| # Copyright 2016 the V8 project authors. All rights reserved. |
| # Use of this source code is governed by a BSD-style license that can be |
| # found in the LICENSE file. |
| |
| # Do statistical tests on benchmark results |
| # This script requires the libraries rjson, R.utils, ggplot2 and data.table |
| # Install them prior to running |
| |
| # To use the script, first get some benchmark results, for example via |
| # tools/run_perf.py ../v8-perf/benchmarks/Octane2.1/Octane2.1-TF.json |
| # --outdir=out/x64.release-on --outdir-secondary=out/x64.release-off |
| # --json-test-results=results-on.json |
| # --json-test-results-secondary=results-off.json |
| # then run this script |
| # Rscript statistics-for-json.R results-on.json results-off.json ~/SVG |
| # to produce graphs (and get stdio output of statistical tests). |
| |
| |
| suppressMessages(library("rjson")) # for fromJson |
| suppressMessages(library("R.utils")) # for printf |
| suppressMessages(library("ggplot2")) # for plotting |
| suppressMessages(library("data.table")) # less broken than data.frame |
| |
| # Clear all variables from environment |
| rm(list=ls()) |
| |
| args <- commandArgs(TRUE) |
| if (length(args) != 3) { |
| printf(paste("usage: Rscript %%this_script patched-results.json", |
| "unpatched-results.json\n")) |
| } else { |
| patch <- fromJSON(file=args[1]) |
| nopatch <- fromJSON(file=args[2]) |
| outputPath <- args[3] |
| df <- data.table(L = numeric(), R = numeric(), E = numeric(), |
| p.value = numeric(), yL = character(), |
| p.value.sig = logical()) |
| |
| for (i in seq(1, length(patch$traces))) { |
| testName <- patch$traces[[i]]$graphs[[2]] |
| printf("%s\n", testName) |
| |
| nopatch_res <- as.integer(nopatch$traces[[i]]$results) |
| patch_res <- as.integer(patch$traces[[i]]$results) |
| if (length(nopatch_res) > 0) { |
| patch_norm <- shapiro.test(patch_res); |
| nopatch_norm <- shapiro.test(nopatch_res); |
| |
| # Shaprio-Wilk test indicates whether data is not likely to |
| # come from a normal distribution. The p-value is the probability |
| # to obtain the sample from a normal distribution. This means, the |
| # smaller p, the more likely the sample was not drawn from a normal |
| # distribution. See [wikipedia:Shapiro-Wilk-Test]. |
| printf(" Patched scores look %s distributed (W=%.4f, p=%.4f)\n", |
| ifelse(patch_norm$p.value < 0.05, "not normally", "normally"), |
| patch_norm$statistic, patch_norm$p.value); |
| printf(" Unpatched scores look %s distributed (W=%.4f, p=%.4f)\n", |
| ifelse(nopatch_norm$p.value < 0.05, "not normally", "normally"), |
| nopatch_norm$statistic, nopatch_norm$p.value); |
| |
| hist <- ggplot(data=data.frame(x=as.integer(patch_res)), aes(x)) + |
| theme_bw() + |
| geom_histogram(bins=50) + |
| ylab("Points") + |
| xlab(patch$traces[[i]]$graphs[[2]]) |
| ggsave(filename=sprintf("%s/%s.svg", outputPath, testName), |
| plot=hist, width=7, height=7) |
| |
| hist <- ggplot(data=data.frame(x=as.integer(nopatch_res)), aes(x)) + |
| theme_bw() + |
| geom_histogram(bins=50) + |
| ylab("Points") + |
| xlab(patch$traces[[i]]$graphs[[2]]) |
| ggsave(filename=sprintf("%s/%s-before.svg", outputPath, testName), |
| plot=hist, width=7, height=7) |
| |
| # The Wilcoxon rank-sum test |
| mww <- wilcox.test(patch_res, nopatch_res, conf.int = TRUE, exact=TRUE) |
| printf(paste(" Wilcoxon U-test W=%.4f, p=%.4f,", |
| "confidence interval [%.1f, %.1f],", |
| "est. effect size %.1f \n"), |
| mww$statistic, mww$p.value, |
| mww$conf.int[1], mww$conf.int[2], mww$estimate); |
| df <-rbind(df, list(mww$conf.int[1], mww$conf.int[2], |
| unname(mww$estimate), unname(mww$p.value), |
| testName, ifelse(mww$p.value < 0.05, TRUE, FALSE))) |
| # t-test |
| t <- t.test(patch_res, nopatch_res, paired=FALSE) |
| printf(paste(" Welch t-test t=%.4f, df = %.2f, p=%.4f,", |
| "confidence interval [%.1f, %.1f], mean diff %.1f \n"), |
| t$statistic, t$parameter, t$p.value, |
| t$conf.int[1], t$conf.int[2], t$estimate[1]-t$estimate[2]); |
| } |
| } |
| df2 <- cbind(x=1:nrow(df), df[order(E),]) |
| speedup <- ggplot(df2, aes(x = x, y = E, colour=p.value.sig)) + |
| geom_errorbar(aes(ymax = L, ymin = R), colour="black") + |
| geom_point(size = 4) + |
| scale_x_discrete(limits=df2$yL, |
| name=paste("Benchmark, n=", length(patch_res))) + |
| theme_bw() + |
| geom_hline(yintercept = 0) + |
| ylab("Est. Effect Size in Points") + |
| theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) + |
| theme(legend.position = "bottom") + |
| scale_colour_manual(name="Statistical Significance (MWW, p < 0.05)", |
| values=c("red", "green"), |
| labels=c("not significant", "significant")) + |
| theme(legend.justification=c(0,1), legend.position=c(0,1)) |
| print(speedup) |
| ggsave(filename=sprintf("%s/speedup-estimates.svg", outputPath), |
| plot=speedup, width=7, height=7) |
| } |