| #!/usr/bin/python |
| |
| from __future__ import print_function |
| |
| from keras.models import Sequential |
| from keras.models import Model |
| from keras.layers import Input |
| from keras.layers import Dense |
| from keras.layers import LSTM |
| from keras.layers import GRU |
| from keras.layers import SimpleRNN |
| from keras.layers import Dropout |
| from keras import losses |
| import h5py |
| |
| from keras import backend as K |
| import numpy as np |
| |
| def binary_crossentrop2(y_true, y_pred): |
| return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1) |
| |
| print('Build model...') |
| #model = Sequential() |
| #model.add(Dense(16, activation='tanh', input_shape=(None, 25))) |
| #model.add(GRU(12, dropout=0.0, recurrent_dropout=0.0, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)) |
| #model.add(Dense(2, activation='sigmoid')) |
| |
| main_input = Input(shape=(None, 25), name='main_input') |
| x = Dense(16, activation='tanh')(main_input) |
| x = GRU(12, dropout=0.1, recurrent_dropout=0.1, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x) |
| x = Dense(2, activation='sigmoid')(x) |
| model = Model(inputs=main_input, outputs=x) |
| |
| batch_size = 64 |
| |
| print('Loading data...') |
| with h5py.File('features.h5', 'r') as hf: |
| all_data = hf['features'][:] |
| print('done.') |
| |
| window_size = 1500 |
| |
| nb_sequences = len(all_data)/window_size |
| print(nb_sequences, ' sequences') |
| x_train = all_data[:nb_sequences*window_size, :-2] |
| x_train = np.reshape(x_train, (nb_sequences, window_size, 25)) |
| |
| y_train = np.copy(all_data[:nb_sequences*window_size, -2:]) |
| y_train = np.reshape(y_train, (nb_sequences, window_size, 2)) |
| |
| all_data = 0; |
| x_train = x_train.astype('float32') |
| y_train = y_train.astype('float32') |
| |
| print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape) |
| |
| # try using different optimizers and different optimizer configs |
| model.compile(loss=binary_crossentrop2, |
| optimizer='adam', |
| metrics=['binary_accuracy']) |
| |
| print('Train...') |
| model.fit(x_train, y_train, |
| batch_size=batch_size, |
| epochs=200, |
| validation_data=(x_train, y_train)) |
| model.save("newweights.hdf5") |