|  | //===- ValueTracking.cpp - Walk computations to compute properties --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains routines that help analyze properties that chains of | 
|  | // computations have. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | #include <array> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | const unsigned MaxDepth = 6; | 
|  |  | 
|  | // Controls the number of uses of the value searched for possible | 
|  | // dominating comparisons. | 
|  | static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", | 
|  | cl::Hidden, cl::init(20)); | 
|  |  | 
|  | /// Returns the bitwidth of the given scalar or pointer type. For vector types, | 
|  | /// returns the element type's bitwidth. | 
|  | static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { | 
|  | if (unsigned BitWidth = Ty->getScalarSizeInBits()) | 
|  | return BitWidth; | 
|  |  | 
|  | return DL.getIndexTypeSizeInBits(Ty); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Simplifying using an assume can only be done in a particular control-flow | 
|  | // context (the context instruction provides that context). If an assume and | 
|  | // the context instruction are not in the same block then the DT helps in | 
|  | // figuring out if we can use it. | 
|  | struct Query { | 
|  | const DataLayout &DL; | 
|  | AssumptionCache *AC; | 
|  | const Instruction *CxtI; | 
|  | const DominatorTree *DT; | 
|  |  | 
|  | // Unlike the other analyses, this may be a nullptr because not all clients | 
|  | // provide it currently. | 
|  | OptimizationRemarkEmitter *ORE; | 
|  |  | 
|  | /// Set of assumptions that should be excluded from further queries. | 
|  | /// This is because of the potential for mutual recursion to cause | 
|  | /// computeKnownBits to repeatedly visit the same assume intrinsic. The | 
|  | /// classic case of this is assume(x = y), which will attempt to determine | 
|  | /// bits in x from bits in y, which will attempt to determine bits in y from | 
|  | /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call | 
|  | /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo | 
|  | /// (all of which can call computeKnownBits), and so on. | 
|  | std::array<const Value *, MaxDepth> Excluded; | 
|  |  | 
|  | unsigned NumExcluded = 0; | 
|  |  | 
|  | Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, | 
|  | const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) | 
|  | : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} | 
|  |  | 
|  | Query(const Query &Q, const Value *NewExcl) | 
|  | : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), | 
|  | NumExcluded(Q.NumExcluded) { | 
|  | Excluded = Q.Excluded; | 
|  | Excluded[NumExcluded++] = NewExcl; | 
|  | assert(NumExcluded <= Excluded.size()); | 
|  | } | 
|  |  | 
|  | bool isExcluded(const Value *Value) const { | 
|  | if (NumExcluded == 0) | 
|  | return false; | 
|  | auto End = Excluded.begin() + NumExcluded; | 
|  | return std::find(Excluded.begin(), End, Value) != End; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Given the provided Value and, potentially, a context instruction, return | 
|  | // the preferred context instruction (if any). | 
|  | static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { | 
|  | // If we've been provided with a context instruction, then use that (provided | 
|  | // it has been inserted). | 
|  | if (CxtI && CxtI->getParent()) | 
|  | return CxtI; | 
|  |  | 
|  | // If the value is really an already-inserted instruction, then use that. | 
|  | CxtI = dyn_cast<Instruction>(V); | 
|  | if (CxtI && CxtI->getParent()) | 
|  | return CxtI; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void computeKnownBits(const Value *V, KnownBits &Known, | 
|  | unsigned Depth, const Query &Q); | 
|  |  | 
|  | void llvm::computeKnownBits(const Value *V, KnownBits &Known, | 
|  | const DataLayout &DL, unsigned Depth, | 
|  | AssumptionCache *AC, const Instruction *CxtI, | 
|  | const DominatorTree *DT, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | ::computeKnownBits(V, Known, Depth, | 
|  | Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); | 
|  | } | 
|  |  | 
|  | static KnownBits computeKnownBits(const Value *V, unsigned Depth, | 
|  | const Query &Q); | 
|  |  | 
|  | KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, | 
|  | unsigned Depth, AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | return ::computeKnownBits(V, Depth, | 
|  | Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); | 
|  | } | 
|  |  | 
|  | bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | assert(LHS->getType() == RHS->getType() && | 
|  | "LHS and RHS should have the same type"); | 
|  | assert(LHS->getType()->isIntOrIntVectorTy() && | 
|  | "LHS and RHS should be integers"); | 
|  | // Look for an inverted mask: (X & ~M) op (Y & M). | 
|  | Value *M; | 
|  | if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && | 
|  | match(RHS, m_c_And(m_Specific(M), m_Value()))) | 
|  | return true; | 
|  | if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && | 
|  | match(LHS, m_c_And(m_Specific(M), m_Value()))) | 
|  | return true; | 
|  | IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); | 
|  | KnownBits LHSKnown(IT->getBitWidth()); | 
|  | KnownBits RHSKnown(IT->getBitWidth()); | 
|  | computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); | 
|  | computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); | 
|  | return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { | 
|  | for (const User *U : CxtI->users()) { | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) | 
|  | if (IC->isEquality()) | 
|  | if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) | 
|  | if (C->isNullValue()) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, | 
|  | const Query &Q); | 
|  |  | 
|  | bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, | 
|  | bool OrZero, | 
|  | unsigned Depth, AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, | 
|  | Query(DL, AC, safeCxtI(V, CxtI), DT)); | 
|  | } | 
|  |  | 
|  | static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); | 
|  |  | 
|  | bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, | 
|  | AssumptionCache *AC, const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); | 
|  | } | 
|  |  | 
|  | bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, | 
|  | unsigned Depth, | 
|  | AssumptionCache *AC, const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); | 
|  | return Known.isNonNegative(); | 
|  | } | 
|  |  | 
|  | bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, | 
|  | AssumptionCache *AC, const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | if (auto *CI = dyn_cast<ConstantInt>(V)) | 
|  | return CI->getValue().isStrictlyPositive(); | 
|  |  | 
|  | // TODO: We'd doing two recursive queries here.  We should factor this such | 
|  | // that only a single query is needed. | 
|  | return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && | 
|  | isKnownNonZero(V, DL, Depth, AC, CxtI, DT); | 
|  | } | 
|  |  | 
|  | bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, | 
|  | AssumptionCache *AC, const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); | 
|  | return Known.isNegative(); | 
|  | } | 
|  |  | 
|  | static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); | 
|  |  | 
|  | bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | return ::isKnownNonEqual(V1, V2, Query(DL, AC, | 
|  | safeCxtI(V1, safeCxtI(V2, CxtI)), | 
|  | DT)); | 
|  | } | 
|  |  | 
|  | static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, | 
|  | const Query &Q); | 
|  |  | 
|  | bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, | 
|  | const DataLayout &DL, | 
|  | unsigned Depth, AssumptionCache *AC, | 
|  | const Instruction *CxtI, const DominatorTree *DT) { | 
|  | return ::MaskedValueIsZero(V, Mask, Depth, | 
|  | Query(DL, AC, safeCxtI(V, CxtI), DT)); | 
|  | } | 
|  |  | 
|  | static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, | 
|  | const Query &Q); | 
|  |  | 
|  | unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, | 
|  | unsigned Depth, AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); | 
|  | } | 
|  |  | 
|  | static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, | 
|  | bool NSW, | 
|  | KnownBits &KnownOut, KnownBits &Known2, | 
|  | unsigned Depth, const Query &Q) { | 
|  | unsigned BitWidth = KnownOut.getBitWidth(); | 
|  |  | 
|  | // If an initial sequence of bits in the result is not needed, the | 
|  | // corresponding bits in the operands are not needed. | 
|  | KnownBits LHSKnown(BitWidth); | 
|  | computeKnownBits(Op0, LHSKnown, Depth + 1, Q); | 
|  | computeKnownBits(Op1, Known2, Depth + 1, Q); | 
|  |  | 
|  | KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); | 
|  | } | 
|  |  | 
|  | static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, | 
|  | KnownBits &Known, KnownBits &Known2, | 
|  | unsigned Depth, const Query &Q) { | 
|  | unsigned BitWidth = Known.getBitWidth(); | 
|  | computeKnownBits(Op1, Known, Depth + 1, Q); | 
|  | computeKnownBits(Op0, Known2, Depth + 1, Q); | 
|  |  | 
|  | bool isKnownNegative = false; | 
|  | bool isKnownNonNegative = false; | 
|  | // If the multiplication is known not to overflow, compute the sign bit. | 
|  | if (NSW) { | 
|  | if (Op0 == Op1) { | 
|  | // The product of a number with itself is non-negative. | 
|  | isKnownNonNegative = true; | 
|  | } else { | 
|  | bool isKnownNonNegativeOp1 = Known.isNonNegative(); | 
|  | bool isKnownNonNegativeOp0 = Known2.isNonNegative(); | 
|  | bool isKnownNegativeOp1 = Known.isNegative(); | 
|  | bool isKnownNegativeOp0 = Known2.isNegative(); | 
|  | // The product of two numbers with the same sign is non-negative. | 
|  | isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || | 
|  | (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); | 
|  | // The product of a negative number and a non-negative number is either | 
|  | // negative or zero. | 
|  | if (!isKnownNonNegative) | 
|  | isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && | 
|  | isKnownNonZero(Op0, Depth, Q)) || | 
|  | (isKnownNegativeOp0 && isKnownNonNegativeOp1 && | 
|  | isKnownNonZero(Op1, Depth, Q)); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!Known.hasConflict() && !Known2.hasConflict()); | 
|  | // Compute a conservative estimate for high known-0 bits. | 
|  | unsigned LeadZ =  std::max(Known.countMinLeadingZeros() + | 
|  | Known2.countMinLeadingZeros(), | 
|  | BitWidth) - BitWidth; | 
|  | LeadZ = std::min(LeadZ, BitWidth); | 
|  |  | 
|  | // The result of the bottom bits of an integer multiply can be | 
|  | // inferred by looking at the bottom bits of both operands and | 
|  | // multiplying them together. | 
|  | // We can infer at least the minimum number of known trailing bits | 
|  | // of both operands. Depending on number of trailing zeros, we can | 
|  | // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming | 
|  | // a and b are divisible by m and n respectively. | 
|  | // We then calculate how many of those bits are inferrable and set | 
|  | // the output. For example, the i8 mul: | 
|  | //  a = XXXX1100 (12) | 
|  | //  b = XXXX1110 (14) | 
|  | // We know the bottom 3 bits are zero since the first can be divided by | 
|  | // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). | 
|  | // Applying the multiplication to the trimmed arguments gets: | 
|  | //    XX11 (3) | 
|  | //    X111 (7) | 
|  | // ------- | 
|  | //    XX11 | 
|  | //   XX11 | 
|  | //  XX11 | 
|  | // XX11 | 
|  | // ------- | 
|  | // XXXXX01 | 
|  | // Which allows us to infer the 2 LSBs. Since we're multiplying the result | 
|  | // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. | 
|  | // The proof for this can be described as: | 
|  | // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && | 
|  | //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) + | 
|  | //                    umin(countTrailingZeros(C2), C6) + | 
|  | //                    umin(C5 - umin(countTrailingZeros(C1), C5), | 
|  | //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1) | 
|  | // %aa = shl i8 %a, C5 | 
|  | // %bb = shl i8 %b, C6 | 
|  | // %aaa = or i8 %aa, C1 | 
|  | // %bbb = or i8 %bb, C2 | 
|  | // %mul = mul i8 %aaa, %bbb | 
|  | // %mask = and i8 %mul, C7 | 
|  | //   => | 
|  | // %mask = i8 ((C1*C2)&C7) | 
|  | // Where C5, C6 describe the known bits of %a, %b | 
|  | // C1, C2 describe the known bottom bits of %a, %b. | 
|  | // C7 describes the mask of the known bits of the result. | 
|  | APInt Bottom0 = Known.One; | 
|  | APInt Bottom1 = Known2.One; | 
|  |  | 
|  | // How many times we'd be able to divide each argument by 2 (shr by 1). | 
|  | // This gives us the number of trailing zeros on the multiplication result. | 
|  | unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); | 
|  | unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); | 
|  | unsigned TrailZero0 = Known.countMinTrailingZeros(); | 
|  | unsigned TrailZero1 = Known2.countMinTrailingZeros(); | 
|  | unsigned TrailZ = TrailZero0 + TrailZero1; | 
|  |  | 
|  | // Figure out the fewest known-bits operand. | 
|  | unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, | 
|  | TrailBitsKnown1 - TrailZero1); | 
|  | unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); | 
|  |  | 
|  | APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * | 
|  | Bottom1.getLoBits(TrailBitsKnown1); | 
|  |  | 
|  | Known.resetAll(); | 
|  | Known.Zero.setHighBits(LeadZ); | 
|  | Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); | 
|  | Known.One |= BottomKnown.getLoBits(ResultBitsKnown); | 
|  |  | 
|  | // Only make use of no-wrap flags if we failed to compute the sign bit | 
|  | // directly.  This matters if the multiplication always overflows, in | 
|  | // which case we prefer to follow the result of the direct computation, | 
|  | // though as the program is invoking undefined behaviour we can choose | 
|  | // whatever we like here. | 
|  | if (isKnownNonNegative && !Known.isNegative()) | 
|  | Known.makeNonNegative(); | 
|  | else if (isKnownNegative && !Known.isNonNegative()) | 
|  | Known.makeNegative(); | 
|  | } | 
|  |  | 
|  | void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, | 
|  | KnownBits &Known) { | 
|  | unsigned BitWidth = Known.getBitWidth(); | 
|  | unsigned NumRanges = Ranges.getNumOperands() / 2; | 
|  | assert(NumRanges >= 1); | 
|  |  | 
|  | Known.Zero.setAllBits(); | 
|  | Known.One.setAllBits(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumRanges; ++i) { | 
|  | ConstantInt *Lower = | 
|  | mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); | 
|  | ConstantInt *Upper = | 
|  | mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); | 
|  | ConstantRange Range(Lower->getValue(), Upper->getValue()); | 
|  |  | 
|  | // The first CommonPrefixBits of all values in Range are equal. | 
|  | unsigned CommonPrefixBits = | 
|  | (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); | 
|  |  | 
|  | APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); | 
|  | Known.One &= Range.getUnsignedMax() & Mask; | 
|  | Known.Zero &= ~Range.getUnsignedMax() & Mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isEphemeralValueOf(const Instruction *I, const Value *E) { | 
|  | SmallVector<const Value *, 16> WorkSet(1, I); | 
|  | SmallPtrSet<const Value *, 32> Visited; | 
|  | SmallPtrSet<const Value *, 16> EphValues; | 
|  |  | 
|  | // The instruction defining an assumption's condition itself is always | 
|  | // considered ephemeral to that assumption (even if it has other | 
|  | // non-ephemeral users). See r246696's test case for an example. | 
|  | if (is_contained(I->operands(), E)) | 
|  | return true; | 
|  |  | 
|  | while (!WorkSet.empty()) { | 
|  | const Value *V = WorkSet.pop_back_val(); | 
|  | if (!Visited.insert(V).second) | 
|  | continue; | 
|  |  | 
|  | // If all uses of this value are ephemeral, then so is this value. | 
|  | if (llvm::all_of(V->users(), [&](const User *U) { | 
|  | return EphValues.count(U); | 
|  | })) { | 
|  | if (V == E) | 
|  | return true; | 
|  |  | 
|  | if (V == I || isSafeToSpeculativelyExecute(V)) { | 
|  | EphValues.insert(V); | 
|  | if (const User *U = dyn_cast<User>(V)) | 
|  | for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); | 
|  | J != JE; ++J) | 
|  | WorkSet.push_back(*J); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Is this an intrinsic that cannot be speculated but also cannot trap? | 
|  | bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(I)) | 
|  | if (Function *F = CI->getCalledFunction()) | 
|  | switch (F->getIntrinsicID()) { | 
|  | default: break; | 
|  | // FIXME: This list is repeated from NoTTI::getIntrinsicCost. | 
|  | case Intrinsic::assume: | 
|  | case Intrinsic::sideeffect: | 
|  | case Intrinsic::dbg_declare: | 
|  | case Intrinsic::dbg_value: | 
|  | case Intrinsic::dbg_label: | 
|  | case Intrinsic::invariant_start: | 
|  | case Intrinsic::invariant_end: | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: | 
|  | case Intrinsic::objectsize: | 
|  | case Intrinsic::ptr_annotation: | 
|  | case Intrinsic::var_annotation: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool llvm::isValidAssumeForContext(const Instruction *Inv, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | // There are two restrictions on the use of an assume: | 
|  | //  1. The assume must dominate the context (or the control flow must | 
|  | //     reach the assume whenever it reaches the context). | 
|  | //  2. The context must not be in the assume's set of ephemeral values | 
|  | //     (otherwise we will use the assume to prove that the condition | 
|  | //     feeding the assume is trivially true, thus causing the removal of | 
|  | //     the assume). | 
|  |  | 
|  | if (DT) { | 
|  | if (DT->dominates(Inv, CxtI)) | 
|  | return true; | 
|  | } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { | 
|  | // We don't have a DT, but this trivially dominates. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // With or without a DT, the only remaining case we will check is if the | 
|  | // instructions are in the same BB.  Give up if that is not the case. | 
|  | if (Inv->getParent() != CxtI->getParent()) | 
|  | return false; | 
|  |  | 
|  | // If we have a dom tree, then we now know that the assume doesn't dominate | 
|  | // the other instruction.  If we don't have a dom tree then we can check if | 
|  | // the assume is first in the BB. | 
|  | if (!DT) { | 
|  | // Search forward from the assume until we reach the context (or the end | 
|  | // of the block); the common case is that the assume will come first. | 
|  | for (auto I = std::next(BasicBlock::const_iterator(Inv)), | 
|  | IE = Inv->getParent()->end(); I != IE; ++I) | 
|  | if (&*I == CxtI) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The context comes first, but they're both in the same block. Make sure | 
|  | // there is nothing in between that might interrupt the control flow. | 
|  | for (BasicBlock::const_iterator I = | 
|  | std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); | 
|  | I != IE; ++I) | 
|  | if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) | 
|  | return false; | 
|  |  | 
|  | return !isEphemeralValueOf(Inv, CxtI); | 
|  | } | 
|  |  | 
|  | static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, | 
|  | unsigned Depth, const Query &Q) { | 
|  | // Use of assumptions is context-sensitive. If we don't have a context, we | 
|  | // cannot use them! | 
|  | if (!Q.AC || !Q.CxtI) | 
|  | return; | 
|  |  | 
|  | unsigned BitWidth = Known.getBitWidth(); | 
|  |  | 
|  | // Note that the patterns below need to be kept in sync with the code | 
|  | // in AssumptionCache::updateAffectedValues. | 
|  |  | 
|  | for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { | 
|  | if (!AssumeVH) | 
|  | continue; | 
|  | CallInst *I = cast<CallInst>(AssumeVH); | 
|  | assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && | 
|  | "Got assumption for the wrong function!"); | 
|  | if (Q.isExcluded(I)) | 
|  | continue; | 
|  |  | 
|  | // Warning: This loop can end up being somewhat performance sensitive. | 
|  | // We're running this loop for once for each value queried resulting in a | 
|  | // runtime of ~O(#assumes * #values). | 
|  |  | 
|  | assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && | 
|  | "must be an assume intrinsic"); | 
|  |  | 
|  | Value *Arg = I->getArgOperand(0); | 
|  |  | 
|  | if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | assert(BitWidth == 1 && "assume operand is not i1?"); | 
|  | Known.setAllOnes(); | 
|  | return; | 
|  | } | 
|  | if (match(Arg, m_Not(m_Specific(V))) && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | assert(BitWidth == 1 && "assume operand is not i1?"); | 
|  | Known.setAllZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The remaining tests are all recursive, so bail out if we hit the limit. | 
|  | if (Depth == MaxDepth) | 
|  | continue; | 
|  |  | 
|  | Value *A, *B; | 
|  | auto m_V = m_CombineOr(m_Specific(V), | 
|  | m_CombineOr(m_PtrToInt(m_Specific(V)), | 
|  | m_BitCast(m_Specific(V)))); | 
|  |  | 
|  | CmpInst::Predicate Pred; | 
|  | uint64_t C; | 
|  | // assume(v = a) | 
|  | if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | Known.Zero |= RHSKnown.Zero; | 
|  | Known.One  |= RHSKnown.One; | 
|  | // assume(v & b = a) | 
|  | } else if (match(Arg, | 
|  | m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | KnownBits MaskKnown(BitWidth); | 
|  | computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | // For those bits in the mask that are known to be one, we can propagate | 
|  | // known bits from the RHS to V. | 
|  | Known.Zero |= RHSKnown.Zero & MaskKnown.One; | 
|  | Known.One  |= RHSKnown.One  & MaskKnown.One; | 
|  | // assume(~(v & b) = a) | 
|  | } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), | 
|  | m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | KnownBits MaskKnown(BitWidth); | 
|  | computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | // For those bits in the mask that are known to be one, we can propagate | 
|  | // inverted known bits from the RHS to V. | 
|  | Known.Zero |= RHSKnown.One  & MaskKnown.One; | 
|  | Known.One  |= RHSKnown.Zero & MaskKnown.One; | 
|  | // assume(v | b = a) | 
|  | } else if (match(Arg, | 
|  | m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | KnownBits BKnown(BitWidth); | 
|  | computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | // For those bits in B that are known to be zero, we can propagate known | 
|  | // bits from the RHS to V. | 
|  | Known.Zero |= RHSKnown.Zero & BKnown.Zero; | 
|  | Known.One  |= RHSKnown.One  & BKnown.Zero; | 
|  | // assume(~(v | b) = a) | 
|  | } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), | 
|  | m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | KnownBits BKnown(BitWidth); | 
|  | computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | // For those bits in B that are known to be zero, we can propagate | 
|  | // inverted known bits from the RHS to V. | 
|  | Known.Zero |= RHSKnown.One  & BKnown.Zero; | 
|  | Known.One  |= RHSKnown.Zero & BKnown.Zero; | 
|  | // assume(v ^ b = a) | 
|  | } else if (match(Arg, | 
|  | m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | KnownBits BKnown(BitWidth); | 
|  | computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | // For those bits in B that are known to be zero, we can propagate known | 
|  | // bits from the RHS to V. For those bits in B that are known to be one, | 
|  | // we can propagate inverted known bits from the RHS to V. | 
|  | Known.Zero |= RHSKnown.Zero & BKnown.Zero; | 
|  | Known.One  |= RHSKnown.One  & BKnown.Zero; | 
|  | Known.Zero |= RHSKnown.One  & BKnown.One; | 
|  | Known.One  |= RHSKnown.Zero & BKnown.One; | 
|  | // assume(~(v ^ b) = a) | 
|  | } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), | 
|  | m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | KnownBits BKnown(BitWidth); | 
|  | computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | // For those bits in B that are known to be zero, we can propagate | 
|  | // inverted known bits from the RHS to V. For those bits in B that are | 
|  | // known to be one, we can propagate known bits from the RHS to V. | 
|  | Known.Zero |= RHSKnown.One  & BKnown.Zero; | 
|  | Known.One  |= RHSKnown.Zero & BKnown.Zero; | 
|  | Known.Zero |= RHSKnown.Zero & BKnown.One; | 
|  | Known.One  |= RHSKnown.One  & BKnown.One; | 
|  | // assume(v << c = a) | 
|  | } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), | 
|  | m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT) && | 
|  | C < BitWidth) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | // For those bits in RHS that are known, we can propagate them to known | 
|  | // bits in V shifted to the right by C. | 
|  | RHSKnown.Zero.lshrInPlace(C); | 
|  | Known.Zero |= RHSKnown.Zero; | 
|  | RHSKnown.One.lshrInPlace(C); | 
|  | Known.One  |= RHSKnown.One; | 
|  | // assume(~(v << c) = a) | 
|  | } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), | 
|  | m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT) && | 
|  | C < BitWidth) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | // For those bits in RHS that are known, we can propagate them inverted | 
|  | // to known bits in V shifted to the right by C. | 
|  | RHSKnown.One.lshrInPlace(C); | 
|  | Known.Zero |= RHSKnown.One; | 
|  | RHSKnown.Zero.lshrInPlace(C); | 
|  | Known.One  |= RHSKnown.Zero; | 
|  | // assume(v >> c = a) | 
|  | } else if (match(Arg, | 
|  | m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), | 
|  | m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT) && | 
|  | C < BitWidth) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | // For those bits in RHS that are known, we can propagate them to known | 
|  | // bits in V shifted to the right by C. | 
|  | Known.Zero |= RHSKnown.Zero << C; | 
|  | Known.One  |= RHSKnown.One  << C; | 
|  | // assume(~(v >> c) = a) | 
|  | } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), | 
|  | m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_EQ && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT) && | 
|  | C < BitWidth) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  | // For those bits in RHS that are known, we can propagate them inverted | 
|  | // to known bits in V shifted to the right by C. | 
|  | Known.Zero |= RHSKnown.One  << C; | 
|  | Known.One  |= RHSKnown.Zero << C; | 
|  | // assume(v >=_s c) where c is non-negative | 
|  | } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_SGE && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | if (RHSKnown.isNonNegative()) { | 
|  | // We know that the sign bit is zero. | 
|  | Known.makeNonNegative(); | 
|  | } | 
|  | // assume(v >_s c) where c is at least -1. | 
|  | } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_SGT && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { | 
|  | // We know that the sign bit is zero. | 
|  | Known.makeNonNegative(); | 
|  | } | 
|  | // assume(v <=_s c) where c is negative | 
|  | } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_SLE && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | if (RHSKnown.isNegative()) { | 
|  | // We know that the sign bit is one. | 
|  | Known.makeNegative(); | 
|  | } | 
|  | // assume(v <_s c) where c is non-positive | 
|  | } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_SLT && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | if (RHSKnown.isZero() || RHSKnown.isNegative()) { | 
|  | // We know that the sign bit is one. | 
|  | Known.makeNegative(); | 
|  | } | 
|  | // assume(v <=_u c) | 
|  | } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_ULE && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | // Whatever high bits in c are zero are known to be zero. | 
|  | Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); | 
|  | // assume(v <_u c) | 
|  | } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && | 
|  | Pred == ICmpInst::ICMP_ULT && | 
|  | isValidAssumeForContext(I, Q.CxtI, Q.DT)) { | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); | 
|  |  | 
|  | // If the RHS is known zero, then this assumption must be wrong (nothing | 
|  | // is unsigned less than zero). Signal a conflict and get out of here. | 
|  | if (RHSKnown.isZero()) { | 
|  | Known.Zero.setAllBits(); | 
|  | Known.One.setAllBits(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Whatever high bits in c are zero are known to be zero (if c is a power | 
|  | // of 2, then one more). | 
|  | if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) | 
|  | Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); | 
|  | else | 
|  | Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If assumptions conflict with each other or previous known bits, then we | 
|  | // have a logical fallacy. It's possible that the assumption is not reachable, | 
|  | // so this isn't a real bug. On the other hand, the program may have undefined | 
|  | // behavior, or we might have a bug in the compiler. We can't assert/crash, so | 
|  | // clear out the known bits, try to warn the user, and hope for the best. | 
|  | if (Known.Zero.intersects(Known.One)) { | 
|  | Known.resetAll(); | 
|  |  | 
|  | if (Q.ORE) | 
|  | Q.ORE->emit([&]() { | 
|  | auto *CxtI = const_cast<Instruction *>(Q.CxtI); | 
|  | return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", | 
|  | CxtI) | 
|  | << "Detected conflicting code assumptions. Program may " | 
|  | "have undefined behavior, or compiler may have " | 
|  | "internal error."; | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Compute known bits from a shift operator, including those with a | 
|  | /// non-constant shift amount. Known is the output of this function. Known2 is a | 
|  | /// pre-allocated temporary with the same bit width as Known. KZF and KOF are | 
|  | /// operator-specific functions that, given the known-zero or known-one bits | 
|  | /// respectively, and a shift amount, compute the implied known-zero or | 
|  | /// known-one bits of the shift operator's result respectively for that shift | 
|  | /// amount. The results from calling KZF and KOF are conservatively combined for | 
|  | /// all permitted shift amounts. | 
|  | static void computeKnownBitsFromShiftOperator( | 
|  | const Operator *I, KnownBits &Known, KnownBits &Known2, | 
|  | unsigned Depth, const Query &Q, | 
|  | function_ref<APInt(const APInt &, unsigned)> KZF, | 
|  | function_ref<APInt(const APInt &, unsigned)> KOF) { | 
|  | unsigned BitWidth = Known.getBitWidth(); | 
|  |  | 
|  | if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); | 
|  |  | 
|  | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | 
|  | Known.Zero = KZF(Known.Zero, ShiftAmt); | 
|  | Known.One  = KOF(Known.One, ShiftAmt); | 
|  | // If the known bits conflict, this must be an overflowing left shift, so | 
|  | // the shift result is poison. We can return anything we want. Choose 0 for | 
|  | // the best folding opportunity. | 
|  | if (Known.hasConflict()) | 
|  | Known.setAllZero(); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); | 
|  |  | 
|  | // If the shift amount could be greater than or equal to the bit-width of the | 
|  | // LHS, the value could be poison, but bail out because the check below is | 
|  | // expensive. TODO: Should we just carry on? | 
|  | if ((~Known.Zero).uge(BitWidth)) { | 
|  | Known.resetAll(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Note: We cannot use Known.Zero.getLimitedValue() here, because if | 
|  | // BitWidth > 64 and any upper bits are known, we'll end up returning the | 
|  | // limit value (which implies all bits are known). | 
|  | uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); | 
|  | uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); | 
|  |  | 
|  | // It would be more-clearly correct to use the two temporaries for this | 
|  | // calculation. Reusing the APInts here to prevent unnecessary allocations. | 
|  | Known.resetAll(); | 
|  |  | 
|  | // If we know the shifter operand is nonzero, we can sometimes infer more | 
|  | // known bits. However this is expensive to compute, so be lazy about it and | 
|  | // only compute it when absolutely necessary. | 
|  | Optional<bool> ShifterOperandIsNonZero; | 
|  |  | 
|  | // Early exit if we can't constrain any well-defined shift amount. | 
|  | if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && | 
|  | !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { | 
|  | ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); | 
|  | if (!*ShifterOperandIsNonZero) | 
|  | return; | 
|  | } | 
|  |  | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  |  | 
|  | Known.Zero.setAllBits(); | 
|  | Known.One.setAllBits(); | 
|  | for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { | 
|  | // Combine the shifted known input bits only for those shift amounts | 
|  | // compatible with its known constraints. | 
|  | if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) | 
|  | continue; | 
|  | if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) | 
|  | continue; | 
|  | // If we know the shifter is nonzero, we may be able to infer more known | 
|  | // bits. This check is sunk down as far as possible to avoid the expensive | 
|  | // call to isKnownNonZero if the cheaper checks above fail. | 
|  | if (ShiftAmt == 0) { | 
|  | if (!ShifterOperandIsNonZero.hasValue()) | 
|  | ShifterOperandIsNonZero = | 
|  | isKnownNonZero(I->getOperand(1), Depth + 1, Q); | 
|  | if (*ShifterOperandIsNonZero) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Known.Zero &= KZF(Known2.Zero, ShiftAmt); | 
|  | Known.One  &= KOF(Known2.One, ShiftAmt); | 
|  | } | 
|  |  | 
|  | // If the known bits conflict, the result is poison. Return a 0 and hope the | 
|  | // caller can further optimize that. | 
|  | if (Known.hasConflict()) | 
|  | Known.setAllZero(); | 
|  | } | 
|  |  | 
|  | static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, | 
|  | unsigned Depth, const Query &Q) { | 
|  | unsigned BitWidth = Known.getBitWidth(); | 
|  |  | 
|  | KnownBits Known2(Known); | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Load: | 
|  | if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) | 
|  | computeKnownBitsFromRangeMetadata(*MD, Known); | 
|  | break; | 
|  | case Instruction::And: { | 
|  | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  |  | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | Known.One &= Known2.One; | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | Known.Zero |= Known2.Zero; | 
|  |  | 
|  | // and(x, add (x, -1)) is a common idiom that always clears the low bit; | 
|  | // here we handle the more general case of adding any odd number by | 
|  | // matching the form add(x, add(x, y)) where y is odd. | 
|  | // TODO: This could be generalized to clearing any bit set in y where the | 
|  | // following bit is known to be unset in y. | 
|  | Value *X = nullptr, *Y = nullptr; | 
|  | if (!Known.Zero[0] && !Known.One[0] && | 
|  | match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { | 
|  | Known2.resetAll(); | 
|  | computeKnownBits(Y, Known2, Depth + 1, Q); | 
|  | if (Known2.countMinTrailingOnes() > 0) | 
|  | Known.Zero.setBit(0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Or: | 
|  | computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | Known.Zero &= Known2.Zero; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | Known.One |= Known2.One; | 
|  | break; | 
|  | case Instruction::Xor: { | 
|  | computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); | 
|  | Known.Zero = std::move(KnownZeroOut); | 
|  | break; | 
|  | } | 
|  | case Instruction::Mul: { | 
|  | bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); | 
|  | computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, | 
|  | Known2, Depth, Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::UDiv: { | 
|  | // For the purposes of computing leading zeros we can conservatively | 
|  | // treat a udiv as a logical right shift by the power of 2 known to | 
|  | // be less than the denominator. | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  | unsigned LeadZ = Known2.countMinLeadingZeros(); | 
|  |  | 
|  | Known2.resetAll(); | 
|  | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | 
|  | unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); | 
|  | if (RHSMaxLeadingZeros != BitWidth) | 
|  | LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); | 
|  |  | 
|  | Known.Zero.setHighBits(LeadZ); | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: { | 
|  | const Value *LHS, *RHS; | 
|  | SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; | 
|  | if (SelectPatternResult::isMinOrMax(SPF)) { | 
|  | computeKnownBits(RHS, Known, Depth + 1, Q); | 
|  | computeKnownBits(LHS, Known2, Depth + 1, Q); | 
|  | } else { | 
|  | computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); | 
|  | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | 
|  | } | 
|  |  | 
|  | unsigned MaxHighOnes = 0; | 
|  | unsigned MaxHighZeros = 0; | 
|  | if (SPF == SPF_SMAX) { | 
|  | // If both sides are negative, the result is negative. | 
|  | if (Known.isNegative() && Known2.isNegative()) | 
|  | // We can derive a lower bound on the result by taking the max of the | 
|  | // leading one bits. | 
|  | MaxHighOnes = | 
|  | std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); | 
|  | // If either side is non-negative, the result is non-negative. | 
|  | else if (Known.isNonNegative() || Known2.isNonNegative()) | 
|  | MaxHighZeros = 1; | 
|  | } else if (SPF == SPF_SMIN) { | 
|  | // If both sides are non-negative, the result is non-negative. | 
|  | if (Known.isNonNegative() && Known2.isNonNegative()) | 
|  | // We can derive an upper bound on the result by taking the max of the | 
|  | // leading zero bits. | 
|  | MaxHighZeros = std::max(Known.countMinLeadingZeros(), | 
|  | Known2.countMinLeadingZeros()); | 
|  | // If either side is negative, the result is negative. | 
|  | else if (Known.isNegative() || Known2.isNegative()) | 
|  | MaxHighOnes = 1; | 
|  | } else if (SPF == SPF_UMAX) { | 
|  | // We can derive a lower bound on the result by taking the max of the | 
|  | // leading one bits. | 
|  | MaxHighOnes = | 
|  | std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); | 
|  | } else if (SPF == SPF_UMIN) { | 
|  | // We can derive an upper bound on the result by taking the max of the | 
|  | // leading zero bits. | 
|  | MaxHighZeros = | 
|  | std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); | 
|  | } else if (SPF == SPF_ABS) { | 
|  | // RHS from matchSelectPattern returns the negation part of abs pattern. | 
|  | // If the negate has an NSW flag we can assume the sign bit of the result | 
|  | // will be 0 because that makes abs(INT_MIN) undefined. | 
|  | if (cast<Instruction>(RHS)->hasNoSignedWrap()) | 
|  | MaxHighZeros = 1; | 
|  | } | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | Known.One &= Known2.One; | 
|  | Known.Zero &= Known2.Zero; | 
|  | if (MaxHighOnes > 0) | 
|  | Known.One.setHighBits(MaxHighOnes); | 
|  | if (MaxHighZeros > 0) | 
|  | Known.Zero.setHighBits(MaxHighZeros); | 
|  | break; | 
|  | } | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::UIToFP: | 
|  | break; // Can't work with floating point. | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | // Fall through and handle them the same as zext/trunc. | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::ZExt: | 
|  | case Instruction::Trunc: { | 
|  | Type *SrcTy = I->getOperand(0)->getType(); | 
|  |  | 
|  | unsigned SrcBitWidth; | 
|  | // Note that we handle pointer operands here because of inttoptr/ptrtoint | 
|  | // which fall through here. | 
|  | Type *ScalarTy = SrcTy->getScalarType(); | 
|  | SrcBitWidth = ScalarTy->isPointerTy() ? | 
|  | Q.DL.getIndexTypeSizeInBits(ScalarTy) : | 
|  | Q.DL.getTypeSizeInBits(ScalarTy); | 
|  |  | 
|  | assert(SrcBitWidth && "SrcBitWidth can't be zero"); | 
|  | Known = Known.zextOrTrunc(SrcBitWidth); | 
|  | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | 
|  | Known = Known.zextOrTrunc(BitWidth); | 
|  | // Any top bits are known to be zero. | 
|  | if (BitWidth > SrcBitWidth) | 
|  | Known.Zero.setBitsFrom(SrcBitWidth); | 
|  | break; | 
|  | } | 
|  | case Instruction::BitCast: { | 
|  | Type *SrcTy = I->getOperand(0)->getType(); | 
|  | if (SrcTy->isIntOrPtrTy() && | 
|  | // TODO: For now, not handling conversions like: | 
|  | // (bitcast i64 %x to <2 x i32>) | 
|  | !I->getType()->isVectorTy()) { | 
|  | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::SExt: { | 
|  | // Compute the bits in the result that are not present in the input. | 
|  | unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | Known = Known.trunc(SrcBitWidth); | 
|  | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  | Known = Known.sext(BitWidth); | 
|  | break; | 
|  | } | 
|  | case Instruction::Shl: { | 
|  | // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0 | 
|  | bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); | 
|  | auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { | 
|  | APInt KZResult = KnownZero << ShiftAmt; | 
|  | KZResult.setLowBits(ShiftAmt); // Low bits known 0. | 
|  | // If this shift has "nsw" keyword, then the result is either a poison | 
|  | // value or has the same sign bit as the first operand. | 
|  | if (NSW && KnownZero.isSignBitSet()) | 
|  | KZResult.setSignBit(); | 
|  | return KZResult; | 
|  | }; | 
|  |  | 
|  | auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { | 
|  | APInt KOResult = KnownOne << ShiftAmt; | 
|  | if (NSW && KnownOne.isSignBitSet()) | 
|  | KOResult.setSignBit(); | 
|  | return KOResult; | 
|  | }; | 
|  |  | 
|  | computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); | 
|  | break; | 
|  | } | 
|  | case Instruction::LShr: { | 
|  | // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
|  | auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { | 
|  | APInt KZResult = KnownZero.lshr(ShiftAmt); | 
|  | // High bits known zero. | 
|  | KZResult.setHighBits(ShiftAmt); | 
|  | return KZResult; | 
|  | }; | 
|  |  | 
|  | auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { | 
|  | return KnownOne.lshr(ShiftAmt); | 
|  | }; | 
|  |  | 
|  | computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); | 
|  | break; | 
|  | } | 
|  | case Instruction::AShr: { | 
|  | // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
|  | auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { | 
|  | return KnownZero.ashr(ShiftAmt); | 
|  | }; | 
|  |  | 
|  | auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { | 
|  | return KnownOne.ashr(ShiftAmt); | 
|  | }; | 
|  |  | 
|  | computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); | 
|  | break; | 
|  | } | 
|  | case Instruction::Sub: { | 
|  | bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); | 
|  | computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, | 
|  | Known, Known2, Depth, Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::Add: { | 
|  | bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); | 
|  | computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, | 
|  | Known, Known2, Depth, Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::SRem: | 
|  | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | APInt RA = Rem->getValue().abs(); | 
|  | if (RA.isPowerOf2()) { | 
|  | APInt LowBits = RA - 1; | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  |  | 
|  | // The low bits of the first operand are unchanged by the srem. | 
|  | Known.Zero = Known2.Zero & LowBits; | 
|  | Known.One = Known2.One & LowBits; | 
|  |  | 
|  | // If the first operand is non-negative or has all low bits zero, then | 
|  | // the upper bits are all zero. | 
|  | if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) | 
|  | Known.Zero |= ~LowBits; | 
|  |  | 
|  | // If the first operand is negative and not all low bits are zero, then | 
|  | // the upper bits are all one. | 
|  | if (Known2.isNegative() && LowBits.intersects(Known2.One)) | 
|  | Known.One |= ~LowBits; | 
|  |  | 
|  | assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The sign bit is the LHS's sign bit, except when the result of the | 
|  | // remainder is zero. | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  | // If it's known zero, our sign bit is also zero. | 
|  | if (Known2.isNonNegative()) | 
|  | Known.makeNonNegative(); | 
|  |  | 
|  | break; | 
|  | case Instruction::URem: { | 
|  | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | const APInt &RA = Rem->getValue(); | 
|  | if (RA.isPowerOf2()) { | 
|  | APInt LowBits = (RA - 1); | 
|  | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | 
|  | Known.Zero |= ~LowBits; | 
|  | Known.One &= LowBits; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since the result is less than or equal to either operand, any leading | 
|  | // zero bits in either operand must also exist in the result. | 
|  | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | 
|  | computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); | 
|  |  | 
|  | unsigned Leaders = | 
|  | std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); | 
|  | Known.resetAll(); | 
|  | Known.Zero.setHighBits(Leaders); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Alloca: { | 
|  | const AllocaInst *AI = cast<AllocaInst>(I); | 
|  | unsigned Align = AI->getAlignment(); | 
|  | if (Align == 0) | 
|  | Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); | 
|  |  | 
|  | if (Align > 0) | 
|  | Known.Zero.setLowBits(countTrailingZeros(Align)); | 
|  | break; | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | // Analyze all of the subscripts of this getelementptr instruction | 
|  | // to determine if we can prove known low zero bits. | 
|  | KnownBits LocalKnown(BitWidth); | 
|  | computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); | 
|  | unsigned TrailZ = LocalKnown.countMinTrailingZeros(); | 
|  |  | 
|  | gep_type_iterator GTI = gep_type_begin(I); | 
|  | for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | Value *Index = I->getOperand(i); | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | // Handle struct member offset arithmetic. | 
|  |  | 
|  | // Handle case when index is vector zeroinitializer | 
|  | Constant *CIndex = cast<Constant>(Index); | 
|  | if (CIndex->isZeroValue()) | 
|  | continue; | 
|  |  | 
|  | if (CIndex->getType()->isVectorTy()) | 
|  | Index = CIndex->getSplatValue(); | 
|  |  | 
|  | unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); | 
|  | const StructLayout *SL = Q.DL.getStructLayout(STy); | 
|  | uint64_t Offset = SL->getElementOffset(Idx); | 
|  | TrailZ = std::min<unsigned>(TrailZ, | 
|  | countTrailingZeros(Offset)); | 
|  | } else { | 
|  | // Handle array index arithmetic. | 
|  | Type *IndexedTy = GTI.getIndexedType(); | 
|  | if (!IndexedTy->isSized()) { | 
|  | TrailZ = 0; | 
|  | break; | 
|  | } | 
|  | unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); | 
|  | uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); | 
|  | LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); | 
|  | computeKnownBits(Index, LocalKnown, Depth + 1, Q); | 
|  | TrailZ = std::min(TrailZ, | 
|  | unsigned(countTrailingZeros(TypeSize) + | 
|  | LocalKnown.countMinTrailingZeros())); | 
|  | } | 
|  | } | 
|  |  | 
|  | Known.Zero.setLowBits(TrailZ); | 
|  | break; | 
|  | } | 
|  | case Instruction::PHI: { | 
|  | const PHINode *P = cast<PHINode>(I); | 
|  | // Handle the case of a simple two-predecessor recurrence PHI. | 
|  | // There's a lot more that could theoretically be done here, but | 
|  | // this is sufficient to catch some interesting cases. | 
|  | if (P->getNumIncomingValues() == 2) { | 
|  | for (unsigned i = 0; i != 2; ++i) { | 
|  | Value *L = P->getIncomingValue(i); | 
|  | Value *R = P->getIncomingValue(!i); | 
|  | Operator *LU = dyn_cast<Operator>(L); | 
|  | if (!LU) | 
|  | continue; | 
|  | unsigned Opcode = LU->getOpcode(); | 
|  | // Check for operations that have the property that if | 
|  | // both their operands have low zero bits, the result | 
|  | // will have low zero bits. | 
|  | if (Opcode == Instruction::Add || | 
|  | Opcode == Instruction::Sub || | 
|  | Opcode == Instruction::And || | 
|  | Opcode == Instruction::Or || | 
|  | Opcode == Instruction::Mul) { | 
|  | Value *LL = LU->getOperand(0); | 
|  | Value *LR = LU->getOperand(1); | 
|  | // Find a recurrence. | 
|  | if (LL == I) | 
|  | L = LR; | 
|  | else if (LR == I) | 
|  | L = LL; | 
|  | else | 
|  | break; | 
|  | // Ok, we have a PHI of the form L op= R. Check for low | 
|  | // zero bits. | 
|  | computeKnownBits(R, Known2, Depth + 1, Q); | 
|  |  | 
|  | // We need to take the minimum number of known bits | 
|  | KnownBits Known3(Known); | 
|  | computeKnownBits(L, Known3, Depth + 1, Q); | 
|  |  | 
|  | Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), | 
|  | Known3.countMinTrailingZeros())); | 
|  |  | 
|  | auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); | 
|  | if (OverflowOp && OverflowOp->hasNoSignedWrap()) { | 
|  | // If initial value of recurrence is nonnegative, and we are adding | 
|  | // a nonnegative number with nsw, the result can only be nonnegative | 
|  | // or poison value regardless of the number of times we execute the | 
|  | // add in phi recurrence. If initial value is negative and we are | 
|  | // adding a negative number with nsw, the result can only be | 
|  | // negative or poison value. Similar arguments apply to sub and mul. | 
|  | // | 
|  | // (add non-negative, non-negative) --> non-negative | 
|  | // (add negative, negative) --> negative | 
|  | if (Opcode == Instruction::Add) { | 
|  | if (Known2.isNonNegative() && Known3.isNonNegative()) | 
|  | Known.makeNonNegative(); | 
|  | else if (Known2.isNegative() && Known3.isNegative()) | 
|  | Known.makeNegative(); | 
|  | } | 
|  |  | 
|  | // (sub nsw non-negative, negative) --> non-negative | 
|  | // (sub nsw negative, non-negative) --> negative | 
|  | else if (Opcode == Instruction::Sub && LL == I) { | 
|  | if (Known2.isNonNegative() && Known3.isNegative()) | 
|  | Known.makeNonNegative(); | 
|  | else if (Known2.isNegative() && Known3.isNonNegative()) | 
|  | Known.makeNegative(); | 
|  | } | 
|  |  | 
|  | // (mul nsw non-negative, non-negative) --> non-negative | 
|  | else if (Opcode == Instruction::Mul && Known2.isNonNegative() && | 
|  | Known3.isNonNegative()) | 
|  | Known.makeNonNegative(); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unreachable blocks may have zero-operand PHI nodes. | 
|  | if (P->getNumIncomingValues() == 0) | 
|  | break; | 
|  |  | 
|  | // Otherwise take the unions of the known bit sets of the operands, | 
|  | // taking conservative care to avoid excessive recursion. | 
|  | if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { | 
|  | // Skip if every incoming value references to ourself. | 
|  | if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) | 
|  | break; | 
|  |  | 
|  | Known.Zero.setAllBits(); | 
|  | Known.One.setAllBits(); | 
|  | for (Value *IncValue : P->incoming_values()) { | 
|  | // Skip direct self references. | 
|  | if (IncValue == P) continue; | 
|  |  | 
|  | Known2 = KnownBits(BitWidth); | 
|  | // Recurse, but cap the recursion to one level, because we don't | 
|  | // want to waste time spinning around in loops. | 
|  | computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); | 
|  | Known.Zero &= Known2.Zero; | 
|  | Known.One &= Known2.One; | 
|  | // If all bits have been ruled out, there's no need to check | 
|  | // more operands. | 
|  | if (!Known.Zero && !Known.One) | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | // If range metadata is attached to this call, set known bits from that, | 
|  | // and then intersect with known bits based on other properties of the | 
|  | // function. | 
|  | if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) | 
|  | computeKnownBitsFromRangeMetadata(*MD, Known); | 
|  | if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { | 
|  | computeKnownBits(RV, Known2, Depth + 1, Q); | 
|  | Known.Zero |= Known2.Zero; | 
|  | Known.One |= Known2.One; | 
|  | } | 
|  | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::bitreverse: | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  | Known.Zero |= Known2.Zero.reverseBits(); | 
|  | Known.One |= Known2.One.reverseBits(); | 
|  | break; | 
|  | case Intrinsic::bswap: | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  | Known.Zero |= Known2.Zero.byteSwap(); | 
|  | Known.One |= Known2.One.byteSwap(); | 
|  | break; | 
|  | case Intrinsic::ctlz: { | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  | // If we have a known 1, its position is our upper bound. | 
|  | unsigned PossibleLZ = Known2.One.countLeadingZeros(); | 
|  | // If this call is undefined for 0, the result will be less than 2^n. | 
|  | if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) | 
|  | PossibleLZ = std::min(PossibleLZ, BitWidth - 1); | 
|  | unsigned LowBits = Log2_32(PossibleLZ)+1; | 
|  | Known.Zero.setBitsFrom(LowBits); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::cttz: { | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  | // If we have a known 1, its position is our upper bound. | 
|  | unsigned PossibleTZ = Known2.One.countTrailingZeros(); | 
|  | // If this call is undefined for 0, the result will be less than 2^n. | 
|  | if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) | 
|  | PossibleTZ = std::min(PossibleTZ, BitWidth - 1); | 
|  | unsigned LowBits = Log2_32(PossibleTZ)+1; | 
|  | Known.Zero.setBitsFrom(LowBits); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::ctpop: { | 
|  | computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); | 
|  | // We can bound the space the count needs.  Also, bits known to be zero | 
|  | // can't contribute to the population. | 
|  | unsigned BitsPossiblySet = Known2.countMaxPopulation(); | 
|  | unsigned LowBits = Log2_32(BitsPossiblySet)+1; | 
|  | Known.Zero.setBitsFrom(LowBits); | 
|  | // TODO: we could bound KnownOne using the lower bound on the number | 
|  | // of bits which might be set provided by popcnt KnownOne2. | 
|  | break; | 
|  | } | 
|  | case Intrinsic::x86_sse42_crc32_64_64: | 
|  | Known.Zero.setBitsFrom(32); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::ExtractElement: | 
|  | // Look through extract element. At the moment we keep this simple and skip | 
|  | // tracking the specific element. But at least we might find information | 
|  | // valid for all elements of the vector (for example if vector is sign | 
|  | // extended, shifted, etc). | 
|  | computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); | 
|  | break; | 
|  | case Instruction::ExtractValue: | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { | 
|  | const ExtractValueInst *EVI = cast<ExtractValueInst>(I); | 
|  | if (EVI->getNumIndices() != 1) break; | 
|  | if (EVI->getIndices()[0] == 0) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | computeKnownBitsAddSub(true, II->getArgOperand(0), | 
|  | II->getArgOperand(1), false, Known, Known2, | 
|  | Depth, Q); | 
|  | break; | 
|  | case Intrinsic::usub_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | computeKnownBitsAddSub(false, II->getArgOperand(0), | 
|  | II->getArgOperand(1), false, Known, Known2, | 
|  | Depth, Q); | 
|  | break; | 
|  | case Intrinsic::umul_with_overflow: | 
|  | case Intrinsic::smul_with_overflow: | 
|  | computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, | 
|  | Known, Known2, Depth, Q); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine which bits of V are known to be either zero or one and return | 
|  | /// them. | 
|  | KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { | 
|  | KnownBits Known(getBitWidth(V->getType(), Q.DL)); | 
|  | computeKnownBits(V, Known, Depth, Q); | 
|  | return Known; | 
|  | } | 
|  |  | 
|  | /// Determine which bits of V are known to be either zero or one and return | 
|  | /// them in the Known bit set. | 
|  | /// | 
|  | /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that | 
|  | /// we cannot optimize based on the assumption that it is zero without changing | 
|  | /// it to be an explicit zero.  If we don't change it to zero, other code could | 
|  | /// optimized based on the contradictory assumption that it is non-zero. | 
|  | /// Because instcombine aggressively folds operations with undef args anyway, | 
|  | /// this won't lose us code quality. | 
|  | /// | 
|  | /// This function is defined on values with integer type, values with pointer | 
|  | /// type, and vectors of integers.  In the case | 
|  | /// where V is a vector, known zero, and known one values are the | 
|  | /// same width as the vector element, and the bit is set only if it is true | 
|  | /// for all of the elements in the vector. | 
|  | void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, | 
|  | const Query &Q) { | 
|  | assert(V && "No Value?"); | 
|  | assert(Depth <= MaxDepth && "Limit Search Depth"); | 
|  | unsigned BitWidth = Known.getBitWidth(); | 
|  |  | 
|  | assert((V->getType()->isIntOrIntVectorTy(BitWidth) || | 
|  | V->getType()->isPtrOrPtrVectorTy()) && | 
|  | "Not integer or pointer type!"); | 
|  |  | 
|  | Type *ScalarTy = V->getType()->getScalarType(); | 
|  | unsigned ExpectedWidth = ScalarTy->isPointerTy() ? | 
|  | Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); | 
|  | assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); | 
|  | (void)BitWidth; | 
|  | (void)ExpectedWidth; | 
|  |  | 
|  | const APInt *C; | 
|  | if (match(V, m_APInt(C))) { | 
|  | // We know all of the bits for a scalar constant or a splat vector constant! | 
|  | Known.One = *C; | 
|  | Known.Zero = ~Known.One; | 
|  | return; | 
|  | } | 
|  | // Null and aggregate-zero are all-zeros. | 
|  | if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { | 
|  | Known.setAllZero(); | 
|  | return; | 
|  | } | 
|  | // Handle a constant vector by taking the intersection of the known bits of | 
|  | // each element. | 
|  | if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { | 
|  | // We know that CDS must be a vector of integers. Take the intersection of | 
|  | // each element. | 
|  | Known.Zero.setAllBits(); Known.One.setAllBits(); | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { | 
|  | APInt Elt = CDS->getElementAsAPInt(i); | 
|  | Known.Zero &= ~Elt; | 
|  | Known.One &= Elt; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *CV = dyn_cast<ConstantVector>(V)) { | 
|  | // We know that CV must be a vector of integers. Take the intersection of | 
|  | // each element. | 
|  | Known.Zero.setAllBits(); Known.One.setAllBits(); | 
|  | for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { | 
|  | Constant *Element = CV->getAggregateElement(i); | 
|  | auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); | 
|  | if (!ElementCI) { | 
|  | Known.resetAll(); | 
|  | return; | 
|  | } | 
|  | const APInt &Elt = ElementCI->getValue(); | 
|  | Known.Zero &= ~Elt; | 
|  | Known.One &= Elt; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Start out not knowing anything. | 
|  | Known.resetAll(); | 
|  |  | 
|  | // We can't imply anything about undefs. | 
|  | if (isa<UndefValue>(V)) | 
|  | return; | 
|  |  | 
|  | // There's no point in looking through other users of ConstantData for | 
|  | // assumptions.  Confirm that we've handled them all. | 
|  | assert(!isa<ConstantData>(V) && "Unhandled constant data!"); | 
|  |  | 
|  | // Limit search depth. | 
|  | // All recursive calls that increase depth must come after this. | 
|  | if (Depth == MaxDepth) | 
|  | return; | 
|  |  | 
|  | // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has | 
|  | // the bits of its aliasee. | 
|  | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (!GA->isInterposable()) | 
|  | computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const Operator *I = dyn_cast<Operator>(V)) | 
|  | computeKnownBitsFromOperator(I, Known, Depth, Q); | 
|  |  | 
|  | // Aligned pointers have trailing zeros - refine Known.Zero set | 
|  | if (V->getType()->isPointerTy()) { | 
|  | unsigned Align = V->getPointerAlignment(Q.DL); | 
|  | if (Align) | 
|  | Known.Zero.setLowBits(countTrailingZeros(Align)); | 
|  | } | 
|  |  | 
|  | // computeKnownBitsFromAssume strictly refines Known. | 
|  | // Therefore, we run them after computeKnownBitsFromOperator. | 
|  |  | 
|  | // Check whether a nearby assume intrinsic can determine some known bits. | 
|  | computeKnownBitsFromAssume(V, Known, Depth, Q); | 
|  |  | 
|  | assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); | 
|  | } | 
|  |  | 
|  | /// Return true if the given value is known to have exactly one | 
|  | /// bit set when defined. For vectors return true if every element is known to | 
|  | /// be a power of two when defined. Supports values with integer or pointer | 
|  | /// types and vectors of integers. | 
|  | bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, | 
|  | const Query &Q) { | 
|  | assert(Depth <= MaxDepth && "Limit Search Depth"); | 
|  |  | 
|  | // Attempt to match against constants. | 
|  | if (OrZero && match(V, m_Power2OrZero())) | 
|  | return true; | 
|  | if (match(V, m_Power2())) | 
|  | return true; | 
|  |  | 
|  | // 1 << X is clearly a power of two if the one is not shifted off the end.  If | 
|  | // it is shifted off the end then the result is undefined. | 
|  | if (match(V, m_Shl(m_One(), m_Value()))) | 
|  | return true; | 
|  |  | 
|  | // (signmask) >>l X is clearly a power of two if the one is not shifted off | 
|  | // the bottom.  If it is shifted off the bottom then the result is undefined. | 
|  | if (match(V, m_LShr(m_SignMask(), m_Value()))) | 
|  | return true; | 
|  |  | 
|  | // The remaining tests are all recursive, so bail out if we hit the limit. | 
|  | if (Depth++ == MaxDepth) | 
|  | return false; | 
|  |  | 
|  | Value *X = nullptr, *Y = nullptr; | 
|  | // A shift left or a logical shift right of a power of two is a power of two | 
|  | // or zero. | 
|  | if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || | 
|  | match(V, m_LShr(m_Value(X), m_Value())))) | 
|  | return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); | 
|  |  | 
|  | if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) | 
|  | return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); | 
|  |  | 
|  | if (const SelectInst *SI = dyn_cast<SelectInst>(V)) | 
|  | return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && | 
|  | isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); | 
|  |  | 
|  | if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { | 
|  | // A power of two and'd with anything is a power of two or zero. | 
|  | if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || | 
|  | isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) | 
|  | return true; | 
|  | // X & (-X) is always a power of two or zero. | 
|  | if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Adding a power-of-two or zero to the same power-of-two or zero yields | 
|  | // either the original power-of-two, a larger power-of-two or zero. | 
|  | if (match(V, m_Add(m_Value(X), m_Value(Y)))) { | 
|  | const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); | 
|  | if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { | 
|  | if (match(X, m_And(m_Specific(Y), m_Value())) || | 
|  | match(X, m_And(m_Value(), m_Specific(Y)))) | 
|  | if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) | 
|  | return true; | 
|  | if (match(Y, m_And(m_Specific(X), m_Value())) || | 
|  | match(Y, m_And(m_Value(), m_Specific(X)))) | 
|  | if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) | 
|  | return true; | 
|  |  | 
|  | unsigned BitWidth = V->getType()->getScalarSizeInBits(); | 
|  | KnownBits LHSBits(BitWidth); | 
|  | computeKnownBits(X, LHSBits, Depth, Q); | 
|  |  | 
|  | KnownBits RHSBits(BitWidth); | 
|  | computeKnownBits(Y, RHSBits, Depth, Q); | 
|  | // If i8 V is a power of two or zero: | 
|  | //  ZeroBits: 1 1 1 0 1 1 1 1 | 
|  | // ~ZeroBits: 0 0 0 1 0 0 0 0 | 
|  | if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) | 
|  | // If OrZero isn't set, we cannot give back a zero result. | 
|  | // Make sure either the LHS or RHS has a bit set. | 
|  | if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // An exact divide or right shift can only shift off zero bits, so the result | 
|  | // is a power of two only if the first operand is a power of two and not | 
|  | // copying a sign bit (sdiv int_min, 2). | 
|  | if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || | 
|  | match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { | 
|  | return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, | 
|  | Depth, Q); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Test whether a GEP's result is known to be non-null. | 
|  | /// | 
|  | /// Uses properties inherent in a GEP to try to determine whether it is known | 
|  | /// to be non-null. | 
|  | /// | 
|  | /// Currently this routine does not support vector GEPs. | 
|  | static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, | 
|  | const Query &Q) { | 
|  | const Function *F = nullptr; | 
|  | if (const Instruction *I = dyn_cast<Instruction>(GEP)) | 
|  | F = I->getFunction(); | 
|  |  | 
|  | if (!GEP->isInBounds() || | 
|  | NullPointerIsDefined(F, GEP->getPointerAddressSpace())) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Support vector-GEPs. | 
|  | assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); | 
|  |  | 
|  | // If the base pointer is non-null, we cannot walk to a null address with an | 
|  | // inbounds GEP in address space zero. | 
|  | if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) | 
|  | return true; | 
|  |  | 
|  | // Walk the GEP operands and see if any operand introduces a non-zero offset. | 
|  | // If so, then the GEP cannot produce a null pointer, as doing so would | 
|  | // inherently violate the inbounds contract within address space zero. | 
|  | for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); | 
|  | GTI != GTE; ++GTI) { | 
|  | // Struct types are easy -- they must always be indexed by a constant. | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); | 
|  | unsigned ElementIdx = OpC->getZExtValue(); | 
|  | const StructLayout *SL = Q.DL.getStructLayout(STy); | 
|  | uint64_t ElementOffset = SL->getElementOffset(ElementIdx); | 
|  | if (ElementOffset > 0) | 
|  | return true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have a zero-sized type, the index doesn't matter. Keep looping. | 
|  | if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) | 
|  | continue; | 
|  |  | 
|  | // Fast path the constant operand case both for efficiency and so we don't | 
|  | // increment Depth when just zipping down an all-constant GEP. | 
|  | if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { | 
|  | if (!OpC->isZero()) | 
|  | return true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We post-increment Depth here because while isKnownNonZero increments it | 
|  | // as well, when we pop back up that increment won't persist. We don't want | 
|  | // to recurse 10k times just because we have 10k GEP operands. We don't | 
|  | // bail completely out because we want to handle constant GEPs regardless | 
|  | // of depth. | 
|  | if (Depth++ >= MaxDepth) | 
|  | continue; | 
|  |  | 
|  | if (isKnownNonZero(GTI.getOperand(), Depth, Q)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isKnownNonNullFromDominatingCondition(const Value *V, | 
|  | const Instruction *CtxI, | 
|  | const DominatorTree *DT) { | 
|  | assert(V->getType()->isPointerTy() && "V must be pointer type"); | 
|  | assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); | 
|  |  | 
|  | if (!CtxI || !DT) | 
|  | return false; | 
|  |  | 
|  | unsigned NumUsesExplored = 0; | 
|  | for (auto *U : V->users()) { | 
|  | // Avoid massive lists | 
|  | if (NumUsesExplored >= DomConditionsMaxUses) | 
|  | break; | 
|  | NumUsesExplored++; | 
|  |  | 
|  | // If the value is used as an argument to a call or invoke, then argument | 
|  | // attributes may provide an answer about null-ness. | 
|  | if (auto CS = ImmutableCallSite(U)) | 
|  | if (auto *CalledFunc = CS.getCalledFunction()) | 
|  | for (const Argument &Arg : CalledFunc->args()) | 
|  | if (CS.getArgOperand(Arg.getArgNo()) == V && | 
|  | Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) | 
|  | return true; | 
|  |  | 
|  | // Consider only compare instructions uniquely controlling a branch | 
|  | CmpInst::Predicate Pred; | 
|  | if (!match(const_cast<User *>(U), | 
|  | m_c_ICmp(Pred, m_Specific(V), m_Zero())) || | 
|  | (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) | 
|  | continue; | 
|  |  | 
|  | for (auto *CmpU : U->users()) { | 
|  | if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { | 
|  | assert(BI->isConditional() && "uses a comparison!"); | 
|  |  | 
|  | BasicBlock *NonNullSuccessor = | 
|  | BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); | 
|  | BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); | 
|  | if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) | 
|  | return true; | 
|  | } else if (Pred == ICmpInst::ICMP_NE && | 
|  | match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && | 
|  | DT->dominates(cast<Instruction>(CmpU), CtxI)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Does the 'Range' metadata (which must be a valid MD_range operand list) | 
|  | /// ensure that the value it's attached to is never Value?  'RangeType' is | 
|  | /// is the type of the value described by the range. | 
|  | static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { | 
|  | const unsigned NumRanges = Ranges->getNumOperands() / 2; | 
|  | assert(NumRanges >= 1); | 
|  | for (unsigned i = 0; i < NumRanges; ++i) { | 
|  | ConstantInt *Lower = | 
|  | mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); | 
|  | ConstantInt *Upper = | 
|  | mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); | 
|  | ConstantRange Range(Lower->getValue(), Upper->getValue()); | 
|  | if (Range.contains(Value)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the given value is known to be non-zero when defined. For | 
|  | /// vectors, return true if every element is known to be non-zero when | 
|  | /// defined. For pointers, if the context instruction and dominator tree are | 
|  | /// specified, perform context-sensitive analysis and return true if the | 
|  | /// pointer couldn't possibly be null at the specified instruction. | 
|  | /// Supports values with integer or pointer type and vectors of integers. | 
|  | bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { | 
|  | if (auto *C = dyn_cast<Constant>(V)) { | 
|  | if (C->isNullValue()) | 
|  | return false; | 
|  | if (isa<ConstantInt>(C)) | 
|  | // Must be non-zero due to null test above. | 
|  | return true; | 
|  |  | 
|  | // For constant vectors, check that all elements are undefined or known | 
|  | // non-zero to determine that the whole vector is known non-zero. | 
|  | if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { | 
|  | for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { | 
|  | Constant *Elt = C->getAggregateElement(i); | 
|  | if (!Elt || Elt->isNullValue()) | 
|  | return false; | 
|  | if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // A global variable in address space 0 is non null unless extern weak | 
|  | // or an absolute symbol reference. Other address spaces may have null as a | 
|  | // valid address for a global, so we can't assume anything. | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && | 
|  | GV->getType()->getAddressSpace() == 0) | 
|  | return true; | 
|  | } else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (auto *I = dyn_cast<Instruction>(V)) { | 
|  | if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { | 
|  | // If the possible ranges don't contain zero, then the value is | 
|  | // definitely non-zero. | 
|  | if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { | 
|  | const APInt ZeroValue(Ty->getBitWidth(), 0); | 
|  | if (rangeMetadataExcludesValue(Ranges, ZeroValue)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Some of the tests below are recursive, so bail out if we hit the limit. | 
|  | if (Depth++ >= MaxDepth) | 
|  | return false; | 
|  |  | 
|  | // Check for pointer simplifications. | 
|  | if (V->getType()->isPointerTy()) { | 
|  | // Alloca never returns null, malloc might. | 
|  | if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) | 
|  | return true; | 
|  |  | 
|  | // A byval, inalloca, or nonnull argument is never null. | 
|  | if (const Argument *A = dyn_cast<Argument>(V)) | 
|  | if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) | 
|  | return true; | 
|  |  | 
|  | // A Load tagged with nonnull metadata is never null. | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(V)) | 
|  | if (LI->getMetadata(LLVMContext::MD_nonnull)) | 
|  | return true; | 
|  |  | 
|  | if (auto CS = ImmutableCallSite(V)) { | 
|  | if (CS.isReturnNonNull()) | 
|  | return true; | 
|  | if (const auto *RP = getArgumentAliasingToReturnedPointer(CS)) | 
|  | return isKnownNonZero(RP, Depth, Q); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Check for recursive pointer simplifications. | 
|  | if (V->getType()->isPointerTy()) { | 
|  | if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) | 
|  | return true; | 
|  |  | 
|  | if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) | 
|  | if (isGEPKnownNonNull(GEP, Depth, Q)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); | 
|  |  | 
|  | // X | Y != 0 if X != 0 or Y != 0. | 
|  | Value *X = nullptr, *Y = nullptr; | 
|  | if (match(V, m_Or(m_Value(X), m_Value(Y)))) | 
|  | return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); | 
|  |  | 
|  | // ext X != 0 if X != 0. | 
|  | if (isa<SExtInst>(V) || isa<ZExtInst>(V)) | 
|  | return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); | 
|  |  | 
|  | // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined | 
|  | // if the lowest bit is shifted off the end. | 
|  | if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { | 
|  | // shl nuw can't remove any non-zero bits. | 
|  | const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); | 
|  | if (BO->hasNoUnsignedWrap()) | 
|  | return isKnownNonZero(X, Depth, Q); | 
|  |  | 
|  | KnownBits Known(BitWidth); | 
|  | computeKnownBits(X, Known, Depth, Q); | 
|  | if (Known.One[0]) | 
|  | return true; | 
|  | } | 
|  | // shr X, Y != 0 if X is negative.  Note that the value of the shift is not | 
|  | // defined if the sign bit is shifted off the end. | 
|  | else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { | 
|  | // shr exact can only shift out zero bits. | 
|  | const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); | 
|  | if (BO->isExact()) | 
|  | return isKnownNonZero(X, Depth, Q); | 
|  |  | 
|  | KnownBits Known = computeKnownBits(X, Depth, Q); | 
|  | if (Known.isNegative()) | 
|  | return true; | 
|  |  | 
|  | // If the shifter operand is a constant, and all of the bits shifted | 
|  | // out are known to be zero, and X is known non-zero then at least one | 
|  | // non-zero bit must remain. | 
|  | if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { | 
|  | auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); | 
|  | // Is there a known one in the portion not shifted out? | 
|  | if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) | 
|  | return true; | 
|  | // Are all the bits to be shifted out known zero? | 
|  | if (Known.countMinTrailingZeros() >= ShiftVal) | 
|  | return isKnownNonZero(X, Depth, Q); | 
|  | } | 
|  | } | 
|  | // div exact can only produce a zero if the dividend is zero. | 
|  | else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { | 
|  | return isKnownNonZero(X, Depth, Q); | 
|  | } | 
|  | // X + Y. | 
|  | else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { | 
|  | KnownBits XKnown = computeKnownBits(X, Depth, Q); | 
|  | KnownBits YKnown = computeKnownBits(Y, Depth, Q); | 
|  |  | 
|  | // If X and Y are both non-negative (as signed values) then their sum is not | 
|  | // zero unless both X and Y are zero. | 
|  | if (XKnown.isNonNegative() && YKnown.isNonNegative()) | 
|  | if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) | 
|  | return true; | 
|  |  | 
|  | // If X and Y are both negative (as signed values) then their sum is not | 
|  | // zero unless both X and Y equal INT_MIN. | 
|  | if (XKnown.isNegative() && YKnown.isNegative()) { | 
|  | APInt Mask = APInt::getSignedMaxValue(BitWidth); | 
|  | // The sign bit of X is set.  If some other bit is set then X is not equal | 
|  | // to INT_MIN. | 
|  | if (XKnown.One.intersects(Mask)) | 
|  | return true; | 
|  | // The sign bit of Y is set.  If some other bit is set then Y is not equal | 
|  | // to INT_MIN. | 
|  | if (YKnown.One.intersects(Mask)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The sum of a non-negative number and a power of two is not zero. | 
|  | if (XKnown.isNonNegative() && | 
|  | isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) | 
|  | return true; | 
|  | if (YKnown.isNonNegative() && | 
|  | isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) | 
|  | return true; | 
|  | } | 
|  | // X * Y. | 
|  | else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { | 
|  | const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); | 
|  | // If X and Y are non-zero then so is X * Y as long as the multiplication | 
|  | // does not overflow. | 
|  | if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && | 
|  | isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) | 
|  | return true; | 
|  | } | 
|  | // (C ? X : Y) != 0 if X != 0 and Y != 0. | 
|  | else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { | 
|  | if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && | 
|  | isKnownNonZero(SI->getFalseValue(), Depth, Q)) | 
|  | return true; | 
|  | } | 
|  | // PHI | 
|  | else if (const PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | // Try and detect a recurrence that monotonically increases from a | 
|  | // starting value, as these are common as induction variables. | 
|  | if (PN->getNumIncomingValues() == 2) { | 
|  | Value *Start = PN->getIncomingValue(0); | 
|  | Value *Induction = PN->getIncomingValue(1); | 
|  | if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) | 
|  | std::swap(Start, Induction); | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { | 
|  | if (!C->isZero() && !C->isNegative()) { | 
|  | ConstantInt *X; | 
|  | if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || | 
|  | match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && | 
|  | !X->isNegative()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Check if all incoming values are non-zero constant. | 
|  | bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { | 
|  | return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); | 
|  | }); | 
|  | if (AllNonZeroConstants) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | KnownBits Known(BitWidth); | 
|  | computeKnownBits(V, Known, Depth, Q); | 
|  | return Known.One != 0; | 
|  | } | 
|  |  | 
|  | /// Return true if V2 == V1 + X, where X is known non-zero. | 
|  | static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { | 
|  | const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); | 
|  | if (!BO || BO->getOpcode() != Instruction::Add) | 
|  | return false; | 
|  | Value *Op = nullptr; | 
|  | if (V2 == BO->getOperand(0)) | 
|  | Op = BO->getOperand(1); | 
|  | else if (V2 == BO->getOperand(1)) | 
|  | Op = BO->getOperand(0); | 
|  | else | 
|  | return false; | 
|  | return isKnownNonZero(Op, 0, Q); | 
|  | } | 
|  |  | 
|  | /// Return true if it is known that V1 != V2. | 
|  | static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { | 
|  | if (V1 == V2) | 
|  | return false; | 
|  | if (V1->getType() != V2->getType()) | 
|  | // We can't look through casts yet. | 
|  | return false; | 
|  | if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) | 
|  | return true; | 
|  |  | 
|  | if (V1->getType()->isIntOrIntVectorTy()) { | 
|  | // Are any known bits in V1 contradictory to known bits in V2? If V1 | 
|  | // has a known zero where V2 has a known one, they must not be equal. | 
|  | KnownBits Known1 = computeKnownBits(V1, 0, Q); | 
|  | KnownBits Known2 = computeKnownBits(V2, 0, Q); | 
|  |  | 
|  | if (Known1.Zero.intersects(Known2.One) || | 
|  | Known2.Zero.intersects(Known1.One)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if 'V & Mask' is known to be zero.  We use this predicate to | 
|  | /// simplify operations downstream. Mask is known to be zero for bits that V | 
|  | /// cannot have. | 
|  | /// | 
|  | /// This function is defined on values with integer type, values with pointer | 
|  | /// type, and vectors of integers.  In the case | 
|  | /// where V is a vector, the mask, known zero, and known one values are the | 
|  | /// same width as the vector element, and the bit is set only if it is true | 
|  | /// for all of the elements in the vector. | 
|  | bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, | 
|  | const Query &Q) { | 
|  | KnownBits Known(Mask.getBitWidth()); | 
|  | computeKnownBits(V, Known, Depth, Q); | 
|  | return Mask.isSubsetOf(Known.Zero); | 
|  | } | 
|  |  | 
|  | /// For vector constants, loop over the elements and find the constant with the | 
|  | /// minimum number of sign bits. Return 0 if the value is not a vector constant | 
|  | /// or if any element was not analyzed; otherwise, return the count for the | 
|  | /// element with the minimum number of sign bits. | 
|  | static unsigned computeNumSignBitsVectorConstant(const Value *V, | 
|  | unsigned TyBits) { | 
|  | const auto *CV = dyn_cast<Constant>(V); | 
|  | if (!CV || !CV->getType()->isVectorTy()) | 
|  | return 0; | 
|  |  | 
|  | unsigned MinSignBits = TyBits; | 
|  | unsigned NumElts = CV->getType()->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | // If we find a non-ConstantInt, bail out. | 
|  | auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); | 
|  | if (!Elt) | 
|  | return 0; | 
|  |  | 
|  | MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); | 
|  | } | 
|  |  | 
|  | return MinSignBits; | 
|  | } | 
|  |  | 
|  | static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, | 
|  | const Query &Q); | 
|  |  | 
|  | static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, | 
|  | const Query &Q) { | 
|  | unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); | 
|  | assert(Result > 0 && "At least one sign bit needs to be present!"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Return the number of times the sign bit of the register is replicated into | 
|  | /// the other bits. We know that at least 1 bit is always equal to the sign bit | 
|  | /// (itself), but other cases can give us information. For example, immediately | 
|  | /// after an "ashr X, 2", we know that the top 3 bits are all equal to each | 
|  | /// other, so we return 3. For vectors, return the number of sign bits for the | 
|  | /// vector element with the minimum number of known sign bits. | 
|  | static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, | 
|  | const Query &Q) { | 
|  | assert(Depth <= MaxDepth && "Limit Search Depth"); | 
|  |  | 
|  | // We return the minimum number of sign bits that are guaranteed to be present | 
|  | // in V, so for undef we have to conservatively return 1.  We don't have the | 
|  | // same behavior for poison though -- that's a FIXME today. | 
|  |  | 
|  | Type *ScalarTy = V->getType()->getScalarType(); | 
|  | unsigned TyBits = ScalarTy->isPointerTy() ? | 
|  | Q.DL.getIndexTypeSizeInBits(ScalarTy) : | 
|  | Q.DL.getTypeSizeInBits(ScalarTy); | 
|  |  | 
|  | unsigned Tmp, Tmp2; | 
|  | unsigned FirstAnswer = 1; | 
|  |  | 
|  | // Note that ConstantInt is handled by the general computeKnownBits case | 
|  | // below. | 
|  |  | 
|  | if (Depth == MaxDepth) | 
|  | return 1;  // Limit search depth. | 
|  |  | 
|  | const Operator *U = dyn_cast<Operator>(V); | 
|  | switch (Operator::getOpcode(V)) { | 
|  | default: break; | 
|  | case Instruction::SExt: | 
|  | Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); | 
|  | return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; | 
|  |  | 
|  | case Instruction::SDiv: { | 
|  | const APInt *Denominator; | 
|  | // sdiv X, C -> adds log(C) sign bits. | 
|  | if (match(U->getOperand(1), m_APInt(Denominator))) { | 
|  |  | 
|  | // Ignore non-positive denominator. | 
|  | if (!Denominator->isStrictlyPositive()) | 
|  | break; | 
|  |  | 
|  | // Calculate the incoming numerator bits. | 
|  | unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  |  | 
|  | // Add floor(log(C)) bits to the numerator bits. | 
|  | return std::min(TyBits, NumBits + Denominator->logBase2()); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::SRem: { | 
|  | const APInt *Denominator; | 
|  | // srem X, C -> we know that the result is within [-C+1,C) when C is a | 
|  | // positive constant.  This let us put a lower bound on the number of sign | 
|  | // bits. | 
|  | if (match(U->getOperand(1), m_APInt(Denominator))) { | 
|  |  | 
|  | // Ignore non-positive denominator. | 
|  | if (!Denominator->isStrictlyPositive()) | 
|  | break; | 
|  |  | 
|  | // Calculate the incoming numerator bits. SRem by a positive constant | 
|  | // can't lower the number of sign bits. | 
|  | unsigned NumrBits = | 
|  | ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  |  | 
|  | // Calculate the leading sign bit constraints by examining the | 
|  | // denominator.  Given that the denominator is positive, there are two | 
|  | // cases: | 
|  | // | 
|  | //  1. the numerator is positive.  The result range is [0,C) and [0,C) u< | 
|  | //     (1 << ceilLogBase2(C)). | 
|  | // | 
|  | //  2. the numerator is negative.  Then the result range is (-C,0] and | 
|  | //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). | 
|  | // | 
|  | // Thus a lower bound on the number of sign bits is `TyBits - | 
|  | // ceilLogBase2(C)`. | 
|  |  | 
|  | unsigned ResBits = TyBits - Denominator->ceilLogBase2(); | 
|  | return std::max(NumrBits, ResBits); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::AShr: { | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  | // ashr X, C   -> adds C sign bits.  Vectors too. | 
|  | const APInt *ShAmt; | 
|  | if (match(U->getOperand(1), m_APInt(ShAmt))) { | 
|  | if (ShAmt->uge(TyBits)) | 
|  | break;  // Bad shift. | 
|  | unsigned ShAmtLimited = ShAmt->getZExtValue(); | 
|  | Tmp += ShAmtLimited; | 
|  | if (Tmp > TyBits) Tmp = TyBits; | 
|  | } | 
|  | return Tmp; | 
|  | } | 
|  | case Instruction::Shl: { | 
|  | const APInt *ShAmt; | 
|  | if (match(U->getOperand(1), m_APInt(ShAmt))) { | 
|  | // shl destroys sign bits. | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  | if (ShAmt->uge(TyBits) ||      // Bad shift. | 
|  | ShAmt->uge(Tmp)) break;    // Shifted all sign bits out. | 
|  | Tmp2 = ShAmt->getZExtValue(); | 
|  | return Tmp - Tmp2; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor:    // NOT is handled here. | 
|  | // Logical binary ops preserve the number of sign bits at the worst. | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  | if (Tmp != 1) { | 
|  | Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | 
|  | FirstAnswer = std::min(Tmp, Tmp2); | 
|  | // We computed what we know about the sign bits as our first | 
|  | // answer. Now proceed to the generic code that uses | 
|  | // computeKnownBits, and pick whichever answer is better. | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Select: | 
|  | Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | 
|  | if (Tmp == 1) break; | 
|  | Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); | 
|  | return std::min(Tmp, Tmp2); | 
|  |  | 
|  | case Instruction::Add: | 
|  | // Add can have at most one carry bit.  Thus we know that the output | 
|  | // is, at worst, one more bit than the inputs. | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  | if (Tmp == 1) break; | 
|  |  | 
|  | // Special case decrementing a value (ADD X, -1): | 
|  | if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) | 
|  | if (CRHS->isAllOnesValue()) { | 
|  | KnownBits Known(TyBits); | 
|  | computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); | 
|  |  | 
|  | // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
|  | // sign bits set. | 
|  | if ((Known.Zero | 1).isAllOnesValue()) | 
|  | return TyBits; | 
|  |  | 
|  | // If we are subtracting one from a positive number, there is no carry | 
|  | // out of the result. | 
|  | if (Known.isNonNegative()) | 
|  | return Tmp; | 
|  | } | 
|  |  | 
|  | Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | 
|  | if (Tmp2 == 1) break; | 
|  | return std::min(Tmp, Tmp2)-1; | 
|  |  | 
|  | case Instruction::Sub: | 
|  | Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | 
|  | if (Tmp2 == 1) break; | 
|  |  | 
|  | // Handle NEG. | 
|  | if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) | 
|  | if (CLHS->isNullValue()) { | 
|  | KnownBits Known(TyBits); | 
|  | computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); | 
|  | // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
|  | // sign bits set. | 
|  | if ((Known.Zero | 1).isAllOnesValue()) | 
|  | return TyBits; | 
|  |  | 
|  | // If the input is known to be positive (the sign bit is known clear), | 
|  | // the output of the NEG has the same number of sign bits as the input. | 
|  | if (Known.isNonNegative()) | 
|  | return Tmp2; | 
|  |  | 
|  | // Otherwise, we treat this like a SUB. | 
|  | } | 
|  |  | 
|  | // Sub can have at most one carry bit.  Thus we know that the output | 
|  | // is, at worst, one more bit than the inputs. | 
|  | Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  | if (Tmp == 1) break; | 
|  | return std::min(Tmp, Tmp2)-1; | 
|  |  | 
|  | case Instruction::Mul: { | 
|  | // The output of the Mul can be at most twice the valid bits in the inputs. | 
|  | unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  | if (SignBitsOp0 == 1) break; | 
|  | unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); | 
|  | if (SignBitsOp1 == 1) break; | 
|  | unsigned OutValidBits = | 
|  | (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); | 
|  | return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; | 
|  | } | 
|  |  | 
|  | case Instruction::PHI: { | 
|  | const PHINode *PN = cast<PHINode>(U); | 
|  | unsigned NumIncomingValues = PN->getNumIncomingValues(); | 
|  | // Don't analyze large in-degree PHIs. | 
|  | if (NumIncomingValues > 4) break; | 
|  | // Unreachable blocks may have zero-operand PHI nodes. | 
|  | if (NumIncomingValues == 0) break; | 
|  |  | 
|  | // Take the minimum of all incoming values.  This can't infinitely loop | 
|  | // because of our depth threshold. | 
|  | Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); | 
|  | for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { | 
|  | if (Tmp == 1) return Tmp; | 
|  | Tmp = std::min( | 
|  | Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); | 
|  | } | 
|  | return Tmp; | 
|  | } | 
|  |  | 
|  | case Instruction::Trunc: | 
|  | // FIXME: it's tricky to do anything useful for this, but it is an important | 
|  | // case for targets like X86. | 
|  | break; | 
|  |  | 
|  | case Instruction::ExtractElement: | 
|  | // Look through extract element. At the moment we keep this simple and skip | 
|  | // tracking the specific element. But at least we might find information | 
|  | // valid for all elements of the vector (for example if vector is sign | 
|  | // extended, shifted, etc). | 
|  | return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); | 
|  | } | 
|  |  | 
|  | // Finally, if we can prove that the top bits of the result are 0's or 1's, | 
|  | // use this information. | 
|  |  | 
|  | // If we can examine all elements of a vector constant successfully, we're | 
|  | // done (we can't do any better than that). If not, keep trying. | 
|  | if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) | 
|  | return VecSignBits; | 
|  |  | 
|  | KnownBits Known(TyBits); | 
|  | computeKnownBits(V, Known, Depth, Q); | 
|  |  | 
|  | // If we know that the sign bit is either zero or one, determine the number of | 
|  | // identical bits in the top of the input value. | 
|  | return std::max(FirstAnswer, Known.countMinSignBits()); | 
|  | } | 
|  |  | 
|  | /// This function computes the integer multiple of Base that equals V. | 
|  | /// If successful, it returns true and returns the multiple in | 
|  | /// Multiple. If unsuccessful, it returns false. It looks | 
|  | /// through SExt instructions only if LookThroughSExt is true. | 
|  | bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, | 
|  | bool LookThroughSExt, unsigned Depth) { | 
|  | const unsigned MaxDepth = 6; | 
|  |  | 
|  | assert(V && "No Value?"); | 
|  | assert(Depth <= MaxDepth && "Limit Search Depth"); | 
|  | assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); | 
|  |  | 
|  | Type *T = V->getType(); | 
|  |  | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(V); | 
|  |  | 
|  | if (Base == 0) | 
|  | return false; | 
|  |  | 
|  | if (Base == 1) { | 
|  | Multiple = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ConstantExpr *CO = dyn_cast<ConstantExpr>(V); | 
|  | Constant *BaseVal = ConstantInt::get(T, Base); | 
|  | if (CO && CO == BaseVal) { | 
|  | // Multiple is 1. | 
|  | Multiple = ConstantInt::get(T, 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CI && CI->getZExtValue() % Base == 0) { | 
|  | Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Depth == MaxDepth) return false;  // Limit search depth. | 
|  |  | 
|  | Operator *I = dyn_cast<Operator>(V); | 
|  | if (!I) return false; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::SExt: | 
|  | if (!LookThroughSExt) return false; | 
|  | // otherwise fall through to ZExt | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::ZExt: | 
|  | return ComputeMultiple(I->getOperand(0), Base, Multiple, | 
|  | LookThroughSExt, Depth+1); | 
|  | case Instruction::Shl: | 
|  | case Instruction::Mul: { | 
|  | Value *Op0 = I->getOperand(0); | 
|  | Value *Op1 = I->getOperand(1); | 
|  |  | 
|  | if (I->getOpcode() == Instruction::Shl) { | 
|  | ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); | 
|  | if (!Op1CI) return false; | 
|  | // Turn Op0 << Op1 into Op0 * 2^Op1 | 
|  | APInt Op1Int = Op1CI->getValue(); | 
|  | uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); | 
|  | APInt API(Op1Int.getBitWidth(), 0); | 
|  | API.setBit(BitToSet); | 
|  | Op1 = ConstantInt::get(V->getContext(), API); | 
|  | } | 
|  |  | 
|  | Value *Mul0 = nullptr; | 
|  | if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { | 
|  | if (Constant *Op1C = dyn_cast<Constant>(Op1)) | 
|  | if (Constant *MulC = dyn_cast<Constant>(Mul0)) { | 
|  | if (Op1C->getType()->getPrimitiveSizeInBits() < | 
|  | MulC->getType()->getPrimitiveSizeInBits()) | 
|  | Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); | 
|  | if (Op1C->getType()->getPrimitiveSizeInBits() > | 
|  | MulC->getType()->getPrimitiveSizeInBits()) | 
|  | MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); | 
|  |  | 
|  | // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) | 
|  | Multiple = ConstantExpr::getMul(MulC, Op1C); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) | 
|  | if (Mul0CI->getValue() == 1) { | 
|  | // V == Base * Op1, so return Op1 | 
|  | Multiple = Op1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *Mul1 = nullptr; | 
|  | if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { | 
|  | if (Constant *Op0C = dyn_cast<Constant>(Op0)) | 
|  | if (Constant *MulC = dyn_cast<Constant>(Mul1)) { | 
|  | if (Op0C->getType()->getPrimitiveSizeInBits() < | 
|  | MulC->getType()->getPrimitiveSizeInBits()) | 
|  | Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); | 
|  | if (Op0C->getType()->getPrimitiveSizeInBits() > | 
|  | MulC->getType()->getPrimitiveSizeInBits()) | 
|  | MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); | 
|  |  | 
|  | // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) | 
|  | Multiple = ConstantExpr::getMul(MulC, Op0C); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) | 
|  | if (Mul1CI->getValue() == 1) { | 
|  | // V == Base * Op0, so return Op0 | 
|  | Multiple = Op0; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We could not determine if V is a multiple of Base. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | const Function *F = ICS.getCalledFunction(); | 
|  | if (!F) | 
|  | return Intrinsic::not_intrinsic; | 
|  |  | 
|  | if (F->isIntrinsic()) | 
|  | return F->getIntrinsicID(); | 
|  |  | 
|  | if (!TLI) | 
|  | return Intrinsic::not_intrinsic; | 
|  |  | 
|  | LibFunc Func; | 
|  | // We're going to make assumptions on the semantics of the functions, check | 
|  | // that the target knows that it's available in this environment and it does | 
|  | // not have local linkage. | 
|  | if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) | 
|  | return Intrinsic::not_intrinsic; | 
|  |  | 
|  | if (!ICS.onlyReadsMemory()) | 
|  | return Intrinsic::not_intrinsic; | 
|  |  | 
|  | // Otherwise check if we have a call to a function that can be turned into a | 
|  | // vector intrinsic. | 
|  | switch (Func) { | 
|  | default: | 
|  | break; | 
|  | case LibFunc_sin: | 
|  | case LibFunc_sinf: | 
|  | case LibFunc_sinl: | 
|  | return Intrinsic::sin; | 
|  | case LibFunc_cos: | 
|  | case LibFunc_cosf: | 
|  | case LibFunc_cosl: | 
|  | return Intrinsic::cos; | 
|  | case LibFunc_exp: | 
|  | case LibFunc_expf: | 
|  | case LibFunc_expl: | 
|  | return Intrinsic::exp; | 
|  | case LibFunc_exp2: | 
|  | case LibFunc_exp2f: | 
|  | case LibFunc_exp2l: | 
|  | return Intrinsic::exp2; | 
|  | case LibFunc_log: | 
|  | case LibFunc_logf: | 
|  | case LibFunc_logl: | 
|  | return Intrinsic::log; | 
|  | case LibFunc_log10: | 
|  | case LibFunc_log10f: | 
|  | case LibFunc_log10l: | 
|  | return Intrinsic::log10; | 
|  | case LibFunc_log2: | 
|  | case LibFunc_log2f: | 
|  | case LibFunc_log2l: | 
|  | return Intrinsic::log2; | 
|  | case LibFunc_fabs: | 
|  | case LibFunc_fabsf: | 
|  | case LibFunc_fabsl: | 
|  | return Intrinsic::fabs; | 
|  | case LibFunc_fmin: | 
|  | case LibFunc_fminf: | 
|  | case LibFunc_fminl: | 
|  | return Intrinsic::minnum; | 
|  | case LibFunc_fmax: | 
|  | case LibFunc_fmaxf: | 
|  | case LibFunc_fmaxl: | 
|  | return Intrinsic::maxnum; | 
|  | case LibFunc_copysign: | 
|  | case LibFunc_copysignf: | 
|  | case LibFunc_copysignl: | 
|  | return Intrinsic::copysign; | 
|  | case LibFunc_floor: | 
|  | case LibFunc_floorf: | 
|  | case LibFunc_floorl: | 
|  | return Intrinsic::floor; | 
|  | case LibFunc_ceil: | 
|  | case LibFunc_ceilf: | 
|  | case LibFunc_ceill: | 
|  | return Intrinsic::ceil; | 
|  | case LibFunc_trunc: | 
|  | case LibFunc_truncf: | 
|  | case LibFunc_truncl: | 
|  | return Intrinsic::trunc; | 
|  | case LibFunc_rint: | 
|  | case LibFunc_rintf: | 
|  | case LibFunc_rintl: | 
|  | return Intrinsic::rint; | 
|  | case LibFunc_nearbyint: | 
|  | case LibFunc_nearbyintf: | 
|  | case LibFunc_nearbyintl: | 
|  | return Intrinsic::nearbyint; | 
|  | case LibFunc_round: | 
|  | case LibFunc_roundf: | 
|  | case LibFunc_roundl: | 
|  | return Intrinsic::round; | 
|  | case LibFunc_pow: | 
|  | case LibFunc_powf: | 
|  | case LibFunc_powl: | 
|  | return Intrinsic::pow; | 
|  | case LibFunc_sqrt: | 
|  | case LibFunc_sqrtf: | 
|  | case LibFunc_sqrtl: | 
|  | return Intrinsic::sqrt; | 
|  | } | 
|  |  | 
|  | return Intrinsic::not_intrinsic; | 
|  | } | 
|  |  | 
|  | /// Return true if we can prove that the specified FP value is never equal to | 
|  | /// -0.0. | 
|  | /// | 
|  | /// NOTE: this function will need to be revisited when we support non-default | 
|  | /// rounding modes! | 
|  | bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, | 
|  | unsigned Depth) { | 
|  | if (auto *CFP = dyn_cast<ConstantFP>(V)) | 
|  | return !CFP->getValueAPF().isNegZero(); | 
|  |  | 
|  | // Limit search depth. | 
|  | if (Depth == MaxDepth) | 
|  | return false; | 
|  |  | 
|  | auto *Op = dyn_cast<Operator>(V); | 
|  | if (!Op) | 
|  | return false; | 
|  |  | 
|  | // Check if the nsz fast-math flag is set. | 
|  | if (auto *FPO = dyn_cast<FPMathOperator>(Op)) | 
|  | if (FPO->hasNoSignedZeros()) | 
|  | return true; | 
|  |  | 
|  | // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. | 
|  | if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) | 
|  | return true; | 
|  |  | 
|  | // sitofp and uitofp turn into +0.0 for zero. | 
|  | if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) | 
|  | return true; | 
|  |  | 
|  | if (auto *Call = dyn_cast<CallInst>(Op)) { | 
|  | Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); | 
|  | switch (IID) { | 
|  | default: | 
|  | break; | 
|  | // sqrt(-0.0) = -0.0, no other negative results are possible. | 
|  | case Intrinsic::sqrt: | 
|  | return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); | 
|  | // fabs(x) != -0.0 | 
|  | case Intrinsic::fabs: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a | 
|  | /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign | 
|  | /// bit despite comparing equal. | 
|  | static bool cannotBeOrderedLessThanZeroImpl(const Value *V, | 
|  | const TargetLibraryInfo *TLI, | 
|  | bool SignBitOnly, | 
|  | unsigned Depth) { | 
|  | // TODO: This function does not do the right thing when SignBitOnly is true | 
|  | // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform | 
|  | // which flips the sign bits of NaNs.  See | 
|  | // https://llvm.org/bugs/show_bug.cgi?id=31702. | 
|  |  | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | 
|  | return !CFP->getValueAPF().isNegative() || | 
|  | (!SignBitOnly && CFP->getValueAPF().isZero()); | 
|  | } | 
|  |  | 
|  | // Handle vector of constants. | 
|  | if (auto *CV = dyn_cast<Constant>(V)) { | 
|  | if (CV->getType()->isVectorTy()) { | 
|  | unsigned NumElts = CV->getType()->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); | 
|  | if (!CFP) | 
|  | return false; | 
|  | if (CFP->getValueAPF().isNegative() && | 
|  | (SignBitOnly || !CFP->getValueAPF().isZero())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // All non-negative ConstantFPs. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Depth == MaxDepth) | 
|  | return false; // Limit search depth. | 
|  |  | 
|  | const Operator *I = dyn_cast<Operator>(V); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | // Unsigned integers are always nonnegative. | 
|  | case Instruction::UIToFP: | 
|  | return true; | 
|  | case Instruction::FMul: | 
|  | // x*x is always non-negative or a NaN. | 
|  | if (I->getOperand(0) == I->getOperand(1) && | 
|  | (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) | 
|  | return true; | 
|  |  | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | 
|  | Depth + 1) && | 
|  | cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, | 
|  | Depth + 1); | 
|  | case Instruction::Select: | 
|  | return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, | 
|  | Depth + 1) && | 
|  | cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, | 
|  | Depth + 1); | 
|  | case Instruction::FPExt: | 
|  | case Instruction::FPTrunc: | 
|  | // Widening/narrowing never change sign. | 
|  | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | 
|  | Depth + 1); | 
|  | case Instruction::ExtractElement: | 
|  | // Look through extract element. At the moment we keep this simple and skip | 
|  | // tracking the specific element. But at least we might find information | 
|  | // valid for all elements of the vector. | 
|  | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | 
|  | Depth + 1); | 
|  | case Instruction::Call: | 
|  | const auto *CI = cast<CallInst>(I); | 
|  | Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); | 
|  | switch (IID) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::maxnum: | 
|  | return (isKnownNeverNaN(I->getOperand(0)) && | 
|  | cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, | 
|  | SignBitOnly, Depth + 1)) || | 
|  | (isKnownNeverNaN(I->getOperand(1)) && | 
|  | cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, | 
|  | SignBitOnly, Depth + 1)); | 
|  |  | 
|  | case Intrinsic::minnum: | 
|  | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | 
|  | Depth + 1) && | 
|  | cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, | 
|  | Depth + 1); | 
|  | case Intrinsic::exp: | 
|  | case Intrinsic::exp2: | 
|  | case Intrinsic::fabs: | 
|  | return true; | 
|  |  | 
|  | case Intrinsic::sqrt: | 
|  | // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0. | 
|  | if (!SignBitOnly) | 
|  | return true; | 
|  | return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || | 
|  | CannotBeNegativeZero(CI->getOperand(0), TLI)); | 
|  |  | 
|  | case Intrinsic::powi: | 
|  | if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | // powi(x,n) is non-negative if n is even. | 
|  | if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) | 
|  | return true; | 
|  | } | 
|  | // TODO: This is not correct.  Given that exp is an integer, here are the | 
|  | // ways that pow can return a negative value: | 
|  | // | 
|  | //   pow(x, exp)    --> negative if exp is odd and x is negative. | 
|  | //   pow(-0, exp)   --> -inf if exp is negative odd. | 
|  | //   pow(-0, exp)   --> -0 if exp is positive odd. | 
|  | //   pow(-inf, exp) --> -0 if exp is negative odd. | 
|  | //   pow(-inf, exp) --> -inf if exp is positive odd. | 
|  | // | 
|  | // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, | 
|  | // but we must return false if x == -0.  Unfortunately we do not currently | 
|  | // have a way of expressing this constraint.  See details in | 
|  | // https://llvm.org/bugs/show_bug.cgi?id=31702. | 
|  | return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, | 
|  | Depth + 1); | 
|  |  | 
|  | case Intrinsic::fma: | 
|  | case Intrinsic::fmuladd: | 
|  | // x*x+y is non-negative if y is non-negative. | 
|  | return I->getOperand(0) == I->getOperand(1) && | 
|  | (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && | 
|  | cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, | 
|  | Depth + 1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool llvm::CannotBeOrderedLessThanZero(const Value *V, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); | 
|  | } | 
|  |  | 
|  | bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { | 
|  | return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); | 
|  | } | 
|  |  | 
|  | bool llvm::isKnownNeverNaN(const Value *V) { | 
|  | assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); | 
|  |  | 
|  | // If we're told that NaNs won't happen, assume they won't. | 
|  | if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) | 
|  | if (FPMathOp->hasNoNaNs()) | 
|  | return true; | 
|  |  | 
|  | // TODO: Handle instructions and potentially recurse like other 'isKnown' | 
|  | // functions. For example, the result of sitofp is never NaN. | 
|  |  | 
|  | // Handle scalar constants. | 
|  | if (auto *CFP = dyn_cast<ConstantFP>(V)) | 
|  | return !CFP->isNaN(); | 
|  |  | 
|  | // Bail out for constant expressions, but try to handle vector constants. | 
|  | if (!V->getType()->isVectorTy() || !isa<Constant>(V)) | 
|  | return false; | 
|  |  | 
|  | // For vectors, verify that each element is not NaN. | 
|  | unsigned NumElts = V->getType()->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *Elt = cast<Constant>(V)->getAggregateElement(i); | 
|  | if (!Elt) | 
|  | return false; | 
|  | if (isa<UndefValue>(Elt)) | 
|  | continue; | 
|  | auto *CElt = dyn_cast<ConstantFP>(Elt); | 
|  | if (!CElt || CElt->isNaN()) | 
|  | return false; | 
|  | } | 
|  | // All elements were confirmed not-NaN or undefined. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If the specified value can be set by repeating the same byte in memory, | 
|  | /// return the i8 value that it is represented with.  This is | 
|  | /// true for all i8 values obviously, but is also true for i32 0, i32 -1, | 
|  | /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated | 
|  | /// byte store (e.g. i16 0x1234), return null. | 
|  | Value *llvm::isBytewiseValue(Value *V) { | 
|  | // All byte-wide stores are splatable, even of arbitrary variables. | 
|  | if (V->getType()->isIntegerTy(8)) return V; | 
|  |  | 
|  | // Handle 'null' ConstantArrayZero etc. | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | if (C->isNullValue()) | 
|  | return Constant::getNullValue(Type::getInt8Ty(V->getContext())); | 
|  |  | 
|  | // Constant float and double values can be handled as integer values if the | 
|  | // corresponding integer value is "byteable".  An important case is 0.0. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | 
|  | if (CFP->getType()->isFloatTy()) | 
|  | V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); | 
|  | if (CFP->getType()->isDoubleTy()) | 
|  | V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); | 
|  | // Don't handle long double formats, which have strange constraints. | 
|  | } | 
|  |  | 
|  | // We can handle constant integers that are multiple of 8 bits. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (CI->getBitWidth() % 8 == 0) { | 
|  | assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); | 
|  |  | 
|  | if (!CI->getValue().isSplat(8)) | 
|  | return nullptr; | 
|  | return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // A ConstantDataArray/Vector is splatable if all its members are equal and | 
|  | // also splatable. | 
|  | if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { | 
|  | Value *Elt = CA->getElementAsConstant(0); | 
|  | Value *Val = isBytewiseValue(Elt); | 
|  | if (!Val) | 
|  | return nullptr; | 
|  |  | 
|  | for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) | 
|  | if (CA->getElementAsConstant(I) != Elt) | 
|  | return nullptr; | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | // Conceptually, we could handle things like: | 
|  | //   %a = zext i8 %X to i16 | 
|  | //   %b = shl i16 %a, 8 | 
|  | //   %c = or i16 %a, %b | 
|  | // but until there is an example that actually needs this, it doesn't seem | 
|  | // worth worrying about. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // This is the recursive version of BuildSubAggregate. It takes a few different | 
|  | // arguments. Idxs is the index within the nested struct From that we are | 
|  | // looking at now (which is of type IndexedType). IdxSkip is the number of | 
|  | // indices from Idxs that should be left out when inserting into the resulting | 
|  | // struct. To is the result struct built so far, new insertvalue instructions | 
|  | // build on that. | 
|  | static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, | 
|  | SmallVectorImpl<unsigned> &Idxs, | 
|  | unsigned IdxSkip, | 
|  | Instruction *InsertBefore) { | 
|  | StructType *STy = dyn_cast<StructType>(IndexedType); | 
|  | if (STy) { | 
|  | // Save the original To argument so we can modify it | 
|  | Value *OrigTo = To; | 
|  | // General case, the type indexed by Idxs is a struct | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | // Process each struct element recursively | 
|  | Idxs.push_back(i); | 
|  | Value *PrevTo = To; | 
|  | To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, | 
|  | InsertBefore); | 
|  | Idxs.pop_back(); | 
|  | if (!To) { | 
|  | // Couldn't find any inserted value for this index? Cleanup | 
|  | while (PrevTo != OrigTo) { | 
|  | InsertValueInst* Del = cast<InsertValueInst>(PrevTo); | 
|  | PrevTo = Del->getAggregateOperand(); | 
|  | Del->eraseFromParent(); | 
|  | } | 
|  | // Stop processing elements | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If we successfully found a value for each of our subaggregates | 
|  | if (To) | 
|  | return To; | 
|  | } | 
|  | // Base case, the type indexed by SourceIdxs is not a struct, or not all of | 
|  | // the struct's elements had a value that was inserted directly. In the latter | 
|  | // case, perhaps we can't determine each of the subelements individually, but | 
|  | // we might be able to find the complete struct somewhere. | 
|  |  | 
|  | // Find the value that is at that particular spot | 
|  | Value *V = FindInsertedValue(From, Idxs); | 
|  |  | 
|  | if (!V) | 
|  | return nullptr; | 
|  |  | 
|  | // Insert the value in the new (sub) aggregate | 
|  | return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), | 
|  | "tmp", InsertBefore); | 
|  | } | 
|  |  | 
|  | // This helper takes a nested struct and extracts a part of it (which is again a | 
|  | // struct) into a new value. For example, given the struct: | 
|  | // { a, { b, { c, d }, e } } | 
|  | // and the indices "1, 1" this returns | 
|  | // { c, d }. | 
|  | // | 
|  | // It does this by inserting an insertvalue for each element in the resulting | 
|  | // struct, as opposed to just inserting a single struct. This will only work if | 
|  | // each of the elements of the substruct are known (ie, inserted into From by an | 
|  | // insertvalue instruction somewhere). | 
|  | // | 
|  | // All inserted insertvalue instructions are inserted before InsertBefore | 
|  | static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, | 
|  | Instruction *InsertBefore) { | 
|  | assert(InsertBefore && "Must have someplace to insert!"); | 
|  | Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), | 
|  | idx_range); | 
|  | Value *To = UndefValue::get(IndexedType); | 
|  | SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); | 
|  | unsigned IdxSkip = Idxs.size(); | 
|  |  | 
|  | return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); | 
|  | } | 
|  |  | 
|  | /// Given an aggregate and a sequence of indices, see if the scalar value | 
|  | /// indexed is already around as a register, for example if it was inserted | 
|  | /// directly into the aggregate. | 
|  | /// | 
|  | /// If InsertBefore is not null, this function will duplicate (modified) | 
|  | /// insertvalues when a part of a nested struct is extracted. | 
|  | Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, | 
|  | Instruction *InsertBefore) { | 
|  | // Nothing to index? Just return V then (this is useful at the end of our | 
|  | // recursion). | 
|  | if (idx_range.empty()) | 
|  | return V; | 
|  | // We have indices, so V should have an indexable type. | 
|  | assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && | 
|  | "Not looking at a struct or array?"); | 
|  | assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && | 
|  | "Invalid indices for type?"); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | C = C->getAggregateElement(idx_range[0]); | 
|  | if (!C) return nullptr; | 
|  | return FindInsertedValue(C, idx_range.slice(1), InsertBefore); | 
|  | } | 
|  |  | 
|  | if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { | 
|  | // Loop the indices for the insertvalue instruction in parallel with the | 
|  | // requested indices | 
|  | const unsigned *req_idx = idx_range.begin(); | 
|  | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); | 
|  | i != e; ++i, ++req_idx) { | 
|  | if (req_idx == idx_range.end()) { | 
|  | // We can't handle this without inserting insertvalues | 
|  | if (!InsertBefore) | 
|  | return nullptr; | 
|  |  | 
|  | // The requested index identifies a part of a nested aggregate. Handle | 
|  | // this specially. For example, | 
|  | // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 | 
|  | // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 | 
|  | // %C = extractvalue {i32, { i32, i32 } } %B, 1 | 
|  | // This can be changed into | 
|  | // %A = insertvalue {i32, i32 } undef, i32 10, 0 | 
|  | // %C = insertvalue {i32, i32 } %A, i32 11, 1 | 
|  | // which allows the unused 0,0 element from the nested struct to be | 
|  | // removed. | 
|  | return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), | 
|  | InsertBefore); | 
|  | } | 
|  |  | 
|  | // This insert value inserts something else than what we are looking for. | 
|  | // See if the (aggregate) value inserted into has the value we are | 
|  | // looking for, then. | 
|  | if (*req_idx != *i) | 
|  | return FindInsertedValue(I->getAggregateOperand(), idx_range, | 
|  | InsertBefore); | 
|  | } | 
|  | // If we end up here, the indices of the insertvalue match with those | 
|  | // requested (though possibly only partially). Now we recursively look at | 
|  | // the inserted value, passing any remaining indices. | 
|  | return FindInsertedValue(I->getInsertedValueOperand(), | 
|  | makeArrayRef(req_idx, idx_range.end()), | 
|  | InsertBefore); | 
|  | } | 
|  |  | 
|  | if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { | 
|  | // If we're extracting a value from an aggregate that was extracted from | 
|  | // something else, we can extract from that something else directly instead. | 
|  | // However, we will need to chain I's indices with the requested indices. | 
|  |  | 
|  | // Calculate the number of indices required | 
|  | unsigned size = I->getNumIndices() + idx_range.size(); | 
|  | // Allocate some space to put the new indices in | 
|  | SmallVector<unsigned, 5> Idxs; | 
|  | Idxs.reserve(size); | 
|  | // Add indices from the extract value instruction | 
|  | Idxs.append(I->idx_begin(), I->idx_end()); | 
|  |  | 
|  | // Add requested indices | 
|  | Idxs.append(idx_range.begin(), idx_range.end()); | 
|  |  | 
|  | assert(Idxs.size() == size | 
|  | && "Number of indices added not correct?"); | 
|  |  | 
|  | return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); | 
|  | } | 
|  | // Otherwise, we don't know (such as, extracting from a function return value | 
|  | // or load instruction) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Analyze the specified pointer to see if it can be expressed as a base | 
|  | /// pointer plus a constant offset. Return the base and offset to the caller. | 
|  | Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, | 
|  | const DataLayout &DL) { | 
|  | unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); | 
|  | APInt ByteOffset(BitWidth, 0); | 
|  |  | 
|  | // We walk up the defs but use a visited set to handle unreachable code. In | 
|  | // that case, we stop after accumulating the cycle once (not that it | 
|  | // matters). | 
|  | SmallPtrSet<Value *, 16> Visited; | 
|  | while (Visited.insert(Ptr).second) { | 
|  | if (Ptr->getType()->isVectorTy()) | 
|  | break; | 
|  |  | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { | 
|  | // If one of the values we have visited is an addrspacecast, then | 
|  | // the pointer type of this GEP may be different from the type | 
|  | // of the Ptr parameter which was passed to this function.  This | 
|  | // means when we construct GEPOffset, we need to use the size | 
|  | // of GEP's pointer type rather than the size of the original | 
|  | // pointer type. | 
|  | APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); | 
|  | if (!GEP->accumulateConstantOffset(DL, GEPOffset)) | 
|  | break; | 
|  |  | 
|  | ByteOffset += GEPOffset.getSExtValue(); | 
|  |  | 
|  | Ptr = GEP->getPointerOperand(); | 
|  | } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || | 
|  | Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { | 
|  | Ptr = cast<Operator>(Ptr)->getOperand(0); | 
|  | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { | 
|  | if (GA->isInterposable()) | 
|  | break; | 
|  | Ptr = GA->getAliasee(); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | Offset = ByteOffset.getSExtValue(); | 
|  | return Ptr; | 
|  | } | 
|  |  | 
|  | bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, | 
|  | unsigned CharSize) { | 
|  | // Make sure the GEP has exactly three arguments. | 
|  | if (GEP->getNumOperands() != 3) | 
|  | return false; | 
|  |  | 
|  | // Make sure the index-ee is a pointer to array of \p CharSize integers. | 
|  | // CharSize. | 
|  | ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); | 
|  | if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) | 
|  | return false; | 
|  |  | 
|  | // Check to make sure that the first operand of the GEP is an integer and | 
|  | // has value 0 so that we are sure we're indexing into the initializer. | 
|  | const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); | 
|  | if (!FirstIdx || !FirstIdx->isZero()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool llvm::getConstantDataArrayInfo(const Value *V, | 
|  | ConstantDataArraySlice &Slice, | 
|  | unsigned ElementSize, uint64_t Offset) { | 
|  | assert(V); | 
|  |  | 
|  | // Look through bitcast instructions and geps. | 
|  | V = V->stripPointerCasts(); | 
|  |  | 
|  | // If the value is a GEP instruction or constant expression, treat it as an | 
|  | // offset. | 
|  | if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | // The GEP operator should be based on a pointer to string constant, and is | 
|  | // indexing into the string constant. | 
|  | if (!isGEPBasedOnPointerToString(GEP, ElementSize)) | 
|  | return false; | 
|  |  | 
|  | // If the second index isn't a ConstantInt, then this is a variable index | 
|  | // into the array.  If this occurs, we can't say anything meaningful about | 
|  | // the string. | 
|  | uint64_t StartIdx = 0; | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) | 
|  | StartIdx = CI->getZExtValue(); | 
|  | else | 
|  | return false; | 
|  | return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, | 
|  | StartIdx + Offset); | 
|  | } | 
|  |  | 
|  | // The GEP instruction, constant or instruction, must reference a global | 
|  | // variable that is a constant and is initialized. The referenced constant | 
|  | // initializer is the array that we'll use for optimization. | 
|  | const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); | 
|  | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) | 
|  | return false; | 
|  |  | 
|  | const ConstantDataArray *Array; | 
|  | ArrayType *ArrayTy; | 
|  | if (GV->getInitializer()->isNullValue()) { | 
|  | Type *GVTy = GV->getValueType(); | 
|  | if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { | 
|  | // A zeroinitializer for the array; there is no ConstantDataArray. | 
|  | Array = nullptr; | 
|  | } else { | 
|  | const DataLayout &DL = GV->getParent()->getDataLayout(); | 
|  | uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); | 
|  | uint64_t Length = SizeInBytes / (ElementSize / 8); | 
|  | if (Length <= Offset) | 
|  | return false; | 
|  |  | 
|  | Slice.Array = nullptr; | 
|  | Slice.Offset = 0; | 
|  | Slice.Length = Length - Offset; | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // This must be a ConstantDataArray. | 
|  | Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); | 
|  | if (!Array) | 
|  | return false; | 
|  | ArrayTy = Array->getType(); | 
|  | } | 
|  | if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) | 
|  | return false; | 
|  |  | 
|  | uint64_t NumElts = ArrayTy->getArrayNumElements(); | 
|  | if (Offset > NumElts) | 
|  | return false; | 
|  |  | 
|  | Slice.Array = Array; | 
|  | Slice.Offset = Offset; | 
|  | Slice.Length = NumElts - Offset; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This function computes the length of a null-terminated C string pointed to | 
|  | /// by V. If successful, it returns true and returns the string in Str. | 
|  | /// If unsuccessful, it returns false. | 
|  | bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, | 
|  | uint64_t Offset, bool TrimAtNul) { | 
|  | ConstantDataArraySlice Slice; | 
|  | if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) | 
|  | return false; | 
|  |  | 
|  | if (Slice.Array == nullptr) { | 
|  | if (TrimAtNul) { | 
|  | Str = StringRef(); | 
|  | return true; | 
|  | } | 
|  | if (Slice.Length == 1) { | 
|  | Str = StringRef("", 1); | 
|  | return true; | 
|  | } | 
|  | // We cannot instantiate a StringRef as we do not have an appropriate string | 
|  | // of 0s at hand. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Start out with the entire array in the StringRef. | 
|  | Str = Slice.Array->getAsString(); | 
|  | // Skip over 'offset' bytes. | 
|  | Str = Str.substr(Slice.Offset); | 
|  |  | 
|  | if (TrimAtNul) { | 
|  | // Trim off the \0 and anything after it.  If the array is not nul | 
|  | // terminated, we just return the whole end of string.  The client may know | 
|  | // some other way that the string is length-bound. | 
|  | Str = Str.substr(0, Str.find('\0')); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // These next two are very similar to the above, but also look through PHI | 
|  | // nodes. | 
|  | // TODO: See if we can integrate these two together. | 
|  |  | 
|  | /// If we can compute the length of the string pointed to by | 
|  | /// the specified pointer, return 'len+1'.  If we can't, return 0. | 
|  | static uint64_t GetStringLengthH(const Value *V, | 
|  | SmallPtrSetImpl<const PHINode*> &PHIs, | 
|  | unsigned CharSize) { | 
|  | // Look through noop bitcast instructions. | 
|  | V = V->stripPointerCasts(); | 
|  |  | 
|  | // If this is a PHI node, there are two cases: either we have already seen it | 
|  | // or we haven't. | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | if (!PHIs.insert(PN).second) | 
|  | return ~0ULL;  // already in the set. | 
|  |  | 
|  | // If it was new, see if all the input strings are the same length. | 
|  | uint64_t LenSoFar = ~0ULL; | 
|  | for (Value *IncValue : PN->incoming_values()) { | 
|  | uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); | 
|  | if (Len == 0) return 0; // Unknown length -> unknown. | 
|  |  | 
|  | if (Len == ~0ULL) continue; | 
|  |  | 
|  | if (Len != LenSoFar && LenSoFar != ~0ULL) | 
|  | return 0;    // Disagree -> unknown. | 
|  | LenSoFar = Len; | 
|  | } | 
|  |  | 
|  | // Success, all agree. | 
|  | return LenSoFar; | 
|  | } | 
|  |  | 
|  | // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) | 
|  | if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { | 
|  | uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); | 
|  | if (Len1 == 0) return 0; | 
|  | uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); | 
|  | if (Len2 == 0) return 0; | 
|  | if (Len1 == ~0ULL) return Len2; | 
|  | if (Len2 == ~0ULL) return Len1; | 
|  | if (Len1 != Len2) return 0; | 
|  | return Len1; | 
|  | } | 
|  |  | 
|  | // Otherwise, see if we can read the string. | 
|  | ConstantDataArraySlice Slice; | 
|  | if (!getConstantDataArrayInfo(V, Slice, CharSize)) | 
|  | return 0; | 
|  |  | 
|  | if (Slice.Array == nullptr) | 
|  | return 1; | 
|  |  | 
|  | // Search for nul characters | 
|  | unsigned NullIndex = 0; | 
|  | for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { | 
|  | if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NullIndex + 1; | 
|  | } | 
|  |  | 
|  | /// If we can compute the length of the string pointed to by | 
|  | /// the specified pointer, return 'len+1'.  If we can't, return 0. | 
|  | uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return 0; | 
|  |  | 
|  | SmallPtrSet<const PHINode*, 32> PHIs; | 
|  | uint64_t Len = GetStringLengthH(V, PHIs, CharSize); | 
|  | // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return | 
|  | // an empty string as a length. | 
|  | return Len == ~0ULL ? 1 : Len; | 
|  | } | 
|  |  | 
|  | const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) { | 
|  | assert(CS && | 
|  | "getArgumentAliasingToReturnedPointer only works on nonnull CallSite"); | 
|  | if (const Value *RV = CS.getReturnedArgOperand()) | 
|  | return RV; | 
|  | // This can be used only as a aliasing property. | 
|  | if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS)) | 
|  | return CS.getArgOperand(0); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( | 
|  | ImmutableCallSite CS) { | 
|  | return CS.getIntrinsicID() == Intrinsic::launder_invariant_group || | 
|  | CS.getIntrinsicID() == Intrinsic::strip_invariant_group; | 
|  | } | 
|  |  | 
|  | /// \p PN defines a loop-variant pointer to an object.  Check if the | 
|  | /// previous iteration of the loop was referring to the same object as \p PN. | 
|  | static bool isSameUnderlyingObjectInLoop(const PHINode *PN, | 
|  | const LoopInfo *LI) { | 
|  | // Find the loop-defined value. | 
|  | Loop *L = LI->getLoopFor(PN->getParent()); | 
|  | if (PN->getNumIncomingValues() != 2) | 
|  | return true; | 
|  |  | 
|  | // Find the value from previous iteration. | 
|  | auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); | 
|  | if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) | 
|  | PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); | 
|  | if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) | 
|  | return true; | 
|  |  | 
|  | // If a new pointer is loaded in the loop, the pointer references a different | 
|  | // object in every iteration.  E.g.: | 
|  | //    for (i) | 
|  | //       int *p = a[i]; | 
|  | //       ... | 
|  | if (auto *Load = dyn_cast<LoadInst>(PrevValue)) | 
|  | if (!L->isLoopInvariant(Load->getPointerOperand())) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, | 
|  | unsigned MaxLookup) { | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return V; | 
|  | for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | V = GEP->getPointerOperand(); | 
|  | } else if (Operator::getOpcode(V) == Instruction::BitCast || | 
|  | Operator::getOpcode(V) == Instruction::AddrSpaceCast) { | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (GA->isInterposable()) | 
|  | return V; | 
|  | V = GA->getAliasee(); | 
|  | } else if (isa<AllocaInst>(V)) { | 
|  | // An alloca can't be further simplified. | 
|  | return V; | 
|  | } else { | 
|  | if (auto CS = CallSite(V)) { | 
|  | // CaptureTracking can know about special capturing properties of some | 
|  | // intrinsics like launder.invariant.group, that can't be expressed with | 
|  | // the attributes, but have properties like returning aliasing pointer. | 
|  | // Because some analysis may assume that nocaptured pointer is not | 
|  | // returned from some special intrinsic (because function would have to | 
|  | // be marked with returns attribute), it is crucial to use this function | 
|  | // because it should be in sync with CaptureTracking. Not using it may | 
|  | // cause weird miscompilations where 2 aliasing pointers are assumed to | 
|  | // noalias. | 
|  | if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { | 
|  | V = RP; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if InstructionSimplify knows any relevant tricks. | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | // TODO: Acquire a DominatorTree and AssumptionCache and use them. | 
|  | if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { | 
|  | V = Simplified; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  | assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, | 
|  | const DataLayout &DL, LoopInfo *LI, | 
|  | unsigned MaxLookup) { | 
|  | SmallPtrSet<Value *, 4> Visited; | 
|  | SmallVector<Value *, 4> Worklist; | 
|  | Worklist.push_back(V); | 
|  | do { | 
|  | Value *P = Worklist.pop_back_val(); | 
|  | P = GetUnderlyingObject(P, DL, MaxLookup); | 
|  |  | 
|  | if (!Visited.insert(P).second) | 
|  | continue; | 
|  |  | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(P)) { | 
|  | Worklist.push_back(SI->getTrueValue()); | 
|  | Worklist.push_back(SI->getFalseValue()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(P)) { | 
|  | // If this PHI changes the underlying object in every iteration of the | 
|  | // loop, don't look through it.  Consider: | 
|  | //   int **A; | 
|  | //   for (i) { | 
|  | //     Prev = Curr;     // Prev = PHI (Prev_0, Curr) | 
|  | //     Curr = A[i]; | 
|  | //     *Prev, *Curr; | 
|  | // | 
|  | // Prev is tracking Curr one iteration behind so they refer to different | 
|  | // underlying objects. | 
|  | if (!LI || !LI->isLoopHeader(PN->getParent()) || | 
|  | isSameUnderlyingObjectInLoop(PN, LI)) | 
|  | for (Value *IncValue : PN->incoming_values()) | 
|  | Worklist.push_back(IncValue); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Objects.push_back(P); | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  |  | 
|  | /// This is the function that does the work of looking through basic | 
|  | /// ptrtoint+arithmetic+inttoptr sequences. | 
|  | static const Value *getUnderlyingObjectFromInt(const Value *V) { | 
|  | do { | 
|  | if (const Operator *U = dyn_cast<Operator>(V)) { | 
|  | // If we find a ptrtoint, we can transfer control back to the | 
|  | // regular getUnderlyingObjectFromInt. | 
|  | if (U->getOpcode() == Instruction::PtrToInt) | 
|  | return U->getOperand(0); | 
|  | // If we find an add of a constant, a multiplied value, or a phi, it's | 
|  | // likely that the other operand will lead us to the base | 
|  | // object. We don't have to worry about the case where the | 
|  | // object address is somehow being computed by the multiply, | 
|  | // because our callers only care when the result is an | 
|  | // identifiable object. | 
|  | if (U->getOpcode() != Instruction::Add || | 
|  | (!isa<ConstantInt>(U->getOperand(1)) && | 
|  | Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && | 
|  | !isa<PHINode>(U->getOperand(1)))) | 
|  | return V; | 
|  | V = U->getOperand(0); | 
|  | } else { | 
|  | return V; | 
|  | } | 
|  | assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | /// This is a wrapper around GetUnderlyingObjects and adds support for basic | 
|  | /// ptrtoint+arithmetic+inttoptr sequences. | 
|  | /// It returns false if unidentified object is found in GetUnderlyingObjects. | 
|  | bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, | 
|  | SmallVectorImpl<Value *> &Objects, | 
|  | const DataLayout &DL) { | 
|  | SmallPtrSet<const Value *, 16> Visited; | 
|  | SmallVector<const Value *, 4> Working(1, V); | 
|  | do { | 
|  | V = Working.pop_back_val(); | 
|  |  | 
|  | SmallVector<Value *, 4> Objs; | 
|  | GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); | 
|  |  | 
|  | for (Value *V : Objs) { | 
|  | if (!Visited.insert(V).second) | 
|  | continue; | 
|  | if (Operator::getOpcode(V) == Instruction::IntToPtr) { | 
|  | const Value *O = | 
|  | getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); | 
|  | if (O->getType()->isPointerTy()) { | 
|  | Working.push_back(O); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // If GetUnderlyingObjects fails to find an identifiable object, | 
|  | // getUnderlyingObjectsForCodeGen also fails for safety. | 
|  | if (!isIdentifiedObject(V)) { | 
|  | Objects.clear(); | 
|  | return false; | 
|  | } | 
|  | Objects.push_back(const_cast<Value *>(V)); | 
|  | } | 
|  | } while (!Working.empty()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the only users of this pointer are lifetime markers. | 
|  | bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { | 
|  | for (const User *U : V->users()) { | 
|  | const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); | 
|  | if (!II) return false; | 
|  |  | 
|  | if (II->getIntrinsicID() != Intrinsic::lifetime_start && | 
|  | II->getIntrinsicID() != Intrinsic::lifetime_end) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool llvm::isSafeToSpeculativelyExecute(const Value *V, | 
|  | const Instruction *CtxI, | 
|  | const DominatorTree *DT) { | 
|  | const Operator *Inst = dyn_cast<Operator>(V); | 
|  | if (!Inst) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) | 
|  | if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) | 
|  | if (C->canTrap()) | 
|  | return false; | 
|  |  | 
|  | switch (Inst->getOpcode()) { | 
|  | default: | 
|  | return true; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: { | 
|  | // x / y is undefined if y == 0. | 
|  | const APInt *V; | 
|  | if (match(Inst->getOperand(1), m_APInt(V))) | 
|  | return *V != 0; | 
|  | return false; | 
|  | } | 
|  | case Instruction::SDiv: | 
|  | case Instruction::SRem: { | 
|  | // x / y is undefined if y == 0 or x == INT_MIN and y == -1 | 
|  | const APInt *Numerator, *Denominator; | 
|  | if (!match(Inst->getOperand(1), m_APInt(Denominator))) | 
|  | return false; | 
|  | // We cannot hoist this division if the denominator is 0. | 
|  | if (*Denominator == 0) | 
|  | return false; | 
|  | // It's safe to hoist if the denominator is not 0 or -1. | 
|  | if (*Denominator != -1) | 
|  | return true; | 
|  | // At this point we know that the denominator is -1.  It is safe to hoist as | 
|  | // long we know that the numerator is not INT_MIN. | 
|  | if (match(Inst->getOperand(0), m_APInt(Numerator))) | 
|  | return !Numerator->isMinSignedValue(); | 
|  | // The numerator *might* be MinSignedValue. | 
|  | return false; | 
|  | } | 
|  | case Instruction::Load: { | 
|  | const LoadInst *LI = cast<LoadInst>(Inst); | 
|  | if (!LI->isUnordered() || | 
|  | // Speculative load may create a race that did not exist in the source. | 
|  | LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || | 
|  | // Speculative load may load data from dirty regions. | 
|  | LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || | 
|  | LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) | 
|  | return false; | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  | return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), | 
|  | LI->getAlignment(), DL, CtxI, DT); | 
|  | } | 
|  | case Instruction::Call: { | 
|  | auto *CI = cast<const CallInst>(Inst); | 
|  | const Function *Callee = CI->getCalledFunction(); | 
|  |  | 
|  | // The called function could have undefined behavior or side-effects, even | 
|  | // if marked readnone nounwind. | 
|  | return Callee && Callee->isSpeculatable(); | 
|  | } | 
|  | case Instruction::VAArg: | 
|  | case Instruction::Alloca: | 
|  | case Instruction::Invoke: | 
|  | case Instruction::PHI: | 
|  | case Instruction::Store: | 
|  | case Instruction::Ret: | 
|  | case Instruction::Br: | 
|  | case Instruction::IndirectBr: | 
|  | case Instruction::Switch: | 
|  | case Instruction::Unreachable: | 
|  | case Instruction::Fence: | 
|  | case Instruction::AtomicRMW: | 
|  | case Instruction::AtomicCmpXchg: | 
|  | case Instruction::LandingPad: | 
|  | case Instruction::Resume: | 
|  | case Instruction::CatchSwitch: | 
|  | case Instruction::CatchPad: | 
|  | case Instruction::CatchRet: | 
|  | case Instruction::CleanupPad: | 
|  | case Instruction::CleanupRet: | 
|  | return false; // Misc instructions which have effects | 
|  | } | 
|  | } | 
|  |  | 
|  | bool llvm::mayBeMemoryDependent(const Instruction &I) { | 
|  | return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); | 
|  | } | 
|  |  | 
|  | OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, | 
|  | const Value *RHS, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | // Multiplying n * m significant bits yields a result of n + m significant | 
|  | // bits. If the total number of significant bits does not exceed the | 
|  | // result bit width (minus 1), there is no overflow. | 
|  | // This means if we have enough leading zero bits in the operands | 
|  | // we can guarantee that the result does not overflow. | 
|  | // Ref: "Hacker's Delight" by Henry Warren | 
|  | unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); | 
|  | KnownBits LHSKnown(BitWidth); | 
|  | KnownBits RHSKnown(BitWidth); | 
|  | computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | // Note that underestimating the number of zero bits gives a more | 
|  | // conservative answer. | 
|  | unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + | 
|  | RHSKnown.countMinLeadingZeros(); | 
|  | // First handle the easy case: if we have enough zero bits there's | 
|  | // definitely no overflow. | 
|  | if (ZeroBits >= BitWidth) | 
|  | return OverflowResult::NeverOverflows; | 
|  |  | 
|  | // Get the largest possible values for each operand. | 
|  | APInt LHSMax = ~LHSKnown.Zero; | 
|  | APInt RHSMax = ~RHSKnown.Zero; | 
|  |  | 
|  | // We know the multiply operation doesn't overflow if the maximum values for | 
|  | // each operand will not overflow after we multiply them together. | 
|  | bool MaxOverflow; | 
|  | (void)LHSMax.umul_ov(RHSMax, MaxOverflow); | 
|  | if (!MaxOverflow) | 
|  | return OverflowResult::NeverOverflows; | 
|  |  | 
|  | // We know it always overflows if multiplying the smallest possible values for | 
|  | // the operands also results in overflow. | 
|  | bool MinOverflow; | 
|  | (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); | 
|  | if (MinOverflow) | 
|  | return OverflowResult::AlwaysOverflows; | 
|  |  | 
|  | return OverflowResult::MayOverflow; | 
|  | } | 
|  |  | 
|  | OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS, | 
|  | const Value *RHS, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | // Multiplying n * m significant bits yields a result of n + m significant | 
|  | // bits. If the total number of significant bits does not exceed the | 
|  | // result bit width (minus 1), there is no overflow. | 
|  | // This means if we have enough leading sign bits in the operands | 
|  | // we can guarantee that the result does not overflow. | 
|  | // Ref: "Hacker's Delight" by Henry Warren | 
|  | unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | // Note that underestimating the number of sign bits gives a more | 
|  | // conservative answer. | 
|  | unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + | 
|  | ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); | 
|  |  | 
|  | // First handle the easy case: if we have enough sign bits there's | 
|  | // definitely no overflow. | 
|  | if (SignBits > BitWidth + 1) | 
|  | return OverflowResult::NeverOverflows; | 
|  |  | 
|  | // There are two ambiguous cases where there can be no overflow: | 
|  | //   SignBits == BitWidth + 1    and | 
|  | //   SignBits == BitWidth | 
|  | // The second case is difficult to check, therefore we only handle the | 
|  | // first case. | 
|  | if (SignBits == BitWidth + 1) { | 
|  | // It overflows only when both arguments are negative and the true | 
|  | // product is exactly the minimum negative number. | 
|  | // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 | 
|  | // For simplicity we just check if at least one side is not negative. | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) | 
|  | return OverflowResult::NeverOverflows; | 
|  | } | 
|  | return OverflowResult::MayOverflow; | 
|  | } | 
|  |  | 
|  | OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, | 
|  | const Value *RHS, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { | 
|  | KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  |  | 
|  | if (LHSKnown.isNegative() && RHSKnown.isNegative()) { | 
|  | // The sign bit is set in both cases: this MUST overflow. | 
|  | // Create a simple add instruction, and insert it into the struct. | 
|  | return OverflowResult::AlwaysOverflows; | 
|  | } | 
|  |  | 
|  | if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { | 
|  | // The sign bit is clear in both cases: this CANNOT overflow. | 
|  | // Create a simple add instruction, and insert it into the struct. | 
|  | return OverflowResult::NeverOverflows; | 
|  | } | 
|  | } | 
|  |  | 
|  | return OverflowResult::MayOverflow; | 
|  | } | 
|  |  | 
|  | /// Return true if we can prove that adding the two values of the | 
|  | /// knownbits will not overflow. | 
|  | /// Otherwise return false. | 
|  | static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, | 
|  | const KnownBits &RHSKnown) { | 
|  | // Addition of two 2's complement numbers having opposite signs will never | 
|  | // overflow. | 
|  | if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || | 
|  | (LHSKnown.isNonNegative() && RHSKnown.isNegative())) | 
|  | return true; | 
|  |  | 
|  | // If either of the values is known to be non-negative, adding them can only | 
|  | // overflow if the second is also non-negative, so we can assume that. | 
|  | // Two non-negative numbers will only overflow if there is a carry to the | 
|  | // sign bit, so we can check if even when the values are as big as possible | 
|  | // there is no overflow to the sign bit. | 
|  | if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { | 
|  | APInt MaxLHS = ~LHSKnown.Zero; | 
|  | MaxLHS.clearSignBit(); | 
|  | APInt MaxRHS = ~RHSKnown.Zero; | 
|  | MaxRHS.clearSignBit(); | 
|  | APInt Result = std::move(MaxLHS) + std::move(MaxRHS); | 
|  | return Result.isSignBitClear(); | 
|  | } | 
|  |  | 
|  | // If either of the values is known to be negative, adding them can only | 
|  | // overflow if the second is also negative, so we can assume that. | 
|  | // Two negative number will only overflow if there is no carry to the sign | 
|  | // bit, so we can check if even when the values are as small as possible | 
|  | // there is overflow to the sign bit. | 
|  | if (LHSKnown.isNegative() || RHSKnown.isNegative()) { | 
|  | APInt MinLHS = LHSKnown.One; | 
|  | MinLHS.clearSignBit(); | 
|  | APInt MinRHS = RHSKnown.One; | 
|  | MinRHS.clearSignBit(); | 
|  | APInt Result = std::move(MinLHS) + std::move(MinRHS); | 
|  | return Result.isSignBitSet(); | 
|  | } | 
|  |  | 
|  | // If we reached here it means that we know nothing about the sign bits. | 
|  | // In this case we can't know if there will be an overflow, since by | 
|  | // changing the sign bits any two values can be made to overflow. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static OverflowResult computeOverflowForSignedAdd(const Value *LHS, | 
|  | const Value *RHS, | 
|  | const AddOperator *Add, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | if (Add && Add->hasNoSignedWrap()) { | 
|  | return OverflowResult::NeverOverflows; | 
|  | } | 
|  |  | 
|  | // If LHS and RHS each have at least two sign bits, the addition will look | 
|  | // like | 
|  | // | 
|  | // XX..... + | 
|  | // YY..... | 
|  | // | 
|  | // If the carry into the most significant position is 0, X and Y can't both | 
|  | // be 1 and therefore the carry out of the addition is also 0. | 
|  | // | 
|  | // If the carry into the most significant position is 1, X and Y can't both | 
|  | // be 0 and therefore the carry out of the addition is also 1. | 
|  | // | 
|  | // Since the carry into the most significant position is always equal to | 
|  | // the carry out of the addition, there is no signed overflow. | 
|  | if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && | 
|  | ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) | 
|  | return OverflowResult::NeverOverflows; | 
|  |  | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  |  | 
|  | if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) | 
|  | return OverflowResult::NeverOverflows; | 
|  |  | 
|  | // The remaining code needs Add to be available. Early returns if not so. | 
|  | if (!Add) | 
|  | return OverflowResult::MayOverflow; | 
|  |  | 
|  | // If the sign of Add is the same as at least one of the operands, this add | 
|  | // CANNOT overflow. This is particularly useful when the sum is | 
|  | // @llvm.assume'ed non-negative rather than proved so from analyzing its | 
|  | // operands. | 
|  | bool LHSOrRHSKnownNonNegative = | 
|  | (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); | 
|  | bool LHSOrRHSKnownNegative = | 
|  | (LHSKnown.isNegative() || RHSKnown.isNegative()); | 
|  | if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { | 
|  | KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || | 
|  | (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { | 
|  | return OverflowResult::NeverOverflows; | 
|  | } | 
|  | } | 
|  |  | 
|  | return OverflowResult::MayOverflow; | 
|  | } | 
|  |  | 
|  | OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, | 
|  | const Value *RHS, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | // If the LHS is negative and the RHS is non-negative, no unsigned wrap. | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); | 
|  | if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) | 
|  | return OverflowResult::NeverOverflows; | 
|  |  | 
|  | return OverflowResult::MayOverflow; | 
|  | } | 
|  |  | 
|  | OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, | 
|  | const Value *RHS, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | // If LHS and RHS each have at least two sign bits, the subtraction | 
|  | // cannot overflow. | 
|  | if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && | 
|  | ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) | 
|  | return OverflowResult::NeverOverflows; | 
|  |  | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); | 
|  |  | 
|  | KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); | 
|  |  | 
|  | // Subtraction of two 2's complement numbers having identical signs will | 
|  | // never overflow. | 
|  | if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || | 
|  | (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) | 
|  | return OverflowResult::NeverOverflows; | 
|  |  | 
|  | // TODO: implement logic similar to checkRippleForAdd | 
|  | return OverflowResult::MayOverflow; | 
|  | } | 
|  |  | 
|  | bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, | 
|  | const DominatorTree &DT) { | 
|  | #ifndef NDEBUG | 
|  | auto IID = II->getIntrinsicID(); | 
|  | assert((IID == Intrinsic::sadd_with_overflow || | 
|  | IID == Intrinsic::uadd_with_overflow || | 
|  | IID == Intrinsic::ssub_with_overflow || | 
|  | IID == Intrinsic::usub_with_overflow || | 
|  | IID == Intrinsic::smul_with_overflow || | 
|  | IID == Intrinsic::umul_with_overflow) && | 
|  | "Not an overflow intrinsic!"); | 
|  | #endif | 
|  |  | 
|  | SmallVector<const BranchInst *, 2> GuardingBranches; | 
|  | SmallVector<const ExtractValueInst *, 2> Results; | 
|  |  | 
|  | for (const User *U : II->users()) { | 
|  | if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { | 
|  | assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); | 
|  |  | 
|  | if (EVI->getIndices()[0] == 0) | 
|  | Results.push_back(EVI); | 
|  | else { | 
|  | assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); | 
|  |  | 
|  | for (const auto *U : EVI->users()) | 
|  | if (const auto *B = dyn_cast<BranchInst>(U)) { | 
|  | assert(B->isConditional() && "How else is it using an i1?"); | 
|  | GuardingBranches.push_back(B); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // We are using the aggregate directly in a way we don't want to analyze | 
|  | // here (storing it to a global, say). | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { | 
|  | BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); | 
|  | if (!NoWrapEdge.isSingleEdge()) | 
|  | return false; | 
|  |  | 
|  | // Check if all users of the add are provably no-wrap. | 
|  | for (const auto *Result : Results) { | 
|  | // If the extractvalue itself is not executed on overflow, the we don't | 
|  | // need to check each use separately, since domination is transitive. | 
|  | if (DT.dominates(NoWrapEdge, Result->getParent())) | 
|  | continue; | 
|  |  | 
|  | for (auto &RU : Result->uses()) | 
|  | if (!DT.dominates(NoWrapEdge, RU)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); | 
|  | } | 
|  |  | 
|  |  | 
|  | OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), | 
|  | Add, DL, AC, CxtI, DT); | 
|  | } | 
|  |  | 
|  | OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, | 
|  | const Value *RHS, | 
|  | const DataLayout &DL, | 
|  | AssumptionCache *AC, | 
|  | const Instruction *CxtI, | 
|  | const DominatorTree *DT) { | 
|  | return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); | 
|  | } | 
|  |  | 
|  | bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { | 
|  | // A memory operation returns normally if it isn't volatile. A volatile | 
|  | // operation is allowed to trap. | 
|  | // | 
|  | // An atomic operation isn't guaranteed to return in a reasonable amount of | 
|  | // time because it's possible for another thread to interfere with it for an | 
|  | // arbitrary length of time, but programs aren't allowed to rely on that. | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | return !LI->isVolatile(); | 
|  | if (const StoreInst *SI = dyn_cast<StoreInst>(I)) | 
|  | return !SI->isVolatile(); | 
|  | if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) | 
|  | return !CXI->isVolatile(); | 
|  | if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) | 
|  | return !RMWI->isVolatile(); | 
|  | if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) | 
|  | return !MII->isVolatile(); | 
|  |  | 
|  | // If there is no successor, then execution can't transfer to it. | 
|  | if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) | 
|  | return !CRI->unwindsToCaller(); | 
|  | if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) | 
|  | return !CatchSwitch->unwindsToCaller(); | 
|  | if (isa<ResumeInst>(I)) | 
|  | return false; | 
|  | if (isa<ReturnInst>(I)) | 
|  | return false; | 
|  | if (isa<UnreachableInst>(I)) | 
|  | return false; | 
|  |  | 
|  | // Calls can throw, or contain an infinite loop, or kill the process. | 
|  | if (auto CS = ImmutableCallSite(I)) { | 
|  | // Call sites that throw have implicit non-local control flow. | 
|  | if (!CS.doesNotThrow()) | 
|  | return false; | 
|  |  | 
|  | // Non-throwing call sites can loop infinitely, call exit/pthread_exit | 
|  | // etc. and thus not return.  However, LLVM already assumes that | 
|  | // | 
|  | //  - Thread exiting actions are modeled as writes to memory invisible to | 
|  | //    the program. | 
|  | // | 
|  | //  - Loops that don't have side effects (side effects are volatile/atomic | 
|  | //    stores and IO) always terminate (see http://llvm.org/PR965). | 
|  | //    Furthermore IO itself is also modeled as writes to memory invisible to | 
|  | //    the program. | 
|  | // | 
|  | // We rely on those assumptions here, and use the memory effects of the call | 
|  | // target as a proxy for checking that it always returns. | 
|  |  | 
|  | // FIXME: This isn't aggressive enough; a call which only writes to a global | 
|  | // is guaranteed to return. | 
|  | return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || | 
|  | match(I, m_Intrinsic<Intrinsic::assume>()) || | 
|  | match(I, m_Intrinsic<Intrinsic::sideeffect>()); | 
|  | } | 
|  |  | 
|  | // Other instructions return normally. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { | 
|  | // TODO: This is slightly consdervative for invoke instruction since exiting | 
|  | // via an exception *is* normal control for them. | 
|  | for (auto I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, | 
|  | const Loop *L) { | 
|  | // The loop header is guaranteed to be executed for every iteration. | 
|  | // | 
|  | // FIXME: Relax this constraint to cover all basic blocks that are | 
|  | // guaranteed to be executed at every iteration. | 
|  | if (I->getParent() != L->getHeader()) return false; | 
|  |  | 
|  | for (const Instruction &LI : *L->getHeader()) { | 
|  | if (&LI == I) return true; | 
|  | if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; | 
|  | } | 
|  | llvm_unreachable("Instruction not contained in its own parent basic block."); | 
|  | } | 
|  |  | 
|  | bool llvm::propagatesFullPoison(const Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Trunc: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | case Instruction::Mul: | 
|  | case Instruction::Shl: | 
|  | case Instruction::GetElementPtr: | 
|  | // These operations all propagate poison unconditionally. Note that poison | 
|  | // is not any particular value, so xor or subtraction of poison with | 
|  | // itself still yields poison, not zero. | 
|  | return true; | 
|  |  | 
|  | case Instruction::AShr: | 
|  | case Instruction::SExt: | 
|  | // For these operations, one bit of the input is replicated across | 
|  | // multiple output bits. A replicated poison bit is still poison. | 
|  | return true; | 
|  |  | 
|  | case Instruction::ICmp: | 
|  | // Comparing poison with any value yields poison.  This is why, for | 
|  | // instance, x s< (x +nsw 1) can be folded to true. | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Store: | 
|  | return cast<StoreInst>(I)->getPointerOperand(); | 
|  |  | 
|  | case Instruction::Load: | 
|  | return cast<LoadInst>(I)->getPointerOperand(); | 
|  |  | 
|  | case Instruction::AtomicCmpXchg: | 
|  | return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); | 
|  |  | 
|  | case Instruction::AtomicRMW: | 
|  | return cast<AtomicRMWInst>(I)->getPointerOperand(); | 
|  |  | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | return I->getOperand(1); | 
|  |  | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { | 
|  | // We currently only look for uses of poison values within the same basic | 
|  | // block, as that makes it easier to guarantee that the uses will be | 
|  | // executed given that PoisonI is executed. | 
|  | // | 
|  | // FIXME: Expand this to consider uses beyond the same basic block. To do | 
|  | // this, look out for the distinction between post-dominance and strong | 
|  | // post-dominance. | 
|  | const BasicBlock *BB = PoisonI->getParent(); | 
|  |  | 
|  | // Set of instructions that we have proved will yield poison if PoisonI | 
|  | // does. | 
|  | SmallSet<const Value *, 16> YieldsPoison; | 
|  | SmallSet<const BasicBlock *, 4> Visited; | 
|  | YieldsPoison.insert(PoisonI); | 
|  | Visited.insert(PoisonI->getParent()); | 
|  |  | 
|  | BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); | 
|  |  | 
|  | unsigned Iter = 0; | 
|  | while (Iter++ < MaxDepth) { | 
|  | for (auto &I : make_range(Begin, End)) { | 
|  | if (&I != PoisonI) { | 
|  | const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); | 
|  | if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) | 
|  | return true; | 
|  | if (!isGuaranteedToTransferExecutionToSuccessor(&I)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Mark poison that propagates from I through uses of I. | 
|  | if (YieldsPoison.count(&I)) { | 
|  | for (const User *User : I.users()) { | 
|  | const Instruction *UserI = cast<Instruction>(User); | 
|  | if (propagatesFullPoison(UserI)) | 
|  | YieldsPoison.insert(User); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *NextBB = BB->getSingleSuccessor()) { | 
|  | if (Visited.insert(NextBB).second) { | 
|  | BB = NextBB; | 
|  | Begin = BB->getFirstNonPHI()->getIterator(); | 
|  | End = BB->end(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { | 
|  | if (FMF.noNaNs()) | 
|  | return true; | 
|  |  | 
|  | if (auto *C = dyn_cast<ConstantFP>(V)) | 
|  | return !C->isNaN(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isKnownNonZero(const Value *V) { | 
|  | if (auto *C = dyn_cast<ConstantFP>(V)) | 
|  | return !C->isZero(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Match clamp pattern for float types without care about NaNs or signed zeros. | 
|  | /// Given non-min/max outer cmp/select from the clamp pattern this | 
|  | /// function recognizes if it can be substitued by a "canonical" min/max | 
|  | /// pattern. | 
|  | static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, | 
|  | Value *CmpLHS, Value *CmpRHS, | 
|  | Value *TrueVal, Value *FalseVal, | 
|  | Value *&LHS, Value *&RHS) { | 
|  | // Try to match | 
|  | //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) | 
|  | //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) | 
|  | // and return description of the outer Max/Min. | 
|  |  | 
|  | // First, check if select has inverse order: | 
|  | if (CmpRHS == FalseVal) { | 
|  | std::swap(TrueVal, FalseVal); | 
|  | Pred = CmpInst::getInversePredicate(Pred); | 
|  | } | 
|  |  | 
|  | // Assume success now. If there's no match, callers should not use these anyway. | 
|  | LHS = TrueVal; | 
|  | RHS = FalseVal; | 
|  |  | 
|  | const APFloat *FC1; | 
|  | if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | const APFloat *FC2; | 
|  | switch (Pred) { | 
|  | case CmpInst::FCMP_OLT: | 
|  | case CmpInst::FCMP_OLE: | 
|  | case CmpInst::FCMP_ULT: | 
|  | case CmpInst::FCMP_ULE: | 
|  | if (match(FalseVal, | 
|  | m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), | 
|  | m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && | 
|  | FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) | 
|  | return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; | 
|  | break; | 
|  | case CmpInst::FCMP_OGT: | 
|  | case CmpInst::FCMP_OGE: | 
|  | case CmpInst::FCMP_UGT: | 
|  | case CmpInst::FCMP_UGE: | 
|  | if (match(FalseVal, | 
|  | m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), | 
|  | m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && | 
|  | FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) | 
|  | return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | } | 
|  |  | 
|  | /// Recognize variations of: | 
|  | ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) | 
|  | static SelectPatternResult matchClamp(CmpInst::Predicate Pred, | 
|  | Value *CmpLHS, Value *CmpRHS, | 
|  | Value *TrueVal, Value *FalseVal) { | 
|  | // Swap the select operands and predicate to match the patterns below. | 
|  | if (CmpRHS != TrueVal) { | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | std::swap(TrueVal, FalseVal); | 
|  | } | 
|  | const APInt *C1; | 
|  | if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { | 
|  | const APInt *C2; | 
|  | // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) | 
|  | if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && | 
|  | C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) | 
|  | return {SPF_SMAX, SPNB_NA, false}; | 
|  |  | 
|  | // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) | 
|  | if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && | 
|  | C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) | 
|  | return {SPF_SMIN, SPNB_NA, false}; | 
|  |  | 
|  | // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) | 
|  | if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && | 
|  | C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) | 
|  | return {SPF_UMAX, SPNB_NA, false}; | 
|  |  | 
|  | // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) | 
|  | if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && | 
|  | C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) | 
|  | return {SPF_UMIN, SPNB_NA, false}; | 
|  | } | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | } | 
|  |  | 
|  | /// Recognize variations of: | 
|  | ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) | 
|  | static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, | 
|  | Value *CmpLHS, Value *CmpRHS, | 
|  | Value *TVal, Value *FVal, | 
|  | unsigned Depth) { | 
|  | // TODO: Allow FP min/max with nnan/nsz. | 
|  | assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); | 
|  |  | 
|  | Value *A, *B; | 
|  | SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); | 
|  | if (!SelectPatternResult::isMinOrMax(L.Flavor)) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | Value *C, *D; | 
|  | SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); | 
|  | if (L.Flavor != R.Flavor) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | // We have something like: x Pred y ? min(a, b) : min(c, d). | 
|  | // Try to match the compare to the min/max operations of the select operands. | 
|  | // First, make sure we have the right compare predicate. | 
|  | switch (L.Flavor) { | 
|  | case SPF_SMIN: | 
|  | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) | 
|  | break; | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | case SPF_SMAX: | 
|  | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) | 
|  | break; | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | case SPF_UMIN: | 
|  | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) | 
|  | break; | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | case SPF_UMAX: | 
|  | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) | 
|  | break; | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | default: | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | } | 
|  |  | 
|  | // If there is a common operand in the already matched min/max and the other | 
|  | // min/max operands match the compare operands (either directly or inverted), | 
|  | // then this is min/max of the same flavor. | 
|  |  | 
|  | // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) | 
|  | // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) | 
|  | if (D == B) { | 
|  | if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && | 
|  | match(A, m_Not(m_Specific(CmpRHS))))) | 
|  | return {L.Flavor, SPNB_NA, false}; | 
|  | } | 
|  | // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) | 
|  | // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) | 
|  | if (C == B) { | 
|  | if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && | 
|  | match(A, m_Not(m_Specific(CmpRHS))))) | 
|  | return {L.Flavor, SPNB_NA, false}; | 
|  | } | 
|  | // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) | 
|  | // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) | 
|  | if (D == A) { | 
|  | if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && | 
|  | match(B, m_Not(m_Specific(CmpRHS))))) | 
|  | return {L.Flavor, SPNB_NA, false}; | 
|  | } | 
|  | // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) | 
|  | // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) | 
|  | if (C == A) { | 
|  | if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && | 
|  | match(B, m_Not(m_Specific(CmpRHS))))) | 
|  | return {L.Flavor, SPNB_NA, false}; | 
|  | } | 
|  |  | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | } | 
|  |  | 
|  | /// Match non-obvious integer minimum and maximum sequences. | 
|  | static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, | 
|  | Value *CmpLHS, Value *CmpRHS, | 
|  | Value *TrueVal, Value *FalseVal, | 
|  | Value *&LHS, Value *&RHS, | 
|  | unsigned Depth) { | 
|  | // Assume success. If there's no match, callers should not use these anyway. | 
|  | LHS = TrueVal; | 
|  | RHS = FalseVal; | 
|  |  | 
|  | SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); | 
|  | if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) | 
|  | return SPR; | 
|  |  | 
|  | SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); | 
|  | if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) | 
|  | return SPR; | 
|  |  | 
|  | if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | // Z = X -nsw Y | 
|  | // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) | 
|  | // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) | 
|  | if (match(TrueVal, m_Zero()) && | 
|  | match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) | 
|  | return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; | 
|  |  | 
|  | // Z = X -nsw Y | 
|  | // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) | 
|  | // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) | 
|  | if (match(FalseVal, m_Zero()) && | 
|  | match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) | 
|  | return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; | 
|  |  | 
|  | const APInt *C1; | 
|  | if (!match(CmpRHS, m_APInt(C1))) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | // An unsigned min/max can be written with a signed compare. | 
|  | const APInt *C2; | 
|  | if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || | 
|  | (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { | 
|  | // Is the sign bit set? | 
|  | // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX | 
|  | // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN | 
|  | if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && | 
|  | C2->isMaxSignedValue()) | 
|  | return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; | 
|  |  | 
|  | // Is the sign bit clear? | 
|  | // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX | 
|  | // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN | 
|  | if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && | 
|  | C2->isMinSignedValue()) | 
|  | return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; | 
|  | } | 
|  |  | 
|  | // Look through 'not' ops to find disguised signed min/max. | 
|  | // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) | 
|  | // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) | 
|  | if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && | 
|  | match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) | 
|  | return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; | 
|  |  | 
|  | // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) | 
|  | // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) | 
|  | if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && | 
|  | match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) | 
|  | return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; | 
|  |  | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | } | 
|  |  | 
|  | bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { | 
|  | assert(X && Y && "Invalid operand"); | 
|  |  | 
|  | // X = sub (0, Y) || X = sub nsw (0, Y) | 
|  | if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || | 
|  | (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) | 
|  | return true; | 
|  |  | 
|  | // Y = sub (0, X) || Y = sub nsw (0, X) | 
|  | if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || | 
|  | (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) | 
|  | return true; | 
|  |  | 
|  | // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) | 
|  | Value *A, *B; | 
|  | return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && | 
|  | match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || | 
|  | (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && | 
|  | match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); | 
|  | } | 
|  |  | 
|  | static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, | 
|  | FastMathFlags FMF, | 
|  | Value *CmpLHS, Value *CmpRHS, | 
|  | Value *TrueVal, Value *FalseVal, | 
|  | Value *&LHS, Value *&RHS, | 
|  | unsigned Depth) { | 
|  | LHS = CmpLHS; | 
|  | RHS = CmpRHS; | 
|  |  | 
|  | // Signed zero may return inconsistent results between implementations. | 
|  | //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 | 
|  | //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) | 
|  | // Therefore, we behave conservatively and only proceed if at least one of the | 
|  | // operands is known to not be zero or if we don't care about signed zero. | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | // FIXME: Include OGT/OLT/UGT/ULT. | 
|  | case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: | 
|  | case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: | 
|  | if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && | 
|  | !isKnownNonZero(CmpRHS)) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | } | 
|  |  | 
|  | SelectPatternNaNBehavior NaNBehavior = SPNB_NA; | 
|  | bool Ordered = false; | 
|  |  | 
|  | // When given one NaN and one non-NaN input: | 
|  | //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. | 
|  | //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the | 
|  | //     ordered comparison fails), which could be NaN or non-NaN. | 
|  | // so here we discover exactly what NaN behavior is required/accepted. | 
|  | if (CmpInst::isFPPredicate(Pred)) { | 
|  | bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); | 
|  | bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); | 
|  |  | 
|  | if (LHSSafe && RHSSafe) { | 
|  | // Both operands are known non-NaN. | 
|  | NaNBehavior = SPNB_RETURNS_ANY; | 
|  | } else if (CmpInst::isOrdered(Pred)) { | 
|  | // An ordered comparison will return false when given a NaN, so it | 
|  | // returns the RHS. | 
|  | Ordered = true; | 
|  | if (LHSSafe) | 
|  | // LHS is non-NaN, so if RHS is NaN then NaN will be returned. | 
|  | NaNBehavior = SPNB_RETURNS_NAN; | 
|  | else if (RHSSafe) | 
|  | NaNBehavior = SPNB_RETURNS_OTHER; | 
|  | else | 
|  | // Completely unsafe. | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | } else { | 
|  | Ordered = false; | 
|  | // An unordered comparison will return true when given a NaN, so it | 
|  | // returns the LHS. | 
|  | if (LHSSafe) | 
|  | // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. | 
|  | NaNBehavior = SPNB_RETURNS_OTHER; | 
|  | else if (RHSSafe) | 
|  | NaNBehavior = SPNB_RETURNS_NAN; | 
|  | else | 
|  | // Completely unsafe. | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TrueVal == CmpRHS && FalseVal == CmpLHS) { | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  | Pred = CmpInst::getSwappedPredicate(Pred); | 
|  | if (NaNBehavior == SPNB_RETURNS_NAN) | 
|  | NaNBehavior = SPNB_RETURNS_OTHER; | 
|  | else if (NaNBehavior == SPNB_RETURNS_OTHER) | 
|  | NaNBehavior = SPNB_RETURNS_NAN; | 
|  | Ordered = !Ordered; | 
|  | } | 
|  |  | 
|  | // ([if]cmp X, Y) ? X : Y | 
|  | if (TrueVal == CmpLHS && FalseVal == CmpRHS) { | 
|  | switch (Pred) { | 
|  | default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; | 
|  | case FCmpInst::FCMP_UGT: | 
|  | case FCmpInst::FCMP_UGE: | 
|  | case FCmpInst::FCMP_OGT: | 
|  | case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; | 
|  | case FCmpInst::FCMP_ULT: | 
|  | case FCmpInst::FCMP_ULE: | 
|  | case FCmpInst::FCMP_OLT: | 
|  | case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isKnownNegation(TrueVal, FalseVal)) { | 
|  | // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can | 
|  | // match against either LHS or sext(LHS). | 
|  | auto MaybeSExtCmpLHS = | 
|  | m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); | 
|  | auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); | 
|  | auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); | 
|  | if (match(TrueVal, MaybeSExtCmpLHS)) { | 
|  | // Set the return values. If the compare uses the negated value (-X >s 0), | 
|  | // swap the return values because the negated value is always 'RHS'. | 
|  | LHS = TrueVal; | 
|  | RHS = FalseVal; | 
|  | if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) | 
|  | // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) | 
|  | if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) | 
|  | return {SPF_ABS, SPNB_NA, false}; | 
|  |  | 
|  | // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) | 
|  | // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) | 
|  | if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) | 
|  | return {SPF_NABS, SPNB_NA, false}; | 
|  | } | 
|  | else if (match(FalseVal, MaybeSExtCmpLHS)) { | 
|  | // Set the return values. If the compare uses the negated value (-X >s 0), | 
|  | // swap the return values because the negated value is always 'RHS'. | 
|  | LHS = FalseVal; | 
|  | RHS = TrueVal; | 
|  | if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) | 
|  | // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) | 
|  | if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) | 
|  | return {SPF_NABS, SPNB_NA, false}; | 
|  |  | 
|  | // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) | 
|  | // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) | 
|  | if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) | 
|  | return {SPF_ABS, SPNB_NA, false}; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CmpInst::isIntPredicate(Pred)) | 
|  | return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); | 
|  |  | 
|  | // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar | 
|  | // may return either -0.0 or 0.0, so fcmp/select pair has stricter | 
|  | // semantics than minNum. Be conservative in such case. | 
|  | if (NaNBehavior != SPNB_RETURNS_ANY || | 
|  | (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && | 
|  | !isKnownNonZero(CmpRHS))) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// Helps to match a select pattern in case of a type mismatch. | 
|  | /// | 
|  | /// The function processes the case when type of true and false values of a | 
|  | /// select instruction differs from type of the cmp instruction operands because | 
|  | /// of a cast instruction. The function checks if it is legal to move the cast | 
|  | /// operation after "select". If yes, it returns the new second value of | 
|  | /// "select" (with the assumption that cast is moved): | 
|  | /// 1. As operand of cast instruction when both values of "select" are same cast | 
|  | /// instructions. | 
|  | /// 2. As restored constant (by applying reverse cast operation) when the first | 
|  | /// value of the "select" is a cast operation and the second value is a | 
|  | /// constant. | 
|  | /// NOTE: We return only the new second value because the first value could be | 
|  | /// accessed as operand of cast instruction. | 
|  | static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, | 
|  | Instruction::CastOps *CastOp) { | 
|  | auto *Cast1 = dyn_cast<CastInst>(V1); | 
|  | if (!Cast1) | 
|  | return nullptr; | 
|  |  | 
|  | *CastOp = Cast1->getOpcode(); | 
|  | Type *SrcTy = Cast1->getSrcTy(); | 
|  | if (auto *Cast2 = dyn_cast<CastInst>(V2)) { | 
|  | // If V1 and V2 are both the same cast from the same type, look through V1. | 
|  | if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) | 
|  | return Cast2->getOperand(0); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | auto *C = dyn_cast<Constant>(V2); | 
|  | if (!C) | 
|  | return nullptr; | 
|  |  | 
|  | Constant *CastedTo = nullptr; | 
|  | switch (*CastOp) { | 
|  | case Instruction::ZExt: | 
|  | if (CmpI->isUnsigned()) | 
|  | CastedTo = ConstantExpr::getTrunc(C, SrcTy); | 
|  | break; | 
|  | case Instruction::SExt: | 
|  | if (CmpI->isSigned()) | 
|  | CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); | 
|  | break; | 
|  | case Instruction::Trunc: | 
|  | Constant *CmpConst; | 
|  | if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && | 
|  | CmpConst->getType() == SrcTy) { | 
|  | // Here we have the following case: | 
|  | // | 
|  | //   %cond = cmp iN %x, CmpConst | 
|  | //   %tr = trunc iN %x to iK | 
|  | //   %narrowsel = select i1 %cond, iK %t, iK C | 
|  | // | 
|  | // We can always move trunc after select operation: | 
|  | // | 
|  | //   %cond = cmp iN %x, CmpConst | 
|  | //   %widesel = select i1 %cond, iN %x, iN CmpConst | 
|  | //   %tr = trunc iN %widesel to iK | 
|  | // | 
|  | // Note that C could be extended in any way because we don't care about | 
|  | // upper bits after truncation. It can't be abs pattern, because it would | 
|  | // look like: | 
|  | // | 
|  | //   select i1 %cond, x, -x. | 
|  | // | 
|  | // So only min/max pattern could be matched. Such match requires widened C | 
|  | // == CmpConst. That is why set widened C = CmpConst, condition trunc | 
|  | // CmpConst == C is checked below. | 
|  | CastedTo = CmpConst; | 
|  | } else { | 
|  | CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); | 
|  | } | 
|  | break; | 
|  | case Instruction::FPTrunc: | 
|  | CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); | 
|  | break; | 
|  | case Instruction::FPExt: | 
|  | CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); | 
|  | break; | 
|  | case Instruction::FPToUI: | 
|  | CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); | 
|  | break; | 
|  | case Instruction::FPToSI: | 
|  | CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); | 
|  | break; | 
|  | case Instruction::UIToFP: | 
|  | CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); | 
|  | break; | 
|  | case Instruction::SIToFP: | 
|  | CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!CastedTo) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure the cast doesn't lose any information. | 
|  | Constant *CastedBack = | 
|  | ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); | 
|  | if (CastedBack != C) | 
|  | return nullptr; | 
|  |  | 
|  | return CastedTo; | 
|  | } | 
|  |  | 
|  | SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, | 
|  | Instruction::CastOps *CastOp, | 
|  | unsigned Depth) { | 
|  | if (Depth >= MaxDepth) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | SelectInst *SI = dyn_cast<SelectInst>(V); | 
|  | if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); | 
|  | if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | CmpInst::Predicate Pred = CmpI->getPredicate(); | 
|  | Value *CmpLHS = CmpI->getOperand(0); | 
|  | Value *CmpRHS = CmpI->getOperand(1); | 
|  | Value *TrueVal = SI->getTrueValue(); | 
|  | Value *FalseVal = SI->getFalseValue(); | 
|  | FastMathFlags FMF; | 
|  | if (isa<FPMathOperator>(CmpI)) | 
|  | FMF = CmpI->getFastMathFlags(); | 
|  |  | 
|  | // Bail out early. | 
|  | if (CmpI->isEquality()) | 
|  | return {SPF_UNKNOWN, SPNB_NA, false}; | 
|  |  | 
|  | // Deal with type mismatches. | 
|  | if (CastOp && CmpLHS->getType() != TrueVal->getType()) { | 
|  | if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { | 
|  | // If this is a potential fmin/fmax with a cast to integer, then ignore | 
|  | // -0.0 because there is no corresponding integer value. | 
|  | if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) | 
|  | FMF.setNoSignedZeros(); | 
|  | return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, | 
|  | cast<CastInst>(TrueVal)->getOperand(0), C, | 
|  | LHS, RHS, Depth); | 
|  | } | 
|  | if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { | 
|  | // If this is a potential fmin/fmax with a cast to integer, then ignore | 
|  | // -0.0 because there is no corresponding integer value. | 
|  | if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) | 
|  | FMF.setNoSignedZeros(); | 
|  | return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, | 
|  | C, cast<CastInst>(FalseVal)->getOperand(0), | 
|  | LHS, RHS, Depth); | 
|  | } | 
|  | } | 
|  | return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, | 
|  | LHS, RHS, Depth); | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { | 
|  | if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; | 
|  | if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; | 
|  | if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; | 
|  | if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; | 
|  | if (SPF == SPF_FMINNUM) | 
|  | return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; | 
|  | if (SPF == SPF_FMAXNUM) | 
|  | return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; | 
|  | llvm_unreachable("unhandled!"); | 
|  | } | 
|  |  | 
|  | SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { | 
|  | if (SPF == SPF_SMIN) return SPF_SMAX; | 
|  | if (SPF == SPF_UMIN) return SPF_UMAX; | 
|  | if (SPF == SPF_SMAX) return SPF_SMIN; | 
|  | if (SPF == SPF_UMAX) return SPF_UMIN; | 
|  | llvm_unreachable("unhandled!"); | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { | 
|  | return getMinMaxPred(getInverseMinMaxFlavor(SPF)); | 
|  | } | 
|  |  | 
|  | /// Return true if "icmp Pred LHS RHS" is always true. | 
|  | static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, | 
|  | const Value *RHS, const DataLayout &DL, | 
|  | unsigned Depth) { | 
|  | assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); | 
|  | if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) | 
|  | return true; | 
|  |  | 
|  | switch (Pred) { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case CmpInst::ICMP_SLE: { | 
|  | const APInt *C; | 
|  |  | 
|  | // LHS s<= LHS +_{nsw} C   if C >= 0 | 
|  | if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) | 
|  | return !C->isNegative(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case CmpInst::ICMP_ULE: { | 
|  | const APInt *C; | 
|  |  | 
|  | // LHS u<= LHS +_{nuw} C   for any C | 
|  | if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) | 
|  | return true; | 
|  |  | 
|  | // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) | 
|  | auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, | 
|  | const Value *&X, | 
|  | const APInt *&CA, const APInt *&CB) { | 
|  | if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && | 
|  | match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) | 
|  | return true; | 
|  |  | 
|  | // If X & C == 0 then (X | C) == X +_{nuw} C | 
|  | if (match(A, m_Or(m_Value(X), m_APInt(CA))) && | 
|  | match(B, m_Or(m_Specific(X), m_APInt(CB)))) { | 
|  | KnownBits Known(CA->getBitWidth()); | 
|  | computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, | 
|  | /*CxtI*/ nullptr, /*DT*/ nullptr); | 
|  | if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | const Value *X; | 
|  | const APInt *CLHS, *CRHS; | 
|  | if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) | 
|  | return CLHS->ule(*CRHS); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred | 
|  | /// ALHS ARHS" is true.  Otherwise, return None. | 
|  | static Optional<bool> | 
|  | isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, | 
|  | const Value *ARHS, const Value *BLHS, const Value *BRHS, | 
|  | const DataLayout &DL, unsigned Depth) { | 
|  | switch (Pred) { | 
|  | default: | 
|  | return None; | 
|  |  | 
|  | case CmpInst::ICMP_SLT: | 
|  | case CmpInst::ICMP_SLE: | 
|  | if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && | 
|  | isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) | 
|  | return true; | 
|  | return None; | 
|  |  | 
|  | case CmpInst::ICMP_ULT: | 
|  | case CmpInst::ICMP_ULE: | 
|  | if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && | 
|  | isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) | 
|  | return true; | 
|  | return None; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if the operands of the two compares match.  IsSwappedOps is true | 
|  | /// when the operands match, but are swapped. | 
|  | static bool isMatchingOps(const Value *ALHS, const Value *ARHS, | 
|  | const Value *BLHS, const Value *BRHS, | 
|  | bool &IsSwappedOps) { | 
|  |  | 
|  | bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); | 
|  | IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); | 
|  | return IsMatchingOps || IsSwappedOps; | 
|  | } | 
|  |  | 
|  | /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is | 
|  | /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS | 
|  | /// BRHS" is false.  Otherwise, return None if we can't infer anything. | 
|  | static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, | 
|  | const Value *ALHS, | 
|  | const Value *ARHS, | 
|  | CmpInst::Predicate BPred, | 
|  | const Value *BLHS, | 
|  | const Value *BRHS, | 
|  | bool IsSwappedOps) { | 
|  | // Canonicalize the operands so they're matching. | 
|  | if (IsSwappedOps) { | 
|  | std::swap(BLHS, BRHS); | 
|  | BPred = ICmpInst::getSwappedPredicate(BPred); | 
|  | } | 
|  | if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) | 
|  | return true; | 
|  | if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) | 
|  | return false; | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is | 
|  | /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS | 
|  | /// C2" is false.  Otherwise, return None if we can't infer anything. | 
|  | static Optional<bool> | 
|  | isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, | 
|  | const ConstantInt *C1, | 
|  | CmpInst::Predicate BPred, | 
|  | const Value *BLHS, const ConstantInt *C2) { | 
|  | assert(ALHS == BLHS && "LHS operands must match."); | 
|  | ConstantRange DomCR = | 
|  | ConstantRange::makeExactICmpRegion(APred, C1->getValue()); | 
|  | ConstantRange CR = | 
|  | ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); | 
|  | ConstantRange Intersection = DomCR.intersectWith(CR); | 
|  | ConstantRange Difference = DomCR.difference(CR); | 
|  | if (Intersection.isEmptySet()) | 
|  | return false; | 
|  | if (Difference.isEmptySet()) | 
|  | return true; | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is | 
|  | /// false.  Otherwise, return None if we can't infer anything. | 
|  | static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, | 
|  | const ICmpInst *RHS, | 
|  | const DataLayout &DL, bool LHSIsTrue, | 
|  | unsigned Depth) { | 
|  | Value *ALHS = LHS->getOperand(0); | 
|  | Value *ARHS = LHS->getOperand(1); | 
|  | // The rest of the logic assumes the LHS condition is true.  If that's not the | 
|  | // case, invert the predicate to make it so. | 
|  | ICmpInst::Predicate APred = | 
|  | LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); | 
|  |  | 
|  | Value *BLHS = RHS->getOperand(0); | 
|  | Value *BRHS = RHS->getOperand(1); | 
|  | ICmpInst::Predicate BPred = RHS->getPredicate(); | 
|  |  | 
|  | // Can we infer anything when the two compares have matching operands? | 
|  | bool IsSwappedOps; | 
|  | if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { | 
|  | if (Optional<bool> Implication = isImpliedCondMatchingOperands( | 
|  | APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) | 
|  | return Implication; | 
|  | // No amount of additional analysis will infer the second condition, so | 
|  | // early exit. | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // Can we infer anything when the LHS operands match and the RHS operands are | 
|  | // constants (not necessarily matching)? | 
|  | if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { | 
|  | if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( | 
|  | APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, | 
|  | cast<ConstantInt>(BRHS))) | 
|  | return Implication; | 
|  | // No amount of additional analysis will infer the second condition, so | 
|  | // early exit. | 
|  | return None; | 
|  | } | 
|  |  | 
|  | if (APred == BPred) | 
|  | return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is | 
|  | /// false.  Otherwise, return None if we can't infer anything.  We expect the | 
|  | /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. | 
|  | static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, | 
|  | const ICmpInst *RHS, | 
|  | const DataLayout &DL, bool LHSIsTrue, | 
|  | unsigned Depth) { | 
|  | // The LHS must be an 'or' or an 'and' instruction. | 
|  | assert((LHS->getOpcode() == Instruction::And || | 
|  | LHS->getOpcode() == Instruction::Or) && | 
|  | "Expected LHS to be 'and' or 'or'."); | 
|  |  | 
|  | assert(Depth <= MaxDepth && "Hit recursion limit"); | 
|  |  | 
|  | // If the result of an 'or' is false, then we know both legs of the 'or' are | 
|  | // false.  Similarly, if the result of an 'and' is true, then we know both | 
|  | // legs of the 'and' are true. | 
|  | Value *ALHS, *ARHS; | 
|  | if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || | 
|  | (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { | 
|  | // FIXME: Make this non-recursion. | 
|  | if (Optional<bool> Implication = | 
|  | isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) | 
|  | return Implication; | 
|  | if (Optional<bool> Implication = | 
|  | isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) | 
|  | return Implication; | 
|  | return None; | 
|  | } | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, | 
|  | const DataLayout &DL, bool LHSIsTrue, | 
|  | unsigned Depth) { | 
|  | // Bail out when we hit the limit. | 
|  | if (Depth == MaxDepth) | 
|  | return None; | 
|  |  | 
|  | // A mismatch occurs when we compare a scalar cmp to a vector cmp, for | 
|  | // example. | 
|  | if (LHS->getType() != RHS->getType()) | 
|  | return None; | 
|  |  | 
|  | Type *OpTy = LHS->getType(); | 
|  | assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); | 
|  |  | 
|  | // LHS ==> RHS by definition | 
|  | if (LHS == RHS) | 
|  | return LHSIsTrue; | 
|  |  | 
|  | // FIXME: Extending the code below to handle vectors. | 
|  | if (OpTy->isVectorTy()) | 
|  | return None; | 
|  |  | 
|  | assert(OpTy->isIntegerTy(1) && "implied by above"); | 
|  |  | 
|  | // Both LHS and RHS are icmps. | 
|  | const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); | 
|  | const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); | 
|  | if (LHSCmp && RHSCmp) | 
|  | return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); | 
|  |  | 
|  | // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be | 
|  | // an icmp. FIXME: Add support for and/or on the RHS. | 
|  | const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); | 
|  | if (LHSBO && RHSCmp) { | 
|  | if ((LHSBO->getOpcode() == Instruction::And || | 
|  | LHSBO->getOpcode() == Instruction::Or)) | 
|  | return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); | 
|  | } | 
|  | return None; | 
|  | } |