blob: 8fec389ee9f2f52c5a7b7ed399c449930ce87d04 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/startup-serializer.h"
#include "src/api.h"
#include "src/objects-inl.h"
#include "src/v8threads.h"
namespace v8 {
namespace internal {
StartupSerializer::StartupSerializer(
Isolate* isolate,
v8::SnapshotCreator::FunctionCodeHandling function_code_handling)
: Serializer(isolate),
clear_function_code_(function_code_handling ==
v8::SnapshotCreator::FunctionCodeHandling::kClear),
serializing_builtins_(false),
can_be_rehashed_(true) {
InitializeCodeAddressMap();
}
StartupSerializer::~StartupSerializer() {
RestoreExternalReferenceRedirectors(accessor_infos_);
OutputStatistics("StartupSerializer");
}
void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
WhereToPoint where_to_point, int skip) {
DCHECK(!obj->IsJSFunction());
if (clear_function_code() && obj->IsBytecodeArray()) {
obj = isolate()->heap()->undefined_value();
}
BuiltinReferenceSerializationMode mode =
(clear_function_code() && !serializing_builtins_)
? kCanonicalizeCompileLazy
: kDefault;
if (SerializeBuiltinReference(obj, how_to_code, where_to_point, skip, mode)) {
return;
}
if (SerializeHotObject(obj, how_to_code, where_to_point, skip)) return;
int root_index = root_index_map()->Lookup(obj);
// We can only encode roots as such if it has already been serialized.
// That applies to root indices below the wave front.
if (root_index != RootIndexMap::kInvalidRootIndex) {
if (root_has_been_serialized(root_index)) {
PutRoot(root_index, obj, how_to_code, where_to_point, skip);
return;
}
}
if (SerializeBackReference(obj, how_to_code, where_to_point, skip)) return;
FlushSkip(skip);
if (isolate()->external_reference_redirector() && obj->IsAccessorInfo()) {
// Wipe external reference redirects in the accessor info.
AccessorInfo* info = AccessorInfo::cast(obj);
Address original_address = Foreign::cast(info->getter())->foreign_address();
Foreign::cast(info->js_getter())->set_foreign_address(original_address);
accessor_infos_.push_back(info);
} else if (obj->IsScript() && Script::cast(obj)->IsUserJavaScript()) {
Script::cast(obj)->set_context_data(
isolate()->heap()->uninitialized_symbol());
} else if (obj->IsSharedFunctionInfo()) {
// Clear inferred name for native functions.
SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
if (!shared->IsSubjectToDebugging() && shared->HasInferredName()) {
shared->set_inferred_name(isolate()->heap()->empty_string());
}
}
if (obj->IsHashTable()) CheckRehashability(obj);
// Object has not yet been serialized. Serialize it here.
ObjectSerializer object_serializer(this, obj, &sink_, how_to_code,
where_to_point);
object_serializer.Serialize();
}
void StartupSerializer::SerializeWeakReferencesAndDeferred() {
// This comes right after serialization of the partial snapshot, where we
// add entries to the partial snapshot cache of the startup snapshot. Add
// one entry with 'undefined' to terminate the partial snapshot cache.
Object* undefined = isolate()->heap()->undefined_value();
VisitRootPointer(Root::kPartialSnapshotCache, &undefined);
isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
SerializeDeferredObjects();
Pad();
}
int StartupSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
int index;
if (!partial_cache_index_map_.LookupOrInsert(heap_object, &index)) {
// This object is not part of the partial snapshot cache yet. Add it to the
// startup snapshot so we can refer to it via partial snapshot index from
// the partial snapshot.
VisitRootPointer(Root::kPartialSnapshotCache,
reinterpret_cast<Object**>(&heap_object));
}
return index;
}
void StartupSerializer::Synchronize(VisitorSynchronization::SyncTag tag) {
// We expect the builtins tag after builtins have been serialized.
DCHECK(!serializing_builtins_ || tag == VisitorSynchronization::kBuiltins);
serializing_builtins_ = (tag == VisitorSynchronization::kHandleScope);
sink_.Put(kSynchronize, "Synchronize");
}
void StartupSerializer::SerializeStrongReferences() {
Isolate* isolate = this->isolate();
// No active threads.
CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
// No active or weak handles.
CHECK(isolate->handle_scope_implementer()->blocks()->empty());
CHECK_EQ(0, isolate->global_handles()->global_handles_count());
CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
// First visit immortal immovables to make sure they end up in the first page.
serializing_immortal_immovables_roots_ = true;
isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG_ROOT_LIST);
// Check that immortal immovable roots are allocated on the first page.
DCHECK(allocator()->HasNotExceededFirstPageOfEachSpace());
serializing_immortal_immovables_roots_ = false;
// Visit the rest of the strong roots.
// Clear the stack limits to make the snapshot reproducible.
// Reset it again afterwards.
isolate->heap()->ClearStackLimits();
isolate->heap()->IterateSmiRoots(this);
isolate->heap()->SetStackLimits();
isolate->heap()->IterateStrongRoots(this,
VISIT_ONLY_STRONG_FOR_SERIALIZATION);
}
void StartupSerializer::VisitRootPointers(Root root, Object** start,
Object** end) {
if (start == isolate()->heap()->roots_array_start()) {
// Serializing the root list needs special handling:
// - The first pass over the root list only serializes immortal immovables.
// - The second pass over the root list serializes the rest.
// - Only root list elements that have been fully serialized can be
// referenced via as root by using kRootArray bytecodes.
int skip = 0;
for (Object** current = start; current < end; current++) {
int root_index = static_cast<int>(current - start);
if (RootShouldBeSkipped(root_index)) {
skip += kPointerSize;
continue;
} else {
if ((*current)->IsSmi()) {
FlushSkip(skip);
PutSmi(Smi::cast(*current));
} else {
SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject,
skip);
}
root_has_been_serialized_.set(root_index);
skip = 0;
}
}
FlushSkip(skip);
} else {
Serializer::VisitRootPointers(root, start, end);
}
}
bool StartupSerializer::RootShouldBeSkipped(int root_index) {
if (root_index == Heap::kStackLimitRootIndex ||
root_index == Heap::kRealStackLimitRootIndex) {
return true;
}
return Heap::RootIsImmortalImmovable(root_index) !=
serializing_immortal_immovables_roots_;
}
void StartupSerializer::CheckRehashability(HeapObject* table) {
DCHECK(table->IsHashTable());
if (!can_be_rehashed_) return;
// We can only correctly rehash if the four hash tables below are the only
// ones that we deserialize.
if (table->IsUnseededNumberDictionary()) return;
if (table == isolate()->heap()->empty_ordered_hash_table()) return;
if (table == isolate()->heap()->empty_slow_element_dictionary()) return;
if (table == isolate()->heap()->empty_property_dictionary()) return;
if (table == isolate()->heap()->weak_object_to_code_table()) return;
if (table == isolate()->heap()->string_table()) return;
can_be_rehashed_ = false;
}
bool StartupSerializer::MustBeDeferred(HeapObject* object) {
if (root_has_been_serialized_.test(Heap::kFreeSpaceMapRootIndex) &&
root_has_been_serialized_.test(Heap::kOnePointerFillerMapRootIndex) &&
root_has_been_serialized_.test(Heap::kTwoPointerFillerMapRootIndex)) {
// All required root objects are serialized, so any aligned objects can
// be saved without problems.
return false;
}
// Just defer everything except of Map objects until all required roots are
// serialized. Some objects may have special alignment requirements, that may
// not be fulfilled during deserialization until few first root objects are
// serialized. But we must serialize Map objects since deserializer checks
// that these root objects are indeed Maps.
return !object->IsMap();
}
} // namespace internal
} // namespace v8