blob: 8509568bf5605272d2f840cc3cd12c6655070bf4 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <initializer_list>
#include "src/base/type-traits.h"
#include "src/codegen/assembler.h"
#include "src/common/globals.h"
#include "src/compiler/access-builder.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "src/compiler/simplified-operator.h"
#include "src/compiler/write-barrier-kind.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
namespace v8 {
namespace internal {
namespace compiler {
class BasicBlock;
class RawMachineLabel;
class Schedule;
class SourcePositionTable;
// The RawMachineAssembler produces a low-level IR graph. All nodes are wired
// into a graph and also placed into a schedule immediately, hence subsequent
// code generation can happen without the need for scheduling.
// In order to create a schedule on-the-fly, the assembler keeps track of basic
// blocks by having one current basic block being populated and by referencing
// other basic blocks through the use of labels.
// Also note that the generated graph is only valid together with the generated
// schedule, using one without the other is invalid as the graph is inherently
// non-schedulable due to missing control and effect dependencies.
class V8_EXPORT_PRIVATE RawMachineAssembler {
Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor,
MachineRepresentation word = MachineType::PointerRepresentation(),
MachineOperatorBuilder::Flags flags =
MachineOperatorBuilder::AlignmentRequirements alignment_requirements =
PoisoningMitigationLevel poisoning_level =
~RawMachineAssembler() = default;
RawMachineAssembler(const RawMachineAssembler&) = delete;
RawMachineAssembler& operator=(const RawMachineAssembler&) = delete;
Isolate* isolate() const { return isolate_; }
Graph* graph() const { return graph_; }
Zone* zone() const { return graph()->zone(); }
MachineOperatorBuilder* machine() { return &machine_; }
CommonOperatorBuilder* common() { return &common_; }
SimplifiedOperatorBuilder* simplified() { return &simplified_; }
CallDescriptor* call_descriptor() const { return call_descriptor_; }
PoisoningMitigationLevel poisoning_level() const { return poisoning_level_; }
// Only used for tests: Finalizes the schedule and exports it to be used for
// code generation. Note that this RawMachineAssembler becomes invalid after
// export.
Schedule* ExportForTest();
// Finalizes the schedule and transforms it into a graph that's suitable for
// it to be used for Turbofan optimization and re-scheduling. Note that this
// RawMachineAssembler becomes invalid after export.
Graph* ExportForOptimization();
// ===========================================================================
// The following utility methods create new nodes with specific operators and
// place them into the current basic block. They don't perform control flow,
// hence will not switch the current basic block.
Node* NullConstant();
Node* UndefinedConstant();
// Constants.
Node* PointerConstant(void* value) {
return IntPtrConstant(reinterpret_cast<intptr_t>(value));
Node* IntPtrConstant(intptr_t value) {
// TODO(dcarney): mark generated code as unserializable if value != 0.
return kSystemPointerSize == 8 ? Int64Constant(value)
: Int32Constant(static_cast<int>(value));
Node* RelocatableIntPtrConstant(intptr_t value, RelocInfo::Mode rmode);
Node* Int32Constant(int32_t value) {
return AddNode(common()->Int32Constant(value));
Node* StackSlot(MachineRepresentation rep, int alignment = 0) {
return AddNode(machine()->StackSlot(rep, alignment));
Node* Int64Constant(int64_t value) {
return AddNode(common()->Int64Constant(value));
Node* NumberConstant(double value) {
return AddNode(common()->NumberConstant(value));
Node* Float32Constant(float value) {
return AddNode(common()->Float32Constant(value));
Node* Float64Constant(double value) {
return AddNode(common()->Float64Constant(value));
Node* HeapConstant(Handle<HeapObject> object) {
return AddNode(common()->HeapConstant(object));
Node* ExternalConstant(ExternalReference address) {
return AddNode(common()->ExternalConstant(address));
Node* RelocatableInt32Constant(int32_t value, RelocInfo::Mode rmode) {
return AddNode(common()->RelocatableInt32Constant(value, rmode));
Node* RelocatableInt64Constant(int64_t value, RelocInfo::Mode rmode) {
return AddNode(common()->RelocatableInt64Constant(value, rmode));
Node* Projection(int index, Node* a) {
return AddNode(common()->Projection(index), a);
// Memory Operations.
Node* Load(MachineType type, Node* base,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
return Load(type, base, IntPtrConstant(0), needs_poisoning);
Node* Load(MachineType type, Node* base, Node* index,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
const Operator* op = machine()->Load(type);
CHECK_NE(PoisoningMitigationLevel::kPoisonAll, poisoning_level_);
if (needs_poisoning == LoadSensitivity::kCritical &&
poisoning_level_ == PoisoningMitigationLevel::kPoisonCriticalOnly) {
op = machine()->PoisonedLoad(type);
Node* load = AddNode(op, base, index);
return load;
Node* LoadFromObject(
MachineType type, Node* base, Node* offset,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
CHECK_EQ(needs_poisoning, LoadSensitivity::kSafe);
ObjectAccess access = {type, WriteBarrierKind::kNoWriteBarrier};
Node* load = AddNode(simplified()->LoadFromObject(access), base, offset);
return load;
Node* Store(MachineRepresentation rep, Node* base, Node* value,
WriteBarrierKind write_barrier) {
return Store(rep, base, IntPtrConstant(0), value, write_barrier);
Node* Store(MachineRepresentation rep, Node* base, Node* index, Node* value,
WriteBarrierKind write_barrier) {
return AddNode(machine()->Store(StoreRepresentation(rep, write_barrier)),
base, index, value);
void StoreToObject(MachineRepresentation rep, Node* object, Node* offset,
Node* value, WriteBarrierKind write_barrier) {
ObjectAccess access = {MachineType::TypeForRepresentation(rep),
AddNode(simplified()->StoreToObject(access), object, offset, value);
void OptimizedStoreField(MachineRepresentation rep, Node* object, int offset,
Node* value, WriteBarrierKind write_barrier) {
BaseTaggedness::kTaggedBase, offset, MaybeHandle<Name>(),
MaybeHandle<Map>(), Type::Any(),
MachineType::TypeForRepresentation(rep), write_barrier)),
object, value);
void OptimizedStoreMap(Node* object, Node* value) {
AddNode(simplified()->StoreField(AccessBuilder::ForMap()), object, value);
Node* Retain(Node* value) { return AddNode(common()->Retain(), value); }
Node* OptimizedAllocate(Node* size, AllocationType allocation,
AllowLargeObjects allow_large_objects);
// Unaligned memory operations
Node* UnalignedLoad(MachineType type, Node* base) {
return UnalignedLoad(type, base, IntPtrConstant(0));
Node* UnalignedLoad(MachineType type, Node* base, Node* index) {
MachineRepresentation rep = type.representation();
// Tagged or compressed should never be unaligned
DCHECK(!(IsAnyTagged(rep) || IsAnyCompressed(rep)));
if (machine()->UnalignedLoadSupported(rep)) {
return AddNode(machine()->Load(type), base, index);
} else {
return AddNode(machine()->UnalignedLoad(type), base, index);
Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* value) {
return UnalignedStore(rep, base, IntPtrConstant(0), value);
Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* index,
Node* value) {
// Tagged or compressed should never be unaligned
DCHECK(!(IsAnyTagged(rep) || IsAnyCompressed(rep)));
if (machine()->UnalignedStoreSupported(rep)) {
return AddNode(machine()->Store(StoreRepresentation(
rep, WriteBarrierKind::kNoWriteBarrier)),
base, index, value);
} else {
return AddNode(
machine()->UnalignedStore(UnalignedStoreRepresentation(rep)), base,
index, value);
// Atomic memory operations.
Node* AtomicLoad(MachineType type, Node* base, Node* index) {
if (type.representation() == MachineRepresentation::kWord64) {
if (machine()->Is64()) {
return AddNode(machine()->Word64AtomicLoad(type), base, index);
} else {
return AddNode(machine()->Word32AtomicPairLoad(), base, index);
return AddNode(machine()->Word32AtomicLoad(type), base, index);
#if defined(V8_TARGET_BIG_ENDIAN)
#define VALUE_HALVES value_high, value
#define VALUE_HALVES value, value_high
Node* AtomicStore(MachineRepresentation rep, Node* base, Node* index,
Node* value, Node* value_high) {
if (rep == MachineRepresentation::kWord64) {
if (machine()->Is64()) {
return AddNode(machine()->Word64AtomicStore(rep), base, index, value);
} else {
return AddNode(machine()->Word32AtomicPairStore(), base, index,
return AddNode(machine()->Word32AtomicStore(rep), base, index, value);
#define ATOMIC_FUNCTION(name) \
Node* Atomic##name(MachineType type, Node* base, Node* index, Node* value, \
Node* value_high) { \
if (type.representation() == MachineRepresentation::kWord64) { \
if (machine()->Is64()) { \
DCHECK_NULL(value_high); \
return AddNode(machine()->Word64Atomic##name(type), base, index, \
value); \
} else { \
return AddNode(machine()->Word32AtomicPair##name(), base, index, \
} \
} \
DCHECK_NULL(value_high); \
return AddNode(machine()->Word32Atomic##name(type), base, index, value); \
Node* AtomicCompareExchange(MachineType type, Node* base, Node* index,
Node* old_value, Node* old_value_high,
Node* new_value, Node* new_value_high) {
if (type.representation() == MachineRepresentation::kWord64) {
if (machine()->Is64()) {
return AddNode(machine()->Word64AtomicCompareExchange(type), base,
index, old_value, new_value);
} else {
return AddNode(machine()->Word32AtomicPairCompareExchange(), base,
index, old_value, old_value_high, new_value,
return AddNode(machine()->Word32AtomicCompareExchange(type), base, index,
old_value, new_value);
// Arithmetic Operations.
Node* WordAnd(Node* a, Node* b) {
return AddNode(machine()->WordAnd(), a, b);
Node* WordOr(Node* a, Node* b) { return AddNode(machine()->WordOr(), a, b); }
Node* WordXor(Node* a, Node* b) {
return AddNode(machine()->WordXor(), a, b);
Node* WordShl(Node* a, Node* b) {
return AddNode(machine()->WordShl(), a, b);
Node* WordShr(Node* a, Node* b) {
return AddNode(machine()->WordShr(), a, b);
Node* WordSar(Node* a, Node* b) {
return AddNode(machine()->WordSar(), a, b);
Node* WordSarShiftOutZeros(Node* a, Node* b) {
return AddNode(machine()->WordSarShiftOutZeros(), a, b);
Node* WordRor(Node* a, Node* b) {
return AddNode(machine()->WordRor(), a, b);
Node* WordEqual(Node* a, Node* b) {
return AddNode(machine()->WordEqual(), a, b);
Node* WordNotEqual(Node* a, Node* b) {
return Word32BinaryNot(WordEqual(a, b));
Node* WordNot(Node* a) {
if (machine()->Is32()) {
return Word32BitwiseNot(a);
} else {
return Word64Not(a);
Node* Word32And(Node* a, Node* b) {
return AddNode(machine()->Word32And(), a, b);
Node* Word32Or(Node* a, Node* b) {
return AddNode(machine()->Word32Or(), a, b);
Node* Word32Xor(Node* a, Node* b) {
return AddNode(machine()->Word32Xor(), a, b);
Node* Word32Shl(Node* a, Node* b) {
return AddNode(machine()->Word32Shl(), a, b);
Node* Word32Shr(Node* a, Node* b) {
return AddNode(machine()->Word32Shr(), a, b);
Node* Word32Sar(Node* a, Node* b) {
return AddNode(machine()->Word32Sar(), a, b);
Node* Word32SarShiftOutZeros(Node* a, Node* b) {
return AddNode(machine()->Word32SarShiftOutZeros(), a, b);
Node* Word32Ror(Node* a, Node* b) {
return AddNode(machine()->Word32Ror(), a, b);
Node* Word32Clz(Node* a) { return AddNode(machine()->Word32Clz(), a); }
Node* Word32Equal(Node* a, Node* b) {
return AddNode(machine()->Word32Equal(), a, b);
Node* Word32NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Word32Equal(a, b));
Node* Word32BitwiseNot(Node* a) { return Word32Xor(a, Int32Constant(-1)); }
Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); }
Node* Word64And(Node* a, Node* b) {
return AddNode(machine()->Word64And(), a, b);
Node* Word64Or(Node* a, Node* b) {
return AddNode(machine()->Word64Or(), a, b);
Node* Word64Xor(Node* a, Node* b) {
return AddNode(machine()->Word64Xor(), a, b);
Node* Word64Shl(Node* a, Node* b) {
return AddNode(machine()->Word64Shl(), a, b);
Node* Word64Shr(Node* a, Node* b) {
return AddNode(machine()->Word64Shr(), a, b);
Node* Word64Sar(Node* a, Node* b) {
return AddNode(machine()->Word64Sar(), a, b);
Node* Word64Ror(Node* a, Node* b) {
return AddNode(machine()->Word64Ror(), a, b);
Node* Word64Clz(Node* a) { return AddNode(machine()->Word64Clz(), a); }
Node* Word64Equal(Node* a, Node* b) {
return AddNode(machine()->Word64Equal(), a, b);
Node* Word64NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Word64Equal(a, b));
Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); }
Node* Int32Add(Node* a, Node* b) {
return AddNode(machine()->Int32Add(), a, b);
Node* Int32AddWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int32AddWithOverflow(), a, b);
Node* Int32Sub(Node* a, Node* b) {
return AddNode(machine()->Int32Sub(), a, b);
Node* Int32SubWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int32SubWithOverflow(), a, b);
Node* Int32Mul(Node* a, Node* b) {
return AddNode(machine()->Int32Mul(), a, b);
Node* Int32MulHigh(Node* a, Node* b) {
return AddNode(machine()->Int32MulHigh(), a, b);
Node* Int32MulWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int32MulWithOverflow(), a, b);
Node* Int32Div(Node* a, Node* b) {
return AddNode(machine()->Int32Div(), a, b);
Node* Int32Mod(Node* a, Node* b) {
return AddNode(machine()->Int32Mod(), a, b);
Node* Int32LessThan(Node* a, Node* b) {
return AddNode(machine()->Int32LessThan(), a, b);
Node* Int32LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Int32LessThanOrEqual(), a, b);
Node* Uint32Div(Node* a, Node* b) {
return AddNode(machine()->Uint32Div(), a, b);
Node* Uint32LessThan(Node* a, Node* b) {
return AddNode(machine()->Uint32LessThan(), a, b);
Node* Uint32LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Uint32LessThanOrEqual(), a, b);
Node* Uint32Mod(Node* a, Node* b) {
return AddNode(machine()->Uint32Mod(), a, b);
Node* Uint32MulHigh(Node* a, Node* b) {
return AddNode(machine()->Uint32MulHigh(), a, b);
Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); }
Node* Int32GreaterThanOrEqual(Node* a, Node* b) {
return Int32LessThanOrEqual(b, a);
Node* Uint32GreaterThan(Node* a, Node* b) { return Uint32LessThan(b, a); }
Node* Uint32GreaterThanOrEqual(Node* a, Node* b) {
return Uint32LessThanOrEqual(b, a);
Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); }
Node* Int64Add(Node* a, Node* b) {
return AddNode(machine()->Int64Add(), a, b);
Node* Int64AddWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int64AddWithOverflow(), a, b);
Node* Int64Sub(Node* a, Node* b) {
return AddNode(machine()->Int64Sub(), a, b);
Node* Int64SubWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int64SubWithOverflow(), a, b);
Node* Int64Mul(Node* a, Node* b) {
return AddNode(machine()->Int64Mul(), a, b);
Node* Int64Div(Node* a, Node* b) {
return AddNode(machine()->Int64Div(), a, b);
Node* Int64Mod(Node* a, Node* b) {
return AddNode(machine()->Int64Mod(), a, b);
Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); }
Node* Int64LessThan(Node* a, Node* b) {
return AddNode(machine()->Int64LessThan(), a, b);
Node* Int64LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Int64LessThanOrEqual(), a, b);
Node* Uint64LessThan(Node* a, Node* b) {
return AddNode(machine()->Uint64LessThan(), a, b);
Node* Uint64LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Uint64LessThanOrEqual(), a, b);
Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); }
Node* Int64GreaterThanOrEqual(Node* a, Node* b) {
return Int64LessThanOrEqual(b, a);
Node* Uint64GreaterThan(Node* a, Node* b) { return Uint64LessThan(b, a); }
Node* Uint64GreaterThanOrEqual(Node* a, Node* b) {
return Uint64LessThanOrEqual(b, a);
Node* Uint64Div(Node* a, Node* b) {
return AddNode(machine()->Uint64Div(), a, b);
Node* Uint64Mod(Node* a, Node* b) {
return AddNode(machine()->Uint64Mod(), a, b);
Node* Int32PairAdd(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
return AddNode(machine()->Int32PairAdd(), a_low, a_high, b_low, b_high);
Node* Int32PairSub(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
return AddNode(machine()->Int32PairSub(), a_low, a_high, b_low, b_high);
Node* Int32PairMul(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
return AddNode(machine()->Int32PairMul(), a_low, a_high, b_low, b_high);
Node* Word32PairShl(Node* low_word, Node* high_word, Node* shift) {
return AddNode(machine()->Word32PairShl(), low_word, high_word, shift);
Node* Word32PairShr(Node* low_word, Node* high_word, Node* shift) {
return AddNode(machine()->Word32PairShr(), low_word, high_word, shift);
Node* Word32PairSar(Node* low_word, Node* high_word, Node* shift) {
return AddNode(machine()->Word32PairSar(), low_word, high_word, shift);
Node* StackPointerGreaterThan(Node* value) {
return AddNode(
#define INTPTR_BINOP(prefix, name) \
Node* IntPtr##name(Node* a, Node* b) { \
return kSystemPointerSize == 8 ? prefix##64##name(a, b) \
: prefix##32##name(a, b); \
INTPTR_BINOP(Int, AddWithOverflow)
INTPTR_BINOP(Int, SubWithOverflow)
INTPTR_BINOP(Int, LessThanOrEqual)
INTPTR_BINOP(Word, NotEqual)
INTPTR_BINOP(Int, GreaterThanOrEqual)
INTPTR_BINOP(Int, GreaterThan)
#define UINTPTR_BINOP(prefix, name) \
Node* UintPtr##name(Node* a, Node* b) { \
return kSystemPointerSize == 8 ? prefix##64##name(a, b) \
: prefix##32##name(a, b); \
UINTPTR_BINOP(Uint, LessThanOrEqual)
UINTPTR_BINOP(Uint, GreaterThanOrEqual)
UINTPTR_BINOP(Uint, GreaterThan)
Node* Int32AbsWithOverflow(Node* a) {
return AddNode(machine()->Int32AbsWithOverflow().op(), a);
Node* Int64AbsWithOverflow(Node* a) {
return AddNode(machine()->Int64AbsWithOverflow().op(), a);
Node* IntPtrAbsWithOverflow(Node* a) {
return kSystemPointerSize == 8 ? Int64AbsWithOverflow(a)
: Int32AbsWithOverflow(a);
Node* Float32Add(Node* a, Node* b) {
return AddNode(machine()->Float32Add(), a, b);
Node* Float32Sub(Node* a, Node* b) {
return AddNode(machine()->Float32Sub(), a, b);
Node* Float32Mul(Node* a, Node* b) {
return AddNode(machine()->Float32Mul(), a, b);
Node* Float32Div(Node* a, Node* b) {
return AddNode(machine()->Float32Div(), a, b);
Node* Float32Abs(Node* a) { return AddNode(machine()->Float32Abs(), a); }
Node* Float32Neg(Node* a) { return AddNode(machine()->Float32Neg(), a); }
Node* Float32Sqrt(Node* a) { return AddNode(machine()->Float32Sqrt(), a); }
Node* Float32Equal(Node* a, Node* b) {
return AddNode(machine()->Float32Equal(), a, b);
Node* Float32NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Float32Equal(a, b));
Node* Float32LessThan(Node* a, Node* b) {
return AddNode(machine()->Float32LessThan(), a, b);
Node* Float32LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Float32LessThanOrEqual(), a, b);
Node* Float32GreaterThan(Node* a, Node* b) { return Float32LessThan(b, a); }
Node* Float32GreaterThanOrEqual(Node* a, Node* b) {
return Float32LessThanOrEqual(b, a);
Node* Float32Max(Node* a, Node* b) {
return AddNode(machine()->Float32Max(), a, b);
Node* Float32Min(Node* a, Node* b) {
return AddNode(machine()->Float32Min(), a, b);
Node* Float64Add(Node* a, Node* b) {
return AddNode(machine()->Float64Add(), a, b);
Node* Float64Sub(Node* a, Node* b) {
return AddNode(machine()->Float64Sub(), a, b);
Node* Float64Mul(Node* a, Node* b) {
return AddNode(machine()->Float64Mul(), a, b);
Node* Float64Div(Node* a, Node* b) {
return AddNode(machine()->Float64Div(), a, b);
Node* Float64Mod(Node* a, Node* b) {
return AddNode(machine()->Float64Mod(), a, b);
Node* Float64Max(Node* a, Node* b) {
return AddNode(machine()->Float64Max(), a, b);
Node* Float64Min(Node* a, Node* b) {
return AddNode(machine()->Float64Min(), a, b);
Node* Float64Abs(Node* a) { return AddNode(machine()->Float64Abs(), a); }
Node* Float64Neg(Node* a) { return AddNode(machine()->Float64Neg(), a); }
Node* Float64Acos(Node* a) { return AddNode(machine()->Float64Acos(), a); }
Node* Float64Acosh(Node* a) { return AddNode(machine()->Float64Acosh(), a); }
Node* Float64Asin(Node* a) { return AddNode(machine()->Float64Asin(), a); }
Node* Float64Asinh(Node* a) { return AddNode(machine()->Float64Asinh(), a); }
Node* Float64Atan(Node* a) { return AddNode(machine()->Float64Atan(), a); }
Node* Float64Atanh(Node* a) { return AddNode(machine()->Float64Atanh(), a); }
Node* Float64Atan2(Node* a, Node* b) {
return AddNode(machine()->Float64Atan2(), a, b);
Node* Float64Cbrt(Node* a) { return AddNode(machine()->Float64Cbrt(), a); }
Node* Float64Cos(Node* a) { return AddNode(machine()->Float64Cos(), a); }
Node* Float64Cosh(Node* a) { return AddNode(machine()->Float64Cosh(), a); }
Node* Float64Exp(Node* a) { return AddNode(machine()->Float64Exp(), a); }
Node* Float64Expm1(Node* a) { return AddNode(machine()->Float64Expm1(), a); }
Node* Float64Log(Node* a) { return AddNode(machine()->Float64Log(), a); }
Node* Float64Log1p(Node* a) { return AddNode(machine()->Float64Log1p(), a); }
Node* Float64Log10(Node* a) { return AddNode(machine()->Float64Log10(), a); }
Node* Float64Log2(Node* a) { return AddNode(machine()->Float64Log2(), a); }
Node* Float64Pow(Node* a, Node* b) {
return AddNode(machine()->Float64Pow(), a, b);
Node* Float64Sin(Node* a) { return AddNode(machine()->Float64Sin(), a); }
Node* Float64Sinh(Node* a) { return AddNode(machine()->Float64Sinh(), a); }
Node* Float64Sqrt(Node* a) { return AddNode(machine()->Float64Sqrt(), a); }
Node* Float64Tan(Node* a) { return AddNode(machine()->Float64Tan(), a); }
Node* Float64Tanh(Node* a) { return AddNode(machine()->Float64Tanh(), a); }
Node* Float64Equal(Node* a, Node* b) {
return AddNode(machine()->Float64Equal(), a, b);
Node* Float64NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Float64Equal(a, b));
Node* Float64LessThan(Node* a, Node* b) {
return AddNode(machine()->Float64LessThan(), a, b);
Node* Float64LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Float64LessThanOrEqual(), a, b);
Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); }
Node* Float64GreaterThanOrEqual(Node* a, Node* b) {
return Float64LessThanOrEqual(b, a);
// Conversions.
Node* BitcastTaggedToWord(Node* a) {
return AddNode(machine()->BitcastTaggedToWord(), a);
Node* BitcastTaggedToWordForTagAndSmiBits(Node* a) {
return AddNode(machine()->BitcastTaggedToWordForTagAndSmiBits(), a);
Node* BitcastMaybeObjectToWord(Node* a) {
return AddNode(machine()->BitcastMaybeObjectToWord(), a);
Node* BitcastWordToTagged(Node* a) {
return AddNode(machine()->BitcastWordToTagged(), a);
Node* BitcastWordToTaggedSigned(Node* a) {
return AddNode(machine()->BitcastWordToTaggedSigned(), a);
Node* TruncateFloat64ToWord32(Node* a) {
return AddNode(machine()->TruncateFloat64ToWord32(), a);
Node* ChangeFloat32ToFloat64(Node* a) {
return AddNode(machine()->ChangeFloat32ToFloat64(), a);
Node* ChangeInt32ToFloat64(Node* a) {
return AddNode(machine()->ChangeInt32ToFloat64(), a);
Node* ChangeInt64ToFloat64(Node* a) {
return AddNode(machine()->ChangeInt64ToFloat64(), a);
Node* ChangeUint32ToFloat64(Node* a) {
return AddNode(machine()->ChangeUint32ToFloat64(), a);
Node* ChangeFloat64ToInt32(Node* a) {
return AddNode(machine()->ChangeFloat64ToInt32(), a);
Node* ChangeFloat64ToInt64(Node* a) {
return AddNode(machine()->ChangeFloat64ToInt64(), a);
Node* ChangeFloat64ToUint32(Node* a) {
return AddNode(machine()->ChangeFloat64ToUint32(), a);
Node* ChangeFloat64ToUint64(Node* a) {
return AddNode(machine()->ChangeFloat64ToUint64(), a);
Node* TruncateFloat64ToUint32(Node* a) {
return AddNode(machine()->TruncateFloat64ToUint32(), a);
Node* TruncateFloat32ToInt32(Node* a, TruncateKind kind) {
return AddNode(machine()->TruncateFloat32ToInt32(kind), a);
Node* TruncateFloat32ToUint32(Node* a, TruncateKind kind) {
return AddNode(machine()->TruncateFloat32ToUint32(kind), a);
Node* TryTruncateFloat32ToInt64(Node* a) {
return AddNode(machine()->TryTruncateFloat32ToInt64(), a);
Node* TryTruncateFloat64ToInt64(Node* a) {
return AddNode(machine()->TryTruncateFloat64ToInt64(), a);
Node* TryTruncateFloat32ToUint64(Node* a) {
return AddNode(machine()->TryTruncateFloat32ToUint64(), a);
Node* TryTruncateFloat64ToUint64(Node* a) {
return AddNode(machine()->TryTruncateFloat64ToUint64(), a);
Node* ChangeInt32ToInt64(Node* a) {
return AddNode(machine()->ChangeInt32ToInt64(), a);
Node* ChangeUint32ToUint64(Node* a) {
return AddNode(machine()->ChangeUint32ToUint64(), a);
Node* TruncateFloat64ToFloat32(Node* a) {
return AddNode(machine()->TruncateFloat64ToFloat32(), a);
Node* TruncateInt64ToInt32(Node* a) {
return AddNode(machine()->TruncateInt64ToInt32(), a);
Node* RoundFloat64ToInt32(Node* a) {
return AddNode(machine()->RoundFloat64ToInt32(), a);
Node* RoundInt32ToFloat32(Node* a) {
return AddNode(machine()->RoundInt32ToFloat32(), a);
Node* RoundInt64ToFloat32(Node* a) {
return AddNode(machine()->RoundInt64ToFloat32(), a);
Node* RoundInt64ToFloat64(Node* a) {
return AddNode(machine()->RoundInt64ToFloat64(), a);
Node* RoundUint32ToFloat32(Node* a) {
return AddNode(machine()->RoundUint32ToFloat32(), a);
Node* RoundUint64ToFloat32(Node* a) {
return AddNode(machine()->RoundUint64ToFloat32(), a);
Node* RoundUint64ToFloat64(Node* a) {
return AddNode(machine()->RoundUint64ToFloat64(), a);
Node* BitcastFloat32ToInt32(Node* a) {
return AddNode(machine()->BitcastFloat32ToInt32(), a);
Node* BitcastFloat64ToInt64(Node* a) {
return AddNode(machine()->BitcastFloat64ToInt64(), a);
Node* BitcastInt32ToFloat32(Node* a) {
return AddNode(machine()->BitcastInt32ToFloat32(), a);
Node* BitcastInt64ToFloat64(Node* a) {
return AddNode(machine()->BitcastInt64ToFloat64(), a);
Node* Float32RoundDown(Node* a) {
return AddNode(machine()->Float32RoundDown().op(), a);
Node* Float64RoundDown(Node* a) {
return AddNode(machine()->Float64RoundDown().op(), a);
Node* Float32RoundUp(Node* a) {
return AddNode(machine()->Float32RoundUp().op(), a);
Node* Float64RoundUp(Node* a) {
return AddNode(machine()->Float64RoundUp().op(), a);
Node* Float32RoundTruncate(Node* a) {
return AddNode(machine()->Float32RoundTruncate().op(), a);
Node* Float64RoundTruncate(Node* a) {
return AddNode(machine()->Float64RoundTruncate().op(), a);
Node* Float64RoundTiesAway(Node* a) {
return AddNode(machine()->Float64RoundTiesAway().op(), a);
Node* Float32RoundTiesEven(Node* a) {
return AddNode(machine()->Float32RoundTiesEven().op(), a);
Node* Float64RoundTiesEven(Node* a) {
return AddNode(machine()->Float64RoundTiesEven().op(), a);
Node* Word32ReverseBytes(Node* a) {
return AddNode(machine()->Word32ReverseBytes(), a);
Node* Word64ReverseBytes(Node* a) {
return AddNode(machine()->Word64ReverseBytes(), a);
// Float64 bit operations.
Node* Float64ExtractLowWord32(Node* a) {
return AddNode(machine()->Float64ExtractLowWord32(), a);
Node* Float64ExtractHighWord32(Node* a) {
return AddNode(machine()->Float64ExtractHighWord32(), a);
Node* Float64InsertLowWord32(Node* a, Node* b) {
return AddNode(machine()->Float64InsertLowWord32(), a, b);
Node* Float64InsertHighWord32(Node* a, Node* b) {
return AddNode(machine()->Float64InsertHighWord32(), a, b);
Node* Float64SilenceNaN(Node* a) {
return AddNode(machine()->Float64SilenceNaN(), a);
// SIMD operations.
Node* I64x2Splat(Node* a) { return AddNode(machine()->I64x2Splat(), a); }
Node* I64x2SplatI32Pair(Node* a, Node* b) {
return AddNode(machine()->I64x2SplatI32Pair(), a, b);
Node* I32x4Splat(Node* a) { return AddNode(machine()->I32x4Splat(), a); }
Node* I16x8Splat(Node* a) { return AddNode(machine()->I16x8Splat(), a); }
Node* I8x16Splat(Node* a) { return AddNode(machine()->I8x16Splat(), a); }
// Stack operations.
Node* LoadFramePointer() { return AddNode(machine()->LoadFramePointer()); }
Node* LoadParentFramePointer() {
return AddNode(machine()->LoadParentFramePointer());
// Parameters.
Node* TargetParameter();
Node* Parameter(size_t index);
// Pointer utilities.
Node* LoadFromPointer(void* address, MachineType type, int32_t offset = 0) {
return Load(type, PointerConstant(address), Int32Constant(offset));
Node* StoreToPointer(void* address, MachineRepresentation rep, Node* node) {
return Store(rep, PointerConstant(address), node, kNoWriteBarrier);
Node* UnalignedLoadFromPointer(void* address, MachineType type,
int32_t offset = 0) {
return UnalignedLoad(type, PointerConstant(address), Int32Constant(offset));
Node* UnalignedStoreToPointer(void* address, MachineRepresentation rep,
Node* node) {
return UnalignedStore(rep, PointerConstant(address), node);
Node* StringConstant(const char* string) {
return HeapConstant(isolate()->factory()->InternalizeUtf8String(string));
Node* TaggedPoisonOnSpeculation(Node* value) {
if (poisoning_level_ != PoisoningMitigationLevel::kDontPoison) {
return AddNode(machine()->TaggedPoisonOnSpeculation(), value);
return value;
Node* WordPoisonOnSpeculation(Node* value) {
if (poisoning_level_ != PoisoningMitigationLevel::kDontPoison) {
return AddNode(machine()->WordPoisonOnSpeculation(), value);
return value;
// Call a given call descriptor and the given arguments.
// The call target is passed as part of the {inputs} array.
Node* CallN(CallDescriptor* call_descriptor, int input_count,
Node* const* inputs);
// Call a given call descriptor and the given arguments and frame-state.
// The call target and frame state are passed as part of the {inputs} array.
Node* CallNWithFrameState(CallDescriptor* call_descriptor, int input_count,
Node* const* inputs);
// Tail call a given call descriptor and the given arguments.
// The call target is passed as part of the {inputs} array.
void TailCallN(CallDescriptor* call_descriptor, int input_count,
Node* const* inputs);
// Type representing C function argument with type info.
using CFunctionArg = std::pair<MachineType, Node*>;
// Call to a C function.
template <class... CArgs>
Node* CallCFunction(Node* function, MachineType return_type, CArgs... cargs) {
std::is_convertible<CArgs, CFunctionArg>...>::value,
"invalid argument types");
return CallCFunction(function, return_type, {cargs...});
Node* CallCFunction(Node* function, MachineType return_type,
std::initializer_list<CFunctionArg> args);
// Call to a C function without a function discriptor on AIX.
template <class... CArgs>
Node* CallCFunctionWithoutFunctionDescriptor(Node* function,
MachineType return_type,
CArgs... cargs) {
std::is_convertible<CArgs, CFunctionArg>...>::value,
"invalid argument types");
return CallCFunctionWithoutFunctionDescriptor(function, return_type,
Node* CallCFunctionWithoutFunctionDescriptor(
Node* function, MachineType return_type,
std::initializer_list<CFunctionArg> args);
// Call to a C function, while saving/restoring caller registers.
template <class... CArgs>
Node* CallCFunctionWithCallerSavedRegisters(Node* function,
MachineType return_type,
SaveFPRegsMode mode,
CArgs... cargs) {
std::is_convertible<CArgs, CFunctionArg>...>::value,
"invalid argument types");
return CallCFunctionWithCallerSavedRegisters(function, return_type, mode,
Node* CallCFunctionWithCallerSavedRegisters(
Node* function, MachineType return_type, SaveFPRegsMode mode,
std::initializer_list<CFunctionArg> args);
// ===========================================================================
// The following utility methods deal with control flow, hence might switch
// the current basic block or create new basic blocks for labels.
// Control flow.
void Goto(RawMachineLabel* label);
void Branch(Node* condition, RawMachineLabel* true_val,
RawMachineLabel* false_val);
void Switch(Node* index, RawMachineLabel* default_label,
const int32_t* case_values, RawMachineLabel** case_labels,
size_t case_count);
void Return(Node* value);
void Return(Node* v1, Node* v2);
void Return(Node* v1, Node* v2, Node* v3);
void Return(Node* v1, Node* v2, Node* v3, Node* v4);
void Return(int count, Node* v[]);
void PopAndReturn(Node* pop, Node* value);
void PopAndReturn(Node* pop, Node* v1, Node* v2);
void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3);
void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3, Node* v4);
void Bind(RawMachineLabel* label);
void Deoptimize(Node* state);
void AbortCSAAssert(Node* message);
void DebugBreak();
void Unreachable();
void Comment(const std::string& msg);
void StaticAssert(Node* value, const char* source);
void Bind(RawMachineLabel* label, AssemblerDebugInfo info);
void SetInitialDebugInformation(AssemblerDebugInfo info);
void PrintCurrentBlock(std::ostream& os);
#endif // DEBUG
bool InsideBlock();
// Add success / exception successor blocks and ends the current block ending
// in a potentially throwing call node.
void Continuations(Node* call, RawMachineLabel* if_success,
RawMachineLabel* if_exception);
// Variables.
Node* Phi(MachineRepresentation rep, Node* n1, Node* n2) {
return AddNode(common()->Phi(rep, 2), n1, n2, graph()->start());
Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3) {
return AddNode(common()->Phi(rep, 3), n1, n2, n3, graph()->start());
Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3, Node* n4) {
return AddNode(common()->Phi(rep, 4), n1, n2, n3, n4, graph()->start());
Node* Phi(MachineRepresentation rep, int input_count, Node* const* inputs);
void AppendPhiInput(Node* phi, Node* new_input);
// ===========================================================================
// The following generic node creation methods can be used for operators that
// are not covered by the above utility methods. There should rarely be a need
// to do that outside of testing though.
Node* AddNode(const Operator* op, int input_count, Node* const* inputs);
Node* AddNode(const Operator* op) {
return AddNode(op, 0, static_cast<Node* const*>(nullptr));
template <class... TArgs>
Node* AddNode(const Operator* op, Node* n1, TArgs... args) {
Node* buffer[] = {n1, args...};
return AddNode(op, sizeof...(args) + 1, buffer);
void SetCurrentExternalSourcePosition(FileAndLine file_and_line);
FileAndLine GetCurrentExternalSourcePosition() const;
SourcePositionTable* source_positions() { return source_positions_; }
Node* MakeNode(const Operator* op, int input_count, Node* const* inputs);
BasicBlock* Use(RawMachineLabel* label);
BasicBlock* EnsureBlock(RawMachineLabel* label);
BasicBlock* CurrentBlock();
// A post-processing pass to add effect and control edges so that the graph
// can be optimized and re-scheduled.
// TODO(tebbi): Move this to a separate class.
void MakeReschedulable();
Node* CreateNodeFromPredecessors(const std::vector<BasicBlock*>& predecessors,
const std::vector<Node*>& sidetable,
const Operator* op,
const std::vector<Node*>& additional_inputs);
void MakePhiBinary(Node* phi, int split_point, Node* left_control,
Node* right_control);
void MarkControlDeferred(Node* control_input);
Schedule* schedule() { return schedule_; }
size_t parameter_count() const { return call_descriptor_->ParameterCount(); }
static void OptimizeControlFlow(Schedule* schedule, Graph* graph,
CommonOperatorBuilder* common);
Isolate* isolate_;
Graph* graph_;
Schedule* schedule_;
SourcePositionTable* source_positions_;
MachineOperatorBuilder machine_;
CommonOperatorBuilder common_;
SimplifiedOperatorBuilder simplified_;
CallDescriptor* call_descriptor_;
Node* target_parameter_;
NodeVector parameters_;
BasicBlock* current_block_;
PoisoningMitigationLevel poisoning_level_;
class V8_EXPORT_PRIVATE RawMachineLabel final {
enum Type { kDeferred, kNonDeferred };
explicit RawMachineLabel(Type type = kNonDeferred)
: deferred_(type == kDeferred) {}
RawMachineLabel(const RawMachineLabel&) = delete;
RawMachineLabel& operator=(const RawMachineLabel&) = delete;
BasicBlock* block() const { return block_; }
BasicBlock* block_ = nullptr;
bool used_ = false;
bool bound_ = false;
bool deferred_;
friend class RawMachineAssembler;
} // namespace compiler
} // namespace internal
} // namespace v8