| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| |
| #include "src/init/v8.h" |
| |
| #include "src/base/platform/platform.h" |
| #include "src/numbers/diy-fp.h" |
| #include "src/numbers/double.h" |
| #include "test/cctest/cctest.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| TEST(Uint64Conversions) { |
| // Start by checking the byte-order. |
| uint64_t ordered = 0x0123'4567'89AB'CDEF; |
| CHECK_EQ(3512700564088504e-318, Double(ordered).value()); |
| |
| uint64_t min_double64 = 0x0000'0000'0000'0001; |
| CHECK_EQ(5e-324, Double(min_double64).value()); |
| |
| uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF; |
| CHECK_EQ(1.7976931348623157e308, Double(max_double64).value()); |
| } |
| |
| |
| TEST(AsDiyFp) { |
| uint64_t ordered = 0x0123'4567'89AB'CDEF; |
| DiyFp diy_fp = Double(ordered).AsDiyFp(); |
| CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e()); |
| // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64. |
| CHECK(0x0013'4567'89AB'CDEF == diy_fp.f()); // NOLINT |
| |
| uint64_t min_double64 = 0x0000'0000'0000'0001; |
| diy_fp = Double(min_double64).AsDiyFp(); |
| CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e()); |
| // This is a denormal; so no hidden bit. |
| CHECK_EQ(1, diy_fp.f()); |
| |
| uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF; |
| diy_fp = Double(max_double64).AsDiyFp(); |
| CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e()); |
| CHECK(0x001F'FFFF'FFFF'FFFF == diy_fp.f()); // NOLINT |
| } |
| |
| |
| TEST(AsNormalizedDiyFp) { |
| uint64_t ordered = 0x0123'4567'89AB'CDEF; |
| DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp(); |
| CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e()); |
| CHECK((uint64_t{0x0013'4567'89AB'CDEF} << 11) == diy_fp.f()); // NOLINT |
| |
| uint64_t min_double64 = 0x0000'0000'0000'0001; |
| diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
| CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e()); |
| // This is a denormal; so no hidden bit. |
| CHECK(0x8000'0000'0000'0000 == diy_fp.f()); // NOLINT |
| |
| uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF; |
| diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
| CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e()); |
| CHECK((uint64_t{0x001F'FFFF'FFFF'FFFF} << 11) == diy_fp.f()); |
| } |
| |
| |
| TEST(IsDenormal) { |
| uint64_t min_double64 = 0x0000'0000'0000'0001; |
| CHECK(Double(min_double64).IsDenormal()); |
| uint64_t bits = 0x000F'FFFF'FFFF'FFFF; |
| CHECK(Double(bits).IsDenormal()); |
| bits = 0x0010'0000'0000'0000; |
| CHECK(!Double(bits).IsDenormal()); |
| } |
| |
| |
| TEST(IsSpecial) { |
| CHECK(Double(V8_INFINITY).IsSpecial()); |
| CHECK(Double(-V8_INFINITY).IsSpecial()); |
| CHECK(Double(std::numeric_limits<double>::quiet_NaN()).IsSpecial()); |
| uint64_t bits = 0xFFF1'2345'0000'0000; |
| CHECK(Double(bits).IsSpecial()); |
| // Denormals are not special: |
| CHECK(!Double(5e-324).IsSpecial()); |
| CHECK(!Double(-5e-324).IsSpecial()); |
| // And some random numbers: |
| CHECK(!Double(0.0).IsSpecial()); |
| CHECK(!Double(-0.0).IsSpecial()); |
| CHECK(!Double(1.0).IsSpecial()); |
| CHECK(!Double(-1.0).IsSpecial()); |
| CHECK(!Double(1000000.0).IsSpecial()); |
| CHECK(!Double(-1000000.0).IsSpecial()); |
| CHECK(!Double(1e23).IsSpecial()); |
| CHECK(!Double(-1e23).IsSpecial()); |
| CHECK(!Double(1.7976931348623157e308).IsSpecial()); |
| CHECK(!Double(-1.7976931348623157e308).IsSpecial()); |
| } |
| |
| |
| TEST(IsInfinite) { |
| CHECK(Double(V8_INFINITY).IsInfinite()); |
| CHECK(Double(-V8_INFINITY).IsInfinite()); |
| CHECK(!Double(std::numeric_limits<double>::quiet_NaN()).IsInfinite()); |
| CHECK(!Double(0.0).IsInfinite()); |
| CHECK(!Double(-0.0).IsInfinite()); |
| CHECK(!Double(1.0).IsInfinite()); |
| CHECK(!Double(-1.0).IsInfinite()); |
| uint64_t min_double64 = 0x0000'0000'0000'0001; |
| CHECK(!Double(min_double64).IsInfinite()); |
| } |
| |
| |
| TEST(Sign) { |
| CHECK_EQ(1, Double(1.0).Sign()); |
| CHECK_EQ(1, Double(V8_INFINITY).Sign()); |
| CHECK_EQ(-1, Double(-V8_INFINITY).Sign()); |
| CHECK_EQ(1, Double(0.0).Sign()); |
| CHECK_EQ(-1, Double(-0.0).Sign()); |
| uint64_t min_double64 = 0x0000'0000'0000'0001; |
| CHECK_EQ(1, Double(min_double64).Sign()); |
| } |
| |
| |
| TEST(NormalizedBoundaries) { |
| DiyFp boundary_plus; |
| DiyFp boundary_minus; |
| DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp(); |
| Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // 1.5 does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| diy_fp = Double(1.0).AsNormalizedDiyFp(); |
| Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // 1.0 does have a significand of the form 2^p (for some p). |
| // Therefore its lower boundary is twice as close as the upper boundary. |
| CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f()); |
| CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT |
| |
| uint64_t min_double64 = 0x0000'0000'0000'0001; |
| diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
| Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // min-value does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| // Denormals have their boundaries much closer. |
| CHECK((static_cast<uint64_t>(1) << 62) == |
| diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint64_t smallest_normal64 = 0x0010'0000'0000'0000; |
| diy_fp = Double(smallest_normal64).AsNormalizedDiyFp(); |
| Double(smallest_normal64).NormalizedBoundaries(&boundary_minus, |
| &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // Even though the significand is of the form 2^p (for some p), its boundaries |
| // are at the same distance. (This is the only exception). |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint64_t largest_denormal64 = 0x000F'FFFF'FFFF'FFFF; |
| diy_fp = Double(largest_denormal64).AsNormalizedDiyFp(); |
| Double(largest_denormal64).NormalizedBoundaries(&boundary_minus, |
| &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| |
| uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF; |
| diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
| Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
| CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
| CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
| // max-value does not have a significand of the form 2^p (for some p). |
| // Therefore its boundaries are at the same distance. |
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
| CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
| } |
| |
| |
| TEST(NextDouble) { |
| CHECK_EQ(4e-324, Double(0.0).NextDouble()); |
| CHECK_EQ(0.0, Double(-0.0).NextDouble()); |
| CHECK_EQ(-0.0, Double(-4e-324).NextDouble()); |
| Double d0(-4e-324); |
| Double d1(d0.NextDouble()); |
| Double d2(d1.NextDouble()); |
| CHECK_EQ(-0.0, d1.value()); |
| CHECK_EQ(0.0, d2.value()); |
| CHECK_EQ(4e-324, d2.NextDouble()); |
| CHECK_EQ(-1.7976931348623157e308, Double(-V8_INFINITY).NextDouble()); |
| CHECK_EQ(V8_INFINITY, Double(uint64_t{0x7FEF'FFFF'FFFF'FFFF}).NextDouble()); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |