| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| |
| #include "include/v8-platform.h" |
| #include "src/base/bounded-page-allocator.h" |
| #include "src/base/macros.h" |
| #include "src/base/platform/platform.h" |
| #include "src/common/globals.h" |
| #include "src/heap/factory.h" |
| #include "src/heap/large-spaces.h" |
| #include "src/heap/memory-allocator.h" |
| #include "src/heap/memory-chunk.h" |
| #include "src/heap/spaces-inl.h" |
| #include "src/heap/spaces.h" |
| #include "src/objects/free-space.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/snapshot/snapshot.h" |
| #include "test/cctest/cctest.h" |
| #include "test/cctest/heap/heap-tester.h" |
| #include "test/cctest/heap/heap-utils.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace heap { |
| |
| // Temporarily sets a given allocator in an isolate. |
| class TestMemoryAllocatorScope { |
| public: |
| TestMemoryAllocatorScope(Isolate* isolate, size_t max_capacity, |
| size_t code_range_size, |
| PageAllocator* page_allocator = nullptr) |
| : isolate_(isolate), |
| old_allocator_(std::move(isolate->heap()->memory_allocator_)) { |
| // Save the code pages for restoring them later on because the constructor |
| // of MemoryAllocator will change them. |
| isolate->GetCodePages()->swap(code_pages_); |
| isolate->heap()->memory_allocator_.reset( |
| new MemoryAllocator(isolate, max_capacity, code_range_size)); |
| if (page_allocator != nullptr) { |
| isolate->heap()->memory_allocator_->data_page_allocator_ = page_allocator; |
| } |
| } |
| |
| MemoryAllocator* allocator() { return isolate_->heap()->memory_allocator(); } |
| |
| ~TestMemoryAllocatorScope() { |
| isolate_->heap()->memory_allocator()->TearDown(); |
| isolate_->heap()->memory_allocator_.swap(old_allocator_); |
| isolate_->GetCodePages()->swap(code_pages_); |
| } |
| |
| TestMemoryAllocatorScope(const TestMemoryAllocatorScope&) = delete; |
| TestMemoryAllocatorScope& operator=(const TestMemoryAllocatorScope&) = delete; |
| |
| private: |
| Isolate* isolate_; |
| std::unique_ptr<MemoryAllocator> old_allocator_; |
| std::vector<MemoryRange> code_pages_; |
| }; |
| |
| // Temporarily sets a given code page allocator in an isolate. |
| class TestCodePageAllocatorScope { |
| public: |
| TestCodePageAllocatorScope(Isolate* isolate, |
| v8::PageAllocator* code_page_allocator) |
| : isolate_(isolate), |
| old_code_page_allocator_( |
| isolate->heap()->memory_allocator()->code_page_allocator()) { |
| isolate->heap()->memory_allocator()->code_page_allocator_ = |
| code_page_allocator; |
| } |
| |
| ~TestCodePageAllocatorScope() { |
| isolate_->heap()->memory_allocator()->code_page_allocator_ = |
| old_code_page_allocator_; |
| } |
| TestCodePageAllocatorScope(const TestCodePageAllocatorScope&) = delete; |
| TestCodePageAllocatorScope& operator=(const TestCodePageAllocatorScope&) = |
| delete; |
| |
| private: |
| Isolate* isolate_; |
| v8::PageAllocator* old_code_page_allocator_; |
| }; |
| |
| static void VerifyMemoryChunk(Isolate* isolate, Heap* heap, |
| v8::PageAllocator* code_page_allocator, |
| size_t reserve_area_size, size_t commit_area_size, |
| Executability executable, Space* space) { |
| TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved(), |
| 0); |
| MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); |
| TestCodePageAllocatorScope test_code_page_allocator_scope( |
| isolate, code_page_allocator); |
| |
| v8::PageAllocator* page_allocator = |
| memory_allocator->page_allocator(executable); |
| |
| size_t allocatable_memory_area_offset = |
| MemoryChunkLayout::ObjectStartOffsetInMemoryChunk(space->identity()); |
| size_t guard_size = |
| (executable == EXECUTABLE) ? MemoryChunkLayout::CodePageGuardSize() : 0; |
| |
| MemoryChunk* memory_chunk = memory_allocator->AllocateChunk( |
| reserve_area_size, commit_area_size, executable, space); |
| size_t reserved_size = |
| ((executable == EXECUTABLE)) |
| ? allocatable_memory_area_offset + |
| RoundUp(reserve_area_size, page_allocator->CommitPageSize()) + |
| guard_size |
| : RoundUp(allocatable_memory_area_offset + reserve_area_size, |
| page_allocator->CommitPageSize()); |
| CHECK(memory_chunk->size() == reserved_size); |
| CHECK(memory_chunk->area_start() < |
| memory_chunk->address() + memory_chunk->size()); |
| CHECK(memory_chunk->area_end() <= |
| memory_chunk->address() + memory_chunk->size()); |
| CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size); |
| |
| memory_allocator->Free<MemoryAllocator::kFull>(memory_chunk); |
| } |
| |
| static unsigned int PseudorandomAreaSize() { |
| static uint32_t lo = 2345; |
| lo = 18273 * (lo & 0xFFFFF) + (lo >> 16); |
| return lo & 0xFFFFF; |
| } |
| |
| |
| TEST(MemoryChunk) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| |
| v8::PageAllocator* page_allocator = GetPlatformPageAllocator(); |
| |
| size_t reserve_area_size = 1 * MB; |
| size_t initial_commit_area_size; |
| |
| for (int i = 0; i < 100; i++) { |
| initial_commit_area_size = |
| RoundUp(PseudorandomAreaSize(), page_allocator->CommitPageSize()); |
| |
| // With CodeRange. |
| const size_t code_range_size = 32 * MB; |
| VirtualMemory code_range_reservation(page_allocator, code_range_size, |
| nullptr, MemoryChunk::kAlignment); |
| CHECK(code_range_reservation.IsReserved()); |
| |
| base::BoundedPageAllocator code_page_allocator( |
| page_allocator, code_range_reservation.address(), |
| code_range_reservation.size(), MemoryChunk::kAlignment); |
| |
| VerifyMemoryChunk(isolate, heap, &code_page_allocator, reserve_area_size, |
| initial_commit_area_size, EXECUTABLE, heap->code_space()); |
| |
| VerifyMemoryChunk(isolate, heap, &code_page_allocator, reserve_area_size, |
| initial_commit_area_size, NOT_EXECUTABLE, |
| heap->old_space()); |
| } |
| } |
| |
| |
| TEST(MemoryAllocator) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| |
| TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved(), |
| 0); |
| MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); |
| |
| int total_pages = 0; |
| OldSpace faked_space(heap); |
| CHECK(!faked_space.first_page()); |
| CHECK(!faked_space.last_page()); |
| Page* first_page = memory_allocator->AllocatePage( |
| faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space), |
| NOT_EXECUTABLE); |
| |
| faked_space.memory_chunk_list().PushBack(first_page); |
| CHECK(first_page->next_page() == nullptr); |
| total_pages++; |
| |
| for (Page* p = first_page; p != nullptr; p = p->next_page()) { |
| CHECK(p->owner() == &faked_space); |
| } |
| |
| // Again, we should get n or n - 1 pages. |
| Page* other = memory_allocator->AllocatePage( |
| faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space), |
| NOT_EXECUTABLE); |
| total_pages++; |
| faked_space.memory_chunk_list().PushBack(other); |
| int page_count = 0; |
| for (Page* p = first_page; p != nullptr; p = p->next_page()) { |
| CHECK(p->owner() == &faked_space); |
| page_count++; |
| } |
| CHECK(total_pages == page_count); |
| |
| Page* second_page = first_page->next_page(); |
| CHECK_NOT_NULL(second_page); |
| |
| // OldSpace's destructor will tear down the space and free up all pages. |
| } |
| |
| TEST(ComputeDiscardMemoryAreas) { |
| base::AddressRegion memory_area; |
| size_t page_size = MemoryAllocator::GetCommitPageSize(); |
| size_t free_header_size = FreeSpace::kSize; |
| |
| memory_area = MemoryAllocator::ComputeDiscardMemoryArea(0, 0); |
| CHECK_EQ(memory_area.begin(), 0); |
| CHECK_EQ(memory_area.size(), 0); |
| |
| memory_area = MemoryAllocator::ComputeDiscardMemoryArea( |
| 0, page_size + free_header_size); |
| CHECK_EQ(memory_area.begin(), 0); |
| CHECK_EQ(memory_area.size(), 0); |
| |
| memory_area = MemoryAllocator::ComputeDiscardMemoryArea( |
| page_size - free_header_size, page_size + free_header_size); |
| CHECK_EQ(memory_area.begin(), page_size); |
| CHECK_EQ(memory_area.size(), page_size); |
| |
| memory_area = MemoryAllocator::ComputeDiscardMemoryArea(page_size, page_size); |
| CHECK_EQ(memory_area.begin(), 0); |
| CHECK_EQ(memory_area.size(), 0); |
| |
| memory_area = MemoryAllocator::ComputeDiscardMemoryArea( |
| page_size / 2, page_size + page_size / 2); |
| CHECK_EQ(memory_area.begin(), page_size); |
| CHECK_EQ(memory_area.size(), page_size); |
| |
| memory_area = MemoryAllocator::ComputeDiscardMemoryArea( |
| page_size / 2, page_size + page_size / 4); |
| CHECK_EQ(memory_area.begin(), 0); |
| CHECK_EQ(memory_area.size(), 0); |
| |
| memory_area = |
| MemoryAllocator::ComputeDiscardMemoryArea(page_size / 2, page_size * 3); |
| CHECK_EQ(memory_area.begin(), page_size); |
| CHECK_EQ(memory_area.size(), page_size * 2); |
| } |
| |
| TEST(NewSpace) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved(), |
| 0); |
| MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); |
| |
| NewSpace new_space(heap, memory_allocator->data_page_allocator(), |
| CcTest::heap()->InitialSemiSpaceSize(), |
| CcTest::heap()->InitialSemiSpaceSize()); |
| CHECK(new_space.MaximumCapacity()); |
| |
| while (new_space.Available() >= kMaxRegularHeapObjectSize) { |
| CHECK(new_space.Contains(new_space |
| .AllocateRaw(kMaxRegularHeapObjectSize, |
| AllocationAlignment::kWordAligned) |
| .ToObjectChecked())); |
| } |
| |
| new_space.TearDown(); |
| memory_allocator->unmapper()->EnsureUnmappingCompleted(); |
| } |
| |
| |
| TEST(OldSpace) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved(), |
| 0); |
| |
| OldSpace* s = new OldSpace(heap); |
| CHECK_NOT_NULL(s); |
| |
| while (s->Available() > 0) { |
| s->AllocateRawUnaligned(kMaxRegularHeapObjectSize).ToObjectChecked(); |
| } |
| |
| delete s; |
| } |
| |
| TEST(OldLargeObjectSpace) { |
| // This test does not initialize allocated objects, which confuses the |
| // incremental marker. |
| FLAG_incremental_marking = false; |
| v8::V8::Initialize(); |
| |
| OldLargeObjectSpace* lo = CcTest::heap()->lo_space(); |
| CHECK_NOT_NULL(lo); |
| |
| int lo_size = Page::kPageSize; |
| |
| Object obj = lo->AllocateRaw(lo_size).ToObjectChecked(); |
| CHECK(obj.IsHeapObject()); |
| |
| HeapObject ho = HeapObject::cast(obj); |
| |
| CHECK(lo->Contains(HeapObject::cast(obj))); |
| |
| CHECK(lo->Contains(ho)); |
| |
| while (true) { |
| { |
| AllocationResult allocation = lo->AllocateRaw(lo_size); |
| if (allocation.IsRetry()) break; |
| } |
| } |
| |
| CHECK(!lo->IsEmpty()); |
| |
| CHECK(lo->AllocateRaw(lo_size).IsRetry()); |
| } |
| |
| #ifndef DEBUG |
| // The test verifies that committed size of a space is less then some threshold. |
| // Debug builds pull in all sorts of additional instrumentation that increases |
| // heap sizes. E.g. CSA_ASSERT creates on-heap strings for error messages. These |
| // messages are also not stable if files are moved and modified during the build |
| // process (jumbo builds). |
| TEST(SizeOfInitialHeap) { |
| ManualGCScope manual_gc_scope; |
| if (i::FLAG_always_opt) return; |
| // Bootstrapping without a snapshot causes more allocations. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| if (!isolate->snapshot_available()) return; |
| HandleScope scope(isolate); |
| v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext(); |
| // Skip this test on the custom snapshot builder. |
| if (!CcTest::global() |
| ->Get(context, v8_str("assertEquals")) |
| .ToLocalChecked() |
| ->IsUndefined()) { |
| return; |
| } |
| // Initial size of LO_SPACE |
| size_t initial_lo_space = isolate->heap()->lo_space()->Size(); |
| |
| // The limit for each space for an empty isolate containing just the |
| // snapshot. |
| // In PPC the page size is 64K, causing more internal fragmentation |
| // hence requiring a larger limit. |
| #if V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) |
| const size_t kMaxInitialSizePerSpace = 3 * MB; |
| #else |
| const size_t kMaxInitialSizePerSpace = 2 * MB; |
| #endif |
| |
| // Freshly initialized VM gets by with the snapshot size (which is below |
| // kMaxInitialSizePerSpace per space). |
| Heap* heap = isolate->heap(); |
| for (int i = FIRST_GROWABLE_PAGED_SPACE; i <= LAST_GROWABLE_PAGED_SPACE; |
| i++) { |
| // Debug code can be very large, so skip CODE_SPACE if we are generating it. |
| if (i == CODE_SPACE && i::FLAG_debug_code) continue; |
| |
| // Check that the initial heap is also below the limit. |
| CHECK_LE(heap->paged_space(i)->CommittedMemory(), kMaxInitialSizePerSpace); |
| } |
| |
| CompileRun("/*empty*/"); |
| |
| // No large objects required to perform the above steps. |
| CHECK_EQ(initial_lo_space, |
| static_cast<size_t>(isolate->heap()->lo_space()->Size())); |
| } |
| #endif // DEBUG |
| |
| static HeapObject AllocateUnaligned(NewSpace* space, int size) { |
| AllocationResult allocation = space->AllocateRaw(size, kWordAligned); |
| CHECK(!allocation.IsRetry()); |
| HeapObject filler; |
| CHECK(allocation.To(&filler)); |
| space->heap()->CreateFillerObjectAt(filler.address(), size, |
| ClearRecordedSlots::kNo); |
| return filler; |
| } |
| |
| static HeapObject AllocateUnaligned(PagedSpace* space, int size) { |
| AllocationResult allocation = space->AllocateRaw(size, kWordAligned); |
| CHECK(!allocation.IsRetry()); |
| HeapObject filler; |
| CHECK(allocation.To(&filler)); |
| space->heap()->CreateFillerObjectAt(filler.address(), size, |
| ClearRecordedSlots::kNo); |
| return filler; |
| } |
| |
| static HeapObject AllocateUnaligned(OldLargeObjectSpace* space, int size) { |
| AllocationResult allocation = space->AllocateRaw(size); |
| CHECK(!allocation.IsRetry()); |
| HeapObject filler; |
| CHECK(allocation.To(&filler)); |
| return filler; |
| } |
| |
| class Observer : public AllocationObserver { |
| public: |
| explicit Observer(intptr_t step_size) |
| : AllocationObserver(step_size), count_(0) {} |
| |
| void Step(int bytes_allocated, Address addr, size_t) override { count_++; } |
| |
| int count() const { return count_; } |
| |
| private: |
| int count_; |
| }; |
| |
| template <typename T> |
| void testAllocationObserver(Isolate* i_isolate, T* space) { |
| Observer observer1(128); |
| space->AddAllocationObserver(&observer1); |
| |
| // The observer should not get notified if we have only allocated less than |
| // 128 bytes. |
| AllocateUnaligned(space, 64); |
| CHECK_EQ(observer1.count(), 0); |
| |
| // The observer should get called when we have allocated exactly 128 bytes. |
| AllocateUnaligned(space, 64); |
| CHECK_EQ(observer1.count(), 1); |
| |
| // Another >128 bytes should get another notification. |
| AllocateUnaligned(space, 136); |
| CHECK_EQ(observer1.count(), 2); |
| |
| // Allocating a large object should get only one notification. |
| AllocateUnaligned(space, 1024); |
| CHECK_EQ(observer1.count(), 3); |
| |
| // Allocating another 2048 bytes in small objects should get 16 |
| // notifications. |
| for (int i = 0; i < 64; ++i) { |
| AllocateUnaligned(space, 32); |
| } |
| CHECK_EQ(observer1.count(), 19); |
| |
| // Multiple observers should work. |
| Observer observer2(96); |
| space->AddAllocationObserver(&observer2); |
| |
| AllocateUnaligned(space, 2048); |
| CHECK_EQ(observer1.count(), 20); |
| CHECK_EQ(observer2.count(), 1); |
| |
| AllocateUnaligned(space, 104); |
| CHECK_EQ(observer1.count(), 20); |
| CHECK_EQ(observer2.count(), 2); |
| |
| // Callback should stop getting called after an observer is removed. |
| space->RemoveAllocationObserver(&observer1); |
| |
| AllocateUnaligned(space, 384); |
| CHECK_EQ(observer1.count(), 20); // no more notifications. |
| CHECK_EQ(observer2.count(), 3); // this one is still active. |
| |
| // Ensure that PauseInlineAllocationObserversScope work correctly. |
| AllocateUnaligned(space, 48); |
| CHECK_EQ(observer2.count(), 3); |
| { |
| PauseAllocationObserversScope pause_observers(i_isolate->heap()); |
| CHECK_EQ(observer2.count(), 3); |
| AllocateUnaligned(space, 384); |
| CHECK_EQ(observer2.count(), 3); |
| } |
| CHECK_EQ(observer2.count(), 3); |
| // Coupled with the 48 bytes allocated before the pause, another 48 bytes |
| // allocated here should trigger a notification. |
| AllocateUnaligned(space, 48); |
| CHECK_EQ(observer2.count(), 4); |
| |
| space->RemoveAllocationObserver(&observer2); |
| AllocateUnaligned(space, 384); |
| CHECK_EQ(observer1.count(), 20); |
| CHECK_EQ(observer2.count(), 4); |
| } |
| |
| UNINITIALIZED_TEST(AllocationObserver) { |
| v8::Isolate::CreateParams create_params; |
| create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); |
| v8::Isolate* isolate = v8::Isolate::New(create_params); |
| { |
| v8::Isolate::Scope isolate_scope(isolate); |
| v8::HandleScope handle_scope(isolate); |
| v8::Context::New(isolate)->Enter(); |
| |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| |
| testAllocationObserver<NewSpace>(i_isolate, i_isolate->heap()->new_space()); |
| // Old space is used but the code path is shared for all |
| // classes inheriting from PagedSpace. |
| testAllocationObserver<PagedSpace>(i_isolate, |
| i_isolate->heap()->old_space()); |
| testAllocationObserver<OldLargeObjectSpace>(i_isolate, |
| i_isolate->heap()->lo_space()); |
| } |
| isolate->Dispose(); |
| } |
| |
| UNINITIALIZED_TEST(InlineAllocationObserverCadence) { |
| v8::Isolate::CreateParams create_params; |
| create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); |
| v8::Isolate* isolate = v8::Isolate::New(create_params); |
| { |
| v8::Isolate::Scope isolate_scope(isolate); |
| v8::HandleScope handle_scope(isolate); |
| v8::Context::New(isolate)->Enter(); |
| |
| Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); |
| |
| // Clear out any pre-existing garbage to make the test consistent |
| // across snapshot/no-snapshot builds. |
| CcTest::CollectAllGarbage(i_isolate); |
| |
| NewSpace* new_space = i_isolate->heap()->new_space(); |
| |
| Observer observer1(512); |
| new_space->AddAllocationObserver(&observer1); |
| Observer observer2(576); |
| new_space->AddAllocationObserver(&observer2); |
| |
| for (int i = 0; i < 512; ++i) { |
| AllocateUnaligned(new_space, 32); |
| } |
| |
| new_space->RemoveAllocationObserver(&observer1); |
| new_space->RemoveAllocationObserver(&observer2); |
| |
| CHECK_EQ(observer1.count(), 32); |
| CHECK_EQ(observer2.count(), 28); |
| } |
| isolate->Dispose(); |
| } |
| |
| HEAP_TEST(Regress777177) { |
| FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| HandleScope scope(isolate); |
| PagedSpace* old_space = heap->old_space(); |
| Observer observer(128); |
| old_space->AddAllocationObserver(&observer); |
| |
| int area_size = old_space->AreaSize(); |
| int max_object_size = kMaxRegularHeapObjectSize; |
| int filler_size = area_size - max_object_size; |
| |
| { |
| // Ensure a new linear allocation area on a fresh page. |
| AlwaysAllocateScopeForTesting always_allocate(heap); |
| heap::SimulateFullSpace(old_space); |
| AllocationResult result = old_space->AllocateRaw(filler_size, kWordAligned); |
| HeapObject obj = result.ToObjectChecked(); |
| heap->CreateFillerObjectAt(obj.address(), filler_size, |
| ClearRecordedSlots::kNo); |
| } |
| |
| { |
| // Allocate all bytes of the linear allocation area. This moves top_ and |
| // top_on_previous_step_ to the next page. |
| AllocationResult result = |
| old_space->AllocateRaw(max_object_size, kWordAligned); |
| HeapObject obj = result.ToObjectChecked(); |
| // Simulate allocation folding moving the top pointer back. |
| old_space->SetTopAndLimit(obj.address(), old_space->limit()); |
| } |
| |
| { |
| // This triggers assert in crbug.com/777177. |
| AllocationResult result = old_space->AllocateRaw(filler_size, kWordAligned); |
| HeapObject obj = result.ToObjectChecked(); |
| heap->CreateFillerObjectAt(obj.address(), filler_size, |
| ClearRecordedSlots::kNo); |
| } |
| old_space->RemoveAllocationObserver(&observer); |
| } |
| |
| HEAP_TEST(Regress791582) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| HandleScope scope(isolate); |
| NewSpace* new_space = heap->new_space(); |
| GrowNewSpace(heap); |
| |
| int until_page_end = static_cast<int>(new_space->limit() - new_space->top()); |
| |
| if (!IsAligned(until_page_end, kTaggedSize)) { |
| // The test works if the size of allocation area size is a multiple of |
| // pointer size. This is usually the case unless some allocation observer |
| // is already active (e.g. incremental marking observer). |
| return; |
| } |
| |
| Observer observer(128); |
| new_space->AddAllocationObserver(&observer); |
| |
| { |
| AllocationResult result = |
| new_space->AllocateRaw(until_page_end, kWordAligned); |
| HeapObject obj = result.ToObjectChecked(); |
| heap->CreateFillerObjectAt(obj.address(), until_page_end, |
| ClearRecordedSlots::kNo); |
| // Simulate allocation folding moving the top pointer back. |
| *new_space->allocation_top_address() = obj.address(); |
| } |
| |
| { |
| // This triggers assert in crbug.com/791582 |
| AllocationResult result = new_space->AllocateRaw(256, kWordAligned); |
| HeapObject obj = result.ToObjectChecked(); |
| heap->CreateFillerObjectAt(obj.address(), 256, ClearRecordedSlots::kNo); |
| } |
| new_space->RemoveAllocationObserver(&observer); |
| } |
| |
| TEST(ShrinkPageToHighWaterMarkFreeSpaceEnd) { |
| FLAG_stress_incremental_marking = false; |
| FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| heap::SealCurrentObjects(CcTest::heap()); |
| |
| // Prepare page that only contains a single object and a trailing FreeSpace |
| // filler. |
| Handle<FixedArray> array = |
| isolate->factory()->NewFixedArray(128, AllocationType::kOld); |
| Page* page = Page::FromHeapObject(*array); |
| |
| // Reset space so high water mark is consistent. |
| PagedSpace* old_space = CcTest::heap()->old_space(); |
| old_space->FreeLinearAllocationArea(); |
| old_space->ResetFreeList(); |
| |
| HeapObject filler = HeapObject::FromAddress(array->address() + array->Size()); |
| CHECK(filler.IsFreeSpace()); |
| size_t shrunk = old_space->ShrinkPageToHighWaterMark(page); |
| size_t should_have_shrunk = RoundDown( |
| static_cast<size_t>(MemoryChunkLayout::AllocatableMemoryInDataPage() - |
| array->Size()), |
| CommitPageSize()); |
| CHECK_EQ(should_have_shrunk, shrunk); |
| } |
| |
| TEST(ShrinkPageToHighWaterMarkNoFiller) { |
| FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| heap::SealCurrentObjects(CcTest::heap()); |
| |
| const int kFillerSize = 0; |
| std::vector<Handle<FixedArray>> arrays = |
| heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); |
| Handle<FixedArray> array = arrays.back(); |
| Page* page = Page::FromHeapObject(*array); |
| CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); |
| |
| // Reset space so high water mark and fillers are consistent. |
| PagedSpace* old_space = CcTest::heap()->old_space(); |
| old_space->ResetFreeList(); |
| old_space->FreeLinearAllocationArea(); |
| |
| size_t shrunk = old_space->ShrinkPageToHighWaterMark(page); |
| CHECK_EQ(0u, shrunk); |
| } |
| |
| TEST(ShrinkPageToHighWaterMarkOneWordFiller) { |
| FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| heap::SealCurrentObjects(CcTest::heap()); |
| |
| const int kFillerSize = kTaggedSize; |
| std::vector<Handle<FixedArray>> arrays = |
| heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); |
| Handle<FixedArray> array = arrays.back(); |
| Page* page = Page::FromHeapObject(*array); |
| CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); |
| |
| // Reset space so high water mark and fillers are consistent. |
| PagedSpace* old_space = CcTest::heap()->old_space(); |
| old_space->FreeLinearAllocationArea(); |
| old_space->ResetFreeList(); |
| |
| HeapObject filler = HeapObject::FromAddress(array->address() + array->Size()); |
| CHECK_EQ(filler.map(), |
| ReadOnlyRoots(CcTest::heap()).one_pointer_filler_map()); |
| |
| size_t shrunk = old_space->ShrinkPageToHighWaterMark(page); |
| CHECK_EQ(0u, shrunk); |
| } |
| |
| TEST(ShrinkPageToHighWaterMarkTwoWordFiller) { |
| FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| heap::SealCurrentObjects(CcTest::heap()); |
| |
| const int kFillerSize = 2 * kTaggedSize; |
| std::vector<Handle<FixedArray>> arrays = |
| heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); |
| Handle<FixedArray> array = arrays.back(); |
| Page* page = Page::FromHeapObject(*array); |
| CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); |
| |
| // Reset space so high water mark and fillers are consistent. |
| PagedSpace* old_space = CcTest::heap()->old_space(); |
| old_space->FreeLinearAllocationArea(); |
| old_space->ResetFreeList(); |
| |
| HeapObject filler = HeapObject::FromAddress(array->address() + array->Size()); |
| CHECK_EQ(filler.map(), |
| ReadOnlyRoots(CcTest::heap()).two_pointer_filler_map()); |
| |
| size_t shrunk = old_space->ShrinkPageToHighWaterMark(page); |
| CHECK_EQ(0u, shrunk); |
| } |
| |
| namespace { |
| // PageAllocator that always fails. |
| class FailingPageAllocator : public v8::PageAllocator { |
| public: |
| size_t AllocatePageSize() override { return 1024; } |
| size_t CommitPageSize() override { return 1024; } |
| void SetRandomMmapSeed(int64_t seed) override {} |
| void* GetRandomMmapAddr() override { return nullptr; } |
| void* AllocatePages(void* address, size_t length, size_t alignment, |
| Permission permissions) override { |
| return nullptr; |
| } |
| bool FreePages(void* address, size_t length) override { return false; } |
| bool ReleasePages(void* address, size_t length, size_t new_length) override { |
| return false; |
| } |
| bool SetPermissions(void* address, size_t length, |
| Permission permissions) override { |
| return false; |
| } |
| }; |
| } // namespace |
| |
| TEST(NoMemoryForNewPage) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| |
| // Memory allocator that will fail to allocate any pages. |
| FailingPageAllocator failing_allocator; |
| TestMemoryAllocatorScope test_allocator_scope(isolate, 0, 0, |
| &failing_allocator); |
| MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); |
| OldSpace faked_space(heap); |
| Page* page = memory_allocator->AllocatePage( |
| faked_space.AreaSize(), static_cast<PagedSpace*>(&faked_space), |
| NOT_EXECUTABLE); |
| |
| CHECK_NULL(page); |
| } |
| |
| namespace { |
| // ReadOnlySpace cannot be torn down by a destructor because the destructor |
| // cannot take an argument. Since these tests create ReadOnlySpaces not attached |
| // to the Heap directly, they need to be destroyed to ensure the |
| // MemoryAllocator's stats are all 0 at exit. |
| class ReadOnlySpaceScope { |
| public: |
| explicit ReadOnlySpaceScope(Heap* heap) : ro_space_(heap) {} |
| ~ReadOnlySpaceScope() { |
| ro_space_.TearDown(CcTest::heap()->memory_allocator()); |
| } |
| |
| ReadOnlySpace* space() { return &ro_space_; } |
| |
| private: |
| ReadOnlySpace ro_space_; |
| }; |
| } // namespace |
| |
| TEST(ReadOnlySpaceMetrics_OnePage) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| |
| // Create a read-only space and allocate some memory, shrink the pages and |
| // check the allocated object size is as expected. |
| |
| ReadOnlySpaceScope scope(heap); |
| ReadOnlySpace* faked_space = scope.space(); |
| |
| // Initially no memory. |
| CHECK_EQ(faked_space->Size(), 0); |
| CHECK_EQ(faked_space->Capacity(), 0); |
| CHECK_EQ(faked_space->CommittedMemory(), 0); |
| CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0); |
| |
| faked_space->AllocateRaw(16, kWordAligned); |
| |
| faked_space->ShrinkPages(); |
| faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap); |
| |
| MemoryAllocator* allocator = heap->memory_allocator(); |
| |
| // Allocated objects size. |
| CHECK_EQ(faked_space->Size(), 16); |
| |
| size_t committed_memory = RoundUp( |
| MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(), |
| allocator->GetCommitPageSize()); |
| |
| // Amount of OS allocated memory. |
| CHECK_EQ(faked_space->CommittedMemory(), committed_memory); |
| CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory); |
| |
| // Capacity will be one OS page minus the page header. |
| CHECK_EQ(faked_space->Capacity(), |
| committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage()); |
| } |
| |
| TEST(ReadOnlySpaceMetrics_AlignedAllocations) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| |
| // Create a read-only space and allocate some memory, shrink the pages and |
| // check the allocated object size is as expected. |
| |
| ReadOnlySpaceScope scope(heap); |
| ReadOnlySpace* faked_space = scope.space(); |
| |
| // Initially no memory. |
| CHECK_EQ(faked_space->Size(), 0); |
| CHECK_EQ(faked_space->Capacity(), 0); |
| CHECK_EQ(faked_space->CommittedMemory(), 0); |
| CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0); |
| |
| MemoryAllocator* allocator = heap->memory_allocator(); |
| // Allocate an object just under an OS page in size. |
| int object_size = |
| static_cast<int>(allocator->GetCommitPageSize() - kApiTaggedSize); |
| |
| // TODO(v8:8875): Pointer compression does not enable aligned memory allocation |
| // yet. |
| #ifdef V8_COMPRESS_POINTERS |
| int alignment = kInt32Size; |
| #else |
| int alignment = kDoubleSize; |
| #endif |
| |
| HeapObject object = |
| faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked(); |
| CHECK_EQ(object.address() % alignment, 0); |
| object = |
| faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked(); |
| CHECK_EQ(object.address() % alignment, 0); |
| |
| // Calculate size of allocations based on area_start. |
| Address area_start = faked_space->pages().back()->GetAreaStart(); |
| Address top = RoundUp(area_start, alignment) + object_size; |
| top = RoundUp(top, alignment) + object_size; |
| size_t expected_size = top - area_start; |
| |
| faked_space->ShrinkPages(); |
| faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap); |
| |
| // Allocated objects size may will contain 4 bytes of padding on 32-bit or |
| // with pointer compression. |
| CHECK_EQ(faked_space->Size(), expected_size); |
| |
| size_t committed_memory = RoundUp( |
| MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(), |
| allocator->GetCommitPageSize()); |
| |
| CHECK_EQ(faked_space->CommittedMemory(), committed_memory); |
| CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory); |
| |
| // Capacity will be 3 OS pages minus the page header. |
| CHECK_EQ(faked_space->Capacity(), |
| committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage()); |
| } |
| |
| TEST(ReadOnlySpaceMetrics_TwoPages) { |
| Isolate* isolate = CcTest::i_isolate(); |
| Heap* heap = isolate->heap(); |
| |
| // Create a read-only space and allocate some memory, shrink the pages and |
| // check the allocated object size is as expected. |
| |
| ReadOnlySpaceScope scope(heap); |
| ReadOnlySpace* faked_space = scope.space(); |
| |
| // Initially no memory. |
| CHECK_EQ(faked_space->Size(), 0); |
| CHECK_EQ(faked_space->Capacity(), 0); |
| CHECK_EQ(faked_space->CommittedMemory(), 0); |
| CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0); |
| |
| MemoryAllocator* allocator = heap->memory_allocator(); |
| |
| // Allocate an object that's too big to have more than one on a page. |
| |
| int object_size = RoundUp( |
| static_cast<int>( |
| MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE) / 2 + 16), |
| kTaggedSize); |
| CHECK_GT(object_size * 2, |
| MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE)); |
| faked_space->AllocateRaw(object_size, kWordAligned); |
| |
| // Then allocate another so it expands the space to two pages. |
| faked_space->AllocateRaw(object_size, kWordAligned); |
| |
| faked_space->ShrinkPages(); |
| faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap); |
| |
| // Allocated objects size. |
| CHECK_EQ(faked_space->Size(), object_size * 2); |
| |
| // Amount of OS allocated memory. |
| size_t committed_memory_per_page = |
| RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size, |
| allocator->GetCommitPageSize()); |
| CHECK_EQ(faked_space->CommittedMemory(), 2 * committed_memory_per_page); |
| CHECK_EQ(faked_space->CommittedPhysicalMemory(), |
| 2 * committed_memory_per_page); |
| |
| // Capacity will be the space up to the amount of committed memory minus the |
| // page headers. |
| size_t capacity_per_page = |
| RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size, |
| allocator->GetCommitPageSize()) - |
| MemoryChunkLayout::ObjectStartOffsetInDataPage(); |
| CHECK_EQ(faked_space->Capacity(), 2 * capacity_per_page); |
| } |
| |
| } // namespace heap |
| } // namespace internal |
| } // namespace v8 |