blob: a0088315d3acf3ec09fcddcae1b7768049feddee [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/serializer.h"
#include "src/codegen/assembler-inl.h"
#include "src/common/globals.h"
#include "src/heap/heap-inl.h" // For Space::identity().
#include "src/heap/memory-chunk-inl.h"
#include "src/heap/read-only-heap.h"
#include "src/interpreter/interpreter.h"
#include "src/objects/code.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/map.h"
#include "src/objects/objects-body-descriptors-inl.h"
#include "src/objects/slots-inl.h"
#include "src/objects/smi.h"
#include "src/snapshot/serializer-deserializer.h"
namespace v8 {
namespace internal {
Serializer::Serializer(Isolate* isolate, Snapshot::SerializerFlags flags)
: isolate_(isolate),
hot_objects_(isolate->heap()),
reference_map_(isolate),
external_reference_encoder_(isolate),
root_index_map_(isolate),
deferred_objects_(isolate->heap()),
forward_refs_per_pending_object_(isolate->heap()),
flags_(flags)
#ifdef DEBUG
,
back_refs_(isolate->heap()),
stack_(isolate->heap())
#endif
{
#ifdef OBJECT_PRINT
if (FLAG_serialization_statistics) {
for (int space = 0; space < kNumberOfSnapshotSpaces; ++space) {
// Value-initialized to 0.
instance_type_count_[space] = std::make_unique<int[]>(kInstanceTypes);
instance_type_size_[space] = std::make_unique<size_t[]>(kInstanceTypes);
}
}
#endif // OBJECT_PRINT
}
void Serializer::CountAllocation(Map map, int size, SnapshotSpace space) {
DCHECK(FLAG_serialization_statistics);
const int space_number = static_cast<int>(space);
allocation_size_[space_number] += size;
#ifdef OBJECT_PRINT
int instance_type = map.instance_type();
instance_type_count_[space_number][instance_type]++;
instance_type_size_[space_number][instance_type] += size;
#endif // OBJECT_PRINT
}
int Serializer::TotalAllocationSize() const {
int sum = 0;
for (int space = 0; space < kNumberOfSnapshotSpaces; space++) {
sum += allocation_size_[space];
}
return sum;
}
void Serializer::OutputStatistics(const char* name) {
if (!FLAG_serialization_statistics) return;
PrintF("%s:\n", name);
PrintF(" Spaces (bytes):\n");
for (int space = 0; space < kNumberOfSnapshotSpaces; space++) {
PrintF("%16s",
BaseSpace::GetSpaceName(static_cast<AllocationSpace>(space)));
}
PrintF("\n");
for (int space = 0; space < kNumberOfSnapshotSpaces; space++) {
PrintF("%16zu", allocation_size_[space]);
}
#ifdef OBJECT_PRINT
PrintF(" Instance types (count and bytes):\n");
#define PRINT_INSTANCE_TYPE(Name) \
for (int space = 0; space < kNumberOfSnapshotSpaces; ++space) { \
if (instance_type_count_[space][Name]) { \
PrintF("%10d %10zu %-10s %s\n", instance_type_count_[space][Name], \
instance_type_size_[space][Name], \
BaseSpace::GetSpaceName(static_cast<AllocationSpace>(space)), \
#Name); \
} \
}
INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
#undef PRINT_INSTANCE_TYPE
PrintF("\n");
#endif // OBJECT_PRINT
}
void Serializer::SerializeDeferredObjects() {
if (FLAG_trace_serializer) {
PrintF("Serializing deferred objects\n");
}
WHILE_WITH_HANDLE_SCOPE(isolate(), !deferred_objects_.empty(), {
Handle<HeapObject> obj = handle(deferred_objects_.Pop(), isolate());
ObjectSerializer obj_serializer(this, obj, &sink_);
obj_serializer.SerializeDeferred();
});
sink_.Put(kSynchronize, "Finished with deferred objects");
}
void Serializer::SerializeObject(Handle<HeapObject> obj) {
// ThinStrings are just an indirection to an internalized string, so elide the
// indirection and serialize the actual string directly.
if (obj->IsThinString(isolate())) {
obj = handle(ThinString::cast(*obj).actual(isolate()), isolate());
}
SerializeObjectImpl(obj);
}
bool Serializer::MustBeDeferred(HeapObject object) { return false; }
void Serializer::VisitRootPointers(Root root, const char* description,
FullObjectSlot start, FullObjectSlot end) {
for (FullObjectSlot current = start; current < end; ++current) {
SerializeRootObject(current);
}
}
void Serializer::SerializeRootObject(FullObjectSlot slot) {
Object o = *slot;
if (o.IsSmi()) {
PutSmiRoot(slot);
} else {
SerializeObject(Handle<HeapObject>(slot.location()));
}
}
#ifdef DEBUG
void Serializer::PrintStack() { PrintStack(std::cout); }
void Serializer::PrintStack(std::ostream& out) {
for (const auto o : stack_) {
o->Print(out);
out << "\n";
}
}
#endif // DEBUG
bool Serializer::SerializeRoot(Handle<HeapObject> obj) {
RootIndex root_index;
// Derived serializers are responsible for determining if the root has
// actually been serialized before calling this.
if (root_index_map()->Lookup(*obj, &root_index)) {
PutRoot(root_index);
return true;
}
return false;
}
bool Serializer::SerializeHotObject(Handle<HeapObject> obj) {
// Encode a reference to a hot object by its index in the working set.
int index = hot_objects_.Find(*obj);
if (index == HotObjectsList::kNotFound) return false;
DCHECK(index >= 0 && index < kHotObjectCount);
if (FLAG_trace_serializer) {
PrintF(" Encoding hot object %d:", index);
obj->ShortPrint();
PrintF("\n");
}
sink_.Put(HotObject::Encode(index), "HotObject");
return true;
}
bool Serializer::SerializeBackReference(Handle<HeapObject> obj) {
const SerializerReference* reference = reference_map_.LookupReference(obj);
if (reference == nullptr) return false;
// Encode the location of an already deserialized object in order to write
// its location into a later object. We can encode the location as an
// offset fromthe start of the deserialized objects or as an offset
// backwards from thecurrent allocation pointer.
if (reference->is_attached_reference()) {
if (FLAG_trace_serializer) {
PrintF(" Encoding attached reference %d\n",
reference->attached_reference_index());
}
PutAttachedReference(*reference);
} else {
DCHECK(reference->is_back_reference());
if (FLAG_trace_serializer) {
PrintF(" Encoding back reference to: ");
obj->ShortPrint();
PrintF("\n");
}
sink_.Put(kBackref, "Backref");
PutBackReference(obj, *reference);
}
return true;
}
bool Serializer::SerializePendingObject(Handle<HeapObject> obj) {
PendingObjectReferences* refs_to_object =
forward_refs_per_pending_object_.Find(obj);
if (refs_to_object == nullptr) {
return false;
}
PutPendingForwardReference(*refs_to_object);
return true;
}
bool Serializer::ObjectIsBytecodeHandler(Handle<HeapObject> obj) const {
if (!obj->IsCode()) return false;
return (Code::cast(*obj).kind() == CodeKind::BYTECODE_HANDLER);
}
void Serializer::PutRoot(RootIndex root) {
int root_index = static_cast<int>(root);
Handle<HeapObject> object =
Handle<HeapObject>::cast(isolate()->root_handle(root));
if (FLAG_trace_serializer) {
PrintF(" Encoding root %d:", root_index);
object->ShortPrint();
PrintF("\n");
}
// Assert that the first 32 root array items are a conscious choice. They are
// chosen so that the most common ones can be encoded more efficiently.
STATIC_ASSERT(static_cast<int>(RootIndex::kArgumentsMarker) ==
kRootArrayConstantsCount - 1);
// TODO(ulan): Check that it works with young large objects.
if (root_index < kRootArrayConstantsCount &&
!Heap::InYoungGeneration(*object)) {
sink_.Put(RootArrayConstant::Encode(root), "RootConstant");
} else {
sink_.Put(kRootArray, "RootSerialization");
sink_.PutInt(root_index, "root_index");
hot_objects_.Add(*object);
}
}
void Serializer::PutSmiRoot(FullObjectSlot slot) {
// Serializing a smi root in compressed pointer builds will serialize the
// full object slot (of kSystemPointerSize) to avoid complications during
// deserialization (endianness or smi sequences).
STATIC_ASSERT(decltype(slot)::kSlotDataSize == sizeof(Address));
STATIC_ASSERT(decltype(slot)::kSlotDataSize == kSystemPointerSize);
static constexpr int bytes_to_output = decltype(slot)::kSlotDataSize;
static constexpr int size_in_tagged = bytes_to_output >> kTaggedSizeLog2;
sink_.Put(FixedRawDataWithSize::Encode(size_in_tagged), "Smi");
Address raw_value = Smi::cast(*slot).ptr();
const byte* raw_value_as_bytes = reinterpret_cast<const byte*>(&raw_value);
sink_.PutRaw(raw_value_as_bytes, bytes_to_output, "Bytes");
}
void Serializer::PutBackReference(Handle<HeapObject> object,
SerializerReference reference) {
DCHECK_EQ(*object, *back_refs_[reference.back_ref_index()]);
sink_.PutInt(reference.back_ref_index(), "BackRefIndex");
hot_objects_.Add(*object);
}
void Serializer::PutAttachedReference(SerializerReference reference) {
DCHECK(reference.is_attached_reference());
sink_.Put(kAttachedReference, "AttachedRef");
sink_.PutInt(reference.attached_reference_index(), "AttachedRefIndex");
}
void Serializer::PutRepeat(int repeat_count) {
if (repeat_count <= kLastEncodableFixedRepeatCount) {
sink_.Put(FixedRepeatWithCount::Encode(repeat_count), "FixedRepeat");
} else {
sink_.Put(kVariableRepeat, "VariableRepeat");
sink_.PutInt(VariableRepeatCount::Encode(repeat_count), "repeat count");
}
}
void Serializer::PutPendingForwardReference(PendingObjectReferences& refs) {
sink_.Put(kRegisterPendingForwardRef, "RegisterPendingForwardRef");
unresolved_forward_refs_++;
// Register the current slot with the pending object.
int forward_ref_id = next_forward_ref_id_++;
if (refs == nullptr) {
// The IdentityMap holding the pending object reference vectors does not
// support non-trivial types; in particular it doesn't support destructors
// on values. So, we manually allocate a vector with new, and delete it when
// resolving the pending object.
refs = new std::vector<int>();
}
refs->push_back(forward_ref_id);
}
void Serializer::ResolvePendingForwardReference(int forward_reference_id) {
sink_.Put(kResolvePendingForwardRef, "ResolvePendingForwardRef");
sink_.PutInt(forward_reference_id, "with this index");
unresolved_forward_refs_--;
// If there are no more unresolved forward refs, reset the forward ref id to
// zero so that future forward refs compress better.
if (unresolved_forward_refs_ == 0) {
next_forward_ref_id_ = 0;
}
}
void Serializer::RegisterObjectIsPending(Handle<HeapObject> obj) {
if (*obj == ReadOnlyRoots(isolate()).not_mapped_symbol()) return;
// Add the given object to the pending objects -> forward refs map.
auto find_result = forward_refs_per_pending_object_.FindOrInsert(obj);
USE(find_result);
// If the above emplace didn't actually add the object, then the object must
// already have been registered pending by deferring. It might not be in the
// deferred objects queue though, since it may be the very object we just
// popped off that queue, so just check that it can be deferred.
DCHECK_IMPLIES(find_result.already_exists, *find_result.entry != nullptr);
DCHECK_IMPLIES(find_result.already_exists, CanBeDeferred(*obj));
}
void Serializer::ResolvePendingObject(Handle<HeapObject> obj) {
if (*obj == ReadOnlyRoots(isolate()).not_mapped_symbol()) return;
std::vector<int>* refs;
CHECK(forward_refs_per_pending_object_.Delete(obj, &refs));
if (refs) {
for (int index : *refs) {
ResolvePendingForwardReference(index);
}
// See PutPendingForwardReference -- we have to manually manage the memory
// of non-trivial IdentityMap values.
delete refs;
}
}
void Serializer::Pad(int padding_offset) {
// The non-branching GetInt will read up to 3 bytes too far, so we need
// to pad the snapshot to make sure we don't read over the end.
for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
sink_.Put(kNop, "Padding");
}
// Pad up to pointer size for checksum.
while (!IsAligned(sink_.Position() + padding_offset, kPointerAlignment)) {
sink_.Put(kNop, "Padding");
}
}
void Serializer::InitializeCodeAddressMap() {
isolate_->InitializeLoggingAndCounters();
code_address_map_ = std::make_unique<CodeAddressMap>(isolate_);
}
Code Serializer::CopyCode(Code code) {
code_buffer_.clear(); // Clear buffer without deleting backing store.
int size = code.CodeSize();
code_buffer_.insert(code_buffer_.end(),
reinterpret_cast<byte*>(code.address()),
reinterpret_cast<byte*>(code.address() + size));
// When pointer compression is enabled the checked cast will try to
// decompress map field of off-heap Code object.
return Code::unchecked_cast(HeapObject::FromAddress(
reinterpret_cast<Address>(&code_buffer_.front())));
}
void Serializer::ObjectSerializer::SerializePrologue(SnapshotSpace space,
int size, Map map) {
if (serializer_->code_address_map_) {
const char* code_name =
serializer_->code_address_map_->Lookup(object_->address());
LOG(serializer_->isolate_,
CodeNameEvent(object_->address(), sink_->Position(), code_name));
}
if (map == *object_) {
DCHECK_EQ(*object_, ReadOnlyRoots(isolate()).meta_map());
DCHECK_EQ(space, SnapshotSpace::kReadOnlyHeap);
sink_->Put(kNewMetaMap, "NewMetaMap");
DCHECK_EQ(size, Map::kSize);
} else {
sink_->Put(NewObject::Encode(space), "NewObject");
// TODO(leszeks): Skip this when the map has a fixed size.
sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
// Until the space for the object is allocated, it is considered "pending".
serializer_->RegisterObjectIsPending(object_);
// Serialize map (first word of the object) before anything else, so that
// the deserializer can access it when allocating. Make sure that the map
// isn't a pending object.
DCHECK_NULL(serializer_->forward_refs_per_pending_object_.Find(map));
DCHECK(map.IsMap());
serializer_->SerializeObject(handle(map, isolate()));
// Make sure the map serialization didn't accidentally recursively serialize
// this object.
DCHECK_IMPLIES(
*object_ != ReadOnlyRoots(isolate()).not_mapped_symbol(),
serializer_->reference_map()->LookupReference(object_) == nullptr);
// Now that the object is allocated, we can resolve pending references to
// it.
serializer_->ResolvePendingObject(object_);
}
if (FLAG_serialization_statistics) {
serializer_->CountAllocation(object_->map(), size, space);
}
// Mark this object as already serialized, and add it to the reference map so
// that it can be accessed by backreference by future objects.
serializer_->num_back_refs_++;
#ifdef DEBUG
serializer_->back_refs_.Push(*object_);
DCHECK_EQ(serializer_->back_refs_.size(), serializer_->num_back_refs_);
#endif
if (*object_ != ReadOnlyRoots(isolate()).not_mapped_symbol()) {
// Only add the object to the map if it's not not_mapped_symbol, else
// the reference IdentityMap has issues. We don't expect to have back
// references to the not_mapped_symbol anyway, so it's fine.
SerializerReference back_reference =
SerializerReference::BackReference(serializer_->num_back_refs_ - 1);
serializer_->reference_map()->Add(*object_, back_reference);
DCHECK_EQ(*object_,
*serializer_->back_refs_[back_reference.back_ref_index()]);
DCHECK_EQ(back_reference.back_ref_index(), serializer_->reference_map()
->LookupReference(object_)
->back_ref_index());
}
}
uint32_t Serializer::ObjectSerializer::SerializeBackingStore(
void* backing_store, int32_t byte_length) {
const SerializerReference* reference_ptr =
serializer_->reference_map()->LookupBackingStore(backing_store);
// Serialize the off-heap backing store.
if (!reference_ptr) {
sink_->Put(kOffHeapBackingStore, "Off-heap backing store");
sink_->PutInt(byte_length, "length");
sink_->PutRaw(static_cast<byte*>(backing_store), byte_length,
"BackingStore");
DCHECK_NE(0, serializer_->seen_backing_stores_index_);
SerializerReference reference =
SerializerReference::OffHeapBackingStoreReference(
serializer_->seen_backing_stores_index_++);
// Mark this backing store as already serialized.
serializer_->reference_map()->AddBackingStore(backing_store, reference);
return reference.off_heap_backing_store_index();
} else {
return reference_ptr->off_heap_backing_store_index();
}
}
void Serializer::ObjectSerializer::SerializeJSTypedArray() {
Handle<JSTypedArray> typed_array = Handle<JSTypedArray>::cast(object_);
if (typed_array->is_on_heap()) {
typed_array->RemoveExternalPointerCompensationForSerialization(isolate());
} else {
if (!typed_array->WasDetached()) {
// Explicitly serialize the backing store now.
JSArrayBuffer buffer = JSArrayBuffer::cast(typed_array->buffer());
// We cannot store byte_length larger than int32 range in the snapshot.
CHECK_LE(buffer.byte_length(), std::numeric_limits<int32_t>::max());
int32_t byte_length = static_cast<int32_t>(buffer.byte_length());
size_t byte_offset = typed_array->byte_offset();
// We need to calculate the backing store from the data pointer
// because the ArrayBuffer may already have been serialized.
void* backing_store = reinterpret_cast<void*>(
reinterpret_cast<Address>(typed_array->DataPtr()) - byte_offset);
uint32_t ref = SerializeBackingStore(backing_store, byte_length);
typed_array->SetExternalBackingStoreRefForSerialization(ref);
} else {
typed_array->SetExternalBackingStoreRefForSerialization(0);
}
}
SerializeObject();
}
void Serializer::ObjectSerializer::SerializeJSArrayBuffer() {
Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(object_);
void* backing_store = buffer->backing_store();
// We cannot store byte_length larger than int32 range in the snapshot.
CHECK_LE(buffer->byte_length(), std::numeric_limits<int32_t>::max());
int32_t byte_length = static_cast<int32_t>(buffer->byte_length());
ArrayBufferExtension* extension = buffer->extension();
// The embedder-allocated backing store only exists for the off-heap case.
#ifdef V8_HEAP_SANDBOX
uint32_t external_pointer_entry =
buffer->GetBackingStoreRefForDeserialization();
#endif
if (backing_store != nullptr) {
uint32_t ref = SerializeBackingStore(backing_store, byte_length);
buffer->SetBackingStoreRefForSerialization(ref);
// Ensure deterministic output by setting extension to null during
// serialization.
buffer->set_extension(nullptr);
} else {
buffer->SetBackingStoreRefForSerialization(kNullRefSentinel);
}
SerializeObject();
#ifdef V8_HEAP_SANDBOX
buffer->SetBackingStoreRefForSerialization(external_pointer_entry);
#else
buffer->set_backing_store(isolate(), backing_store);
#endif
buffer->set_extension(extension);
}
void Serializer::ObjectSerializer::SerializeExternalString() {
// For external strings with known resources, we replace the resource field
// with the encoded external reference, which we restore upon deserialize.
// For the rest we serialize them to look like ordinary sequential strings.
Handle<ExternalString> string = Handle<ExternalString>::cast(object_);
Address resource = string->resource_as_address();
ExternalReferenceEncoder::Value reference;
if (serializer_->external_reference_encoder_.TryEncode(resource).To(
&reference)) {
DCHECK(reference.is_from_api());
#ifdef V8_HEAP_SANDBOX
uint32_t external_pointer_entry =
string->GetResourceRefForDeserialization();
#endif
string->SetResourceRefForSerialization(reference.index());
SerializeObject();
#ifdef V8_HEAP_SANDBOX
string->SetResourceRefForSerialization(external_pointer_entry);
#else
string->set_address_as_resource(isolate(), resource);
#endif
} else {
SerializeExternalStringAsSequentialString();
}
}
void Serializer::ObjectSerializer::SerializeExternalStringAsSequentialString() {
// Instead of serializing this as an external string, we serialize
// an imaginary sequential string with the same content.
ReadOnlyRoots roots(isolate());
DCHECK(object_->IsExternalString());
Handle<ExternalString> string = Handle<ExternalString>::cast(object_);
int length = string->length();
Map map;
int content_size;
int allocation_size;
const byte* resource;
// Find the map and size for the imaginary sequential string.
bool internalized = object_->IsInternalizedString();
if (object_->IsExternalOneByteString()) {
map = internalized ? roots.one_byte_internalized_string_map()
: roots.one_byte_string_map();
allocation_size = SeqOneByteString::SizeFor(length);
content_size = length * kCharSize;
resource = reinterpret_cast<const byte*>(
Handle<ExternalOneByteString>::cast(string)->resource()->data());
} else {
map = internalized ? roots.internalized_string_map() : roots.string_map();
allocation_size = SeqTwoByteString::SizeFor(length);
content_size = length * kShortSize;
resource = reinterpret_cast<const byte*>(
Handle<ExternalTwoByteString>::cast(string)->resource()->data());
}
SnapshotSpace space = SnapshotSpace::kOld;
SerializePrologue(space, allocation_size, map);
// Output the rest of the imaginary string.
int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
DCHECK(IsAligned(bytes_to_output, kTaggedSize));
int slots_to_output = bytes_to_output >> kTaggedSizeLog2;
// Output raw data header. Do not bother with common raw length cases here.
sink_->Put(kVariableRawData, "RawDataForString");
sink_->PutInt(slots_to_output, "length");
// Serialize string header (except for map).
byte* string_start = reinterpret_cast<byte*>(string->address());
for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
sink_->Put(string_start[i], "StringHeader");
}
// Serialize string content.
sink_->PutRaw(resource, content_size, "StringContent");
// Since the allocation size is rounded up to object alignment, there
// maybe left-over bytes that need to be padded.
int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
for (int i = 0; i < padding_size; i++)
sink_->Put(static_cast<byte>(0), "StringPadding");
}
// Clear and later restore the next link in the weak cell or allocation site.
// TODO(all): replace this with proper iteration of weak slots in serializer.
class UnlinkWeakNextScope {
public:
explicit UnlinkWeakNextScope(Heap* heap, Handle<HeapObject> object) {
if (object->IsAllocationSite() &&
Handle<AllocationSite>::cast(object)->HasWeakNext()) {
object_ = object;
next_ =
handle(AllocationSite::cast(*object).weak_next(), heap->isolate());
Handle<AllocationSite>::cast(object)->set_weak_next(
ReadOnlyRoots(heap).undefined_value());
}
}
~UnlinkWeakNextScope() {
if (!object_.is_null()) {
Handle<AllocationSite>::cast(object_)->set_weak_next(
*next_, UPDATE_WEAK_WRITE_BARRIER);
}
}
private:
Handle<HeapObject> object_;
Handle<Object> next_;
DISALLOW_HEAP_ALLOCATION(no_gc_)
};
void Serializer::ObjectSerializer::Serialize() {
RecursionScope recursion(serializer_);
// Defer objects as "pending" if they cannot be serialized now, or if we
// exceed a certain recursion depth. Some objects cannot be deferred
if ((recursion.ExceedsMaximum() && CanBeDeferred(*object_)) ||
serializer_->MustBeDeferred(*object_)) {
DCHECK(CanBeDeferred(*object_));
if (FLAG_trace_serializer) {
PrintF(" Deferring heap object: ");
object_->ShortPrint();
PrintF("\n");
}
// Deferred objects are considered "pending".
serializer_->RegisterObjectIsPending(object_);
serializer_->PutPendingForwardReference(
*serializer_->forward_refs_per_pending_object_.Find(object_));
serializer_->QueueDeferredObject(object_);
return;
}
if (FLAG_trace_serializer) {
PrintF(" Encoding heap object: ");
object_->ShortPrint();
PrintF("\n");
}
if (object_->IsExternalString()) {
SerializeExternalString();
return;
} else if (!ReadOnlyHeap::Contains(*object_)) {
// Only clear padding for strings outside the read-only heap. Read-only heap
// should have been cleared elsewhere.
if (object_->IsSeqOneByteString()) {
// Clear padding bytes at the end. Done here to avoid having to do this
// at allocation sites in generated code.
Handle<SeqOneByteString>::cast(object_)->clear_padding();
} else if (object_->IsSeqTwoByteString()) {
Handle<SeqTwoByteString>::cast(object_)->clear_padding();
}
}
if (object_->IsJSTypedArray()) {
SerializeJSTypedArray();
return;
} else if (object_->IsJSArrayBuffer()) {
SerializeJSArrayBuffer();
return;
}
// We don't expect fillers.
DCHECK(!object_->IsFreeSpaceOrFiller());
if (object_->IsScript()) {
// Clear cached line ends.
Oddball undefined = ReadOnlyRoots(isolate()).undefined_value();
Handle<Script>::cast(object_)->set_line_ends(undefined);
}
SerializeObject();
}
namespace {
SnapshotSpace GetSnapshotSpace(Handle<HeapObject> object) {
if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) {
if (object->IsCode()) {
return SnapshotSpace::kCode;
} else if (ReadOnlyHeap::Contains(*object)) {
return SnapshotSpace::kReadOnlyHeap;
} else if (object->IsMap()) {
return SnapshotSpace::kMap;
} else {
return SnapshotSpace::kOld;
}
} else if (ReadOnlyHeap::Contains(*object)) {
return SnapshotSpace::kReadOnlyHeap;
} else {
AllocationSpace heap_space =
MemoryChunk::FromHeapObject(*object)->owner_identity();
// Large code objects are not supported and cannot be expressed by
// SnapshotSpace.
DCHECK_NE(heap_space, CODE_LO_SPACE);
switch (heap_space) {
case OLD_SPACE:
// Young generation objects are tenured, as objects that have survived
// until snapshot building probably deserve to be considered 'old'.
case NEW_SPACE:
// Large objects (young and old) are encoded as simply 'old' snapshot
// obects, as "normal" objects vs large objects is a heap implementation
// detail and isn't relevant to the snapshot.
case NEW_LO_SPACE:
case LO_SPACE:
return SnapshotSpace::kOld;
case CODE_SPACE:
return SnapshotSpace::kCode;
case MAP_SPACE:
return SnapshotSpace::kMap;
case CODE_LO_SPACE:
case RO_SPACE:
UNREACHABLE();
}
}
}
} // namespace
void Serializer::ObjectSerializer::SerializeObject() {
int size = object_->Size();
Map map = object_->map();
// Descriptor arrays have complex element weakness, that is dependent on the
// maps pointing to them. During deserialization, this can cause them to get
// prematurely trimmed one of their owners isn't deserialized yet. We work
// around this by forcing all descriptor arrays to be serialized as "strong",
// i.e. no custom weakness, and "re-weaken" them in the deserializer once
// deserialization completes.
//
// See also `Deserializer::WeakenDescriptorArrays`.
if (map == ReadOnlyRoots(isolate()).descriptor_array_map()) {
map = ReadOnlyRoots(isolate()).strong_descriptor_array_map();
}
SnapshotSpace space = GetSnapshotSpace(object_);
SerializePrologue(space, size, map);
// Serialize the rest of the object.
CHECK_EQ(0, bytes_processed_so_far_);
bytes_processed_so_far_ = kTaggedSize;
SerializeContent(map, size);
}
void Serializer::ObjectSerializer::SerializeDeferred() {
const SerializerReference* back_reference =
serializer_->reference_map()->LookupReference(object_);
if (back_reference != nullptr) {
if (FLAG_trace_serializer) {
PrintF(" Deferred heap object ");
object_->ShortPrint();
PrintF(" was already serialized\n");
}
return;
}
if (FLAG_trace_serializer) {
PrintF(" Encoding deferred heap object\n");
}
Serialize();
}
void Serializer::ObjectSerializer::SerializeContent(Map map, int size) {
UnlinkWeakNextScope unlink_weak_next(isolate()->heap(), object_);
if (object_->IsCode()) {
// For code objects, perform a custom serialization.
SerializeCode(map, size);
} else {
// For other objects, iterate references first.
object_->IterateBody(map, size, this);
// Then output data payload, if any.
OutputRawData(object_->address() + size);
}
}
void Serializer::ObjectSerializer::VisitPointers(HeapObject host,
ObjectSlot start,
ObjectSlot end) {
VisitPointers(host, MaybeObjectSlot(start), MaybeObjectSlot(end));
}
void Serializer::ObjectSerializer::VisitPointers(HeapObject host,
MaybeObjectSlot start,
MaybeObjectSlot end) {
HandleScope scope(isolate());
DisallowGarbageCollection no_gc;
MaybeObjectSlot current = start;
while (current < end) {
while (current < end && (*current)->IsSmi()) {
++current;
}
if (current < end) {
OutputRawData(current.address());
}
// TODO(ishell): Revisit this change once we stick to 32-bit compressed
// tagged values.
while (current < end && (*current)->IsCleared()) {
sink_->Put(kClearedWeakReference, "ClearedWeakReference");
bytes_processed_so_far_ += kTaggedSize;
++current;
}
HeapObject current_contents;
HeapObjectReferenceType reference_type;
while (current < end &&
(*current)->GetHeapObject(&current_contents, &reference_type)) {
// Write a weak prefix if we need it. This has to be done before the
// potential pending object serialization.
if (reference_type == HeapObjectReferenceType::WEAK) {
sink_->Put(kWeakPrefix, "WeakReference");
}
Handle<HeapObject> obj = handle(current_contents, isolate());
if (serializer_->SerializePendingObject(obj)) {
bytes_processed_so_far_ += kTaggedSize;
++current;
continue;
}
RootIndex root_index;
// Compute repeat count and write repeat prefix if applicable.
// Repeats are not subject to the write barrier so we can only use
// immortal immovable root members.
MaybeObjectSlot repeat_end = current + 1;
if (repeat_end < end &&
serializer_->root_index_map()->Lookup(*obj, &root_index) &&
RootsTable::IsImmortalImmovable(root_index) &&
*current == *repeat_end) {
DCHECK_EQ(reference_type, HeapObjectReferenceType::STRONG);
DCHECK(!Heap::InYoungGeneration(*obj));
while (repeat_end < end && *repeat_end == *current) {
repeat_end++;
}
int repeat_count = static_cast<int>(repeat_end - current);
current = repeat_end;
bytes_processed_so_far_ += repeat_count * kTaggedSize;
serializer_->PutRepeat(repeat_count);
} else {
bytes_processed_so_far_ += kTaggedSize;
++current;
}
// Now write the object itself.
serializer_->SerializeObject(obj);
}
}
}
void Serializer::ObjectSerializer::OutputExternalReference(Address target,
int target_size,
bool sandboxify) {
DCHECK_LE(target_size, sizeof(target)); // Must fit in Address.
ExternalReferenceEncoder::Value encoded_reference;
bool encoded_successfully;
if (serializer_->allow_unknown_external_references_for_testing()) {
encoded_successfully =
serializer_->TryEncodeExternalReference(target).To(&encoded_reference);
} else {
encoded_reference = serializer_->EncodeExternalReference(target);
encoded_successfully = true;
}
if (!encoded_successfully) {
// In this case the serialized snapshot will not be used in a different
// Isolate and thus the target address will not change between
// serialization and deserialization. We can serialize seen external
// references verbatim.
CHECK(serializer_->allow_unknown_external_references_for_testing());
CHECK(IsAligned(target_size, kTaggedSize));
CHECK_LE(target_size, kFixedRawDataCount * kTaggedSize);
int size_in_tagged = target_size >> kTaggedSizeLog2;
sink_->Put(FixedRawDataWithSize::Encode(size_in_tagged), "FixedRawData");
sink_->PutRaw(reinterpret_cast<byte*>(&target), target_size, "Bytes");
} else if (encoded_reference.is_from_api()) {
if (V8_HEAP_SANDBOX_BOOL && sandboxify) {
sink_->Put(kSandboxedApiReference, "SandboxedApiRef");
} else {
sink_->Put(kApiReference, "ApiRef");
}
sink_->PutInt(encoded_reference.index(), "reference index");
} else {
if (V8_HEAP_SANDBOX_BOOL && sandboxify) {
sink_->Put(kSandboxedExternalReference, "SandboxedExternalRef");
} else {
sink_->Put(kExternalReference, "ExternalRef");
}
sink_->PutInt(encoded_reference.index(), "reference index");
}
}
void Serializer::ObjectSerializer::VisitExternalReference(Foreign host,
Address* p) {
// "Sandboxify" external reference.
OutputExternalReference(host.foreign_address(), kExternalPointerSize, true);
bytes_processed_so_far_ += kExternalPointerSize;
}
class Serializer::ObjectSerializer::RelocInfoObjectPreSerializer {
public:
explicit RelocInfoObjectPreSerializer(Serializer* serializer)
: serializer_(serializer) {}
void VisitEmbeddedPointer(Code host, RelocInfo* target) {
Object object = target->target_object();
serializer_->SerializeObject(handle(HeapObject::cast(object), isolate()));
num_serialized_objects_++;
}
void VisitCodeTarget(Code host, RelocInfo* target) {
#ifdef V8_TARGET_ARCH_ARM
DCHECK(!RelocInfo::IsRelativeCodeTarget(target->rmode()));
#endif
Code object = Code::GetCodeFromTargetAddress(target->target_address());
serializer_->SerializeObject(handle(object, isolate()));
num_serialized_objects_++;
}
void VisitExternalReference(Code host, RelocInfo* rinfo) {}
void VisitInternalReference(Code host, RelocInfo* rinfo) {}
void VisitRuntimeEntry(Code host, RelocInfo* reloc) { UNREACHABLE(); }
void VisitOffHeapTarget(Code host, RelocInfo* target) {}
int num_serialized_objects() const { return num_serialized_objects_; }
Isolate* isolate() { return serializer_->isolate(); }
private:
Serializer* serializer_;
int num_serialized_objects_ = 0;
};
void Serializer::ObjectSerializer::VisitEmbeddedPointer(Code host,
RelocInfo* rinfo) {
// Target object should be pre-serialized by RelocInfoObjectPreSerializer, so
// just track the pointer's existence as kTaggedSize in
// bytes_processed_so_far_.
// TODO(leszeks): DCHECK that RelocInfoObjectPreSerializer serialized this
// specific object already.
bytes_processed_so_far_ += kTaggedSize;
}
void Serializer::ObjectSerializer::VisitExternalReference(Code host,
RelocInfo* rinfo) {
Address target = rinfo->target_external_reference();
DCHECK_NE(target, kNullAddress); // Code does not reference null.
DCHECK_IMPLIES(serializer_->EncodeExternalReference(target).is_from_api(),
!rinfo->IsCodedSpecially());
// Don't "sandboxify" external references embedded in the code.
OutputExternalReference(target, rinfo->target_address_size(), false);
}
void Serializer::ObjectSerializer::VisitInternalReference(Code host,
RelocInfo* rinfo) {
Address entry = Handle<Code>::cast(object_)->entry();
DCHECK_GE(rinfo->target_internal_reference(), entry);
uintptr_t target_offset = rinfo->target_internal_reference() - entry;
// TODO(jgruber,v8:11036): We are being permissive for this DCHECK, but
// consider using raw_instruction_size() instead of raw_body_size() in the
// future.
STATIC_ASSERT(Code::kOnHeapBodyIsContiguous);
DCHECK_LE(target_offset, Handle<Code>::cast(object_)->raw_body_size());
sink_->Put(kInternalReference, "InternalRef");
sink_->PutInt(target_offset, "internal ref value");
}
void Serializer::ObjectSerializer::VisitRuntimeEntry(Code host,
RelocInfo* rinfo) {
// We no longer serialize code that contains runtime entries.
UNREACHABLE();
}
void Serializer::ObjectSerializer::VisitOffHeapTarget(Code host,
RelocInfo* rinfo) {
STATIC_ASSERT(EmbeddedData::kTableSize == Builtins::builtin_count);
Address addr = rinfo->target_off_heap_target();
CHECK_NE(kNullAddress, addr);
Code target = InstructionStream::TryLookupCode(isolate(), addr);
CHECK(Builtins::IsIsolateIndependentBuiltin(target));
sink_->Put(kOffHeapTarget, "OffHeapTarget");
sink_->PutInt(target.builtin_index(), "builtin index");
}
void Serializer::ObjectSerializer::VisitCodeTarget(Code host,
RelocInfo* rinfo) {
// Target object should be pre-serialized by RelocInfoObjectPreSerializer, so
// just track the pointer's existence as kTaggedSize in
// bytes_processed_so_far_.
// TODO(leszeks): DCHECK that RelocInfoObjectPreSerializer serialized this
// specific object already.
bytes_processed_so_far_ += kTaggedSize;
}
namespace {
// Similar to OutputRawData, but substitutes the given field with the given
// value instead of reading it from the object.
void OutputRawWithCustomField(SnapshotByteSink* sink, Address object_start,
int written_so_far, int bytes_to_write,
int field_offset, int field_size,
const byte* field_value) {
int offset = field_offset - written_so_far;
if (0 <= offset && offset < bytes_to_write) {
DCHECK_GE(bytes_to_write, offset + field_size);
sink->PutRaw(reinterpret_cast<byte*>(object_start + written_so_far), offset,
"Bytes");
sink->PutRaw(field_value, field_size, "Bytes");
written_so_far += offset + field_size;
bytes_to_write -= offset + field_size;
sink->PutRaw(reinterpret_cast<byte*>(object_start + written_so_far),
bytes_to_write, "Bytes");
} else {
sink->PutRaw(reinterpret_cast<byte*>(object_start + written_so_far),
bytes_to_write, "Bytes");
}
}
} // anonymous namespace
void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
Address object_start = object_->address();
int base = bytes_processed_so_far_;
int up_to_offset = static_cast<int>(up_to - object_start);
int to_skip = up_to_offset - bytes_processed_so_far_;
int bytes_to_output = to_skip;
DCHECK(IsAligned(bytes_to_output, kTaggedSize));
int tagged_to_output = bytes_to_output / kTaggedSize;
bytes_processed_so_far_ += to_skip;
DCHECK_GE(to_skip, 0);
if (bytes_to_output != 0) {
DCHECK(to_skip == bytes_to_output);
if (tagged_to_output <= kFixedRawDataCount) {
sink_->Put(FixedRawDataWithSize::Encode(tagged_to_output),
"FixedRawData");
} else {
sink_->Put(kVariableRawData, "VariableRawData");
sink_->PutInt(tagged_to_output, "length");
}
#ifdef MEMORY_SANITIZER
// Check that we do not serialize uninitialized memory.
__msan_check_mem_is_initialized(
reinterpret_cast<void*>(object_start + base), bytes_to_output);
#endif // MEMORY_SANITIZER
if (object_->IsBytecodeArray()) {
// The bytecode age field can be changed by GC concurrently.
byte field_value = BytecodeArray::kNoAgeBytecodeAge;
OutputRawWithCustomField(sink_, object_start, base, bytes_to_output,
BytecodeArray::kBytecodeAgeOffset,
sizeof(field_value), &field_value);
} else if (object_->IsDescriptorArray()) {
// The number of marked descriptors field can be changed by GC
// concurrently.
byte field_value[2];
field_value[0] = 0;
field_value[1] = 0;
OutputRawWithCustomField(
sink_, object_start, base, bytes_to_output,
DescriptorArray::kRawNumberOfMarkedDescriptorsOffset,
sizeof(field_value), field_value);
} else {
sink_->PutRaw(reinterpret_cast<byte*>(object_start + base),
bytes_to_output, "Bytes");
}
}
}
void Serializer::ObjectSerializer::SerializeCode(Map map, int size) {
static const int kWipeOutModeMask =
RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
RelocInfo::ModeMask(RelocInfo::FULL_EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::COMPRESSED_EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED) |
RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET) |
RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
DCHECK_EQ(HeapObject::kHeaderSize, bytes_processed_so_far_);
Handle<Code> on_heap_code = Handle<Code>::cast(object_);
// With enabled pointer compression normal accessors no longer work for
// off-heap objects, so we have to get the relocation info data via the
// on-heap code object.
ByteArray relocation_info = on_heap_code->unchecked_relocation_info();
// To make snapshots reproducible, we make a copy of the code object
// and wipe all pointers in the copy, which we then serialize.
Code off_heap_code = serializer_->CopyCode(*on_heap_code);
for (RelocIterator it(off_heap_code, relocation_info, kWipeOutModeMask);
!it.done(); it.next()) {
RelocInfo* rinfo = it.rinfo();
rinfo->WipeOut();
}
// We need to wipe out the header fields *after* wiping out the
// relocations, because some of these fields are needed for the latter.
off_heap_code.WipeOutHeader();
// Initially skip serializing the code header. We'll serialize it after the
// Code body, so that the various fields the Code needs for iteration are
// already valid.
sink_->Put(kCodeBody, "kCodeBody");
// Now serialize the wiped off-heap Code, as length + data.
Address start = off_heap_code.address() + Code::kDataStart;
int bytes_to_output = size - Code::kDataStart;
DCHECK(IsAligned(bytes_to_output, kTaggedSize));
int tagged_to_output = bytes_to_output / kTaggedSize;
sink_->PutInt(tagged_to_output, "length");
#ifdef MEMORY_SANITIZER
// Check that we do not serialize uninitialized memory.
__msan_check_mem_is_initialized(reinterpret_cast<void*>(start),
bytes_to_output);
#endif // MEMORY_SANITIZER
sink_->PutRaw(reinterpret_cast<byte*>(start), bytes_to_output, "Code");
// Manually serialize the code header. We don't use Code::BodyDescriptor
// here as we don't yet want to walk the RelocInfos.
DCHECK_EQ(HeapObject::kHeaderSize, bytes_processed_so_far_);
VisitPointers(*on_heap_code, on_heap_code->RawField(HeapObject::kHeaderSize),
on_heap_code->RawField(Code::kDataStart));
DCHECK_EQ(bytes_processed_so_far_, Code::kDataStart);
// Now serialize RelocInfos. We can't allocate during a RelocInfo walk during
// deserualization, so we have two passes for RelocInfo serialization:
// 1. A pre-serializer which serializes all allocatable objects in the
// RelocInfo, followed by a kSynchronize bytecode, and
// 2. A walk the RelocInfo with this serializer, serializing any objects
// implicitly as offsets into the pre-serializer's object array.
// This way, the deserializer can deserialize the allocatable objects first,
// without walking RelocInfo, re-build the pre-serializer's object array, and
// only then walk the RelocInfo itself.
// TODO(leszeks): We only really need to pre-serialize objects which need
// serialization, i.e. no backrefs or roots.
RelocInfoObjectPreSerializer pre_serializer(serializer_);
for (RelocIterator it(*on_heap_code, relocation_info,
Code::BodyDescriptor::kRelocModeMask);
!it.done(); it.next()) {
it.rinfo()->Visit(&pre_serializer);
}
// Mark that the pre-serialization finished with a kSynchronize bytecode.
sink_->Put(kSynchronize, "PreSerializationFinished");
// Finally serialize all RelocInfo objects in the on-heap Code, knowing that
// we will not do a recursive serialization.
// TODO(leszeks): Add a scope that DCHECKs this.
for (RelocIterator it(*on_heap_code, relocation_info,
Code::BodyDescriptor::kRelocModeMask);
!it.done(); it.next()) {
it.rinfo()->Visit(this);
}
// We record a kTaggedSize for every object encountered during the
// serialization, so DCHECK that bytes_processed_so_far_ matches the expected
// number of bytes (i.e. the code header + a tagged size per pre-serialized
// object).
DCHECK_EQ(
bytes_processed_so_far_,
Code::kDataStart + kTaggedSize * pre_serializer.num_serialized_objects());
}
Serializer::HotObjectsList::HotObjectsList(Heap* heap) : heap_(heap) {
strong_roots_entry_ =
heap->RegisterStrongRoots(FullObjectSlot(&circular_queue_[0]),
FullObjectSlot(&circular_queue_[kSize]));
}
Serializer::HotObjectsList::~HotObjectsList() {
heap_->UnregisterStrongRoots(strong_roots_entry_);
}
} // namespace internal
} // namespace v8