blob: 1f508886c29802008e788a6eb57b186faf9b33f3 [file] [log] [blame]
//===--------------------- DispatchStage.cpp --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file models the dispatch component of an instruction pipeline.
///
/// The DispatchStage is responsible for updating instruction dependencies
/// and communicating to the simulated instruction scheduler that an instruction
/// is ready to be scheduled for execution.
///
//===----------------------------------------------------------------------===//
#include "DispatchStage.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "llvm-mca"
namespace mca {
void DispatchStage::notifyInstructionDispatched(const InstRef &IR,
ArrayRef<unsigned> UsedRegs) {
LLVM_DEBUG(dbgs() << "[E] Instruction Dispatched: #" << IR << '\n');
notifyEvent<HWInstructionEvent>(HWInstructionDispatchedEvent(IR, UsedRegs));
}
bool DispatchStage::checkPRF(const InstRef &IR) {
SmallVector<unsigned, 4> RegDefs;
for (const std::unique_ptr<WriteState> &RegDef :
IR.getInstruction()->getDefs())
RegDefs.emplace_back(RegDef->getRegisterID());
const unsigned RegisterMask = PRF.isAvailable(RegDefs);
// A mask with all zeroes means: register files are available.
if (RegisterMask) {
notifyEvent<HWStallEvent>(
HWStallEvent(HWStallEvent::RegisterFileStall, IR));
return false;
}
return true;
}
bool DispatchStage::checkRCU(const InstRef &IR) {
const unsigned NumMicroOps = IR.getInstruction()->getDesc().NumMicroOps;
if (RCU.isAvailable(NumMicroOps))
return true;
notifyEvent<HWStallEvent>(
HWStallEvent(HWStallEvent::RetireControlUnitStall, IR));
return false;
}
bool DispatchStage::checkScheduler(const InstRef &IR) {
HWStallEvent::GenericEventType Event;
const bool Ready = SC.canBeDispatched(IR, Event);
if (!Ready)
notifyEvent<HWStallEvent>(HWStallEvent(Event, IR));
return Ready;
}
void DispatchStage::updateRAWDependencies(ReadState &RS,
const MCSubtargetInfo &STI) {
SmallVector<WriteRef, 4> DependentWrites;
collectWrites(DependentWrites, RS.getRegisterID());
RS.setDependentWrites(DependentWrites.size());
// We know that this read depends on all the writes in DependentWrites.
// For each write, check if we have ReadAdvance information, and use it
// to figure out in how many cycles this read becomes available.
const ReadDescriptor &RD = RS.getDescriptor();
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteRef &WR : DependentWrites) {
WriteState &WS = *WR.getWriteState();
unsigned WriteResID = WS.getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
WS.addUser(&RS, ReadAdvance);
}
}
void DispatchStage::dispatch(InstRef IR) {
assert(!CarryOver && "Cannot dispatch another instruction!");
Instruction &IS = *IR.getInstruction();
const InstrDesc &Desc = IS.getDesc();
const unsigned NumMicroOps = Desc.NumMicroOps;
if (NumMicroOps > DispatchWidth) {
assert(AvailableEntries == DispatchWidth);
AvailableEntries = 0;
CarryOver = NumMicroOps - DispatchWidth;
} else {
assert(AvailableEntries >= NumMicroOps);
AvailableEntries -= NumMicroOps;
}
// A dependency-breaking instruction doesn't have to wait on the register
// input operands, and it is often optimized at register renaming stage.
// Update RAW dependencies if this instruction is not a dependency-breaking
// instruction. A dependency-breaking instruction is a zero-latency
// instruction that doesn't consume hardware resources.
// An example of dependency-breaking instruction on X86 is a zero-idiom XOR.
bool IsDependencyBreaking = IS.isDependencyBreaking();
for (std::unique_ptr<ReadState> &RS : IS.getUses())
if (RS->isImplicitRead() || !IsDependencyBreaking)
updateRAWDependencies(*RS, STI);
// By default, a dependency-breaking zero-latency instruction is expected to
// be optimized at register renaming stage. That means, no physical register
// is allocated to the instruction.
bool ShouldAllocateRegisters =
!(Desc.isZeroLatency() && IsDependencyBreaking);
SmallVector<unsigned, 4> RegisterFiles(PRF.getNumRegisterFiles());
for (std::unique_ptr<WriteState> &WS : IS.getDefs()) {
PRF.addRegisterWrite(WriteRef(IR.first, WS.get()), RegisterFiles,
ShouldAllocateRegisters);
}
// Reserve slots in the RCU, and notify the instruction that it has been
// dispatched to the schedulers for execution.
IS.dispatch(RCU.reserveSlot(IR, NumMicroOps));
// Notify listeners of the "instruction dispatched" event.
notifyInstructionDispatched(IR, RegisterFiles);
}
void DispatchStage::cycleStart() {
AvailableEntries = CarryOver >= DispatchWidth ? 0 : DispatchWidth - CarryOver;
CarryOver = CarryOver >= DispatchWidth ? CarryOver - DispatchWidth : 0U;
}
bool DispatchStage::execute(InstRef &IR) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (!isAvailable(Desc.NumMicroOps) || !canDispatch(IR))
return false;
dispatch(IR);
return true;
}
#ifndef NDEBUG
void DispatchStage::dump() const {
PRF.dump();
RCU.dump();
}
#endif
} // namespace mca