S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) |
| << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_ListConstructorOverloadFailed: |
| case FK_ConstructorOverloadFailed: { |
| SourceRange ArgsRange; |
| if (Args.size()) |
| ArgsRange = SourceRange(Args.front()->getLocStart(), |
| Args.back()->getLocEnd()); |
| |
| if (Failure == FK_ListConstructorOverloadFailed) { |
| assert(Args.size() == 1 && |
| "List construction from other than 1 argument."); |
| InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
| Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
| } |
| |
| // FIXME: Using "DestType" for the entity we're printing is probably |
| // bad. |
| switch (FailedOverloadResult) { |
| case OR_Ambiguous: |
| S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) |
| << DestType << ArgsRange; |
| FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); |
| break; |
| |
| case OR_No_Viable_Function: |
| if (Kind.getKind() == InitializationKind::IK_Default && |
| (Entity.getKind() == InitializedEntity::EK_Base || |
| Entity.getKind() == InitializedEntity::EK_Member) && |
| isa<CXXConstructorDecl>(S.CurContext)) { |
| // This is implicit default initialization of a member or |
| // base within a constructor. If no viable function was |
| // found, notify the user that they need to explicitly |
| // initialize this base/member. |
| CXXConstructorDecl *Constructor |
| = cast<CXXConstructorDecl>(S.CurContext); |
| const CXXRecordDecl *InheritedFrom = nullptr; |
| if (auto Inherited = Constructor->getInheritedConstructor()) |
| InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); |
| if (Entity.getKind() == InitializedEntity::EK_Base) { |
| S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
| << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
| << S.Context.getTypeDeclType(Constructor->getParent()) |
| << /*base=*/0 |
| << Entity.getType() |
| << InheritedFrom; |
| |
| RecordDecl *BaseDecl |
| = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() |
| ->getDecl(); |
| S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) |
| << S.Context.getTagDeclType(BaseDecl); |
| } else { |
| S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
| << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
| << S.Context.getTypeDeclType(Constructor->getParent()) |
| << /*member=*/1 |
| << Entity.getName() |
| << InheritedFrom; |
| S.Diag(Entity.getDecl()->getLocation(), |
| diag::note_member_declared_at); |
| |
| if (const RecordType *Record |
| = Entity.getType()->getAs<RecordType>()) |
| S.Diag(Record->getDecl()->getLocation(), |
| diag::note_previous_decl) |
| << S.Context.getTagDeclType(Record->getDecl()); |
| } |
| break; |
| } |
| |
| S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) |
| << DestType << ArgsRange; |
| FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); |
| break; |
| |
| case OR_Deleted: { |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult Ovl |
| = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); |
| if (Ovl != OR_Deleted) { |
| S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
| << true << DestType << ArgsRange; |
| llvm_unreachable("Inconsistent overload resolution?"); |
| break; |
| } |
| |
| // If this is a defaulted or implicitly-declared function, then |
| // it was implicitly deleted. Make it clear that the deletion was |
| // implicit. |
| if (S.isImplicitlyDeleted(Best->Function)) |
| S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) |
| << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) |
| << DestType << ArgsRange; |
| else |
| S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
| << true << DestType << ArgsRange; |
| |
| S.NoteDeletedFunction(Best->Function); |
| break; |
| } |
| |
| case OR_Success: |
| llvm_unreachable("Conversion did not fail!"); |
| } |
| } |
| break; |
| |
| case FK_DefaultInitOfConst: |
| if (Entity.getKind() == InitializedEntity::EK_Member && |
| isa<CXXConstructorDecl>(S.CurContext)) { |
| // This is implicit default-initialization of a const member in |
| // a constructor. Complain that it needs to be explicitly |
| // initialized. |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); |
| S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) |
| << (Constructor->getInheritedConstructor() ? 2 : |
| Constructor->isImplicit() ? 1 : 0) |
| << S.Context.getTypeDeclType(Constructor->getParent()) |
| << /*const=*/1 |
| << Entity.getName(); |
| S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) |
| << Entity.getName(); |
| } else { |
| S.Diag(Kind.getLocation(), diag::err_default_init_const) |
| << DestType << (bool)DestType->getAs<RecordType>(); |
| } |
| break; |
| |
| case FK_Incomplete: |
| S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, |
| diag::err_init_incomplete_type); |
| break; |
| |
| case FK_ListInitializationFailed: { |
| // Run the init list checker again to emit diagnostics. |
| InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
| diagnoseListInit(S, Entity, InitList); |
| break; |
| } |
| |
| case FK_PlaceholderType: { |
| // FIXME: Already diagnosed! |
| break; |
| } |
| |
| case FK_ExplicitConstructor: { |
| S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) |
| << Args[0]->getSourceRange(); |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult Ovl |
| = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); |
| (void)Ovl; |
| assert(Ovl == OR_Success && "Inconsistent overload resolution"); |
| CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
| S.Diag(CtorDecl->getLocation(), |
| diag::note_explicit_ctor_deduction_guide_here) << false; |
| break; |
| } |
| } |
| |
| PrintInitLocationNote(S, Entity); |
| return true; |
| } |
| |
| void InitializationSequence::dump(raw_ostream &OS) const { |
| switch (SequenceKind) { |
| case FailedSequence: { |
| OS << "Failed sequence: "; |
| switch (Failure) { |
| case FK_TooManyInitsForReference: |
| OS << "too many initializers for reference"; |
| break; |
| |
| case FK_ParenthesizedListInitForReference: |
| OS << "parenthesized list init for reference"; |
| break; |
| |
| case FK_ArrayNeedsInitList: |
| OS << "array requires initializer list"; |
| break; |
| |
| case FK_AddressOfUnaddressableFunction: |
| OS << "address of unaddressable function was taken"; |
| break; |
| |
| case FK_ArrayNeedsInitListOrStringLiteral: |
| OS << "array requires initializer list or string literal"; |
| break; |
| |
| case FK_ArrayNeedsInitListOrWideStringLiteral: |
| OS << "array requires initializer list or wide string literal"; |
| break; |
| |
| case FK_NarrowStringIntoWideCharArray: |
| OS << "narrow string into wide char array"; |
| break; |
| |
| case FK_WideStringIntoCharArray: |
| OS << "wide string into char array"; |
| break; |
| |
| case FK_IncompatWideStringIntoWideChar: |
| OS << "incompatible wide string into wide char array"; |
| break; |
| |
| case FK_PlainStringIntoUTF8Char: |
| OS << "plain string literal into char8_t array"; |
| break; |
| |
| case FK_UTF8StringIntoPlainChar: |
| OS << "u8 string literal into char array"; |
| break; |
| |
| case FK_ArrayTypeMismatch: |
| OS << "array type mismatch"; |
| break; |
| |
| case FK_NonConstantArrayInit: |
| OS << "non-constant array initializer"; |
| break; |
| |
| case FK_AddressOfOverloadFailed: |
| OS << "address of overloaded function failed"; |
| break; |
| |
| case FK_ReferenceInitOverloadFailed: |
| OS << "overload resolution for reference initialization failed"; |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToTemporary: |
| OS << "non-const lvalue reference bound to temporary"; |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToBitfield: |
| OS << "non-const lvalue reference bound to bit-field"; |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToVectorElement: |
| OS << "non-const lvalue reference bound to vector element"; |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToUnrelated: |
| OS << "non-const lvalue reference bound to unrelated type"; |
| break; |
| |
| case FK_RValueReferenceBindingToLValue: |
| OS << "rvalue reference bound to an lvalue"; |
| break; |
| |
| case FK_ReferenceInitDropsQualifiers: |
| OS << "reference initialization drops qualifiers"; |
| break; |
| |
| case FK_ReferenceInitFailed: |
| OS << "reference initialization failed"; |
| break; |
| |
| case FK_ConversionFailed: |
| OS << "conversion failed"; |
| break; |
| |
| case FK_ConversionFromPropertyFailed: |
| OS << "conversion from property failed"; |
| break; |
| |
| case FK_TooManyInitsForScalar: |
| OS << "too many initializers for scalar"; |
| break; |
| |
| case FK_ParenthesizedListInitForScalar: |
| OS << "parenthesized list init for reference"; |
| break; |
| |
| case FK_ReferenceBindingToInitList: |
| OS << "referencing binding to initializer list"; |
| break; |
| |
| case FK_InitListBadDestinationType: |
| OS << "initializer list for non-aggregate, non-scalar type"; |
| break; |
| |
| case FK_UserConversionOverloadFailed: |
| OS << "overloading failed for user-defined conversion"; |
| break; |
| |
| case FK_ConstructorOverloadFailed: |
| OS << "constructor overloading failed"; |
| break; |
| |
| case FK_DefaultInitOfConst: |
| OS << "default initialization of a const variable"; |
| break; |
| |
| case FK_Incomplete: |
| OS << "initialization of incomplete type"; |
| break; |
| |
| case FK_ListInitializationFailed: |
| OS << "list initialization checker failure"; |
| break; |
| |
| case FK_VariableLengthArrayHasInitializer: |
| OS << "variable length array has an initializer"; |
| break; |
| |
| case FK_PlaceholderType: |
| OS << "initializer expression isn't contextually valid"; |
| break; |
| |
| case FK_ListConstructorOverloadFailed: |
| OS << "list constructor overloading failed"; |
| break; |
| |
| case FK_ExplicitConstructor: |
| OS << "list copy initialization chose explicit constructor"; |
| break; |
| } |
| OS << '\n'; |
| return; |
| } |
| |
| case DependentSequence: |
| OS << "Dependent sequence\n"; |
| return; |
| |
| case NormalSequence: |
| OS << "Normal sequence: "; |
| break; |
| } |
| |
| for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { |
| if (S != step_begin()) { |
| OS << " -> "; |
| } |
| |
| switch (S->Kind) { |
| case SK_ResolveAddressOfOverloadedFunction: |
| OS << "resolve address of overloaded function"; |
| break; |
| |
| case SK_CastDerivedToBaseRValue: |
| OS << "derived-to-base (rvalue)"; |
| break; |
| |
| case SK_CastDerivedToBaseXValue: |
| OS << "derived-to-base (xvalue)"; |
| break; |
| |
| case SK_CastDerivedToBaseLValue: |
| OS << "derived-to-base (lvalue)"; |
| break; |
| |
| case SK_BindReference: |
| OS << "bind reference to lvalue"; |
| break; |
| |
| case SK_BindReferenceToTemporary: |
| OS << "bind reference to a temporary"; |
| break; |
| |
| case SK_FinalCopy: |
| OS << "final copy in class direct-initialization"; |
| break; |
| |
| case SK_ExtraneousCopyToTemporary: |
| OS << "extraneous C++03 copy to temporary"; |
| break; |
| |
| case SK_UserConversion: |
| OS << "user-defined conversion via " << *S->Function.Function; |
| break; |
| |
| case SK_QualificationConversionRValue: |
| OS << "qualification conversion (rvalue)"; |
| break; |
| |
| case SK_QualificationConversionXValue: |
| OS << "qualification conversion (xvalue)"; |
| break; |
| |
| case SK_QualificationConversionLValue: |
| OS << "qualification conversion (lvalue)"; |
| break; |
| |
| case SK_AtomicConversion: |
| OS << "non-atomic-to-atomic conversion"; |
| break; |
| |
| case SK_LValueToRValue: |
| OS << "load (lvalue to rvalue)"; |
| break; |
| |
| case SK_ConversionSequence: |
| OS << "implicit conversion sequence ("; |
| S->ICS->dump(); // FIXME: use OS |
| OS << ")"; |
| break; |
| |
| case SK_ConversionSequenceNoNarrowing: |
| OS << "implicit conversion sequence with narrowing prohibited ("; |
| S->ICS->dump(); // FIXME: use OS |
| OS << ")"; |
| break; |
| |
| case SK_ListInitialization: |
| OS << "list aggregate initialization"; |
| break; |
| |
| case SK_UnwrapInitList: |
| OS << "unwrap reference initializer list"; |
| break; |
| |
| case SK_RewrapInitList: |
| OS << "rewrap reference initializer list"; |
| break; |
| |
| case SK_ConstructorInitialization: |
| OS << "constructor initialization"; |
| break; |
| |
| case SK_ConstructorInitializationFromList: |
| OS << "list initialization via constructor"; |
| break; |
| |
| case SK_ZeroInitialization: |
| OS << "zero initialization"; |
| break; |
| |
| case SK_CAssignment: |
| OS << "C assignment"; |
| break; |
| |
| case SK_StringInit: |
| OS << "string initialization"; |
| break; |
| |
| case SK_ObjCObjectConversion: |
| OS << "Objective-C object conversion"; |
| break; |
| |
| case SK_ArrayLoopIndex: |
| OS << "indexing for array initialization loop"; |
| break; |
| |
| case SK_ArrayLoopInit: |
| OS << "array initialization loop"; |
| break; |
| |
| case SK_ArrayInit: |
| OS << "array initialization"; |
| break; |
| |
| case SK_GNUArrayInit: |
| OS << "array initialization (GNU extension)"; |
| break; |
| |
| case SK_ParenthesizedArrayInit: |
| OS << "parenthesized array initialization"; |
| break; |
| |
| case SK_PassByIndirectCopyRestore: |
| OS << "pass by indirect copy and restore"; |
| break; |
| |
| case SK_PassByIndirectRestore: |
| OS << "pass by indirect restore"; |
| break; |
| |
| case SK_ProduceObjCObject: |
| OS << "Objective-C object retension"; |
| break; |
| |
| case SK_StdInitializerList: |
| OS << "std::initializer_list from initializer list"; |
| break; |
| |
| case SK_StdInitializerListConstructorCall: |
| OS << "list initialization from std::initializer_list"; |
| break; |
| |
| case SK_OCLSamplerInit: |
| OS << "OpenCL sampler_t from integer constant"; |
| break; |
| |
| case SK_OCLZeroEvent: |
| OS << "OpenCL event_t from zero"; |
| break; |
| |
| case SK_OCLZeroQueue: |
| OS << "OpenCL queue_t from zero"; |
| break; |
| } |
| |
| OS << " [" << S->Type.getAsString() << ']'; |
| } |
| |
| OS << '\n'; |
| } |
| |
| void InitializationSequence::dump() const { |
| dump(llvm::errs()); |
| } |
| |
| static bool NarrowingErrs(const LangOptions &L) { |
| return L.CPlusPlus11 && |
| (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); |
| } |
| |
| static void DiagnoseNarrowingInInitList(Sema &S, |
| const ImplicitConversionSequence &ICS, |
| QualType PreNarrowingType, |
| QualType EntityType, |
| const Expr *PostInit) { |
| const StandardConversionSequence *SCS = nullptr; |
| switch (ICS.getKind()) { |
| case ImplicitConversionSequence::StandardConversion: |
| SCS = &ICS.Standard; |
| break; |
| case ImplicitConversionSequence::UserDefinedConversion: |
| SCS = &ICS.UserDefined.After; |
| break; |
| case ImplicitConversionSequence::AmbiguousConversion: |
| case ImplicitConversionSequence::EllipsisConversion: |
| case ImplicitConversionSequence::BadConversion: |
| return; |
| } |
| |
| // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. |
| APValue ConstantValue; |
| QualType ConstantType; |
| switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, |
| ConstantType)) { |
| case NK_Not_Narrowing: |
| case NK_Dependent_Narrowing: |
| // No narrowing occurred. |
| return; |
| |
| case NK_Type_Narrowing: |
| // This was a floating-to-integer conversion, which is always considered a |
| // narrowing conversion even if the value is a constant and can be |
| // represented exactly as an integer. |
| S.Diag(PostInit->getLocStart(), NarrowingErrs(S.getLangOpts()) |
| ? diag::ext_init_list_type_narrowing |
| : diag::warn_init_list_type_narrowing) |
| << PostInit->getSourceRange() |
| << PreNarrowingType.getLocalUnqualifiedType() |
| << EntityType.getLocalUnqualifiedType(); |
| break; |
| |
| case NK_Constant_Narrowing: |
| // A constant value was narrowed. |
| S.Diag(PostInit->getLocStart(), |
| NarrowingErrs(S.getLangOpts()) |
| ? diag::ext_init_list_constant_narrowing |
| : diag::warn_init_list_constant_narrowing) |
| << PostInit->getSourceRange() |
| << ConstantValue.getAsString(S.getASTContext(), ConstantType) |
| << EntityType.getLocalUnqualifiedType(); |
| break; |
| |
| case NK_Variable_Narrowing: |
| // A variable's value may have been narrowed. |
| S.Diag(PostInit->getLocStart(), |
| NarrowingErrs(S.getLangOpts()) |
| ? diag::ext_init_list_variable_narrowing |
| : diag::warn_init_list_variable_narrowing) |
| << PostInit->getSourceRange() |
| << PreNarrowingType.getLocalUnqualifiedType() |
| << EntityType.getLocalUnqualifiedType(); |
| break; |
| } |
| |
| SmallString<128> StaticCast; |
| llvm::raw_svector_ostream OS(StaticCast); |
| OS << "static_cast<"; |
| if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { |
| // It's important to use the typedef's name if there is one so that the |
| // fixit doesn't break code using types like int64_t. |
| // |
| // FIXME: This will break if the typedef requires qualification. But |
| // getQualifiedNameAsString() includes non-machine-parsable components. |
| OS << *TT->getDecl(); |
| } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) |
| OS << BT->getName(S.getLangOpts()); |
| else { |
| // Oops, we didn't find the actual type of the variable. Don't emit a fixit |
| // with a broken cast. |
| return; |
| } |
| OS << ">("; |
| S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence) |
| << PostInit->getSourceRange() |
| << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str()) |
| << FixItHint::CreateInsertion( |
| S.getLocForEndOfToken(PostInit->getLocEnd()), ")"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Initialization helper functions |
| //===----------------------------------------------------------------------===// |
| bool |
| Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, |
| ExprResult Init) { |
| if (Init.isInvalid()) |
| return false; |
| |
| Expr *InitE = Init.get(); |
| assert(InitE && "No initialization expression"); |
| |
| InitializationKind Kind |
| = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation()); |
| InitializationSequence Seq(*this, Entity, Kind, InitE); |
| return !Seq.Failed(); |
| } |
| |
| ExprResult |
| Sema::PerformCopyInitialization(const InitializedEntity &Entity, |
| SourceLocation EqualLoc, |
| ExprResult Init, |
| bool TopLevelOfInitList, |
| bool AllowExplicit) { |
| if (Init.isInvalid()) |
| return ExprError(); |
| |
| Expr *InitE = Init.get(); |
| assert(InitE && "No initialization expression?"); |
| |
| if (EqualLoc.isInvalid()) |
| EqualLoc = InitE->getLocStart(); |
| |
| InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), |
| EqualLoc, |
| AllowExplicit); |
| InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); |
| |
| // Prevent infinite recursion when performing parameter copy-initialization. |
| const bool ShouldTrackCopy = |
| Entity.isParameterKind() && Seq.isConstructorInitialization(); |
| if (ShouldTrackCopy) { |
| if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != |
| CurrentParameterCopyTypes.end()) { |
| Seq.SetOverloadFailure( |
| InitializationSequence::FK_ConstructorOverloadFailed, |
| OR_No_Viable_Function); |
| |
| // Try to give a meaningful diagnostic note for the problematic |
| // constructor. |
| const auto LastStep = Seq.step_end() - 1; |
| assert(LastStep->Kind == |
| InitializationSequence::SK_ConstructorInitialization); |
| const FunctionDecl *Function = LastStep->Function.Function; |
| auto Candidate = |
| llvm::find_if(Seq.getFailedCandidateSet(), |
| [Function](const OverloadCandidate &Candidate) -> bool { |
| return Candidate.Viable && |
| Candidate.Function == Function && |
| Candidate.Conversions.size() > 0; |
| }); |
| if (Candidate != Seq.getFailedCandidateSet().end() && |
| Function->getNumParams() > 0) { |
| Candidate->Viable = false; |
| Candidate->FailureKind = ovl_fail_bad_conversion; |
| Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, |
| InitE, |
| Function->getParamDecl(0)->getType()); |
| } |
| } |
| CurrentParameterCopyTypes.push_back(Entity.getType()); |
| } |
| |
| ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); |
| |
| if (ShouldTrackCopy) |
| CurrentParameterCopyTypes.pop_back(); |
| |
| return Result; |
| } |
| |
| /// Determine whether RD is, or is derived from, a specialization of CTD. |
| static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, |
| ClassTemplateDecl *CTD) { |
| auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { |
| auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); |
| return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); |
| }; |
| return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); |
| } |
| |
| QualType Sema::DeduceTemplateSpecializationFromInitializer( |
| TypeSourceInfo *TSInfo, const InitializedEntity &Entity, |
| const InitializationKind &Kind, MultiExprArg Inits) { |
| auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( |
| TSInfo->getType()->getContainedDeducedType()); |
| assert(DeducedTST && "not a deduced template specialization type"); |
| |
| // We can only perform deduction for class templates. |
| auto TemplateName = DeducedTST->getTemplateName(); |
| auto *Template = |
| dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); |
| if (!Template) { |
| Diag(Kind.getLocation(), |
| diag::err_deduced_non_class_template_specialization_type) |
| << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; |
| if (auto *TD = TemplateName.getAsTemplateDecl()) |
| Diag(TD->getLocation(), diag::note_template_decl_here); |
| return QualType(); |
| } |
| |
| // Can't deduce from dependent arguments. |
| if (Expr::hasAnyTypeDependentArguments(Inits)) |
| return Context.DependentTy; |
| |
| // FIXME: Perform "exact type" matching first, per CWG discussion? |
| // Or implement this via an implied 'T(T) -> T' deduction guide? |
| |
| // FIXME: Do we need/want a std::initializer_list<T> special case? |
| |
| // Look up deduction guides, including those synthesized from constructors. |
| // |
| // C++1z [over.match.class.deduct]p1: |
| // A set of functions and function templates is formed comprising: |
| // - For each constructor of the class template designated by the |
| // template-name, a function template [...] |
| // - For each deduction-guide, a function or function template [...] |
| DeclarationNameInfo NameInfo( |
| Context.DeclarationNames.getCXXDeductionGuideName(Template), |
| TSInfo->getTypeLoc().getEndLoc()); |
| LookupResult Guides(*this, NameInfo, LookupOrdinaryName); |
| LookupQualifiedName(Guides, Template->getDeclContext()); |
| |
| // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't |
| // clear on this, but they're not found by name so access does not apply. |
| Guides.suppressDiagnostics(); |
| |
| // Figure out if this is list-initialization. |
| InitListExpr *ListInit = |
| (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) |
| ? dyn_cast<InitListExpr>(Inits[0]) |
| : nullptr; |
| |
| // C++1z [over.match.class.deduct]p1: |
| // Initialization and overload resolution are performed as described in |
| // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] |
| // (as appropriate for the type of initialization performed) for an object |
| // of a hypothetical class type, where the selected functions and function |
| // templates are considered to be the constructors of that class type |
| // |
| // Since we know we're initializing a class type of a type unrelated to that |
| // of the initializer, this reduces to something fairly reasonable. |
| OverloadCandidateSet Candidates(Kind.getLocation(), |
| OverloadCandidateSet::CSK_Normal); |
| OverloadCandidateSet::iterator Best; |
| auto tryToResolveOverload = |
| [&](bool OnlyListConstructors) -> OverloadingResult { |
| Candidates.clear(OverloadCandidateSet::CSK_Normal); |
| for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { |
| NamedDecl *D = (*I)->getUnderlyingDecl(); |
| if (D->isInvalidDecl()) |
| continue; |
| |
| auto *TD = dyn_cast<FunctionTemplateDecl>(D); |
| auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( |
| TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); |
| if (!GD) |
| continue; |
| |
| // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) |
| // For copy-initialization, the candidate functions are all the |
| // converting constructors (12.3.1) of that class. |
| // C++ [over.match.copy]p1: (non-list copy-initialization from class) |
| // The converting constructors of T are candidate functions. |
| if (Kind.isCopyInit() && !ListInit) { |
| // Only consider converting constructors. |
| if (GD->isExplicit()) |
| continue; |
| |
| // When looking for a converting constructor, deduction guides that |
| // could never be called with one argument are not interesting to |
| // check or note. |
| if (GD->getMinRequiredArguments() > 1 || |
| (GD->getNumParams() == 0 && !GD->isVariadic())) |
| continue; |
| } |
| |
| // C++ [over.match.list]p1.1: (first phase list initialization) |
| // Initially, the candidate functions are the initializer-list |
| // constructors of the class T |
| if (OnlyListConstructors && !isInitListConstructor(GD)) |
| continue; |
| |
| // C++ [over.match.list]p1.2: (second phase list initialization) |
| // the candidate functions are all the constructors of the class T |
| // C++ [over.match.ctor]p1: (all other cases) |
| // the candidate functions are all the constructors of the class of |
| // the object being initialized |
| |
| // C++ [over.best.ics]p4: |
| // When [...] the constructor [...] is a candidate by |
| // - [over.match.copy] (in all cases) |
| // FIXME: The "second phase of [over.match.list] case can also |
| // theoretically happen here, but it's not clear whether we can |
| // ever have a parameter of the right type. |
| bool SuppressUserConversions = Kind.isCopyInit(); |
| |
| if (TD) |
| AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, |
| Inits, Candidates, |
| SuppressUserConversions); |
| else |
| AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, |
| SuppressUserConversions); |
| } |
| return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); |
| }; |
| |
| OverloadingResult Result = OR_No_Viable_Function; |
| |
| // C++11 [over.match.list]p1, per DR1467: for list-initialization, first |
| // try initializer-list constructors. |
| if (ListInit) { |
| bool TryListConstructors = true; |
| |
| // Try list constructors unless the list is empty and the class has one or |
| // more default constructors, in which case those constructors win. |
| if (!ListInit->getNumInits()) { |
| for (NamedDecl *D : Guides) { |
| auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); |
| if (FD && FD->getMinRequiredArguments() == 0) { |
| TryListConstructors = false; |
| break; |
| } |
| } |
| } else if (ListInit->getNumInits() == 1) { |
| // C++ [over.match.class.deduct]: |
| // As an exception, the first phase in [over.match.list] (considering |
| // initializer-list constructors) is omitted if the initializer list |
| // consists of a single expression of type cv U, where U is a |
| // specialization of C or a class derived from a specialization of C. |
| Expr *E = ListInit->getInit(0); |
| auto *RD = E->getType()->getAsCXXRecordDecl(); |
| if (!isa<InitListExpr>(E) && RD && |
| isCompleteType(Kind.getLocation(), E->getType()) && |
| isOrIsDerivedFromSpecializationOf(RD, Template)) |
| TryListConstructors = false; |
| } |
| |
| if (TryListConstructors) |
| Result = tryToResolveOverload(/*OnlyListConstructor*/true); |
| // Then unwrap the initializer list and try again considering all |
| // constructors. |
| Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); |
| } |
| |
| // If list-initialization fails, or if we're doing any other kind of |
| // initialization, we (eventually) consider constructors. |
| if (Result == OR_No_Viable_Function) |
| Result = tryToResolveOverload(/*OnlyListConstructor*/false); |
| |
| switch (Result) { |
| case OR_Ambiguous: |
| Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous) |
| << TemplateName; |
| // FIXME: For list-initialization candidates, it'd usually be better to |
| // list why they were not viable when given the initializer list itself as |
| // an argument. |
| Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits); |
| return QualType(); |
| |
| case OR_No_Viable_Function: { |
| CXXRecordDecl *Primary = |
| cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); |
| bool Complete = |
| isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); |
| Diag(Kind.getLocation(), |
| Complete ? diag::err_deduced_class_template_ctor_no_viable |
| : diag::err_deduced_class_template_incomplete) |
| << TemplateName << !Guides.empty(); |
| Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits); |
| return QualType(); |
| } |
| |
| case OR_Deleted: { |
| Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) |
| << TemplateName; |
| NoteDeletedFunction(Best->Function); |
| return QualType(); |
| } |
| |
| case OR_Success: |
| // C++ [over.match.list]p1: |
| // In copy-list-initialization, if an explicit constructor is chosen, the |
| // initialization is ill-formed. |
| if (Kind.isCopyInit() && ListInit && |
| cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { |
| bool IsDeductionGuide = !Best->Function->isImplicit(); |
| Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) |
| << TemplateName << IsDeductionGuide; |
| Diag(Best->Function->getLocation(), |
| diag::note_explicit_ctor_deduction_guide_here) |
| << IsDeductionGuide; |
| return QualType(); |
| } |
| |
| // Make sure we didn't select an unusable deduction guide, and mark it |
| // as referenced. |
| DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); |
| MarkFunctionReferenced(Kind.getLocation(), Best->Function); |
| break; |
| } |
| |
| // C++ [dcl.type.class.deduct]p1: |
| // The placeholder is replaced by the return type of the function selected |
| // by overload resolution for class template deduction. |
| return SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); |
| } |