| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // The reason we write our own hash map instead of using unordered_map in STL, |
| // is that STL containers use a mutex pool on debug build, which will lead to |
| // deadlock when we are using async signal handler. |
| |
| #ifndef V8_BASE_HASHMAP_H_ |
| #define V8_BASE_HASHMAP_H_ |
| |
| #include <stdlib.h> |
| |
| #include "src/base/bits.h" |
| #include "src/base/hashmap-entry.h" |
| #include "src/base/logging.h" |
| |
| #if defined(V8_OS_STARBOARD) |
| #include "starboard/memory.h" |
| #endif |
| |
| namespace v8 { |
| namespace base { |
| |
| class DefaultAllocationPolicy { |
| public: |
| #if defined(V8_OS_STARBOARD) |
| V8_INLINE void* New(size_t size) { return SbMemoryAllocate(size); } |
| V8_INLINE static void Delete(void* p) { SbMemoryDeallocate(p); } |
| #else |
| V8_INLINE void* New(size_t size) { return malloc(size); } |
| V8_INLINE static void Delete(void* p) { free(p); } |
| #endif |
| }; |
| |
| template <typename Key, typename Value, class MatchFun, class AllocationPolicy> |
| class TemplateHashMapImpl { |
| public: |
| using Entry = TemplateHashMapEntry<Key, Value>; |
| |
| // The default capacity. This is used by the call sites which want |
| // to pass in a non-default AllocationPolicy but want to use the |
| // default value of capacity specified by the implementation. |
| static const uint32_t kDefaultHashMapCapacity = 8; |
| |
| // initial_capacity is the size of the initial hash map; |
| // it must be a power of 2 (and thus must not be 0). |
| TemplateHashMapImpl(uint32_t capacity = kDefaultHashMapCapacity, |
| MatchFun match = MatchFun(), |
| AllocationPolicy allocator = AllocationPolicy()); |
| |
| // Clones the given hashmap and creates a copy with the same entries. |
| TemplateHashMapImpl(const TemplateHashMapImpl<Key, Value, MatchFun, |
| AllocationPolicy>* original, |
| AllocationPolicy allocator = AllocationPolicy()); |
| |
| ~TemplateHashMapImpl(); |
| |
| // If an entry with matching key is found, returns that entry. |
| // Otherwise, nullptr is returned. |
| Entry* Lookup(const Key& key, uint32_t hash) const; |
| |
| // If an entry with matching key is found, returns that entry. |
| // If no matching entry is found, a new entry is inserted with |
| // corresponding key, key hash, and default initialized value. |
| Entry* LookupOrInsert(const Key& key, uint32_t hash, |
| AllocationPolicy allocator = AllocationPolicy()); |
| |
| // If an entry with matching key is found, returns that entry. |
| // If no matching entry is found, a new entry is inserted with |
| // corresponding key, key hash, and value created by func. |
| template <typename Func> |
| Entry* LookupOrInsert(const Key& key, uint32_t hash, const Func& value_func, |
| AllocationPolicy allocator = AllocationPolicy()); |
| |
| Entry* InsertNew(const Key& key, uint32_t hash, |
| AllocationPolicy allocator = AllocationPolicy()); |
| |
| // Removes the entry with matching key. |
| // It returns the value of the deleted entry |
| // or null if there is no value for such key. |
| Value Remove(const Key& key, uint32_t hash); |
| |
| // Empties the hash map (occupancy() == 0). |
| void Clear(); |
| |
| // Empties the map and makes it unusable for allocation. |
| void Invalidate() { |
| AllocationPolicy::Delete(map_); |
| map_ = nullptr; |
| occupancy_ = 0; |
| capacity_ = 0; |
| } |
| |
| // The number of (non-empty) entries in the table. |
| uint32_t occupancy() const { return occupancy_; } |
| |
| // The capacity of the table. The implementation |
| // makes sure that occupancy is at most 80% of |
| // the table capacity. |
| uint32_t capacity() const { return capacity_; } |
| |
| // Iteration |
| // |
| // for (Entry* p = map.Start(); p != nullptr; p = map.Next(p)) { |
| // ... |
| // } |
| // |
| // If entries are inserted during iteration, the effect of |
| // calling Next() is undefined. |
| Entry* Start() const; |
| Entry* Next(Entry* entry) const; |
| |
| void Reset(AllocationPolicy allocator) { |
| Initialize(capacity_, allocator); |
| occupancy_ = 0; |
| } |
| |
| protected: |
| void Initialize(uint32_t capacity, AllocationPolicy allocator); |
| |
| private: |
| Entry* map_; |
| uint32_t capacity_; |
| uint32_t occupancy_; |
| // TODO(leszeks): This takes up space even if it has no state, maybe replace |
| // with something that does the empty base optimisation e.g. std::tuple |
| MatchFun match_; |
| |
| Entry* map_end() const { return map_ + capacity_; } |
| Entry* Probe(const Key& key, uint32_t hash) const; |
| Entry* FillEmptyEntry(Entry* entry, const Key& key, const Value& value, |
| uint32_t hash, |
| AllocationPolicy allocator = AllocationPolicy()); |
| void Resize(AllocationPolicy allocator); |
| |
| DISALLOW_COPY_AND_ASSIGN(TemplateHashMapImpl); |
| }; |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>:: |
| TemplateHashMapImpl(uint32_t initial_capacity, MatchFun match, |
| AllocationPolicy allocator) |
| : match_(match) { |
| Initialize(initial_capacity, allocator); |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>:: |
| TemplateHashMapImpl(const TemplateHashMapImpl<Key, Value, MatchFun, |
| AllocationPolicy>* original, |
| AllocationPolicy allocator) |
| : capacity_(original->capacity_), |
| occupancy_(original->occupancy_), |
| match_(original->match_) { |
| map_ = reinterpret_cast<Entry*>(allocator.New(capacity_ * sizeof(Entry))); |
| memcpy(map_, original->map_, capacity_ * sizeof(Entry)); |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| TemplateHashMapImpl<Key, Value, MatchFun, |
| AllocationPolicy>::~TemplateHashMapImpl() { |
| AllocationPolicy::Delete(map_); |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Lookup( |
| const Key& key, uint32_t hash) const { |
| Entry* entry = Probe(key, hash); |
| return entry->exists() ? entry : nullptr; |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::LookupOrInsert( |
| const Key& key, uint32_t hash, AllocationPolicy allocator) { |
| return LookupOrInsert(key, hash, []() { return Value(); }, allocator); |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| template <typename Func> |
| typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::LookupOrInsert( |
| const Key& key, uint32_t hash, const Func& value_func, |
| AllocationPolicy allocator) { |
| // Find a matching entry. |
| Entry* entry = Probe(key, hash); |
| if (entry->exists()) { |
| return entry; |
| } |
| |
| return FillEmptyEntry(entry, key, value_func(), hash, allocator); |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::InsertNew( |
| const Key& key, uint32_t hash, AllocationPolicy allocator) { |
| Entry* entry = Probe(key, hash); |
| return FillEmptyEntry(entry, key, Value(), hash, allocator); |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| Value TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Remove( |
| const Key& key, uint32_t hash) { |
| // Lookup the entry for the key to remove. |
| Entry* p = Probe(key, hash); |
| if (!p->exists()) { |
| // Key not found nothing to remove. |
| return nullptr; |
| } |
| |
| Value value = p->value; |
| // To remove an entry we need to ensure that it does not create an empty |
| // entry that will cause the search for another entry to stop too soon. If all |
| // the entries between the entry to remove and the next empty slot have their |
| // initial position inside this interval, clearing the entry to remove will |
| // not break the search. If, while searching for the next empty entry, an |
| // entry is encountered which does not have its initial position between the |
| // entry to remove and the position looked at, then this entry can be moved to |
| // the place of the entry to remove without breaking the search for it. The |
| // entry made vacant by this move is now the entry to remove and the process |
| // starts over. |
| // Algorithm from http://en.wikipedia.org/wiki/Open_addressing. |
| |
| // This guarantees loop termination as there is at least one empty entry so |
| // eventually the removed entry will have an empty entry after it. |
| DCHECK(occupancy_ < capacity_); |
| |
| // p is the candidate entry to clear. q is used to scan forwards. |
| Entry* q = p; // Start at the entry to remove. |
| while (true) { |
| // Move q to the next entry. |
| q = q + 1; |
| if (q == map_end()) { |
| q = map_; |
| } |
| |
| // All entries between p and q have their initial position between p and q |
| // and the entry p can be cleared without breaking the search for these |
| // entries. |
| if (!q->exists()) { |
| break; |
| } |
| |
| // Find the initial position for the entry at position q. |
| Entry* r = map_ + (q->hash & (capacity_ - 1)); |
| |
| // If the entry at position q has its initial position outside the range |
| // between p and q it can be moved forward to position p and will still be |
| // found. There is now a new candidate entry for clearing. |
| if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) { |
| *p = *q; |
| p = q; |
| } |
| } |
| |
| // Clear the entry which is allowed to en emptied. |
| p->clear(); |
| occupancy_--; |
| return value; |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Clear() { |
| // Mark all entries as empty. |
| for (size_t i = 0; i < capacity_; ++i) { |
| map_[i].clear(); |
| } |
| occupancy_ = 0; |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Start() const { |
| return Next(map_ - 1); |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Next( |
| Entry* entry) const { |
| const Entry* end = map_end(); |
| DCHECK(map_ - 1 <= entry && entry < end); |
| for (entry++; entry < end; entry++) { |
| if (entry->exists()) { |
| return entry; |
| } |
| } |
| return nullptr; |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Probe( |
| const Key& key, uint32_t hash) const { |
| DCHECK(base::bits::IsPowerOfTwo(capacity_)); |
| size_t i = hash & (capacity_ - 1); |
| DCHECK(i < capacity_); |
| |
| DCHECK(occupancy_ < capacity_); // Guarantees loop termination. |
| while (map_[i].exists() && !match_(hash, map_[i].hash, key, map_[i].key)) { |
| i = (i + 1) & (capacity_ - 1); |
| } |
| |
| return &map_[i]; |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry* |
| TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::FillEmptyEntry( |
| Entry* entry, const Key& key, const Value& value, uint32_t hash, |
| AllocationPolicy allocator) { |
| DCHECK(!entry->exists()); |
| |
| new (entry) Entry(key, value, hash); |
| occupancy_++; |
| |
| // Grow the map if we reached >= 80% occupancy. |
| if (occupancy_ + occupancy_ / 4 >= capacity_) { |
| Resize(allocator); |
| entry = Probe(key, hash); |
| } |
| |
| return entry; |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Initialize( |
| uint32_t capacity, AllocationPolicy allocator) { |
| DCHECK(base::bits::IsPowerOfTwo(capacity)); |
| map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry))); |
| if (map_ == nullptr) { |
| FATAL("Out of memory: HashMap::Initialize"); |
| return; |
| } |
| capacity_ = capacity; |
| Clear(); |
| } |
| |
| template <typename Key, typename Value, typename MatchFun, |
| class AllocationPolicy> |
| void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Resize( |
| AllocationPolicy allocator) { |
| Entry* map = map_; |
| uint32_t n = occupancy_; |
| |
| // Allocate larger map. |
| Initialize(capacity_ * 2, allocator); |
| |
| // Rehash all current entries. |
| for (Entry* entry = map; n > 0; entry++) { |
| if (entry->exists()) { |
| Entry* new_entry = Probe(entry->key, entry->hash); |
| new_entry = FillEmptyEntry(new_entry, entry->key, entry->value, |
| entry->hash, allocator); |
| n--; |
| } |
| } |
| |
| // Delete old map. |
| AllocationPolicy::Delete(map); |
| } |
| |
| // Match function which compares hashes before executing a (potentially |
| // expensive) key comparison. |
| template <typename Key, typename MatchFun> |
| struct HashEqualityThenKeyMatcher { |
| explicit HashEqualityThenKeyMatcher(MatchFun match) : match_(match) {} |
| |
| bool operator()(uint32_t hash1, uint32_t hash2, const Key& key1, |
| const Key& key2) const { |
| return hash1 == hash2 && match_(key1, key2); |
| } |
| |
| private: |
| MatchFun match_; |
| }; |
| |
| // Hashmap<void*, void*> which takes a custom key comparison function pointer. |
| template <typename AllocationPolicy> |
| class CustomMatcherTemplateHashMapImpl |
| : public TemplateHashMapImpl< |
| void*, void*, |
| HashEqualityThenKeyMatcher<void*, bool (*)(void*, void*)>, |
| AllocationPolicy> { |
| using Base = TemplateHashMapImpl< |
| void*, void*, HashEqualityThenKeyMatcher<void*, bool (*)(void*, void*)>, |
| AllocationPolicy>; |
| |
| public: |
| using MatchFun = bool (*)(void*, void*); |
| |
| CustomMatcherTemplateHashMapImpl( |
| MatchFun match, uint32_t capacity = Base::kDefaultHashMapCapacity, |
| AllocationPolicy allocator = AllocationPolicy()) |
| : Base(capacity, HashEqualityThenKeyMatcher<void*, MatchFun>(match), |
| allocator) {} |
| |
| CustomMatcherTemplateHashMapImpl( |
| const CustomMatcherTemplateHashMapImpl<AllocationPolicy>* original, |
| AllocationPolicy allocator = AllocationPolicy()) |
| : Base(original, allocator) {} |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(CustomMatcherTemplateHashMapImpl); |
| }; |
| |
| using CustomMatcherHashMap = |
| CustomMatcherTemplateHashMapImpl<DefaultAllocationPolicy>; |
| |
| // Match function which compares keys directly by equality. |
| template <typename Key> |
| struct KeyEqualityMatcher { |
| bool operator()(uint32_t hash1, uint32_t hash2, const Key& key1, |
| const Key& key2) const { |
| return key1 == key2; |
| } |
| }; |
| |
| // Hashmap<void*, void*> which compares the key pointers directly. |
| template <typename AllocationPolicy> |
| class PointerTemplateHashMapImpl |
| : public TemplateHashMapImpl<void*, void*, KeyEqualityMatcher<void*>, |
| AllocationPolicy> { |
| using Base = TemplateHashMapImpl<void*, void*, KeyEqualityMatcher<void*>, |
| AllocationPolicy>; |
| |
| public: |
| PointerTemplateHashMapImpl(uint32_t capacity = Base::kDefaultHashMapCapacity, |
| AllocationPolicy allocator = AllocationPolicy()) |
| : Base(capacity, KeyEqualityMatcher<void*>(), allocator) {} |
| }; |
| |
| using HashMap = PointerTemplateHashMapImpl<DefaultAllocationPolicy>; |
| |
| // A hash map for pointer keys and values with an STL-like interface. |
| template <class Key, class Value, class MatchFun, class AllocationPolicy> |
| class TemplateHashMap |
| : private TemplateHashMapImpl<void*, void*, |
| HashEqualityThenKeyMatcher<void*, MatchFun>, |
| AllocationPolicy> { |
| using Base = TemplateHashMapImpl<void*, void*, |
| HashEqualityThenKeyMatcher<void*, MatchFun>, |
| AllocationPolicy>; |
| |
| public: |
| STATIC_ASSERT(sizeof(Key*) == sizeof(void*)); // NOLINT |
| STATIC_ASSERT(sizeof(Value*) == sizeof(void*)); // NOLINT |
| struct value_type { |
| Key* first; |
| Value* second; |
| }; |
| |
| class Iterator { |
| public: |
| Iterator& operator++() { |
| entry_ = map_->Next(entry_); |
| return *this; |
| } |
| |
| value_type* operator->() { return reinterpret_cast<value_type*>(entry_); } |
| bool operator!=(const Iterator& other) { return entry_ != other.entry_; } |
| |
| private: |
| Iterator(const Base* map, typename Base::Entry* entry) |
| : map_(map), entry_(entry) {} |
| |
| const Base* map_; |
| typename Base::Entry* entry_; |
| |
| friend class TemplateHashMap; |
| }; |
| |
| TemplateHashMap(MatchFun match, |
| AllocationPolicy allocator = AllocationPolicy()) |
| : Base(Base::kDefaultHashMapCapacity, |
| HashEqualityThenKeyMatcher<void*, MatchFun>(match), allocator) {} |
| |
| Iterator begin() const { return Iterator(this, this->Start()); } |
| Iterator end() const { return Iterator(this, nullptr); } |
| Iterator find(Key* key, bool insert = false, |
| AllocationPolicy allocator = AllocationPolicy()) { |
| if (insert) { |
| return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator)); |
| } |
| return Iterator(this, this->Lookup(key, key->Hash())); |
| } |
| }; |
| |
| } // namespace base |
| } // namespace v8 |
| |
| #endif // V8_BASE_HASHMAP_H_ |