| /* |
| * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef WTF_MathExtras_h |
| #define WTF_MathExtras_h |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <float.h> |
| #include <limits> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <wtf/StdLibExtras.h> |
| |
| #if OS(SOLARIS) |
| #include <ieeefp.h> |
| #endif |
| |
| #if OS(OPENBSD) |
| #include <sys/types.h> |
| #include <machine/ieee.h> |
| #endif |
| |
| #if OS(QNX) |
| // FIXME: Look into a way to have cmath import its functions into both the standard and global |
| // namespace. For now, we include math.h since the QNX cmath header only imports its functions |
| // into the standard namespace. |
| #include <math.h> |
| #endif |
| |
| #ifndef M_PI |
| const double piDouble = 3.14159265358979323846; |
| const float piFloat = 3.14159265358979323846f; |
| #else |
| const double piDouble = M_PI; |
| const float piFloat = static_cast<float>(M_PI); |
| #endif |
| |
| #ifndef M_PI_2 |
| const double piOverTwoDouble = 1.57079632679489661923; |
| const float piOverTwoFloat = 1.57079632679489661923f; |
| #else |
| const double piOverTwoDouble = M_PI_2; |
| const float piOverTwoFloat = static_cast<float>(M_PI_2); |
| #endif |
| |
| #ifndef M_PI_4 |
| const double piOverFourDouble = 0.785398163397448309616; |
| const float piOverFourFloat = 0.785398163397448309616f; |
| #else |
| const double piOverFourDouble = M_PI_4; |
| const float piOverFourFloat = static_cast<float>(M_PI_4); |
| #endif |
| |
| #if OS(DARWIN) |
| |
| // Work around a bug in the Mac OS X libc where ceil(-0.1) return +0. |
| inline double wtf_ceil(double x) { return copysign(ceil(x), x); } |
| |
| #define ceil(x) wtf_ceil(x) |
| |
| #endif |
| |
| #if OS(SOLARIS) |
| |
| #ifndef isfinite |
| inline bool isfinite(double x) { return finite(x) && !isnand(x); } |
| #endif |
| #ifndef isinf |
| inline bool isinf(double x) { return !finite(x) && !isnand(x); } |
| #endif |
| #ifndef signbit |
| inline bool signbit(double x) { return copysign(1.0, x) < 0; } |
| #endif |
| |
| #endif |
| |
| #if OS(OPENBSD) |
| |
| #ifndef isfinite |
| inline bool isfinite(double x) { return finite(x); } |
| #endif |
| #ifndef signbit |
| inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; } |
| #endif |
| |
| #endif |
| |
| #if COMPILER(MSVC) || (COMPILER(RVCT) && !(RVCT_VERSION_AT_LEAST(3, 0, 0, 0))) |
| |
| // We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss. |
| static double round(double num) |
| { |
| double integer = ceil(num); |
| if (num > 0) |
| return integer - num > 0.5 ? integer - 1.0 : integer; |
| return integer - num >= 0.5 ? integer - 1.0 : integer; |
| } |
| static float roundf(float num) |
| { |
| float integer = ceilf(num); |
| if (num > 0) |
| return integer - num > 0.5f ? integer - 1.0f : integer; |
| return integer - num >= 0.5f ? integer - 1.0f : integer; |
| } |
| inline long long llround(double num) { return static_cast<long long>(round(num)); } |
| inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); } |
| inline long lround(double num) { return static_cast<long>(round(num)); } |
| inline long lroundf(float num) { return static_cast<long>(roundf(num)); } |
| inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); } |
| |
| #endif |
| |
| #if COMPILER(GCC) && OS(QNX) |
| // The stdlib on QNX doesn't contain long abs(long). See PR #104666. |
| inline long long abs(long num) { return labs(num); } |
| #endif |
| |
| #if OS(ANDROID) || COMPILER(MSVC) || defined(__LB_ANDROID__) |
| // ANDROID and MSVC's math.h does not currently supply log2 or log2f. |
| inline double log2(double num) |
| { |
| // This constant is roughly M_LN2, which is not provided by default on Windows and Android. |
| return log(num) / 0.693147180559945309417232121458176568; |
| } |
| |
| inline float log2f(float num) |
| { |
| // This constant is roughly M_LN2, which is not provided by default on Windows and Android. |
| return logf(num) / 0.693147180559945309417232121458176568f; |
| } |
| #endif |
| |
| #if COMPILER(MSVC) |
| // The 64bit version of abs() is already defined in stdlib.h which comes with VC10 |
| #if COMPILER(MSVC9_OR_LOWER) |
| inline long long abs(long long num) { return _abs64(num); } |
| #endif |
| |
| inline bool isinf(double num) { return !_finite(num) && !_isnan(num); } |
| #if !defined(COBALT_WIN) |
| inline bool isnan(double num) { return !!_isnan(num); } |
| #endif |
| inline bool signbit(double num) { return _copysign(1.0, num) < 0; } |
| |
| inline double nextafter(double x, double y) { return _nextafter(x, y); } |
| inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; } |
| |
| inline double copysign(double x, double y) { return _copysign(x, y); } |
| inline int isfinite(double x) { return _finite(x); } |
| |
| // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values. |
| inline double wtf_atan2(double x, double y) |
| { |
| double posInf = std::numeric_limits<double>::infinity(); |
| double negInf = -std::numeric_limits<double>::infinity(); |
| double nan = std::numeric_limits<double>::quiet_NaN(); |
| |
| double result = nan; |
| |
| if (x == posInf && y == posInf) |
| result = piOverFourDouble; |
| else if (x == posInf && y == negInf) |
| result = 3 * piOverFourDouble; |
| else if (x == negInf && y == posInf) |
| result = -piOverFourDouble; |
| else if (x == negInf && y == negInf) |
| result = -3 * piOverFourDouble; |
| else |
| result = ::atan2(x, y); |
| |
| return result; |
| } |
| |
| // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x. |
| inline double wtf_fmod(double x, double y) { return (!isinf(x) && isinf(y)) ? x : fmod(x, y); } |
| |
| // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1. |
| inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); } |
| |
| #define atan2(x, y) wtf_atan2(x, y) |
| #define fmod(x, y) wtf_fmod(x, y) |
| #define pow(x, y) wtf_pow(x, y) |
| |
| // MSVC's math functions do not bring lrint. |
| inline long int lrint(double flt) |
| { |
| int64_t intgr; |
| #if CPU(X86) |
| __asm { |
| fld flt |
| fistp intgr |
| }; |
| #else |
| ASSERT(isfinite(flt)); |
| double rounded = round(flt); |
| intgr = static_cast<int64_t>(rounded); |
| // If the fractional part is exactly 0.5, we need to check whether |
| // the rounded result is even. If it is not we need to add 1 to |
| // negative values and subtract one from positive values. |
| if ((fabs(intgr - flt) == 0.5) & intgr) |
| intgr -= ((intgr >> 62) | 1); // 1 with the sign of result, i.e. -1 or 1. |
| #endif |
| return static_cast<long int>(intgr); |
| } |
| |
| #endif // COMPILER(MSVC) |
| |
| inline double deg2rad(double d) { return d * piDouble / 180.0; } |
| inline double rad2deg(double r) { return r * 180.0 / piDouble; } |
| inline double deg2grad(double d) { return d * 400.0 / 360.0; } |
| inline double grad2deg(double g) { return g * 360.0 / 400.0; } |
| inline double turn2deg(double t) { return t * 360.0; } |
| inline double deg2turn(double d) { return d / 360.0; } |
| inline double rad2grad(double r) { return r * 200.0 / piDouble; } |
| inline double grad2rad(double g) { return g * piDouble / 200.0; } |
| |
| inline float deg2rad(float d) { return d * piFloat / 180.0f; } |
| inline float rad2deg(float r) { return r * 180.0f / piFloat; } |
| inline float deg2grad(float d) { return d * 400.0f / 360.0f; } |
| inline float grad2deg(float g) { return g * 360.0f / 400.0f; } |
| inline float turn2deg(float t) { return t * 360.0f; } |
| inline float deg2turn(float d) { return d / 360.0f; } |
| inline float rad2grad(float r) { return r * 200.0f / piFloat; } |
| inline float grad2rad(float g) { return g * piFloat / 200.0f; } |
| |
| // std::numeric_limits<T>::min() returns the smallest positive value for floating point types |
| template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); } |
| template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); } |
| template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); } |
| template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); } |
| |
| template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>()) |
| { |
| if (value >= static_cast<double>(max)) |
| return max; |
| if (value <= static_cast<double>(min)) |
| return min; |
| return static_cast<T>(value); |
| } |
| template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints. |
| |
| inline int clampToInteger(double value) |
| { |
| return clampTo<int>(value); |
| } |
| |
| inline float clampToFloat(double value) |
| { |
| return clampTo<float>(value); |
| } |
| |
| inline int clampToPositiveInteger(double value) |
| { |
| return clampTo<int>(value, 0); |
| } |
| |
| inline int clampToInteger(float value) |
| { |
| return clampTo<int>(value); |
| } |
| |
| inline int clampToInteger(unsigned x) |
| { |
| const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max()); |
| |
| if (x >= intMax) |
| return std::numeric_limits<int>::max(); |
| return static_cast<int>(x); |
| } |
| |
| inline bool isWithinIntRange(float x) |
| { |
| return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max()); |
| } |
| |
| template<typename T> inline bool hasZeroOrOneBitsSet(T value) |
| { |
| return !((value - 1) & value); |
| } |
| |
| template<typename T> inline bool hasTwoOrMoreBitsSet(T value) |
| { |
| return !hasZeroOrOneBitsSet(value); |
| } |
| |
| template<typename T> inline T timesThreePlusOneDividedByTwo(T value) |
| { |
| // Mathematically equivalent to: |
| // (value * 3 + 1) / 2; |
| // or: |
| // (unsigned)ceil(value * 1.5)); |
| // This form is not prone to internal overflow. |
| return value + (value >> 1) + (value & 1); |
| } |
| |
| #if !COMPILER(MSVC) && !COMPILER(RVCT) && !OS(SOLARIS) && !COMPILER(SNC) && !COMPILER(GHS) |
| using std::isfinite; |
| #if !COMPILER_QUIRK(GCC11_GLOBAL_ISINF_ISNAN) |
| using std::isinf; |
| using std::isnan; |
| #endif |
| using std::signbit; |
| #endif |
| |
| #if COMPILER_QUIRK(GCC11_GLOBAL_ISINF_ISNAN) |
| // A workaround to avoid conflicting declarations of isinf and isnan when compiling with GCC in C++11 mode. |
| namespace std { |
| inline bool wtf_isinf(float f) { return std::isinf(f); } |
| inline bool wtf_isinf(double d) { return std::isinf(d); } |
| inline bool wtf_isnan(float f) { return std::isnan(f); } |
| inline bool wtf_isnan(double d) { return std::isnan(d); } |
| }; |
| |
| using std::wtf_isinf; |
| using std::wtf_isnan; |
| |
| #define isinf(x) wtf_isinf(x) |
| #define isnan(x) wtf_isnan(x) |
| #endif |
| |
| #ifndef UINT64_C |
| #if COMPILER(MSVC) |
| #define UINT64_C(c) c ## ui64 |
| #else |
| #define UINT64_C(c) c ## ull |
| #endif |
| #endif |
| |
| |
| // decompose 'number' to its sign, exponent, and mantissa components. |
| // The result is interpreted as: |
| // (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52)) |
| inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa) |
| { |
| ASSERT(isfinite(number)); |
| |
| sign = signbit(number); |
| |
| uint64_t bits = WTF::bitwise_cast<uint64_t>(number); |
| exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff; |
| mantissa = bits & 0xFFFFFFFFFFFFFull; |
| |
| // Check for zero/denormal values; if so, adjust the exponent, |
| // if not insert the implicit, omitted leading 1 bit. |
| if (exponent == -0x3ff) |
| exponent = mantissa ? -0x3fe : 0; |
| else |
| mantissa |= 0x10000000000000ull; |
| } |
| |
| // Calculate d % 2^{64}. |
| inline void doubleToInteger(double d, unsigned long long& value) |
| { |
| if (isnan(d) || isinf(d)) |
| value = 0; |
| else { |
| // -2^{64} < fmodValue < 2^{64}. |
| double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0); |
| if (fmodValue >= 0) { |
| // 0 <= fmodValue < 2^{64}. |
| // 0 <= value < 2^{64}. This cast causes no loss. |
| value = static_cast<unsigned long long>(fmodValue); |
| } else { |
| // -2^{64} < fmodValue < 0. |
| // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss. |
| unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue); |
| // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1. |
| // 0 < value < 2^{64}. |
| value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1; |
| } |
| } |
| } |
| |
| #endif // #ifndef WTF_MathExtras_h |