blob: 1c7710c1f890b2f813b164c29891b7ea4751454e [file] [log] [blame]
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --allow-natives-syntax --opt --noalways-opt
// Test that NumberDivide with Number feedback works if only in the
// end SimplifiedLowering figures out that the inputs to this operation
// are actually Unsigned32.
(function() {
// We need a separately polluted % with NumberOrOddball feedback.
function bar(x) { return x / 2; }
bar(undefined); // The % feedback is now NumberOrOddball.
// Now just use the gadget above in a way that only after RETYPE
// in SimplifiedLowering we find out that the `x` is actually in
// Unsigned32 range (based on taking the SignedSmall feedback on
// the + operator).
function foo(x) {
x = (x >>> 0) + 1;
return bar(x) | 0;
}
%PrepareFunctionForOptimization(foo);
assertEquals(1, foo(1));
assertEquals(1, foo(2));
assertEquals(2, foo(3));
assertEquals(2, foo(4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(1, foo(1));
assertEquals(1, foo(2));
assertEquals(2, foo(3));
assertEquals(2, foo(4));
assertOptimized(foo);
})();
// Test that NumberDivide with Number feedback works if only in the
// end SimplifiedLowering figures out that the inputs to this operation
// are actually Signed32.
(function() {
// We need a separately polluted % with NumberOrOddball feedback.
function bar(x) { return x / 2; }
bar(undefined); // The % feedback is now NumberOrOddball.
// Now just use the gadget above in a way that only after RETYPE
// in SimplifiedLowering we find out that the `x` is actually in
// Signed32 range (based on taking the SignedSmall feedback on
// the + operator).
function foo(x) {
x = (x | 0) + 1;
return bar(x) | 0;
}
%PrepareFunctionForOptimization(foo);
assertEquals(1, foo(1));
assertEquals(1, foo(2));
assertEquals(2, foo(3));
assertEquals(2, foo(4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(1, foo(1));
assertEquals(1, foo(2));
assertEquals(2, foo(3));
assertEquals(2, foo(4));
assertOptimized(foo);
})();
// Test that SpeculativeNumberDivide turns into CheckedInt32Div, and
// that the "known power of two divisor" optimization works correctly.
(function() {
function foo(x) { return (x | 0) / 2; }
// Warmup with proper int32 divisions.
%PrepareFunctionForOptimization(foo);
assertEquals(1, foo(2));
assertEquals(2, foo(4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(3, foo(6));
assertOptimized(foo);
// Make optimized code fail.
assertEquals(0.5, foo(1));
assertUnoptimized(foo);
// Try again with the new feedback, and now it should stay optimized.
%PrepareFunctionForOptimization(foo);
%OptimizeFunctionOnNextCall(foo);
assertEquals(4, foo(8));
assertOptimized(foo);
assertEquals(0.5, foo(1));
assertOptimized(foo);
})();
// Test that SpeculativeNumberDivide turns into CheckedInt32Div, and
// that the optimized code properly bails out on "division by zero".
(function() {
function foo(x, y) { return x / y; }
// Warmup with proper int32 divisions.
%PrepareFunctionForOptimization(foo);
assertEquals(2, foo(4, 2));
assertEquals(2, foo(8, 4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(1, foo(2, 2));
assertOptimized(foo);
// Make optimized code fail.
assertEquals(Infinity, foo(1, 0));
assertUnoptimized(foo);
// Try again with the new feedback, and now it should stay optimized.
%PrepareFunctionForOptimization(foo);
%OptimizeFunctionOnNextCall(foo);
assertEquals(2, foo(2, 1));
assertOptimized(foo);
assertEquals(Infinity, foo(1, 0));
assertOptimized(foo);
})();
// Test that SpeculativeNumberDivide turns into CheckedInt32Div, and
// that the optimized code properly bails out on minus zero.
(function() {
function foo(x, y) { return x / y; }
// Warmup with proper int32 divisions.
%PrepareFunctionForOptimization(foo);
assertEquals(2, foo(4, 2));
assertEquals(2, foo(8, 4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(1, foo(2, 2));
assertOptimized(foo);
// Make optimized code fail.
assertEquals(-0, foo(0, -1));
assertUnoptimized(foo);
// Try again with the new feedback, and now it should stay optimized.
%PrepareFunctionForOptimization(foo);
%OptimizeFunctionOnNextCall(foo);
assertEquals(2, foo(2, 1));
assertOptimized(foo);
assertEquals(-0, foo(0, -1));
assertOptimized(foo);
})();
// Test that SpeculativeNumberDivide turns into CheckedInt32Div, and
// that the optimized code properly bails out if result is -kMinInt.
(function() {
function foo(x, y) { return x / y; }
// Warmup with proper int32 divisions.
%PrepareFunctionForOptimization(foo);
assertEquals(2, foo(4, 2));
assertEquals(2, foo(8, 4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(1, foo(2, 2));
assertOptimized(foo);
// Make optimized code fail.
assertEquals(2147483648, foo(-2147483648, -1));
assertUnoptimized(foo);
// Try again with the new feedback, and now it should stay optimized.
%PrepareFunctionForOptimization(foo);
%OptimizeFunctionOnNextCall(foo);
assertEquals(2, foo(2, 1));
assertOptimized(foo);
assertEquals(2147483648, foo(-2147483648, -1));
assertOptimized(foo);
})();
// Test that SpeculativeNumberDivide turns into CheckedUint32Div, and
// that the "known power of two divisor" optimization works correctly.
(function() {
function foo(s) { return s.length / 2; }
// Warmup with proper uint32 divisions.
%PrepareFunctionForOptimization(foo);
assertEquals(1, foo("ab".repeat(1)));
assertEquals(2, foo("ab".repeat(2)));
%OptimizeFunctionOnNextCall(foo);
assertEquals(3, foo("ab".repeat(3)));
assertOptimized(foo);
// Make optimized code fail.
assertEquals(0.5, foo("a"));
assertUnoptimized(foo);
// Try again with the new feedback, and now it should stay optimized.
%PrepareFunctionForOptimization(foo);
%OptimizeFunctionOnNextCall(foo);
assertEquals(4, foo("ab".repeat(4)));
assertOptimized(foo);
assertEquals(0.5, foo("a"));
assertOptimized(foo);
})();
// Test that SpeculativeNumberDivide turns into CheckedUint32Div, and
// that the optimized code properly bails out on "division by zero".
(function() {
function foo(x, y) { return (x >>> 0) / (y >>> 0); }
// Warmup with proper uint32 divisions.
%PrepareFunctionForOptimization(foo);
assertEquals(2, foo(4, 2));
assertEquals(2, foo(8, 4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(1, foo(2, 2));
assertOptimized(foo);
// Make optimized code fail.
assertEquals(Infinity, foo(1, 0));
assertUnoptimized(foo);
// Try again with the new feedback, and now it should stay optimized.
%PrepareFunctionForOptimization(foo);
%OptimizeFunctionOnNextCall(foo);
assertEquals(2, foo(2, 1));
assertOptimized(foo);
assertEquals(Infinity, foo(1, 0));
assertOptimized(foo);
})();