|  | //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "HexagonFrameLowering.h" | 
|  | #include "HexagonBlockRanges.h" | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "HexagonMachineFunctionInfo.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "HexagonTargetMachine.h" | 
|  | #include "MCTargetDesc/HexagonBaseInfo.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/LivePhysRegs.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachinePostDominators.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegisterScavenging.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/MC/MCDwarf.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <map> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "hexagon-pei" | 
|  |  | 
|  | // Hexagon stack frame layout as defined by the ABI: | 
|  | // | 
|  | //                                                       Incoming arguments | 
|  | //                                                       passed via stack | 
|  | //                                                                      | | 
|  | //                                                                      | | 
|  | //        SP during function's                 FP during function's     | | 
|  | //    +-- runtime (top of stack)               runtime (bottom) --+     | | 
|  | //    |                                                           |     | | 
|  | // --++---------------------+------------------+-----------------++-+------- | 
|  | //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg | 
|  | //   |   called functions   |  local objects   |  local objects  |FP| | 
|  | // --+----------------------+------------------+-----------------+--+------- | 
|  | //    <-    size known    -> <- size unknown -> <- size known  -> | 
|  | // | 
|  | // Low address                                                 High address | 
|  | // | 
|  | // <--- stack growth | 
|  | // | 
|  | // | 
|  | // - In any circumstances, the outgoing function arguments are always accessi- | 
|  | //   ble using the SP, and the incoming arguments are accessible using the FP. | 
|  | // - If the local objects are not aligned, they can always be accessed using | 
|  | //   the FP. | 
|  | // - If there are no variable-sized objects, the local objects can always be | 
|  | //   accessed using the SP, regardless whether they are aligned or not. (The | 
|  | //   alignment padding will be at the bottom of the stack (highest address), | 
|  | //   and so the offset with respect to the SP will be known at the compile- | 
|  | //   -time.) | 
|  | // | 
|  | // The only complication occurs if there are both, local aligned objects, and | 
|  | // dynamically allocated (variable-sized) objects. The alignment pad will be | 
|  | // placed between the FP and the local objects, thus preventing the use of the | 
|  | // FP to access the local objects. At the same time, the variable-sized objects | 
|  | // will be between the SP and the local objects, thus introducing an unknown | 
|  | // distance from the SP to the locals. | 
|  | // | 
|  | // To avoid this problem, a new register is created that holds the aligned | 
|  | // address of the bottom of the stack, referred in the sources as AP (aligned | 
|  | // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad | 
|  | // that aligns AP to the required boundary (a maximum of the alignments of | 
|  | // all stack objects, fixed- and variable-sized). All local objects[1] will | 
|  | // then use AP as the base pointer. | 
|  | // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get | 
|  | // their name from being allocated at fixed locations on the stack, relative | 
|  | // to the FP. In the presence of dynamic allocation and local alignment, such | 
|  | // objects can only be accessed through the FP. | 
|  | // | 
|  | // Illustration of the AP: | 
|  | //                                                                FP --+ | 
|  | //                                                                     | | 
|  | // ---------------+---------------------+-----+-----------------------++-+-- | 
|  | //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR| | 
|  | //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP| | 
|  | // ---------------+---------------------+-----+-----------------+-----+--+-- | 
|  | //                                      |<-- Multiple of the -->| | 
|  | //                                           stack alignment    +-- AP | 
|  | // | 
|  | // The AP is set up at the beginning of the function. Since it is not a dedi- | 
|  | // cated (reserved) register, it needs to be kept live throughout the function | 
|  | // to be available as the base register for local object accesses. | 
|  | // Normally, an address of a stack objects is obtained by a pseudo-instruction | 
|  | // PS_fi. To access local objects with the AP register present, a different | 
|  | // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra | 
|  | // argument compared to PS_fi: the first input register is the AP register. | 
|  | // This keeps the register live between its definition and its uses. | 
|  |  | 
|  | // The AP register is originally set up using pseudo-instruction PS_aligna: | 
|  | //   AP = PS_aligna A | 
|  | // where | 
|  | //   A  - required stack alignment | 
|  | // The alignment value must be the maximum of all alignments required by | 
|  | // any stack object. | 
|  |  | 
|  | // The dynamic allocation uses a pseudo-instruction PS_alloca: | 
|  | //   Rd = PS_alloca Rs, A | 
|  | // where | 
|  | //   Rd - address of the allocated space | 
|  | //   Rs - minimum size (the actual allocated can be larger to accommodate | 
|  | //        alignment) | 
|  | //   A  - required alignment | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", | 
|  | cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); | 
|  |  | 
|  | static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots", | 
|  | cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2), | 
|  | cl::ZeroOrMore); | 
|  |  | 
|  | static cl::opt<int> SpillFuncThreshold("spill-func-threshold", | 
|  | cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"), | 
|  | cl::init(6), cl::ZeroOrMore); | 
|  |  | 
|  | static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os", | 
|  | cl::Hidden, cl::desc("Specify Os spill func threshold"), | 
|  | cl::init(1), cl::ZeroOrMore); | 
|  |  | 
|  | static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer", | 
|  | cl::Hidden, cl::desc("Enable runtime checks for stack overflow."), | 
|  | cl::init(false), cl::ZeroOrMore); | 
|  |  | 
|  | static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame", | 
|  | cl::init(true), cl::Hidden, cl::ZeroOrMore, | 
|  | cl::desc("Enable stack frame shrink wrapping")); | 
|  |  | 
|  | static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", | 
|  | cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore, | 
|  | cl::desc("Max count of stack frame shrink-wraps")); | 
|  |  | 
|  | static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long", | 
|  | cl::Hidden, cl::desc("Enable long calls for save-restore stubs."), | 
|  | cl::init(false), cl::ZeroOrMore); | 
|  |  | 
|  | static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true), | 
|  | cl::Hidden, cl::desc("Refrain from using FP whenever possible")); | 
|  |  | 
|  | static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, | 
|  | cl::init(true), cl::desc("Optimize spill slots")); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden, | 
|  | cl::init(std::numeric_limits<unsigned>::max())); | 
|  | static unsigned SpillOptCount = 0; | 
|  | #endif | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void initializeHexagonCallFrameInformationPass(PassRegistry&); | 
|  | FunctionPass *createHexagonCallFrameInformation(); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class HexagonCallFrameInformation : public MachineFunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | HexagonCallFrameInformation() : MachineFunctionPass(ID) { | 
|  | PassRegistry &PR = *PassRegistry::getPassRegistry(); | 
|  | initializeHexagonCallFrameInformationPass(PR); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::NoVRegs); | 
|  | } | 
|  | }; | 
|  |  | 
|  | char HexagonCallFrameInformation::ID = 0; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { | 
|  | auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); | 
|  | bool NeedCFI = MF.getMMI().hasDebugInfo() || | 
|  | MF.getFunction().needsUnwindTableEntry(); | 
|  |  | 
|  | if (!NeedCFI) | 
|  | return false; | 
|  | HFI.insertCFIInstructions(MF); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", | 
|  | "Hexagon call frame information", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createHexagonCallFrameInformation() { | 
|  | return new HexagonCallFrameInformation(); | 
|  | } | 
|  |  | 
|  | /// Map a register pair Reg to the subregister that has the greater "number", | 
|  | /// i.e. D3 (aka R7:6) will be mapped to R7, etc. | 
|  | static unsigned getMax32BitSubRegister(unsigned Reg, | 
|  | const TargetRegisterInfo &TRI, | 
|  | bool hireg = true) { | 
|  | if (Reg < Hexagon::D0 || Reg > Hexagon::D15) | 
|  | return Reg; | 
|  |  | 
|  | unsigned RegNo = 0; | 
|  | for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) { | 
|  | if (hireg) { | 
|  | if (*SubRegs > RegNo) | 
|  | RegNo = *SubRegs; | 
|  | } else { | 
|  | if (!RegNo || *SubRegs < RegNo) | 
|  | RegNo = *SubRegs; | 
|  | } | 
|  | } | 
|  | return RegNo; | 
|  | } | 
|  |  | 
|  | /// Returns the callee saved register with the largest id in the vector. | 
|  | static unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | static_assert(Hexagon::R1 > 0, | 
|  | "Assume physical registers are encoded as positive integers"); | 
|  | if (CSI.empty()) | 
|  | return 0; | 
|  |  | 
|  | unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); | 
|  | for (unsigned I = 1, E = CSI.size(); I < E; ++I) { | 
|  | unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); | 
|  | if (Reg > Max) | 
|  | Max = Reg; | 
|  | } | 
|  | return Max; | 
|  | } | 
|  |  | 
|  | /// Checks if the basic block contains any instruction that needs a stack | 
|  | /// frame to be already in place. | 
|  | static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, | 
|  | const HexagonRegisterInfo &HRI) { | 
|  | for (auto &I : MBB) { | 
|  | const MachineInstr *MI = &I; | 
|  | if (MI->isCall()) | 
|  | return true; | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | case Hexagon::PS_alloca: | 
|  | case Hexagon::PS_aligna: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | // Check individual operands. | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | // While the presence of a frame index does not prove that a stack | 
|  | // frame will be required, all frame indexes should be within alloc- | 
|  | // frame/deallocframe. Otherwise, the code that translates a frame | 
|  | // index into an offset would have to be aware of the placement of | 
|  | // the frame creation/destruction instructions. | 
|  | if (MO.isFI()) | 
|  | return true; | 
|  | if (MO.isReg()) { | 
|  | unsigned R = MO.getReg(); | 
|  | // Virtual registers will need scavenging, which then may require | 
|  | // a stack slot. | 
|  | if (TargetRegisterInfo::isVirtualRegister(R)) | 
|  | return true; | 
|  | for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S) | 
|  | if (CSR[*S]) | 
|  | return true; | 
|  | continue; | 
|  | } | 
|  | if (MO.isRegMask()) { | 
|  | // A regmask would normally have all callee-saved registers marked | 
|  | // as preserved, so this check would not be needed, but in case of | 
|  | // ever having other regmasks (for other calling conventions), | 
|  | // make sure they would be processed correctly. | 
|  | const uint32_t *BM = MO.getRegMask(); | 
|  | for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) { | 
|  | unsigned R = x; | 
|  | // If this regmask does not preserve a CSR, a frame will be needed. | 
|  | if (!(BM[R/32] & (1u << (R%32)))) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if MBB has a machine instructions that indicates a tail call | 
|  | /// in the block. | 
|  | static bool hasTailCall(const MachineBasicBlock &MBB) { | 
|  | MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); | 
|  | if (I == MBB.end()) | 
|  | return false; | 
|  | unsigned RetOpc = I->getOpcode(); | 
|  | return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r; | 
|  | } | 
|  |  | 
|  | /// Returns true if MBB contains an instruction that returns. | 
|  | static bool hasReturn(const MachineBasicBlock &MBB) { | 
|  | for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I) | 
|  | if (I->isReturn()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns the "return" instruction from this block, or nullptr if there | 
|  | /// isn't any. | 
|  | static MachineInstr *getReturn(MachineBasicBlock &MBB) { | 
|  | for (auto &I : MBB) | 
|  | if (I.isReturn()) | 
|  | return &I; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isRestoreCall(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: | 
|  | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: | 
|  | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT: | 
|  | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC: | 
|  | case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT: | 
|  | case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC: | 
|  | case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: | 
|  | case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool isOptNone(const MachineFunction &MF) { | 
|  | return MF.getFunction().hasFnAttribute(Attribute::OptimizeNone) || | 
|  | MF.getTarget().getOptLevel() == CodeGenOpt::None; | 
|  | } | 
|  |  | 
|  | static inline bool isOptSize(const MachineFunction &MF) { | 
|  | const Function &F = MF.getFunction(); | 
|  | return F.optForSize() && !F.optForMinSize(); | 
|  | } | 
|  |  | 
|  | static inline bool isMinSize(const MachineFunction &MF) { | 
|  | return MF.getFunction().optForMinSize(); | 
|  | } | 
|  |  | 
|  | /// Implements shrink-wrapping of the stack frame. By default, stack frame | 
|  | /// is created in the function entry block, and is cleaned up in every block | 
|  | /// that returns. This function finds alternate blocks: one for the frame | 
|  | /// setup (prolog) and one for the cleanup (epilog). | 
|  | void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, | 
|  | MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { | 
|  | static unsigned ShrinkCounter = 0; | 
|  |  | 
|  | if (ShrinkLimit.getPosition()) { | 
|  | if (ShrinkCounter >= ShrinkLimit) | 
|  | return; | 
|  | ShrinkCounter++; | 
|  | } | 
|  |  | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  |  | 
|  | MachineDominatorTree MDT; | 
|  | MDT.runOnMachineFunction(MF); | 
|  | MachinePostDominatorTree MPT; | 
|  | MPT.runOnMachineFunction(MF); | 
|  |  | 
|  | using UnsignedMap = DenseMap<unsigned, unsigned>; | 
|  | using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; | 
|  |  | 
|  | UnsignedMap RPO; | 
|  | RPOTType RPOT(&MF); | 
|  | unsigned RPON = 0; | 
|  | for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) | 
|  | RPO[(*I)->getNumber()] = RPON++; | 
|  |  | 
|  | // Don't process functions that have loops, at least for now. Placement | 
|  | // of prolog and epilog must take loop structure into account. For simpli- | 
|  | // city don't do it right now. | 
|  | for (auto &I : MF) { | 
|  | unsigned BN = RPO[I.getNumber()]; | 
|  | for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) { | 
|  | // If found a back-edge, return. | 
|  | if (RPO[(*SI)->getNumber()] <= BN) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect the set of blocks that need a stack frame to execute. Scan | 
|  | // each block for uses/defs of callee-saved registers, calls, etc. | 
|  | SmallVector<MachineBasicBlock*,16> SFBlocks; | 
|  | BitVector CSR(Hexagon::NUM_TARGET_REGS); | 
|  | for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) | 
|  | for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S) | 
|  | CSR[*S] = true; | 
|  |  | 
|  | for (auto &I : MF) | 
|  | if (needsStackFrame(I, CSR, HRI)) | 
|  | SFBlocks.push_back(&I); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Blocks needing SF: {"; | 
|  | for (auto &B : SFBlocks) | 
|  | dbgs() << " " << printMBBReference(*B); | 
|  | dbgs() << " }\n"; | 
|  | }); | 
|  | // No frame needed? | 
|  | if (SFBlocks.empty()) | 
|  | return; | 
|  |  | 
|  | // Pick a common dominator and a common post-dominator. | 
|  | MachineBasicBlock *DomB = SFBlocks[0]; | 
|  | for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { | 
|  | DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); | 
|  | if (!DomB) | 
|  | break; | 
|  | } | 
|  | MachineBasicBlock *PDomB = SFBlocks[0]; | 
|  | for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { | 
|  | PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); | 
|  | if (!PDomB) | 
|  | break; | 
|  | } | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Computed dom block: "; | 
|  | if (DomB) | 
|  | dbgs() << printMBBReference(*DomB); | 
|  | else | 
|  | dbgs() << "<null>"; | 
|  | dbgs() << ", computed pdom block: "; | 
|  | if (PDomB) | 
|  | dbgs() << printMBBReference(*PDomB); | 
|  | else | 
|  | dbgs() << "<null>"; | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  | if (!DomB || !PDomB) | 
|  | return; | 
|  |  | 
|  | // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. | 
|  | if (!MDT.dominates(DomB, PDomB)) { | 
|  | LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); | 
|  | return; | 
|  | } | 
|  | if (!MPT.dominates(PDomB, DomB)) { | 
|  | LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Finally, everything seems right. | 
|  | PrologB = DomB; | 
|  | EpilogB = PDomB; | 
|  | } | 
|  |  | 
|  | /// Perform most of the PEI work here: | 
|  | /// - saving/restoring of the callee-saved registers, | 
|  | /// - stack frame creation and destruction. | 
|  | /// Normally, this work is distributed among various functions, but doing it | 
|  | /// in one place allows shrink-wrapping of the stack frame. | 
|  | void HexagonFrameLowering::emitPrologue(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB) const { | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  |  | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); | 
|  |  | 
|  | MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; | 
|  | if (EnableShrinkWrapping) | 
|  | findShrunkPrologEpilog(MF, PrologB, EpilogB); | 
|  |  | 
|  | bool PrologueStubs = false; | 
|  | insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); | 
|  | insertPrologueInBlock(*PrologB, PrologueStubs); | 
|  | updateEntryPaths(MF, *PrologB); | 
|  |  | 
|  | if (EpilogB) { | 
|  | insertCSRRestoresInBlock(*EpilogB, CSI, HRI); | 
|  | insertEpilogueInBlock(*EpilogB); | 
|  | } else { | 
|  | for (auto &B : MF) | 
|  | if (B.isReturnBlock()) | 
|  | insertCSRRestoresInBlock(B, CSI, HRI); | 
|  |  | 
|  | for (auto &B : MF) | 
|  | if (B.isReturnBlock()) | 
|  | insertEpilogueInBlock(B); | 
|  |  | 
|  | for (auto &B : MF) { | 
|  | if (B.empty()) | 
|  | continue; | 
|  | MachineInstr *RetI = getReturn(B); | 
|  | if (!RetI || isRestoreCall(RetI->getOpcode())) | 
|  | continue; | 
|  | for (auto &R : CSI) | 
|  | RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EpilogB) { | 
|  | // If there is an epilog block, it may not have a return instruction. | 
|  | // In such case, we need to add the callee-saved registers as live-ins | 
|  | // in all blocks on all paths from the epilog to any return block. | 
|  | unsigned MaxBN = MF.getNumBlockIDs(); | 
|  | BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); | 
|  | updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, | 
|  | bool PrologueStubs) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | auto &HII = *HST.getInstrInfo(); | 
|  | auto &HRI = *HST.getRegisterInfo(); | 
|  |  | 
|  | unsigned MaxAlign = std::max(MFI.getMaxAlignment(), getStackAlignment()); | 
|  |  | 
|  | // Calculate the total stack frame size. | 
|  | // Get the number of bytes to allocate from the FrameInfo. | 
|  | unsigned FrameSize = MFI.getStackSize(); | 
|  | // Round up the max call frame size to the max alignment on the stack. | 
|  | unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign); | 
|  | MFI.setMaxCallFrameSize(MaxCFA); | 
|  |  | 
|  | FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); | 
|  | MFI.setStackSize(FrameSize); | 
|  |  | 
|  | bool AlignStack = (MaxAlign > getStackAlignment()); | 
|  |  | 
|  | // Get the number of bytes to allocate from the FrameInfo. | 
|  | unsigned NumBytes = MFI.getStackSize(); | 
|  | unsigned SP = HRI.getStackRegister(); | 
|  | unsigned MaxCF = MFI.getMaxCallFrameSize(); | 
|  | MachineBasicBlock::iterator InsertPt = MBB.begin(); | 
|  |  | 
|  | SmallVector<MachineInstr *, 4> AdjustRegs; | 
|  | for (auto &MBB : MF) | 
|  | for (auto &MI : MBB) | 
|  | if (MI.getOpcode() == Hexagon::PS_alloca) | 
|  | AdjustRegs.push_back(&MI); | 
|  |  | 
|  | for (auto MI : AdjustRegs) { | 
|  | assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca"); | 
|  | expandAlloca(MI, HII, SP, MaxCF); | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | DebugLoc dl = MBB.findDebugLoc(InsertPt); | 
|  |  | 
|  | if (hasFP(MF)) { | 
|  | insertAllocframe(MBB, InsertPt, NumBytes); | 
|  | if (AlignStack) { | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) | 
|  | .addReg(SP) | 
|  | .addImm(-int64_t(MaxAlign)); | 
|  | } | 
|  | // If the stack-checking is enabled, and we spilled the callee-saved | 
|  | // registers inline (i.e. did not use a spill function), then call | 
|  | // the stack checker directly. | 
|  | if (EnableStackOVFSanitizer && !PrologueStubs) | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk)) | 
|  | .addExternalSymbol("__runtime_stack_check"); | 
|  | } else if (NumBytes > 0) { | 
|  | assert(alignTo(NumBytes, 8) == NumBytes); | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) | 
|  | .addReg(SP) | 
|  | .addImm(-int(NumBytes)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | auto &HII = *HST.getInstrInfo(); | 
|  | auto &HRI = *HST.getRegisterInfo(); | 
|  | unsigned SP = HRI.getStackRegister(); | 
|  |  | 
|  | MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); | 
|  | DebugLoc dl = MBB.findDebugLoc(InsertPt); | 
|  |  | 
|  | if (!hasFP(MF)) { | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | if (unsigned NumBytes = MFI.getStackSize()) { | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) | 
|  | .addReg(SP) | 
|  | .addImm(NumBytes); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | MachineInstr *RetI = getReturn(MBB); | 
|  | unsigned RetOpc = RetI ? RetI->getOpcode() : 0; | 
|  |  | 
|  | // Handle EH_RETURN. | 
|  | if (RetOpc == Hexagon::EH_RETURN_JMPR) { | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) | 
|  | .addDef(Hexagon::D15) | 
|  | .addReg(Hexagon::R30); | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP) | 
|  | .addReg(SP) | 
|  | .addReg(Hexagon::R28); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- | 
|  | // frame instruction if we encounter it. | 
|  | if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || | 
|  | RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC || | 
|  | RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT || | 
|  | RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) { | 
|  | MachineBasicBlock::iterator It = RetI; | 
|  | ++It; | 
|  | // Delete all instructions after the RESTORE (except labels). | 
|  | while (It != MBB.end()) { | 
|  | if (!It->isLabel()) | 
|  | It = MBB.erase(It); | 
|  | else | 
|  | ++It; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // It is possible that the restoring code is a call to a library function. | 
|  | // All of the restore* functions include "deallocframe", so we need to make | 
|  | // sure that we don't add an extra one. | 
|  | bool NeedsDeallocframe = true; | 
|  | if (!MBB.empty() && InsertPt != MBB.begin()) { | 
|  | MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); | 
|  | unsigned COpc = PrevIt->getOpcode(); | 
|  | if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || | 
|  | COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC || | 
|  | COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT || | 
|  | COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC || | 
|  | COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr) | 
|  | NeedsDeallocframe = false; | 
|  | } | 
|  |  | 
|  | if (!NeedsDeallocframe) | 
|  | return; | 
|  | // If the returning instruction is PS_jmpret, replace it with dealloc_return, | 
|  | // otherwise just add deallocframe. The function could be returning via a | 
|  | // tail call. | 
|  | if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) { | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe)) | 
|  | .addDef(Hexagon::D15) | 
|  | .addReg(Hexagon::R30); | 
|  | return; | 
|  | } | 
|  | unsigned NewOpc = Hexagon::L4_return; | 
|  | MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc)) | 
|  | .addDef(Hexagon::D15) | 
|  | .addReg(Hexagon::R30); | 
|  | // Transfer the function live-out registers. | 
|  | NewI->copyImplicitOps(MF, *RetI); | 
|  | MBB.erase(RetI); | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | auto &HII = *HST.getInstrInfo(); | 
|  | auto &HRI = *HST.getRegisterInfo(); | 
|  |  | 
|  | // Check for overflow. | 
|  | // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? | 
|  | const unsigned int ALLOCFRAME_MAX = 16384; | 
|  |  | 
|  | // Create a dummy memory operand to avoid allocframe from being treated as | 
|  | // a volatile memory reference. | 
|  | auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0), | 
|  | MachineMemOperand::MOStore, 4, 4); | 
|  |  | 
|  | DebugLoc dl = MBB.findDebugLoc(InsertPt); | 
|  | unsigned SP = HRI.getStackRegister(); | 
|  |  | 
|  | if (NumBytes >= ALLOCFRAME_MAX) { | 
|  | // Emit allocframe(#0). | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) | 
|  | .addDef(SP) | 
|  | .addReg(SP) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO); | 
|  |  | 
|  | // Subtract the size from the stack pointer. | 
|  | unsigned SP = HRI.getStackRegister(); | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP) | 
|  | .addReg(SP) | 
|  | .addImm(-int(NumBytes)); | 
|  | } else { | 
|  | BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) | 
|  | .addDef(SP) | 
|  | .addReg(SP) | 
|  | .addImm(NumBytes) | 
|  | .addMemOperand(MMO); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF, | 
|  | MachineBasicBlock &SaveB) const { | 
|  | SetVector<unsigned> Worklist; | 
|  |  | 
|  | MachineBasicBlock &EntryB = MF.front(); | 
|  | Worklist.insert(EntryB.getNumber()); | 
|  |  | 
|  | unsigned SaveN = SaveB.getNumber(); | 
|  | auto &CSI = MF.getFrameInfo().getCalleeSavedInfo(); | 
|  |  | 
|  | for (unsigned i = 0; i < Worklist.size(); ++i) { | 
|  | unsigned BN = Worklist[i]; | 
|  | MachineBasicBlock &MBB = *MF.getBlockNumbered(BN); | 
|  | for (auto &R : CSI) | 
|  | if (!MBB.isLiveIn(R.getReg())) | 
|  | MBB.addLiveIn(R.getReg()); | 
|  | if (BN != SaveN) | 
|  | for (auto &SB : MBB.successors()) | 
|  | Worklist.insert(SB->getNumber()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF, | 
|  | BitVector &Path) const { | 
|  | assert(MBB.getNumber() >= 0); | 
|  | unsigned BN = MBB.getNumber(); | 
|  | if (Path[BN] || DoneF[BN]) | 
|  | return false; | 
|  | if (DoneT[BN]) | 
|  | return true; | 
|  |  | 
|  | auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo(); | 
|  |  | 
|  | Path[BN] = true; | 
|  | bool ReachedExit = false; | 
|  | for (auto &SB : MBB.successors()) | 
|  | ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); | 
|  |  | 
|  | if (!MBB.empty() && MBB.back().isReturn()) { | 
|  | // Add implicit uses of all callee-saved registers to the reached | 
|  | // return instructions. This is to prevent the anti-dependency breaker | 
|  | // from renaming these registers. | 
|  | MachineInstr &RetI = MBB.back(); | 
|  | if (!isRestoreCall(RetI.getOpcode())) | 
|  | for (auto &R : CSI) | 
|  | RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); | 
|  | ReachedExit = true; | 
|  | } | 
|  |  | 
|  | // We don't want to add unnecessary live-ins to the restore block: since | 
|  | // the callee-saved registers are being defined in it, the entry of the | 
|  | // restore block cannot be on the path from the definitions to any exit. | 
|  | if (ReachedExit && &MBB != &RestoreB) { | 
|  | for (auto &R : CSI) | 
|  | if (!MBB.isLiveIn(R.getReg())) | 
|  | MBB.addLiveIn(R.getReg()); | 
|  | DoneT[BN] = true; | 
|  | } | 
|  | if (!ReachedExit) | 
|  | DoneF[BN] = true; | 
|  |  | 
|  | Path[BN] = false; | 
|  | return ReachedExit; | 
|  | } | 
|  |  | 
|  | static Optional<MachineBasicBlock::iterator> | 
|  | findCFILocation(MachineBasicBlock &B) { | 
|  | // The CFI instructions need to be inserted right after allocframe. | 
|  | // An exception to this is a situation where allocframe is bundled | 
|  | // with a call: then the CFI instructions need to be inserted before | 
|  | // the packet with the allocframe+call (in case the call throws an | 
|  | // exception). | 
|  | auto End = B.instr_end(); | 
|  |  | 
|  | for (MachineInstr &I : B) { | 
|  | MachineBasicBlock::iterator It = I.getIterator(); | 
|  | if (!I.isBundle()) { | 
|  | if (I.getOpcode() == Hexagon::S2_allocframe) | 
|  | return std::next(It); | 
|  | continue; | 
|  | } | 
|  | // I is a bundle. | 
|  | bool HasCall = false, HasAllocFrame = false; | 
|  | auto T = It.getInstrIterator(); | 
|  | while (++T != End && T->isBundled()) { | 
|  | if (T->getOpcode() == Hexagon::S2_allocframe) | 
|  | HasAllocFrame = true; | 
|  | else if (T->isCall()) | 
|  | HasCall = true; | 
|  | } | 
|  | if (HasAllocFrame) | 
|  | return HasCall ? It : std::next(It); | 
|  | } | 
|  | return None; | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { | 
|  | for (auto &B : MF) { | 
|  | auto At = findCFILocation(B); | 
|  | if (At.hasValue()) | 
|  | insertCFIInstructionsAt(B, At.getValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator At) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineModuleInfo &MMI = MF.getMMI(); | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | auto &HII = *HST.getInstrInfo(); | 
|  | auto &HRI = *HST.getRegisterInfo(); | 
|  |  | 
|  | // If CFI instructions have debug information attached, something goes | 
|  | // wrong with the final assembly generation: the prolog_end is placed | 
|  | // in a wrong location. | 
|  | DebugLoc DL; | 
|  | const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); | 
|  |  | 
|  | MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); | 
|  | bool HasFP = hasFP(MF); | 
|  |  | 
|  | if (HasFP) { | 
|  | unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); | 
|  | unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); | 
|  |  | 
|  | // Define CFA via an offset from the value of FP. | 
|  | // | 
|  | //  -8   -4    0 (SP) | 
|  | // --+----+----+--------------------- | 
|  | //   | FP | LR |          increasing addresses --> | 
|  | // --+----+----+--------------------- | 
|  | //   |         +-- Old SP (before allocframe) | 
|  | //   +-- New FP (after allocframe) | 
|  | // | 
|  | // MCCFIInstruction::createDefCfa subtracts the offset from the register. | 
|  | // MCCFIInstruction::createOffset takes the offset without sign change. | 
|  | auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8); | 
|  | BuildMI(MBB, At, DL, CFID) | 
|  | .addCFIIndex(MF.addFrameInst(DefCfa)); | 
|  | // R31 (return addr) = CFA - 4 | 
|  | auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); | 
|  | BuildMI(MBB, At, DL, CFID) | 
|  | .addCFIIndex(MF.addFrameInst(OffR31)); | 
|  | // R30 (frame ptr) = CFA - 8 | 
|  | auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); | 
|  | BuildMI(MBB, At, DL, CFID) | 
|  | .addCFIIndex(MF.addFrameInst(OffR30)); | 
|  | } | 
|  |  | 
|  | static unsigned int RegsToMove[] = { | 
|  | Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2, | 
|  | Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, | 
|  | Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, | 
|  | Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, | 
|  | Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9, | 
|  | Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, | 
|  | Hexagon::NoRegister | 
|  | }; | 
|  |  | 
|  | const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); | 
|  |  | 
|  | for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { | 
|  | unsigned Reg = RegsToMove[i]; | 
|  | auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { | 
|  | return C.getReg() == Reg; | 
|  | }; | 
|  | auto F = find_if(CSI, IfR); | 
|  | if (F == CSI.end()) | 
|  | continue; | 
|  |  | 
|  | int64_t Offset; | 
|  | if (HasFP) { | 
|  | // If the function has a frame pointer (i.e. has an allocframe), | 
|  | // then the CFA has been defined in terms of FP. Any offsets in | 
|  | // the following CFI instructions have to be defined relative | 
|  | // to FP, which points to the bottom of the stack frame. | 
|  | // The function getFrameIndexReference can still choose to use SP | 
|  | // for the offset calculation, so we cannot simply call it here. | 
|  | // Instead, get the offset (relative to the FP) directly. | 
|  | Offset = MFI.getObjectOffset(F->getFrameIdx()); | 
|  | } else { | 
|  | unsigned FrameReg; | 
|  | Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg); | 
|  | } | 
|  | // Subtract 8 to make room for R30 and R31, which are added above. | 
|  | Offset -= 8; | 
|  |  | 
|  | if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { | 
|  | unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); | 
|  | auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, | 
|  | Offset); | 
|  | BuildMI(MBB, At, DL, CFID) | 
|  | .addCFIIndex(MF.addFrameInst(OffReg)); | 
|  | } else { | 
|  | // Split the double regs into subregs, and generate appropriate | 
|  | // cfi_offsets. | 
|  | // The only reason, we are split double regs is, llvm-mc does not | 
|  | // understand paired registers for cfi_offset. | 
|  | // Eg .cfi_offset r1:0, -64 | 
|  |  | 
|  | unsigned HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi); | 
|  | unsigned LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo); | 
|  | unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); | 
|  | unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); | 
|  | auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, | 
|  | Offset+4); | 
|  | BuildMI(MBB, At, DL, CFID) | 
|  | .addCFIIndex(MF.addFrameInst(OffHi)); | 
|  | auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, | 
|  | Offset); | 
|  | BuildMI(MBB, At, DL, CFID) | 
|  | .addCFIIndex(MF.addFrameInst(OffLo)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { | 
|  | if (MF.getFunction().hasFnAttribute(Attribute::Naked)) | 
|  | return false; | 
|  |  | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | bool HasExtraAlign = HRI.needsStackRealignment(MF); | 
|  | bool HasAlloca = MFI.hasVarSizedObjects(); | 
|  |  | 
|  | // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think | 
|  | // that this shouldn't be required, but doing so now because gcc does and | 
|  | // gdb can't break at the start of the function without it.  Will remove if | 
|  | // this turns out to be a gdb bug. | 
|  | // | 
|  | if (MF.getTarget().getOptLevel() == CodeGenOpt::None) | 
|  | return true; | 
|  |  | 
|  | // By default we want to use SP (since it's always there). FP requires | 
|  | // some setup (i.e. ALLOCFRAME). | 
|  | // Both, alloca and stack alignment modify the stack pointer by an | 
|  | // undetermined value, so we need to save it at the entry to the function | 
|  | // (i.e. use allocframe). | 
|  | if (HasAlloca || HasExtraAlign) | 
|  | return true; | 
|  |  | 
|  | if (MFI.getStackSize() > 0) { | 
|  | // If FP-elimination is disabled, we have to use FP at this point. | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer) | 
|  | return true; | 
|  | if (EnableStackOVFSanitizer) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
|  | if (MFI.hasCalls() || HMFI.hasClobberLR()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | enum SpillKind { | 
|  | SK_ToMem, | 
|  | SK_FromMem, | 
|  | SK_FromMemTailcall | 
|  | }; | 
|  |  | 
|  | static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType, | 
|  | bool Stkchk = false) { | 
|  | const char * V4SpillToMemoryFunctions[] = { | 
|  | "__save_r16_through_r17", | 
|  | "__save_r16_through_r19", | 
|  | "__save_r16_through_r21", | 
|  | "__save_r16_through_r23", | 
|  | "__save_r16_through_r25", | 
|  | "__save_r16_through_r27" }; | 
|  |  | 
|  | const char * V4SpillToMemoryStkchkFunctions[] = { | 
|  | "__save_r16_through_r17_stkchk", | 
|  | "__save_r16_through_r19_stkchk", | 
|  | "__save_r16_through_r21_stkchk", | 
|  | "__save_r16_through_r23_stkchk", | 
|  | "__save_r16_through_r25_stkchk", | 
|  | "__save_r16_through_r27_stkchk" }; | 
|  |  | 
|  | const char * V4SpillFromMemoryFunctions[] = { | 
|  | "__restore_r16_through_r17_and_deallocframe", | 
|  | "__restore_r16_through_r19_and_deallocframe", | 
|  | "__restore_r16_through_r21_and_deallocframe", | 
|  | "__restore_r16_through_r23_and_deallocframe", | 
|  | "__restore_r16_through_r25_and_deallocframe", | 
|  | "__restore_r16_through_r27_and_deallocframe" }; | 
|  |  | 
|  | const char * V4SpillFromMemoryTailcallFunctions[] = { | 
|  | "__restore_r16_through_r17_and_deallocframe_before_tailcall", | 
|  | "__restore_r16_through_r19_and_deallocframe_before_tailcall", | 
|  | "__restore_r16_through_r21_and_deallocframe_before_tailcall", | 
|  | "__restore_r16_through_r23_and_deallocframe_before_tailcall", | 
|  | "__restore_r16_through_r25_and_deallocframe_before_tailcall", | 
|  | "__restore_r16_through_r27_and_deallocframe_before_tailcall" | 
|  | }; | 
|  |  | 
|  | const char **SpillFunc = nullptr; | 
|  |  | 
|  | switch(SpillType) { | 
|  | case SK_ToMem: | 
|  | SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions | 
|  | : V4SpillToMemoryFunctions; | 
|  | break; | 
|  | case SK_FromMem: | 
|  | SpillFunc = V4SpillFromMemoryFunctions; | 
|  | break; | 
|  | case SK_FromMemTailcall: | 
|  | SpillFunc = V4SpillFromMemoryTailcallFunctions; | 
|  | break; | 
|  | } | 
|  | assert(SpillFunc && "Unknown spill kind"); | 
|  |  | 
|  | // Spill all callee-saved registers up to the highest register used. | 
|  | switch (MaxReg) { | 
|  | case Hexagon::R17: | 
|  | return SpillFunc[0]; | 
|  | case Hexagon::R19: | 
|  | return SpillFunc[1]; | 
|  | case Hexagon::R21: | 
|  | return SpillFunc[2]; | 
|  | case Hexagon::R23: | 
|  | return SpillFunc[3]; | 
|  | case Hexagon::R25: | 
|  | return SpillFunc[4]; | 
|  | case Hexagon::R27: | 
|  | return SpillFunc[5]; | 
|  | default: | 
|  | llvm_unreachable("Unhandled maximum callee save register"); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, | 
|  | int FI, unsigned &FrameReg) const { | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  |  | 
|  | int Offset = MFI.getObjectOffset(FI); | 
|  | bool HasAlloca = MFI.hasVarSizedObjects(); | 
|  | bool HasExtraAlign = HRI.needsStackRealignment(MF); | 
|  | bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; | 
|  |  | 
|  | auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
|  | unsigned FrameSize = MFI.getStackSize(); | 
|  | unsigned SP = HRI.getStackRegister(); | 
|  | unsigned FP = HRI.getFrameRegister(); | 
|  | unsigned AP = HMFI.getStackAlignBasePhysReg(); | 
|  | // It may happen that AP will be absent even HasAlloca && HasExtraAlign | 
|  | // is true. HasExtraAlign may be set because of vector spills, without | 
|  | // aligned locals or aligned outgoing function arguments. Since vector | 
|  | // spills will ultimately be "unaligned", it is safe to use FP as the | 
|  | // base register. | 
|  | // In fact, in such a scenario the stack is actually not required to be | 
|  | // aligned, although it may end up being aligned anyway, since this | 
|  | // particular case is not easily detectable. The alignment will be | 
|  | // unnecessary, but not incorrect. | 
|  | // Unfortunately there is no quick way to verify that the above is | 
|  | // indeed the case (and that it's not a result of an error), so just | 
|  | // assume that missing AP will be replaced by FP. | 
|  | // (A better fix would be to rematerialize AP from FP and always align | 
|  | // vector spills.) | 
|  | if (AP == 0) | 
|  | AP = FP; | 
|  |  | 
|  | bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0). | 
|  | // Use FP at -O0, except when there are objects with extra alignment. | 
|  | // That additional alignment requirement may cause a pad to be inserted, | 
|  | // which will make it impossible to use FP to access objects located | 
|  | // past the pad. | 
|  | if (NoOpt && !HasExtraAlign) | 
|  | UseFP = true; | 
|  | if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { | 
|  | // Fixed and preallocated objects will be located before any padding | 
|  | // so FP must be used to access them. | 
|  | UseFP |= (HasAlloca || HasExtraAlign); | 
|  | } else { | 
|  | if (HasAlloca) { | 
|  | if (HasExtraAlign) | 
|  | UseAP = true; | 
|  | else | 
|  | UseFP = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If FP was picked, then there had better be FP. | 
|  | bool HasFP = hasFP(MF); | 
|  | assert((HasFP || !UseFP) && "This function must have frame pointer"); | 
|  |  | 
|  | // Having FP implies allocframe. Allocframe will store extra 8 bytes: | 
|  | // FP/LR. If the base register is used to access an object across these | 
|  | // 8 bytes, then the offset will need to be adjusted by 8. | 
|  | // | 
|  | // After allocframe: | 
|  | //                    HexagonISelLowering adds 8 to ---+ | 
|  | //                    the offsets of all stack-based   | | 
|  | //                    arguments (*)                    | | 
|  | //                                                     | | 
|  | //   getObjectOffset < 0   0     8  getObjectOffset >= 8 | 
|  | // ------------------------+-----+------------------------> increasing | 
|  | //     <local objects>     |FP/LR|    <input arguments>     addresses | 
|  | // -----------------+------+-----+------------------------> | 
|  | //                  |      | | 
|  | //    SP/AP point --+      +-- FP points here (**) | 
|  | //    somewhere on | 
|  | //    this side of FP/LR | 
|  | // | 
|  | // (*) See LowerFormalArguments. The FP/LR is assumed to be present. | 
|  | // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. | 
|  |  | 
|  | // The lowering assumes that FP/LR is present, and so the offsets of | 
|  | // the formal arguments start at 8. If FP/LR is not there we need to | 
|  | // reduce the offset by 8. | 
|  | if (Offset > 0 && !HasFP) | 
|  | Offset -= 8; | 
|  |  | 
|  | if (UseFP) | 
|  | FrameReg = FP; | 
|  | else if (UseAP) | 
|  | FrameReg = AP; | 
|  | else | 
|  | FrameReg = SP; | 
|  |  | 
|  | // Calculate the actual offset in the instruction. If there is no FP | 
|  | // (in other words, no allocframe), then SP will not be adjusted (i.e. | 
|  | // there will be no SP -= FrameSize), so the frame size should not be | 
|  | // added to the calculated offset. | 
|  | int RealOffset = Offset; | 
|  | if (!UseFP && !UseAP) | 
|  | RealOffset = FrameSize+Offset; | 
|  | return RealOffset; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, | 
|  | const CSIVect &CSI, const HexagonRegisterInfo &HRI, | 
|  | bool &PrologueStubs) const { | 
|  | if (CSI.empty()) | 
|  | return true; | 
|  |  | 
|  | MachineBasicBlock::iterator MI = MBB.begin(); | 
|  | PrologueStubs = false; | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | auto &HII = *HST.getInstrInfo(); | 
|  |  | 
|  | if (useSpillFunction(MF, CSI)) { | 
|  | PrologueStubs = true; | 
|  | unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI); | 
|  | bool StkOvrFlowEnabled = EnableStackOVFSanitizer; | 
|  | const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, | 
|  | StkOvrFlowEnabled); | 
|  | auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); | 
|  | bool IsPIC = HTM.isPositionIndependent(); | 
|  | bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; | 
|  |  | 
|  | // Call spill function. | 
|  | DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); | 
|  | unsigned SpillOpc; | 
|  | if (StkOvrFlowEnabled) { | 
|  | if (LongCalls) | 
|  | SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC | 
|  | : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT; | 
|  | else | 
|  | SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC | 
|  | : Hexagon::SAVE_REGISTERS_CALL_V4STK; | 
|  | } else { | 
|  | if (LongCalls) | 
|  | SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC | 
|  | : Hexagon::SAVE_REGISTERS_CALL_V4_EXT; | 
|  | else | 
|  | SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC | 
|  | : Hexagon::SAVE_REGISTERS_CALL_V4; | 
|  | } | 
|  |  | 
|  | MachineInstr *SaveRegsCall = | 
|  | BuildMI(MBB, MI, DL, HII.get(SpillOpc)) | 
|  | .addExternalSymbol(SpillFun); | 
|  |  | 
|  | // Add callee-saved registers as use. | 
|  | addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); | 
|  | // Add live in registers. | 
|  | for (unsigned I = 0; I < CSI.size(); ++I) | 
|  | MBB.addLiveIn(CSI[I].getReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, n = CSI.size(); i < n; ++i) { | 
|  | unsigned Reg = CSI[i].getReg(); | 
|  | // Add live in registers. We treat eh_return callee saved register r0 - r3 | 
|  | // specially. They are not really callee saved registers as they are not | 
|  | // supposed to be killed. | 
|  | bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); | 
|  | int FI = CSI[i].getFrameIdx(); | 
|  | const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); | 
|  | HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI); | 
|  | if (IsKill) | 
|  | MBB.addLiveIn(Reg); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, | 
|  | const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { | 
|  | if (CSI.empty()) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | auto &HII = *HST.getInstrInfo(); | 
|  |  | 
|  | if (useRestoreFunction(MF, CSI)) { | 
|  | bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); | 
|  | unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI); | 
|  | SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; | 
|  | const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); | 
|  | auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget()); | 
|  | bool IsPIC = HTM.isPositionIndependent(); | 
|  | bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong; | 
|  |  | 
|  | // Call spill function. | 
|  | DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() | 
|  | : MBB.getLastNonDebugInstr()->getDebugLoc(); | 
|  | MachineInstr *DeallocCall = nullptr; | 
|  |  | 
|  | if (HasTC) { | 
|  | unsigned RetOpc; | 
|  | if (LongCalls) | 
|  | RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC | 
|  | : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT; | 
|  | else | 
|  | RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC | 
|  | : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; | 
|  | DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc)) | 
|  | .addExternalSymbol(RestoreFn); | 
|  | } else { | 
|  | // The block has a return. | 
|  | MachineBasicBlock::iterator It = MBB.getFirstTerminator(); | 
|  | assert(It->isReturn() && std::next(It) == MBB.end()); | 
|  | unsigned RetOpc; | 
|  | if (LongCalls) | 
|  | RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC | 
|  | : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT; | 
|  | else | 
|  | RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC | 
|  | : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; | 
|  | DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc)) | 
|  | .addExternalSymbol(RestoreFn); | 
|  | // Transfer the function live-out registers. | 
|  | DeallocCall->copyImplicitOps(MF, *It); | 
|  | } | 
|  | addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < CSI.size(); ++i) { | 
|  | unsigned Reg = CSI[i].getReg(); | 
|  | const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); | 
|  | int FI = CSI[i].getFrameIdx(); | 
|  | HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( | 
|  | MachineFunction &MF, MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I) const { | 
|  | MachineInstr &MI = *I; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | (void)Opc; // Silence compiler warning. | 
|  | assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && | 
|  | "Cannot handle this call frame pseudo instruction"); | 
|  | return MBB.erase(I); | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::processFunctionBeforeFrameFinalized( | 
|  | MachineFunction &MF, RegScavenger *RS) const { | 
|  | // If this function has uses aligned stack and also has variable sized stack | 
|  | // objects, then we need to map all spill slots to fixed positions, so that | 
|  | // they can be accessed through FP. Otherwise they would have to be accessed | 
|  | // via AP, which may not be available at the particular place in the program. | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | bool HasAlloca = MFI.hasVarSizedObjects(); | 
|  | bool NeedsAlign = (MFI.getMaxAlignment() > getStackAlignment()); | 
|  |  | 
|  | if (!HasAlloca || !NeedsAlign) | 
|  | return; | 
|  |  | 
|  | unsigned LFS = MFI.getLocalFrameSize(); | 
|  | for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { | 
|  | if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i)) | 
|  | continue; | 
|  | unsigned S = MFI.getObjectSize(i); | 
|  | // Reduce the alignment to at most 8. This will require unaligned vector | 
|  | // stores if they happen here. | 
|  | unsigned A = std::max(MFI.getObjectAlignment(i), 8U); | 
|  | MFI.setObjectAlignment(i, 8); | 
|  | LFS = alignTo(LFS+S, A); | 
|  | MFI.mapLocalFrameObject(i, -LFS); | 
|  | } | 
|  |  | 
|  | MFI.setLocalFrameSize(LFS); | 
|  | unsigned A = MFI.getLocalFrameMaxAlign(); | 
|  | assert(A <= 8 && "Unexpected local frame alignment"); | 
|  | if (A == 0) | 
|  | MFI.setLocalFrameMaxAlign(8); | 
|  | MFI.setUseLocalStackAllocationBlock(true); | 
|  |  | 
|  | // Set the physical aligned-stack base address register. | 
|  | unsigned AP = 0; | 
|  | if (const MachineInstr *AI = getAlignaInstr(MF)) | 
|  | AP = AI->getOperand(0).getReg(); | 
|  | auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>(); | 
|  | HMFI.setStackAlignBasePhysReg(AP); | 
|  | } | 
|  |  | 
|  | /// Returns true if there are no caller-saved registers available in class RC. | 
|  | static bool needToReserveScavengingSpillSlots(MachineFunction &MF, | 
|  | const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool { | 
|  | for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) | 
|  | if (MRI.isPhysRegUsed(*AI)) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Check for an unused caller-saved register. Callee-saved registers | 
|  | // have become pristine by now. | 
|  | for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) | 
|  | if (!IsUsed(*P)) | 
|  | return false; | 
|  |  | 
|  | // All caller-saved registers are used. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { | 
|  | dbgs() << '{'; | 
|  | for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { | 
|  | unsigned R = x; | 
|  | dbgs() << ' ' << printReg(R, &TRI); | 
|  | } | 
|  | dbgs() << " }"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, | 
|  | const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { | 
|  | LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n'); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | BitVector SRegs(Hexagon::NUM_TARGET_REGS); | 
|  |  | 
|  | // Generate a set of unique, callee-saved registers (SRegs), where each | 
|  | // register in the set is maximal in terms of sub-/super-register relation, | 
|  | // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. | 
|  |  | 
|  | // (1) For each callee-saved register, add that register and all of its | 
|  | // sub-registers to SRegs. | 
|  | LLVM_DEBUG(dbgs() << "Initial CS registers: {"); | 
|  | for (unsigned i = 0, n = CSI.size(); i < n; ++i) { | 
|  | unsigned R = CSI[i].getReg(); | 
|  | LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI)); | 
|  | for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) | 
|  | SRegs[*SR] = true; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << " }\n"); | 
|  | LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); | 
|  | dbgs() << "\n"); | 
|  |  | 
|  | // (2) For each reserved register, remove that register and all of its | 
|  | // sub- and super-registers from SRegs. | 
|  | BitVector Reserved = TRI->getReservedRegs(MF); | 
|  | for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { | 
|  | unsigned R = x; | 
|  | for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR) | 
|  | SRegs[*SR] = false; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI); | 
|  | dbgs() << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); | 
|  | dbgs() << "\n"); | 
|  |  | 
|  | // (3) Collect all registers that have at least one sub-register in SRegs, | 
|  | // and also have no sub-registers that are reserved. These will be the can- | 
|  | // didates for saving as a whole instead of their individual sub-registers. | 
|  | // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) | 
|  | BitVector TmpSup(Hexagon::NUM_TARGET_REGS); | 
|  | for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { | 
|  | unsigned R = x; | 
|  | for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) | 
|  | TmpSup[*SR] = true; | 
|  | } | 
|  | for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { | 
|  | unsigned R = x; | 
|  | for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) { | 
|  | if (!Reserved[*SR]) | 
|  | continue; | 
|  | TmpSup[R] = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI); | 
|  | dbgs() << "\n"); | 
|  |  | 
|  | // (4) Include all super-registers found in (3) into SRegs. | 
|  | SRegs |= TmpSup; | 
|  | LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); | 
|  | dbgs() << "\n"); | 
|  |  | 
|  | // (5) For each register R in SRegs, if any super-register of R is in SRegs, | 
|  | // remove R from SRegs. | 
|  | for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { | 
|  | unsigned R = x; | 
|  | for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { | 
|  | if (!SRegs[*SR]) | 
|  | continue; | 
|  | SRegs[R] = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); | 
|  | dbgs() << "\n"); | 
|  |  | 
|  | // Now, for each register that has a fixed stack slot, create the stack | 
|  | // object for it. | 
|  | CSI.clear(); | 
|  |  | 
|  | using SpillSlot = TargetFrameLowering::SpillSlot; | 
|  |  | 
|  | unsigned NumFixed; | 
|  | int MinOffset = 0;  // CS offsets are negative. | 
|  | const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); | 
|  | for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { | 
|  | if (!SRegs[S->Reg]) | 
|  | continue; | 
|  | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); | 
|  | int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset); | 
|  | MinOffset = std::min(MinOffset, S->Offset); | 
|  | CSI.push_back(CalleeSavedInfo(S->Reg, FI)); | 
|  | SRegs[S->Reg] = false; | 
|  | } | 
|  |  | 
|  | // There can be some registers that don't have fixed slots. For example, | 
|  | // we need to store R0-R3 in functions with exception handling. For each | 
|  | // such register, create a non-fixed stack object. | 
|  | for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { | 
|  | unsigned R = x; | 
|  | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); | 
|  | unsigned Size = TRI->getSpillSize(*RC); | 
|  | int Off = MinOffset - Size; | 
|  | unsigned Align = std::min(TRI->getSpillAlignment(*RC), getStackAlignment()); | 
|  | assert(isPowerOf2_32(Align)); | 
|  | Off &= -Align; | 
|  | int FI = MFI.CreateFixedSpillStackObject(Size, Off); | 
|  | MinOffset = std::min(MinOffset, Off); | 
|  | CSI.push_back(CalleeSavedInfo(R, FI)); | 
|  | SRegs[R] = false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "CS information: {"; | 
|  | for (unsigned i = 0, n = CSI.size(); i < n; ++i) { | 
|  | int FI = CSI[i].getFrameIdx(); | 
|  | int Off = MFI.getObjectOffset(FI); | 
|  | dbgs() << ' ' << printReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp"; | 
|  | if (Off >= 0) | 
|  | dbgs() << '+'; | 
|  | dbgs() << Off; | 
|  | } | 
|  | dbgs() << " }\n"; | 
|  | }); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Verify that all registers were handled. | 
|  | bool MissedReg = false; | 
|  | for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { | 
|  | unsigned R = x; | 
|  | dbgs() << printReg(R, TRI) << ' '; | 
|  | MissedReg = true; | 
|  | } | 
|  | if (MissedReg) | 
|  | llvm_unreachable("...there are unhandled callee-saved registers!"); | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineInstr *MI = &*It; | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned DstR = MI->getOperand(0).getReg(); | 
|  | unsigned SrcR = MI->getOperand(1).getReg(); | 
|  | if (!Hexagon::ModRegsRegClass.contains(DstR) || | 
|  | !Hexagon::ModRegsRegClass.contains(SrcR)) | 
|  | return false; | 
|  |  | 
|  | unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1)); | 
|  | BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) | 
|  | .addReg(TmpR, RegState::Kill); | 
|  |  | 
|  | NewRegs.push_back(TmpR); | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineInstr *MI = &*It; | 
|  | if (!MI->getOperand(0).isFI()) | 
|  | return false; | 
|  |  | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | unsigned SrcR = MI->getOperand(2).getReg(); | 
|  | bool IsKill = MI->getOperand(2).isKill(); | 
|  | int FI = MI->getOperand(0).getIndex(); | 
|  |  | 
|  | // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register | 
|  | // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register | 
|  | unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr | 
|  | : Hexagon::A2_tfrcrr; | 
|  | BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) | 
|  | .addReg(SrcR, getKillRegState(IsKill)); | 
|  |  | 
|  | // S2_storeri_io FI, 0, TmpR | 
|  | BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addReg(TmpR, RegState::Kill) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | NewRegs.push_back(TmpR); | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineInstr *MI = &*It; | 
|  | if (!MI->getOperand(1).isFI()) | 
|  | return false; | 
|  |  | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | unsigned DstR = MI->getOperand(0).getReg(); | 
|  | int FI = MI->getOperand(1).getIndex(); | 
|  |  | 
|  | // TmpR = L2_loadri_io FI, 0 | 
|  | unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | // DstR = C2_tfrrp TmpR   if DstR is a predicate register | 
|  | // DstR = A2_tfrrcr TmpR  if DstR is a modifier register | 
|  | unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp | 
|  | : Hexagon::A2_tfrrcr; | 
|  | BuildMI(B, It, DL, HII.get(TfrOpc), DstR) | 
|  | .addReg(TmpR, RegState::Kill); | 
|  |  | 
|  | NewRegs.push_back(TmpR); | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineInstr *MI = &*It; | 
|  | if (!MI->getOperand(0).isFI()) | 
|  | return false; | 
|  |  | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned SrcR = MI->getOperand(2).getReg(); | 
|  | bool IsKill = MI->getOperand(2).isKill(); | 
|  | int FI = MI->getOperand(0).getIndex(); | 
|  | auto *RC = &Hexagon::HvxVRRegClass; | 
|  |  | 
|  | // Insert transfer to general vector register. | 
|  | //   TmpR0 = A2_tfrsi 0x01010101 | 
|  | //   TmpR1 = V6_vandqrt Qx, TmpR0 | 
|  | //   store FI, 0, TmpR1 | 
|  | unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | unsigned TmpR1 = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) | 
|  | .addImm(0x01010101); | 
|  |  | 
|  | BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1) | 
|  | .addReg(SrcR, getKillRegState(IsKill)) | 
|  | .addReg(TmpR0, RegState::Kill); | 
|  |  | 
|  | auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI); | 
|  | expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); | 
|  |  | 
|  | NewRegs.push_back(TmpR0); | 
|  | NewRegs.push_back(TmpR1); | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineInstr *MI = &*It; | 
|  | if (!MI->getOperand(1).isFI()) | 
|  | return false; | 
|  |  | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned DstR = MI->getOperand(0).getReg(); | 
|  | int FI = MI->getOperand(1).getIndex(); | 
|  | auto *RC = &Hexagon::HvxVRRegClass; | 
|  |  | 
|  | // TmpR0 = A2_tfrsi 0x01010101 | 
|  | // TmpR1 = load FI, 0 | 
|  | // DstR = V6_vandvrt TmpR1, TmpR0 | 
|  | unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | unsigned TmpR1 = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) | 
|  | .addImm(0x01010101); | 
|  | MachineFunction &MF = *B.getParent(); | 
|  | auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI); | 
|  | expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); | 
|  |  | 
|  | BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR) | 
|  | .addReg(TmpR1, RegState::Kill) | 
|  | .addReg(TmpR0, RegState::Kill); | 
|  |  | 
|  | NewRegs.push_back(TmpR0); | 
|  | NewRegs.push_back(TmpR1); | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineFunction &MF = *B.getParent(); | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | MachineInstr *MI = &*It; | 
|  | if (!MI->getOperand(0).isFI()) | 
|  | return false; | 
|  |  | 
|  | // It is possible that the double vector being stored is only partially | 
|  | // defined. From the point of view of the liveness tracking, it is ok to | 
|  | // store it as a whole, but if we break it up we may end up storing a | 
|  | // register that is entirely undefined. | 
|  | LivePhysRegs LPR(HRI); | 
|  | LPR.addLiveIns(B); | 
|  | SmallVector<std::pair<unsigned, const MachineOperand*>,2> Clobbers; | 
|  | for (auto R = B.begin(); R != It; ++R) { | 
|  | Clobbers.clear(); | 
|  | LPR.stepForward(*R, Clobbers); | 
|  | } | 
|  |  | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned SrcR = MI->getOperand(2).getReg(); | 
|  | unsigned SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo); | 
|  | unsigned SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi); | 
|  | bool IsKill = MI->getOperand(2).isKill(); | 
|  | int FI = MI->getOperand(0).getIndex(); | 
|  |  | 
|  | unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); | 
|  | unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); | 
|  | unsigned HasAlign = MFI.getObjectAlignment(FI); | 
|  | unsigned StoreOpc; | 
|  |  | 
|  | // Store low part. | 
|  | if (LPR.contains(SrcLo)) { | 
|  | StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai | 
|  | : Hexagon::V6_vS32Ub_ai; | 
|  | BuildMI(B, It, DL, HII.get(StoreOpc)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addReg(SrcLo, getKillRegState(IsKill)) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  | } | 
|  |  | 
|  | // Store high part. | 
|  | if (LPR.contains(SrcHi)) { | 
|  | StoreOpc = NeedAlign <= MinAlign(HasAlign, Size) ? Hexagon::V6_vS32b_ai | 
|  | : Hexagon::V6_vS32Ub_ai; | 
|  | BuildMI(B, It, DL, HII.get(StoreOpc)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(Size) | 
|  | .addReg(SrcHi, getKillRegState(IsKill)) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  | } | 
|  |  | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineFunction &MF = *B.getParent(); | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | MachineInstr *MI = &*It; | 
|  | if (!MI->getOperand(1).isFI()) | 
|  | return false; | 
|  |  | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned DstR = MI->getOperand(0).getReg(); | 
|  | unsigned DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi); | 
|  | unsigned DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo); | 
|  | int FI = MI->getOperand(1).getIndex(); | 
|  |  | 
|  | unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass); | 
|  | unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); | 
|  | unsigned HasAlign = MFI.getObjectAlignment(FI); | 
|  | unsigned LoadOpc; | 
|  |  | 
|  | // Load low part. | 
|  | LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai | 
|  | : Hexagon::V6_vL32Ub_ai; | 
|  | BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | // Load high part. | 
|  | LoadOpc = NeedAlign <= MinAlign(HasAlign, Size) ? Hexagon::V6_vL32b_ai | 
|  | : Hexagon::V6_vL32Ub_ai; | 
|  | BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(Size) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineFunction &MF = *B.getParent(); | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | MachineInstr *MI = &*It; | 
|  | if (!MI->getOperand(0).isFI()) | 
|  | return false; | 
|  |  | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned SrcR = MI->getOperand(2).getReg(); | 
|  | bool IsKill = MI->getOperand(2).isKill(); | 
|  | int FI = MI->getOperand(0).getIndex(); | 
|  |  | 
|  | unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); | 
|  | unsigned HasAlign = MFI.getObjectAlignment(FI); | 
|  | unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai | 
|  | : Hexagon::V6_vS32Ub_ai; | 
|  | BuildMI(B, It, DL, HII.get(StoreOpc)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addReg(SrcR, getKillRegState(IsKill)) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, | 
|  | MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, | 
|  | const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | MachineFunction &MF = *B.getParent(); | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | MachineInstr *MI = &*It; | 
|  | if (!MI->getOperand(1).isFI()) | 
|  | return false; | 
|  |  | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned DstR = MI->getOperand(0).getReg(); | 
|  | int FI = MI->getOperand(1).getIndex(); | 
|  |  | 
|  | unsigned NeedAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass); | 
|  | unsigned HasAlign = MFI.getObjectAlignment(FI); | 
|  | unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai | 
|  | : Hexagon::V6_vL32Ub_ai; | 
|  | BuildMI(B, It, DL, HII.get(LoadOpc), DstR) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  |  | 
|  | B.erase(It); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, | 
|  | SmallVectorImpl<unsigned> &NewRegs) const { | 
|  | auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | bool Changed = false; | 
|  |  | 
|  | for (auto &B : MF) { | 
|  | // Traverse the basic block. | 
|  | MachineBasicBlock::iterator NextI; | 
|  | for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { | 
|  | MachineInstr *MI = &*I; | 
|  | NextI = std::next(I); | 
|  | unsigned Opc = MI->getOpcode(); | 
|  |  | 
|  | switch (Opc) { | 
|  | case TargetOpcode::COPY: | 
|  | Changed |= expandCopy(B, I, MRI, HII, NewRegs); | 
|  | break; | 
|  | case Hexagon::STriw_pred: | 
|  | case Hexagon::STriw_ctr: | 
|  | Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); | 
|  | break; | 
|  | case Hexagon::LDriw_pred: | 
|  | case Hexagon::LDriw_ctr: | 
|  | Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); | 
|  | break; | 
|  | case Hexagon::PS_vstorerq_ai: | 
|  | Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); | 
|  | break; | 
|  | case Hexagon::PS_vloadrq_ai: | 
|  | Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); | 
|  | break; | 
|  | case Hexagon::PS_vloadrw_ai: | 
|  | case Hexagon::PS_vloadrwu_ai: | 
|  | Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); | 
|  | break; | 
|  | case Hexagon::PS_vstorerw_ai: | 
|  | case Hexagon::PS_vstorerwu_ai: | 
|  | Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, | 
|  | BitVector &SavedRegs, | 
|  | RegScavenger *RS) const { | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  |  | 
|  | SavedRegs.resize(HRI.getNumRegs()); | 
|  |  | 
|  | // If we have a function containing __builtin_eh_return we want to spill and | 
|  | // restore all callee saved registers. Pretend that they are used. | 
|  | if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) | 
|  | for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) | 
|  | SavedRegs.set(*R); | 
|  |  | 
|  | // Replace predicate register pseudo spill code. | 
|  | SmallVector<unsigned,8> NewRegs; | 
|  | expandSpillMacros(MF, NewRegs); | 
|  | if (OptimizeSpillSlots && !isOptNone(MF)) | 
|  | optimizeSpillSlots(MF, NewRegs); | 
|  |  | 
|  | // We need to reserve a spill slot if scavenging could potentially require | 
|  | // spilling a scavenged register. | 
|  | if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) { | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SetVector<const TargetRegisterClass*> SpillRCs; | 
|  | // Reserve an int register in any case, because it could be used to hold | 
|  | // the stack offset in case it does not fit into a spill instruction. | 
|  | SpillRCs.insert(&Hexagon::IntRegsRegClass); | 
|  |  | 
|  | for (unsigned VR : NewRegs) | 
|  | SpillRCs.insert(MRI.getRegClass(VR)); | 
|  |  | 
|  | for (auto *RC : SpillRCs) { | 
|  | if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) | 
|  | continue; | 
|  | unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1; | 
|  | unsigned S = HRI.getSpillSize(*RC), A = HRI.getSpillAlignment(*RC); | 
|  | for (unsigned i = 0; i < Num; i++) { | 
|  | int NewFI = MFI.CreateSpillStackObject(S, A); | 
|  | RS->addScavengingFrameIndex(NewFI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); | 
|  | } | 
|  |  | 
|  | unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF, | 
|  | HexagonBlockRanges::IndexRange &FIR, | 
|  | HexagonBlockRanges::InstrIndexMap &IndexMap, | 
|  | HexagonBlockRanges::RegToRangeMap &DeadMap, | 
|  | const TargetRegisterClass *RC) const { | 
|  | auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); | 
|  | auto &MRI = MF.getRegInfo(); | 
|  |  | 
|  | auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool { | 
|  | auto F = DeadMap.find({Reg,0}); | 
|  | if (F == DeadMap.end()) | 
|  | return false; | 
|  | for (auto &DR : F->second) | 
|  | if (DR.contains(FIR)) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | for (unsigned Reg : RC->getRawAllocationOrder(MF)) { | 
|  | bool Dead = true; | 
|  | for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { | 
|  | if (isDead(R.Reg)) | 
|  | continue; | 
|  | Dead = false; | 
|  | break; | 
|  | } | 
|  | if (Dead) | 
|  | return Reg; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, | 
|  | SmallVectorImpl<unsigned> &VRegs) const { | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | auto &HII = *HST.getInstrInfo(); | 
|  | auto &HRI = *HST.getRegisterInfo(); | 
|  | auto &MRI = MF.getRegInfo(); | 
|  | HexagonBlockRanges HBR(MF); | 
|  |  | 
|  | using BlockIndexMap = | 
|  | std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>; | 
|  | using BlockRangeMap = | 
|  | std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>; | 
|  | using IndexType = HexagonBlockRanges::IndexType; | 
|  |  | 
|  | struct SlotInfo { | 
|  | BlockRangeMap Map; | 
|  | unsigned Size = 0; | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  |  | 
|  | SlotInfo() = default; | 
|  | }; | 
|  |  | 
|  | BlockIndexMap BlockIndexes; | 
|  | SmallSet<int,4> BadFIs; | 
|  | std::map<int,SlotInfo> FIRangeMap; | 
|  |  | 
|  | // Accumulate register classes: get a common class for a pre-existing | 
|  | // class HaveRC and a new class NewRC. Return nullptr if a common class | 
|  | // cannot be found, otherwise return the resulting class. If HaveRC is | 
|  | // nullptr, assume that it is still unset. | 
|  | auto getCommonRC = | 
|  | [](const TargetRegisterClass *HaveRC, | 
|  | const TargetRegisterClass *NewRC) -> const TargetRegisterClass * { | 
|  | if (HaveRC == nullptr || HaveRC == NewRC) | 
|  | return NewRC; | 
|  | // Different classes, both non-null. Pick the more general one. | 
|  | if (HaveRC->hasSubClassEq(NewRC)) | 
|  | return HaveRC; | 
|  | if (NewRC->hasSubClassEq(HaveRC)) | 
|  | return NewRC; | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | // Scan all blocks in the function. Check all occurrences of frame indexes, | 
|  | // and collect relevant information. | 
|  | for (auto &B : MF) { | 
|  | std::map<int,IndexType> LastStore, LastLoad; | 
|  | // Emplace appears not to be supported in gcc 4.7.2-4. | 
|  | //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); | 
|  | auto P = BlockIndexes.insert( | 
|  | std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); | 
|  | auto &IndexMap = P.first->second; | 
|  | LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n" | 
|  | << IndexMap << '\n'); | 
|  |  | 
|  | for (auto &In : B) { | 
|  | int LFI, SFI; | 
|  | bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); | 
|  | bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); | 
|  | if (Load && Store) { | 
|  | // If it's both a load and a store, then we won't handle it. | 
|  | BadFIs.insert(LFI); | 
|  | BadFIs.insert(SFI); | 
|  | continue; | 
|  | } | 
|  | // Check for register classes of the register used as the source for | 
|  | // the store, and the register used as the destination for the load. | 
|  | // Also, only accept base+imm_offset addressing modes. Other addressing | 
|  | // modes can have side-effects (post-increments, etc.). For stack | 
|  | // slots they are very unlikely, so there is not much loss due to | 
|  | // this restriction. | 
|  | if (Load || Store) { | 
|  | int TFI = Load ? LFI : SFI; | 
|  | unsigned AM = HII.getAddrMode(In); | 
|  | SlotInfo &SI = FIRangeMap[TFI]; | 
|  | bool Bad = (AM != HexagonII::BaseImmOffset); | 
|  | if (!Bad) { | 
|  | // If the addressing mode is ok, check the register class. | 
|  | unsigned OpNum = Load ? 0 : 2; | 
|  | auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF); | 
|  | RC = getCommonRC(SI.RC, RC); | 
|  | if (RC == nullptr) | 
|  | Bad = true; | 
|  | else | 
|  | SI.RC = RC; | 
|  | } | 
|  | if (!Bad) { | 
|  | // Check sizes. | 
|  | unsigned S = HII.getMemAccessSize(In); | 
|  | if (SI.Size != 0 && SI.Size != S) | 
|  | Bad = true; | 
|  | else | 
|  | SI.Size = S; | 
|  | } | 
|  | if (!Bad) { | 
|  | for (auto *Mo : In.memoperands()) { | 
|  | if (!Mo->isVolatile()) | 
|  | continue; | 
|  | Bad = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Bad) | 
|  | BadFIs.insert(TFI); | 
|  | } | 
|  |  | 
|  | // Locate uses of frame indices. | 
|  | for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { | 
|  | const MachineOperand &Op = In.getOperand(i); | 
|  | if (!Op.isFI()) | 
|  | continue; | 
|  | int FI = Op.getIndex(); | 
|  | // Make sure that the following operand is an immediate and that | 
|  | // it is 0. This is the offset in the stack object. | 
|  | if (i+1 >= n || !In.getOperand(i+1).isImm() || | 
|  | In.getOperand(i+1).getImm() != 0) | 
|  | BadFIs.insert(FI); | 
|  | if (BadFIs.count(FI)) | 
|  | continue; | 
|  |  | 
|  | IndexType Index = IndexMap.getIndex(&In); | 
|  | if (Load) { | 
|  | if (LastStore[FI] == IndexType::None) | 
|  | LastStore[FI] = IndexType::Entry; | 
|  | LastLoad[FI] = Index; | 
|  | } else if (Store) { | 
|  | HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; | 
|  | if (LastStore[FI] != IndexType::None) | 
|  | RL.add(LastStore[FI], LastLoad[FI], false, false); | 
|  | else if (LastLoad[FI] != IndexType::None) | 
|  | RL.add(IndexType::Entry, LastLoad[FI], false, false); | 
|  | LastLoad[FI] = IndexType::None; | 
|  | LastStore[FI] = Index; | 
|  | } else { | 
|  | BadFIs.insert(FI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto &I : LastLoad) { | 
|  | IndexType LL = I.second; | 
|  | if (LL == IndexType::None) | 
|  | continue; | 
|  | auto &RL = FIRangeMap[I.first].Map[&B]; | 
|  | IndexType &LS = LastStore[I.first]; | 
|  | if (LS != IndexType::None) | 
|  | RL.add(LS, LL, false, false); | 
|  | else | 
|  | RL.add(IndexType::Entry, LL, false, false); | 
|  | LS = IndexType::None; | 
|  | } | 
|  | for (auto &I : LastStore) { | 
|  | IndexType LS = I.second; | 
|  | if (LS == IndexType::None) | 
|  | continue; | 
|  | auto &RL = FIRangeMap[I.first].Map[&B]; | 
|  | RL.add(LS, IndexType::None, false, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (auto &P : FIRangeMap) { | 
|  | dbgs() << "fi#" << P.first; | 
|  | if (BadFIs.count(P.first)) | 
|  | dbgs() << " (bad)"; | 
|  | dbgs() << "  RC: "; | 
|  | if (P.second.RC != nullptr) | 
|  | dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; | 
|  | else | 
|  | dbgs() << "<null>\n"; | 
|  | for (auto &R : P.second.Map) | 
|  | dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second | 
|  | << "}\n"; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // When a slot is loaded from in a block without being stored to in the | 
|  | // same block, it is live-on-entry to this block. To avoid CFG analysis, | 
|  | // consider this slot to be live-on-exit from all blocks. | 
|  | SmallSet<int,4> LoxFIs; | 
|  |  | 
|  | std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap; | 
|  |  | 
|  | for (auto &P : FIRangeMap) { | 
|  | // P = pair(FI, map: BB->RangeList) | 
|  | if (BadFIs.count(P.first)) | 
|  | continue; | 
|  | for (auto &B : MF) { | 
|  | auto F = P.second.Map.find(&B); | 
|  | // F = pair(BB, RangeList) | 
|  | if (F == P.second.Map.end() || F->second.empty()) | 
|  | continue; | 
|  | HexagonBlockRanges::IndexRange &IR = F->second.front(); | 
|  | if (IR.start() == IndexType::Entry) | 
|  | LoxFIs.insert(P.first); | 
|  | BlockFIMap[&B].push_back(P.first); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; | 
|  | for (auto &P : BlockFIMap) { | 
|  | auto &FIs = P.second; | 
|  | if (FIs.empty()) | 
|  | continue; | 
|  | dbgs() << "  " << printMBBReference(*P.first) << ": {"; | 
|  | for (auto I : FIs) { | 
|  | dbgs() << " fi#" << I; | 
|  | if (LoxFIs.count(I)) | 
|  | dbgs() << '*'; | 
|  | } | 
|  | dbgs() << " }\n"; | 
|  | } | 
|  | }); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | bool HasOptLimit = SpillOptMax.getPosition(); | 
|  | #endif | 
|  |  | 
|  | // eliminate loads, when all loads eliminated, eliminate all stores. | 
|  | for (auto &B : MF) { | 
|  | auto F = BlockIndexes.find(&B); | 
|  | assert(F != BlockIndexes.end()); | 
|  | HexagonBlockRanges::InstrIndexMap &IM = F->second; | 
|  | HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); | 
|  | HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); | 
|  | LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n" | 
|  | << HexagonBlockRanges::PrintRangeMap(DM, HRI)); | 
|  |  | 
|  | for (auto FI : BlockFIMap[&B]) { | 
|  | if (BadFIs.count(FI)) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n'); | 
|  | HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; | 
|  | for (auto &Range : RL) { | 
|  | LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n'); | 
|  | if (!IndexType::isInstr(Range.start()) || | 
|  | !IndexType::isInstr(Range.end())) | 
|  | continue; | 
|  | MachineInstr &SI = *IM.getInstr(Range.start()); | 
|  | MachineInstr &EI = *IM.getInstr(Range.end()); | 
|  | assert(SI.mayStore() && "Unexpected start instruction"); | 
|  | assert(EI.mayLoad() && "Unexpected end instruction"); | 
|  | MachineOperand &SrcOp = SI.getOperand(2); | 
|  |  | 
|  | HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), | 
|  | SrcOp.getSubReg() }; | 
|  | auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF); | 
|  | // The this-> is needed to unconfuse MSVC. | 
|  | unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC); | 
|  | LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI) | 
|  | << '\n'); | 
|  | if (FoundR == 0) | 
|  | continue; | 
|  | #ifndef NDEBUG | 
|  | if (HasOptLimit) { | 
|  | if (SpillOptCount >= SpillOptMax) | 
|  | return; | 
|  | SpillOptCount++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Generate the copy-in: "FoundR = COPY SrcR" at the store location. | 
|  | MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt; | 
|  | MachineInstr *CopyIn = nullptr; | 
|  | if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { | 
|  | const DebugLoc &DL = SI.getDebugLoc(); | 
|  | CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) | 
|  | .add(SrcOp); | 
|  | } | 
|  |  | 
|  | ++StartIt; | 
|  | // Check if this is a last store and the FI is live-on-exit. | 
|  | if (LoxFIs.count(FI) && (&Range == &RL.back())) { | 
|  | // Update store's source register. | 
|  | if (unsigned SR = SrcOp.getSubReg()) | 
|  | SrcOp.setReg(HRI.getSubReg(FoundR, SR)); | 
|  | else | 
|  | SrcOp.setReg(FoundR); | 
|  | SrcOp.setSubReg(0); | 
|  | // We are keeping this register live. | 
|  | SrcOp.setIsKill(false); | 
|  | } else { | 
|  | B.erase(&SI); | 
|  | IM.replaceInstr(&SI, CopyIn); | 
|  | } | 
|  |  | 
|  | auto EndIt = std::next(EI.getIterator()); | 
|  | for (auto It = StartIt; It != EndIt; It = NextIt) { | 
|  | MachineInstr &MI = *It; | 
|  | NextIt = std::next(It); | 
|  | int TFI; | 
|  | if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI) | 
|  | continue; | 
|  | unsigned DstR = MI.getOperand(0).getReg(); | 
|  | assert(MI.getOperand(0).getSubReg() == 0); | 
|  | MachineInstr *CopyOut = nullptr; | 
|  | if (DstR != FoundR) { | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned MemSize = HII.getMemAccessSize(MI); | 
|  | assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); | 
|  | unsigned CopyOpc = TargetOpcode::COPY; | 
|  | if (HII.isSignExtendingLoad(MI)) | 
|  | CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; | 
|  | else if (HII.isZeroExtendingLoad(MI)) | 
|  | CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; | 
|  | CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) | 
|  | .addReg(FoundR, getKillRegState(&MI == &EI)); | 
|  | } | 
|  | IM.replaceInstr(&MI, CopyOut); | 
|  | B.erase(It); | 
|  | } | 
|  |  | 
|  | // Update the dead map. | 
|  | HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; | 
|  | for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) | 
|  | DM[RR].subtract(Range); | 
|  | } // for Range in range list | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonFrameLowering::expandAlloca(MachineInstr *AI, | 
|  | const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const { | 
|  | MachineBasicBlock &MB = *AI->getParent(); | 
|  | DebugLoc DL = AI->getDebugLoc(); | 
|  | unsigned A = AI->getOperand(2).getImm(); | 
|  |  | 
|  | // Have | 
|  | //    Rd  = alloca Rs, #A | 
|  | // | 
|  | // If Rs and Rd are different registers, use this sequence: | 
|  | //    Rd  = sub(r29, Rs) | 
|  | //    r29 = sub(r29, Rs) | 
|  | //    Rd  = and(Rd, #-A)    ; if necessary | 
|  | //    r29 = and(r29, #-A)   ; if necessary | 
|  | //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A | 
|  | // otherwise, do | 
|  | //    Rd  = sub(r29, Rs) | 
|  | //    Rd  = and(Rd, #-A)    ; if necessary | 
|  | //    r29 = Rd | 
|  | //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A | 
|  |  | 
|  | MachineOperand &RdOp = AI->getOperand(0); | 
|  | MachineOperand &RsOp = AI->getOperand(1); | 
|  | unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg(); | 
|  |  | 
|  | // Rd = sub(r29, Rs) | 
|  | BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) | 
|  | .addReg(SP) | 
|  | .addReg(Rs); | 
|  | if (Rs != Rd) { | 
|  | // r29 = sub(r29, Rs) | 
|  | BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) | 
|  | .addReg(SP) | 
|  | .addReg(Rs); | 
|  | } | 
|  | if (A > 8) { | 
|  | // Rd  = and(Rd, #-A) | 
|  | BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) | 
|  | .addReg(Rd) | 
|  | .addImm(-int64_t(A)); | 
|  | if (Rs != Rd) | 
|  | BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) | 
|  | .addReg(SP) | 
|  | .addImm(-int64_t(A)); | 
|  | } | 
|  | if (Rs == Rd) { | 
|  | // r29 = Rd | 
|  | BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) | 
|  | .addReg(Rd); | 
|  | } | 
|  | if (CF > 0) { | 
|  | // Rd = add(Rd, #CF) | 
|  | BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) | 
|  | .addReg(Rd) | 
|  | .addImm(CF); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | if (!MFI.hasVarSizedObjects()) | 
|  | return false; | 
|  | unsigned MaxA = MFI.getMaxAlignment(); | 
|  | if (MaxA <= getStackAlignment()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const MachineInstr *HexagonFrameLowering::getAlignaInstr( | 
|  | const MachineFunction &MF) const { | 
|  | for (auto &B : MF) | 
|  | for (auto &I : B) | 
|  | if (I.getOpcode() == Hexagon::PS_aligna) | 
|  | return &I; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Adds all callee-saved registers as implicit uses or defs to the | 
|  | /// instruction. | 
|  | void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, | 
|  | const CSIVect &CSI, bool IsDef, bool IsKill) const { | 
|  | // Add the callee-saved registers as implicit uses. | 
|  | for (auto &R : CSI) | 
|  | MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); | 
|  | } | 
|  |  | 
|  | /// Determine whether the callee-saved register saves and restores should | 
|  | /// be generated via inline code. If this function returns "true", inline | 
|  | /// code will be generated. If this function returns "false", additional | 
|  | /// checks are performed, which may still lead to the inline code. | 
|  | bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF, | 
|  | const CSIVect &CSI) const { | 
|  | if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) | 
|  | return true; | 
|  | if (!hasFP(MF)) | 
|  | return true; | 
|  | if (!isOptSize(MF) && !isMinSize(MF)) | 
|  | if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) | 
|  | return true; | 
|  |  | 
|  | // Check if CSI only has double registers, and if the registers form | 
|  | // a contiguous block starting from D8. | 
|  | BitVector Regs(Hexagon::NUM_TARGET_REGS); | 
|  | for (unsigned i = 0, n = CSI.size(); i < n; ++i) { | 
|  | unsigned R = CSI[i].getReg(); | 
|  | if (!Hexagon::DoubleRegsRegClass.contains(R)) | 
|  | return true; | 
|  | Regs[R] = true; | 
|  | } | 
|  | int F = Regs.find_first(); | 
|  | if (F != Hexagon::D8) | 
|  | return true; | 
|  | while (F >= 0) { | 
|  | int N = Regs.find_next(F); | 
|  | if (N >= 0 && N != F+1) | 
|  | return true; | 
|  | F = N; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF, | 
|  | const CSIVect &CSI) const { | 
|  | if (shouldInlineCSR(MF, CSI)) | 
|  | return false; | 
|  | unsigned NumCSI = CSI.size(); | 
|  | if (NumCSI <= 1) | 
|  | return false; | 
|  |  | 
|  | unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs | 
|  | : SpillFuncThreshold; | 
|  | return Threshold < NumCSI; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF, | 
|  | const CSIVect &CSI) const { | 
|  | if (shouldInlineCSR(MF, CSI)) | 
|  | return false; | 
|  | // The restore functions do a bit more than just restoring registers. | 
|  | // The non-returning versions will go back directly to the caller's | 
|  | // caller, others will clean up the stack frame in preparation for | 
|  | // a tail call. Using them can still save code size even if only one | 
|  | // register is getting restores. Make the decision based on -Oz: | 
|  | // using -Os will use inline restore for a single register. | 
|  | if (isMinSize(MF)) | 
|  | return true; | 
|  | unsigned NumCSI = CSI.size(); | 
|  | if (NumCSI <= 1) | 
|  | return false; | 
|  |  | 
|  | unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 | 
|  | : SpillFuncThreshold; | 
|  | return Threshold < NumCSI; | 
|  | } | 
|  |  | 
|  | bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const { | 
|  | unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF); | 
|  | auto &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | // A fairly simplistic guess as to whether a potential load/store to a | 
|  | // stack location could require an extra register. | 
|  | if (HST.useHVXOps() && StackSize > 256) | 
|  | return true; | 
|  |  | 
|  | // Check if the function has store-immediate instructions that access | 
|  | // the stack. Since the offset field is not extendable, if the stack | 
|  | // size exceeds the offset limit (6 bits, shifted), the stores will | 
|  | // require a new base register. | 
|  | bool HasImmStack = false; | 
|  | unsigned MinLS = ~0u;   // Log_2 of the memory access size. | 
|  |  | 
|  | for (const MachineBasicBlock &B : MF) { | 
|  | for (const MachineInstr &MI : B) { | 
|  | unsigned LS = 0; | 
|  | switch (MI.getOpcode()) { | 
|  | case Hexagon::S4_storeirit_io: | 
|  | case Hexagon::S4_storeirif_io: | 
|  | case Hexagon::S4_storeiri_io: | 
|  | ++LS; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Hexagon::S4_storeirht_io: | 
|  | case Hexagon::S4_storeirhf_io: | 
|  | case Hexagon::S4_storeirh_io: | 
|  | ++LS; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Hexagon::S4_storeirbt_io: | 
|  | case Hexagon::S4_storeirbf_io: | 
|  | case Hexagon::S4_storeirb_io: | 
|  | if (MI.getOperand(0).isFI()) | 
|  | HasImmStack = true; | 
|  | MinLS = std::min(MinLS, LS); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasImmStack) | 
|  | return !isUInt<6>(StackSize >> MinLS); | 
|  |  | 
|  | return false; | 
|  | } |