| //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the PowerPC-specific support for the FastISel class. Some | 
 | // of the target-specific code is generated by tablegen in the file | 
 | // PPCGenFastISel.inc, which is #included here. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "MCTargetDesc/PPCPredicates.h" | 
 | #include "PPC.h" | 
 | #include "PPCCCState.h" | 
 | #include "PPCCallingConv.h" | 
 | #include "PPCISelLowering.h" | 
 | #include "PPCMachineFunctionInfo.h" | 
 | #include "PPCSubtarget.h" | 
 | #include "PPCTargetMachine.h" | 
 | #include "llvm/ADT/Optional.h" | 
 | #include "llvm/CodeGen/CallingConvLower.h" | 
 | #include "llvm/CodeGen/FastISel.h" | 
 | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
 | #include "llvm/CodeGen/MachineConstantPool.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/IR/CallingConv.h" | 
 | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
 | #include "llvm/IR/GlobalAlias.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/Operator.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // TBD: | 
 | //   fastLowerArguments: Handle simple cases. | 
 | //   PPCMaterializeGV: Handle TLS. | 
 | //   SelectCall: Handle function pointers. | 
 | //   SelectCall: Handle multi-register return values. | 
 | //   SelectCall: Optimize away nops for local calls. | 
 | //   processCallArgs: Handle bit-converted arguments. | 
 | //   finishCall: Handle multi-register return values. | 
 | //   PPCComputeAddress: Handle parameter references as FrameIndex's. | 
 | //   PPCEmitCmp: Handle immediate as operand 1. | 
 | //   SelectCall: Handle small byval arguments. | 
 | //   SelectIntrinsicCall: Implement. | 
 | //   SelectSelect: Implement. | 
 | //   Consider factoring isTypeLegal into the base class. | 
 | //   Implement switches and jump tables. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "ppcfastisel" | 
 |  | 
 | namespace { | 
 |  | 
 | typedef struct Address { | 
 |   enum { | 
 |     RegBase, | 
 |     FrameIndexBase | 
 |   } BaseType; | 
 |  | 
 |   union { | 
 |     unsigned Reg; | 
 |     int FI; | 
 |   } Base; | 
 |  | 
 |   long Offset; | 
 |  | 
 |   // Innocuous defaults for our address. | 
 |   Address() | 
 |    : BaseType(RegBase), Offset(0) { | 
 |      Base.Reg = 0; | 
 |    } | 
 | } Address; | 
 |  | 
 | class PPCFastISel final : public FastISel { | 
 |  | 
 |   const TargetMachine &TM; | 
 |   const PPCSubtarget *PPCSubTarget; | 
 |   PPCFunctionInfo *PPCFuncInfo; | 
 |   const TargetInstrInfo &TII; | 
 |   const TargetLowering &TLI; | 
 |   LLVMContext *Context; | 
 |  | 
 |   public: | 
 |     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, | 
 |                          const TargetLibraryInfo *LibInfo) | 
 |         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), | 
 |           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), | 
 |           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), | 
 |           TII(*PPCSubTarget->getInstrInfo()), | 
 |           TLI(*PPCSubTarget->getTargetLowering()), | 
 |           Context(&FuncInfo.Fn->getContext()) {} | 
 |  | 
 |   // Backend specific FastISel code. | 
 |   private: | 
 |     bool fastSelectInstruction(const Instruction *I) override; | 
 |     unsigned fastMaterializeConstant(const Constant *C) override; | 
 |     unsigned fastMaterializeAlloca(const AllocaInst *AI) override; | 
 |     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, | 
 |                              const LoadInst *LI) override; | 
 |     bool fastLowerArguments() override; | 
 |     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; | 
 |     unsigned fastEmitInst_ri(unsigned MachineInstOpcode, | 
 |                              const TargetRegisterClass *RC, | 
 |                              unsigned Op0, bool Op0IsKill, | 
 |                              uint64_t Imm); | 
 |     unsigned fastEmitInst_r(unsigned MachineInstOpcode, | 
 |                             const TargetRegisterClass *RC, | 
 |                             unsigned Op0, bool Op0IsKill); | 
 |     unsigned fastEmitInst_rr(unsigned MachineInstOpcode, | 
 |                              const TargetRegisterClass *RC, | 
 |                              unsigned Op0, bool Op0IsKill, | 
 |                              unsigned Op1, bool Op1IsKill); | 
 |  | 
 |     bool fastLowerCall(CallLoweringInfo &CLI) override; | 
 |  | 
 |   // Instruction selection routines. | 
 |   private: | 
 |     bool SelectLoad(const Instruction *I); | 
 |     bool SelectStore(const Instruction *I); | 
 |     bool SelectBranch(const Instruction *I); | 
 |     bool SelectIndirectBr(const Instruction *I); | 
 |     bool SelectFPExt(const Instruction *I); | 
 |     bool SelectFPTrunc(const Instruction *I); | 
 |     bool SelectIToFP(const Instruction *I, bool IsSigned); | 
 |     bool SelectFPToI(const Instruction *I, bool IsSigned); | 
 |     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); | 
 |     bool SelectRet(const Instruction *I); | 
 |     bool SelectTrunc(const Instruction *I); | 
 |     bool SelectIntExt(const Instruction *I); | 
 |  | 
 |   // Utility routines. | 
 |   private: | 
 |     bool isTypeLegal(Type *Ty, MVT &VT); | 
 |     bool isLoadTypeLegal(Type *Ty, MVT &VT); | 
 |     bool isValueAvailable(const Value *V) const; | 
 |     bool isVSFRCRegClass(const TargetRegisterClass *RC) const { | 
 |       return RC->getID() == PPC::VSFRCRegClassID; | 
 |     } | 
 |     bool isVSSRCRegClass(const TargetRegisterClass *RC) const { | 
 |       return RC->getID() == PPC::VSSRCRegClassID; | 
 |     } | 
 |     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, | 
 |                     bool isZExt, unsigned DestReg, | 
 |                     const PPC::Predicate Pred); | 
 |     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, | 
 |                      const TargetRegisterClass *RC, bool IsZExt = true, | 
 |                      unsigned FP64LoadOpc = PPC::LFD); | 
 |     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); | 
 |     bool PPCComputeAddress(const Value *Obj, Address &Addr); | 
 |     void PPCSimplifyAddress(Address &Addr, bool &UseOffset, | 
 |                             unsigned &IndexReg); | 
 |     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, | 
 |                            unsigned DestReg, bool IsZExt); | 
 |     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); | 
 |     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); | 
 |     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, | 
 |                                bool UseSExt = true); | 
 |     unsigned PPCMaterialize32BitInt(int64_t Imm, | 
 |                                     const TargetRegisterClass *RC); | 
 |     unsigned PPCMaterialize64BitInt(int64_t Imm, | 
 |                                     const TargetRegisterClass *RC); | 
 |     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, | 
 |                              unsigned SrcReg, bool IsSigned); | 
 |     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); | 
 |  | 
 |   // Call handling routines. | 
 |   private: | 
 |     bool processCallArgs(SmallVectorImpl<Value*> &Args, | 
 |                          SmallVectorImpl<unsigned> &ArgRegs, | 
 |                          SmallVectorImpl<MVT> &ArgVTs, | 
 |                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, | 
 |                          SmallVectorImpl<unsigned> &RegArgs, | 
 |                          CallingConv::ID CC, | 
 |                          unsigned &NumBytes, | 
 |                          bool IsVarArg); | 
 |     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); | 
 |     LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag); | 
 |  | 
 |   private: | 
 |   #include "PPCGenFastISel.inc" | 
 |  | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | #include "PPCGenCallingConv.inc" | 
 |  | 
 | // Function whose sole purpose is to kill compiler warnings | 
 | // stemming from unused functions included from PPCGenCallingConv.inc. | 
 | CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { | 
 |   if (Flag == 1) | 
 |     return CC_PPC32_SVR4; | 
 |   else if (Flag == 2) | 
 |     return CC_PPC32_SVR4_ByVal; | 
 |   else if (Flag == 3) | 
 |     return CC_PPC32_SVR4_VarArg; | 
 |   else if (Flag == 4) | 
 |     return RetCC_PPC_Cold; | 
 |   else | 
 |     return RetCC_PPC; | 
 | } | 
 |  | 
 | static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { | 
 |   switch (Pred) { | 
 |     // These are not representable with any single compare. | 
 |     case CmpInst::FCMP_FALSE: | 
 |     case CmpInst::FCMP_TRUE: | 
 |     // Major concern about the following 6 cases is NaN result. The comparison | 
 |     // result consists of 4 bits, indicating lt, eq, gt and un (unordered), | 
 |     // only one of which will be set. The result is generated by fcmpu | 
 |     // instruction. However, bc instruction only inspects one of the first 3 | 
 |     // bits, so when un is set, bc instruction may jump to an undesired | 
 |     // place. | 
 |     // | 
 |     // More specifically, if we expect an unordered comparison and un is set, we | 
 |     // expect to always go to true branch; in such case UEQ, UGT and ULT still | 
 |     // give false, which are undesired; but UNE, UGE, ULE happen to give true, | 
 |     // since they are tested by inspecting !eq, !lt, !gt, respectively. | 
 |     // | 
 |     // Similarly, for ordered comparison, when un is set, we always expect the | 
 |     // result to be false. In such case OGT, OLT and OEQ is good, since they are | 
 |     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE | 
 |     // and ONE are tested through !lt, !gt and !eq, and these are true. | 
 |     case CmpInst::FCMP_UEQ: | 
 |     case CmpInst::FCMP_UGT: | 
 |     case CmpInst::FCMP_ULT: | 
 |     case CmpInst::FCMP_OGE: | 
 |     case CmpInst::FCMP_OLE: | 
 |     case CmpInst::FCMP_ONE: | 
 |     default: | 
 |       return Optional<PPC::Predicate>(); | 
 |  | 
 |     case CmpInst::FCMP_OEQ: | 
 |     case CmpInst::ICMP_EQ: | 
 |       return PPC::PRED_EQ; | 
 |  | 
 |     case CmpInst::FCMP_OGT: | 
 |     case CmpInst::ICMP_UGT: | 
 |     case CmpInst::ICMP_SGT: | 
 |       return PPC::PRED_GT; | 
 |  | 
 |     case CmpInst::FCMP_UGE: | 
 |     case CmpInst::ICMP_UGE: | 
 |     case CmpInst::ICMP_SGE: | 
 |       return PPC::PRED_GE; | 
 |  | 
 |     case CmpInst::FCMP_OLT: | 
 |     case CmpInst::ICMP_ULT: | 
 |     case CmpInst::ICMP_SLT: | 
 |       return PPC::PRED_LT; | 
 |  | 
 |     case CmpInst::FCMP_ULE: | 
 |     case CmpInst::ICMP_ULE: | 
 |     case CmpInst::ICMP_SLE: | 
 |       return PPC::PRED_LE; | 
 |  | 
 |     case CmpInst::FCMP_UNE: | 
 |     case CmpInst::ICMP_NE: | 
 |       return PPC::PRED_NE; | 
 |  | 
 |     case CmpInst::FCMP_ORD: | 
 |       return PPC::PRED_NU; | 
 |  | 
 |     case CmpInst::FCMP_UNO: | 
 |       return PPC::PRED_UN; | 
 |   } | 
 | } | 
 |  | 
 | // Determine whether the type Ty is simple enough to be handled by | 
 | // fast-isel, and return its equivalent machine type in VT. | 
 | // FIXME: Copied directly from ARM -- factor into base class? | 
 | bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { | 
 |   EVT Evt = TLI.getValueType(DL, Ty, true); | 
 |  | 
 |   // Only handle simple types. | 
 |   if (Evt == MVT::Other || !Evt.isSimple()) return false; | 
 |   VT = Evt.getSimpleVT(); | 
 |  | 
 |   // Handle all legal types, i.e. a register that will directly hold this | 
 |   // value. | 
 |   return TLI.isTypeLegal(VT); | 
 | } | 
 |  | 
 | // Determine whether the type Ty is simple enough to be handled by | 
 | // fast-isel as a load target, and return its equivalent machine type in VT. | 
 | bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { | 
 |   if (isTypeLegal(Ty, VT)) return true; | 
 |  | 
 |   // If this is a type than can be sign or zero-extended to a basic operation | 
 |   // go ahead and accept it now. | 
 |   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool PPCFastISel::isValueAvailable(const Value *V) const { | 
 |   if (!isa<Instruction>(V)) | 
 |     return true; | 
 |  | 
 |   const auto *I = cast<Instruction>(V); | 
 |   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; | 
 | } | 
 |  | 
 | // Given a value Obj, create an Address object Addr that represents its | 
 | // address.  Return false if we can't handle it. | 
 | bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { | 
 |   const User *U = nullptr; | 
 |   unsigned Opcode = Instruction::UserOp1; | 
 |   if (const Instruction *I = dyn_cast<Instruction>(Obj)) { | 
 |     // Don't walk into other basic blocks unless the object is an alloca from | 
 |     // another block, otherwise it may not have a virtual register assigned. | 
 |     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || | 
 |         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { | 
 |       Opcode = I->getOpcode(); | 
 |       U = I; | 
 |     } | 
 |   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { | 
 |     Opcode = C->getOpcode(); | 
 |     U = C; | 
 |   } | 
 |  | 
 |   switch (Opcode) { | 
 |     default: | 
 |       break; | 
 |     case Instruction::BitCast: | 
 |       // Look through bitcasts. | 
 |       return PPCComputeAddress(U->getOperand(0), Addr); | 
 |     case Instruction::IntToPtr: | 
 |       // Look past no-op inttoptrs. | 
 |       if (TLI.getValueType(DL, U->getOperand(0)->getType()) == | 
 |           TLI.getPointerTy(DL)) | 
 |         return PPCComputeAddress(U->getOperand(0), Addr); | 
 |       break; | 
 |     case Instruction::PtrToInt: | 
 |       // Look past no-op ptrtoints. | 
 |       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) | 
 |         return PPCComputeAddress(U->getOperand(0), Addr); | 
 |       break; | 
 |     case Instruction::GetElementPtr: { | 
 |       Address SavedAddr = Addr; | 
 |       long TmpOffset = Addr.Offset; | 
 |  | 
 |       // Iterate through the GEP folding the constants into offsets where | 
 |       // we can. | 
 |       gep_type_iterator GTI = gep_type_begin(U); | 
 |       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); | 
 |            II != IE; ++II, ++GTI) { | 
 |         const Value *Op = *II; | 
 |         if (StructType *STy = GTI.getStructTypeOrNull()) { | 
 |           const StructLayout *SL = DL.getStructLayout(STy); | 
 |           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); | 
 |           TmpOffset += SL->getElementOffset(Idx); | 
 |         } else { | 
 |           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); | 
 |           for (;;) { | 
 |             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { | 
 |               // Constant-offset addressing. | 
 |               TmpOffset += CI->getSExtValue() * S; | 
 |               break; | 
 |             } | 
 |             if (canFoldAddIntoGEP(U, Op)) { | 
 |               // A compatible add with a constant operand. Fold the constant. | 
 |               ConstantInt *CI = | 
 |               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); | 
 |               TmpOffset += CI->getSExtValue() * S; | 
 |               // Iterate on the other operand. | 
 |               Op = cast<AddOperator>(Op)->getOperand(0); | 
 |               continue; | 
 |             } | 
 |             // Unsupported | 
 |             goto unsupported_gep; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Try to grab the base operand now. | 
 |       Addr.Offset = TmpOffset; | 
 |       if (PPCComputeAddress(U->getOperand(0), Addr)) return true; | 
 |  | 
 |       // We failed, restore everything and try the other options. | 
 |       Addr = SavedAddr; | 
 |  | 
 |       unsupported_gep: | 
 |       break; | 
 |     } | 
 |     case Instruction::Alloca: { | 
 |       const AllocaInst *AI = cast<AllocaInst>(Obj); | 
 |       DenseMap<const AllocaInst*, int>::iterator SI = | 
 |         FuncInfo.StaticAllocaMap.find(AI); | 
 |       if (SI != FuncInfo.StaticAllocaMap.end()) { | 
 |         Addr.BaseType = Address::FrameIndexBase; | 
 |         Addr.Base.FI = SI->second; | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: References to parameters fall through to the behavior | 
 |   // below.  They should be able to reference a frame index since | 
 |   // they are stored to the stack, so we can get "ld rx, offset(r1)" | 
 |   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will | 
 |   // just contain the parameter.  Try to handle this with a FI. | 
 |  | 
 |   // Try to get this in a register if nothing else has worked. | 
 |   if (Addr.Base.Reg == 0) | 
 |     Addr.Base.Reg = getRegForValue(Obj); | 
 |  | 
 |   // Prevent assignment of base register to X0, which is inappropriate | 
 |   // for loads and stores alike. | 
 |   if (Addr.Base.Reg != 0) | 
 |     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); | 
 |  | 
 |   return Addr.Base.Reg != 0; | 
 | } | 
 |  | 
 | // Fix up some addresses that can't be used directly.  For example, if | 
 | // an offset won't fit in an instruction field, we may need to move it | 
 | // into an index register. | 
 | void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, | 
 |                                      unsigned &IndexReg) { | 
 |  | 
 |   // Check whether the offset fits in the instruction field. | 
 |   if (!isInt<16>(Addr.Offset)) | 
 |     UseOffset = false; | 
 |  | 
 |   // If this is a stack pointer and the offset needs to be simplified then | 
 |   // put the alloca address into a register, set the base type back to | 
 |   // register and continue. This should almost never happen. | 
 |   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { | 
 |     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), | 
 |             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); | 
 |     Addr.Base.Reg = ResultReg; | 
 |     Addr.BaseType = Address::RegBase; | 
 |   } | 
 |  | 
 |   if (!UseOffset) { | 
 |     IntegerType *OffsetTy = Type::getInt64Ty(*Context); | 
 |     const ConstantInt *Offset = | 
 |       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); | 
 |     IndexReg = PPCMaterializeInt(Offset, MVT::i64); | 
 |     assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); | 
 |   } | 
 | } | 
 |  | 
 | // Emit a load instruction if possible, returning true if we succeeded, | 
 | // otherwise false.  See commentary below for how the register class of | 
 | // the load is determined. | 
 | bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, | 
 |                               const TargetRegisterClass *RC, | 
 |                               bool IsZExt, unsigned FP64LoadOpc) { | 
 |   unsigned Opc; | 
 |   bool UseOffset = true; | 
 |   bool HasSPE = PPCSubTarget->hasSPE(); | 
 |  | 
 |   // If ResultReg is given, it determines the register class of the load. | 
 |   // Otherwise, RC is the register class to use.  If the result of the | 
 |   // load isn't anticipated in this block, both may be zero, in which | 
 |   // case we must make a conservative guess.  In particular, don't assign | 
 |   // R0 or X0 to the result register, as the result may be used in a load, | 
 |   // store, add-immediate, or isel that won't permit this.  (Though | 
 |   // perhaps the spill and reload of live-exit values would handle this?) | 
 |   const TargetRegisterClass *UseRC = | 
 |     (ResultReg ? MRI.getRegClass(ResultReg) : | 
 |      (RC ? RC : | 
 |       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) : | 
 |        (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) : | 
 |         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : | 
 |          &PPC::GPRC_and_GPRC_NOR0RegClass))))); | 
 |  | 
 |   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); | 
 |  | 
 |   switch (VT.SimpleTy) { | 
 |     default: // e.g., vector types not handled | 
 |       return false; | 
 |     case MVT::i8: | 
 |       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; | 
 |       break; | 
 |     case MVT::i16: | 
 |       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) | 
 |                     : (Is32BitInt ? PPC::LHA : PPC::LHA8)); | 
 |       break; | 
 |     case MVT::i32: | 
 |       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) | 
 |                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); | 
 |       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) | 
 |         UseOffset = false; | 
 |       break; | 
 |     case MVT::i64: | 
 |       Opc = PPC::LD; | 
 |       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && | 
 |              "64-bit load with 32-bit target??"); | 
 |       UseOffset = ((Addr.Offset & 3) == 0); | 
 |       break; | 
 |     case MVT::f32: | 
 |       Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS; | 
 |       break; | 
 |     case MVT::f64: | 
 |       Opc = FP64LoadOpc; | 
 |       break; | 
 |   } | 
 |  | 
 |   // If necessary, materialize the offset into a register and use | 
 |   // the indexed form.  Also handle stack pointers with special needs. | 
 |   unsigned IndexReg = 0; | 
 |   PPCSimplifyAddress(Addr, UseOffset, IndexReg); | 
 |  | 
 |   // If this is a potential VSX load with an offset of 0, a VSX indexed load can | 
 |   // be used. | 
 |   bool IsVSSRC = isVSSRCRegClass(UseRC); | 
 |   bool IsVSFRC = isVSFRCRegClass(UseRC); | 
 |   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; | 
 |   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; | 
 |   if ((Is32VSXLoad || Is64VSXLoad) && | 
 |       (Addr.BaseType != Address::FrameIndexBase) && UseOffset && | 
 |       (Addr.Offset == 0)) { | 
 |     UseOffset = false; | 
 |   } | 
 |  | 
 |   if (ResultReg == 0) | 
 |     ResultReg = createResultReg(UseRC); | 
 |  | 
 |   // Note: If we still have a frame index here, we know the offset is | 
 |   // in range, as otherwise PPCSimplifyAddress would have converted it | 
 |   // into a RegBase. | 
 |   if (Addr.BaseType == Address::FrameIndexBase) { | 
 |     // VSX only provides an indexed load. | 
 |     if (Is32VSXLoad || Is64VSXLoad) return false; | 
 |  | 
 |     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( | 
 |         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, | 
 |                                           Addr.Offset), | 
 |         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), | 
 |         MFI.getObjectAlignment(Addr.Base.FI)); | 
 |  | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) | 
 |       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); | 
 |  | 
 |   // Base reg with offset in range. | 
 |   } else if (UseOffset) { | 
 |     // VSX only provides an indexed load. | 
 |     if (Is32VSXLoad || Is64VSXLoad) return false; | 
 |  | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) | 
 |       .addImm(Addr.Offset).addReg(Addr.Base.Reg); | 
 |  | 
 |   // Indexed form. | 
 |   } else { | 
 |     // Get the RR opcode corresponding to the RI one.  FIXME: It would be | 
 |     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it | 
 |     // is hard to get at. | 
 |     switch (Opc) { | 
 |       default:        llvm_unreachable("Unexpected opcode!"); | 
 |       case PPC::LBZ:    Opc = PPC::LBZX;    break; | 
 |       case PPC::LBZ8:   Opc = PPC::LBZX8;   break; | 
 |       case PPC::LHZ:    Opc = PPC::LHZX;    break; | 
 |       case PPC::LHZ8:   Opc = PPC::LHZX8;   break; | 
 |       case PPC::LHA:    Opc = PPC::LHAX;    break; | 
 |       case PPC::LHA8:   Opc = PPC::LHAX8;   break; | 
 |       case PPC::LWZ:    Opc = PPC::LWZX;    break; | 
 |       case PPC::LWZ8:   Opc = PPC::LWZX8;   break; | 
 |       case PPC::LWA:    Opc = PPC::LWAX;    break; | 
 |       case PPC::LWA_32: Opc = PPC::LWAX_32; break; | 
 |       case PPC::LD:     Opc = PPC::LDX;     break; | 
 |       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; | 
 |       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; | 
 |       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break; | 
 |       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break; | 
 |     } | 
 |  | 
 |     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), | 
 |                        ResultReg); | 
 |  | 
 |     // If we have an index register defined we use it in the store inst, | 
 |     // otherwise we use X0 as base as it makes the vector instructions to | 
 |     // use zero in the computation of the effective address regardless the | 
 |     // content of the register. | 
 |     if (IndexReg) | 
 |       MIB.addReg(Addr.Base.Reg).addReg(IndexReg); | 
 |     else | 
 |       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select a load instruction. | 
 | bool PPCFastISel::SelectLoad(const Instruction *I) { | 
 |   // FIXME: No atomic loads are supported. | 
 |   if (cast<LoadInst>(I)->isAtomic()) | 
 |     return false; | 
 |  | 
 |   // Verify we have a legal type before going any further. | 
 |   MVT VT; | 
 |   if (!isLoadTypeLegal(I->getType(), VT)) | 
 |     return false; | 
 |  | 
 |   // See if we can handle this address. | 
 |   Address Addr; | 
 |   if (!PPCComputeAddress(I->getOperand(0), Addr)) | 
 |     return false; | 
 |  | 
 |   // Look at the currently assigned register for this instruction | 
 |   // to determine the required register class.  This is necessary | 
 |   // to constrain RA from using R0/X0 when this is not legal. | 
 |   unsigned AssignedReg = FuncInfo.ValueMap[I]; | 
 |   const TargetRegisterClass *RC = | 
 |     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; | 
 |  | 
 |   unsigned ResultReg = 0; | 
 |   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true, | 
 |       PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) | 
 |     return false; | 
 |   updateValueMap(I, ResultReg); | 
 |   return true; | 
 | } | 
 |  | 
 | // Emit a store instruction to store SrcReg at Addr. | 
 | bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { | 
 |   assert(SrcReg && "Nothing to store!"); | 
 |   unsigned Opc; | 
 |   bool UseOffset = true; | 
 |  | 
 |   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); | 
 |   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); | 
 |  | 
 |   switch (VT.SimpleTy) { | 
 |     default: // e.g., vector types not handled | 
 |       return false; | 
 |     case MVT::i8: | 
 |       Opc = Is32BitInt ? PPC::STB : PPC::STB8; | 
 |       break; | 
 |     case MVT::i16: | 
 |       Opc = Is32BitInt ? PPC::STH : PPC::STH8; | 
 |       break; | 
 |     case MVT::i32: | 
 |       assert(Is32BitInt && "Not GPRC for i32??"); | 
 |       Opc = PPC::STW; | 
 |       break; | 
 |     case MVT::i64: | 
 |       Opc = PPC::STD; | 
 |       UseOffset = ((Addr.Offset & 3) == 0); | 
 |       break; | 
 |     case MVT::f32: | 
 |       Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS; | 
 |       break; | 
 |     case MVT::f64: | 
 |       Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD; | 
 |       break; | 
 |   } | 
 |  | 
 |   // If necessary, materialize the offset into a register and use | 
 |   // the indexed form.  Also handle stack pointers with special needs. | 
 |   unsigned IndexReg = 0; | 
 |   PPCSimplifyAddress(Addr, UseOffset, IndexReg); | 
 |  | 
 |   // If this is a potential VSX store with an offset of 0, a VSX indexed store | 
 |   // can be used. | 
 |   bool IsVSSRC = isVSSRCRegClass(RC); | 
 |   bool IsVSFRC = isVSFRCRegClass(RC); | 
 |   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; | 
 |   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; | 
 |   if ((Is32VSXStore || Is64VSXStore) && | 
 |       (Addr.BaseType != Address::FrameIndexBase) && UseOffset && | 
 |       (Addr.Offset == 0)) { | 
 |     UseOffset = false; | 
 |   } | 
 |  | 
 |   // Note: If we still have a frame index here, we know the offset is | 
 |   // in range, as otherwise PPCSimplifyAddress would have converted it | 
 |   // into a RegBase. | 
 |   if (Addr.BaseType == Address::FrameIndexBase) { | 
 |     // VSX only provides an indexed store. | 
 |     if (Is32VSXStore || Is64VSXStore) return false; | 
 |  | 
 |     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( | 
 |         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, | 
 |                                           Addr.Offset), | 
 |         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), | 
 |         MFI.getObjectAlignment(Addr.Base.FI)); | 
 |  | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) | 
 |         .addReg(SrcReg) | 
 |         .addImm(Addr.Offset) | 
 |         .addFrameIndex(Addr.Base.FI) | 
 |         .addMemOperand(MMO); | 
 |  | 
 |   // Base reg with offset in range. | 
 |   } else if (UseOffset) { | 
 |     // VSX only provides an indexed store. | 
 |     if (Is32VSXStore || Is64VSXStore) | 
 |       return false; | 
 |  | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) | 
 |       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); | 
 |  | 
 |   // Indexed form. | 
 |   } else { | 
 |     // Get the RR opcode corresponding to the RI one.  FIXME: It would be | 
 |     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it | 
 |     // is hard to get at. | 
 |     switch (Opc) { | 
 |       default:        llvm_unreachable("Unexpected opcode!"); | 
 |       case PPC::STB:  Opc = PPC::STBX;  break; | 
 |       case PPC::STH : Opc = PPC::STHX;  break; | 
 |       case PPC::STW : Opc = PPC::STWX;  break; | 
 |       case PPC::STB8: Opc = PPC::STBX8; break; | 
 |       case PPC::STH8: Opc = PPC::STHX8; break; | 
 |       case PPC::STW8: Opc = PPC::STWX8; break; | 
 |       case PPC::STD:  Opc = PPC::STDX;  break; | 
 |       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; | 
 |       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; | 
 |       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break; | 
 |       case PPC::SPESTW: Opc = PPC::SPESTWX; break; | 
 |     } | 
 |  | 
 |     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) | 
 |         .addReg(SrcReg); | 
 |  | 
 |     // If we have an index register defined we use it in the store inst, | 
 |     // otherwise we use X0 as base as it makes the vector instructions to | 
 |     // use zero in the computation of the effective address regardless the | 
 |     // content of the register. | 
 |     if (IndexReg) | 
 |       MIB.addReg(Addr.Base.Reg).addReg(IndexReg); | 
 |     else | 
 |       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select a store instruction. | 
 | bool PPCFastISel::SelectStore(const Instruction *I) { | 
 |   Value *Op0 = I->getOperand(0); | 
 |   unsigned SrcReg = 0; | 
 |  | 
 |   // FIXME: No atomics loads are supported. | 
 |   if (cast<StoreInst>(I)->isAtomic()) | 
 |     return false; | 
 |  | 
 |   // Verify we have a legal type before going any further. | 
 |   MVT VT; | 
 |   if (!isLoadTypeLegal(Op0->getType(), VT)) | 
 |     return false; | 
 |  | 
 |   // Get the value to be stored into a register. | 
 |   SrcReg = getRegForValue(Op0); | 
 |   if (SrcReg == 0) | 
 |     return false; | 
 |  | 
 |   // See if we can handle this address. | 
 |   Address Addr; | 
 |   if (!PPCComputeAddress(I->getOperand(1), Addr)) | 
 |     return false; | 
 |  | 
 |   if (!PPCEmitStore(VT, SrcReg, Addr)) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select a branch instruction. | 
 | bool PPCFastISel::SelectBranch(const Instruction *I) { | 
 |   const BranchInst *BI = cast<BranchInst>(I); | 
 |   MachineBasicBlock *BrBB = FuncInfo.MBB; | 
 |   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; | 
 |   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; | 
 |  | 
 |   // For now, just try the simplest case where it's fed by a compare. | 
 |   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { | 
 |     if (isValueAvailable(CI)) { | 
 |       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); | 
 |       if (!OptPPCPred) | 
 |         return false; | 
 |  | 
 |       PPC::Predicate PPCPred = OptPPCPred.getValue(); | 
 |  | 
 |       // Take advantage of fall-through opportunities. | 
 |       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { | 
 |         std::swap(TBB, FBB); | 
 |         PPCPred = PPC::InvertPredicate(PPCPred); | 
 |       } | 
 |  | 
 |       unsigned CondReg = createResultReg(&PPC::CRRCRegClass); | 
 |  | 
 |       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), | 
 |                       CondReg, PPCPred)) | 
 |         return false; | 
 |  | 
 |       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) | 
 |         .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred) | 
 |         .addReg(CondReg).addMBB(TBB); | 
 |       finishCondBranch(BI->getParent(), TBB, FBB); | 
 |       return true; | 
 |     } | 
 |   } else if (const ConstantInt *CI = | 
 |              dyn_cast<ConstantInt>(BI->getCondition())) { | 
 |     uint64_t Imm = CI->getZExtValue(); | 
 |     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; | 
 |     fastEmitBranch(Target, DbgLoc); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // FIXME: ARM looks for a case where the block containing the compare | 
 |   // has been split from the block containing the branch.  If this happens, | 
 |   // there is a vreg available containing the result of the compare.  I'm | 
 |   // not sure we can do much, as we've lost the predicate information with | 
 |   // the compare instruction -- we have a 4-bit CR but don't know which bit | 
 |   // to test here. | 
 |   return false; | 
 | } | 
 |  | 
 | // Attempt to emit a compare of the two source values.  Signed and unsigned | 
 | // comparisons are supported.  Return false if we can't handle it. | 
 | bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, | 
 |                              bool IsZExt, unsigned DestReg, | 
 |                              const PPC::Predicate Pred) { | 
 |   Type *Ty = SrcValue1->getType(); | 
 |   EVT SrcEVT = TLI.getValueType(DL, Ty, true); | 
 |   if (!SrcEVT.isSimple()) | 
 |     return false; | 
 |   MVT SrcVT = SrcEVT.getSimpleVT(); | 
 |  | 
 |   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) | 
 |     return false; | 
 |  | 
 |   // See if operand 2 is an immediate encodeable in the compare. | 
 |   // FIXME: Operands are not in canonical order at -O0, so an immediate | 
 |   // operand in position 1 is a lost opportunity for now.  We are | 
 |   // similar to ARM in this regard. | 
 |   long Imm = 0; | 
 |   bool UseImm = false; | 
 |   const bool HasSPE = PPCSubTarget->hasSPE(); | 
 |  | 
 |   // Only 16-bit integer constants can be represented in compares for | 
 |   // PowerPC.  Others will be materialized into a register. | 
 |   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { | 
 |     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || | 
 |         SrcVT == MVT::i8 || SrcVT == MVT::i1) { | 
 |       const APInt &CIVal = ConstInt->getValue(); | 
 |       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); | 
 |       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) | 
 |         UseImm = true; | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned CmpOpc; | 
 |   bool NeedsExt = false; | 
 |   switch (SrcVT.SimpleTy) { | 
 |     default: return false; | 
 |     case MVT::f32: | 
 |       if (HasSPE) { | 
 |         switch (Pred) { | 
 |           default: return false; | 
 |           case PPC::PRED_EQ: | 
 |             CmpOpc = PPC::EFSCMPEQ; | 
 |             break; | 
 |           case PPC::PRED_LT: | 
 |             CmpOpc = PPC::EFSCMPLT; | 
 |             break; | 
 |           case PPC::PRED_GT: | 
 |             CmpOpc = PPC::EFSCMPGT; | 
 |             break; | 
 |         } | 
 |       } else | 
 |         CmpOpc = PPC::FCMPUS; | 
 |       break; | 
 |     case MVT::f64: | 
 |       if (HasSPE) { | 
 |         switch (Pred) { | 
 |           default: return false; | 
 |           case PPC::PRED_EQ: | 
 |             CmpOpc = PPC::EFDCMPEQ; | 
 |             break; | 
 |           case PPC::PRED_LT: | 
 |             CmpOpc = PPC::EFDCMPLT; | 
 |             break; | 
 |           case PPC::PRED_GT: | 
 |             CmpOpc = PPC::EFDCMPGT; | 
 |             break; | 
 |         } | 
 |       } else | 
 |         CmpOpc = PPC::FCMPUD; | 
 |       break; | 
 |     case MVT::i1: | 
 |     case MVT::i8: | 
 |     case MVT::i16: | 
 |       NeedsExt = true; | 
 |       // Intentional fall-through. | 
 |     case MVT::i32: | 
 |       if (!UseImm) | 
 |         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; | 
 |       else | 
 |         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; | 
 |       break; | 
 |     case MVT::i64: | 
 |       if (!UseImm) | 
 |         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; | 
 |       else | 
 |         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; | 
 |       break; | 
 |   } | 
 |  | 
 |   unsigned SrcReg1 = getRegForValue(SrcValue1); | 
 |   if (SrcReg1 == 0) | 
 |     return false; | 
 |  | 
 |   unsigned SrcReg2 = 0; | 
 |   if (!UseImm) { | 
 |     SrcReg2 = getRegForValue(SrcValue2); | 
 |     if (SrcReg2 == 0) | 
 |       return false; | 
 |   } | 
 |  | 
 |   if (NeedsExt) { | 
 |     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); | 
 |     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) | 
 |       return false; | 
 |     SrcReg1 = ExtReg; | 
 |  | 
 |     if (!UseImm) { | 
 |       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); | 
 |       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) | 
 |         return false; | 
 |       SrcReg2 = ExtReg; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!UseImm) | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) | 
 |       .addReg(SrcReg1).addReg(SrcReg2); | 
 |   else | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) | 
 |       .addReg(SrcReg1).addImm(Imm); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select a floating-point extend instruction. | 
 | bool PPCFastISel::SelectFPExt(const Instruction *I) { | 
 |   Value *Src  = I->getOperand(0); | 
 |   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); | 
 |   EVT DestVT = TLI.getValueType(DL, I->getType(), true); | 
 |  | 
 |   if (SrcVT != MVT::f32 || DestVT != MVT::f64) | 
 |     return false; | 
 |  | 
 |   unsigned SrcReg = getRegForValue(Src); | 
 |   if (!SrcReg) | 
 |     return false; | 
 |  | 
 |   // No code is generated for a FP extend. | 
 |   updateValueMap(I, SrcReg); | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select a floating-point truncate instruction. | 
 | bool PPCFastISel::SelectFPTrunc(const Instruction *I) { | 
 |   Value *Src  = I->getOperand(0); | 
 |   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); | 
 |   EVT DestVT = TLI.getValueType(DL, I->getType(), true); | 
 |  | 
 |   if (SrcVT != MVT::f64 || DestVT != MVT::f32) | 
 |     return false; | 
 |  | 
 |   unsigned SrcReg = getRegForValue(Src); | 
 |   if (!SrcReg) | 
 |     return false; | 
 |  | 
 |   // Round the result to single precision. | 
 |   unsigned DestReg; | 
 |  | 
 |   if (PPCSubTarget->hasSPE()) { | 
 |     DestReg = createResultReg(&PPC::SPE4RCRegClass); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |       TII.get(PPC::EFSCFD), DestReg) | 
 |       .addReg(SrcReg); | 
 |   } else { | 
 |     DestReg = createResultReg(&PPC::F4RCRegClass); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |       TII.get(PPC::FRSP), DestReg) | 
 |       .addReg(SrcReg); | 
 |   } | 
 |  | 
 |   updateValueMap(I, DestReg); | 
 |   return true; | 
 | } | 
 |  | 
 | // Move an i32 or i64 value in a GPR to an f64 value in an FPR. | 
 | // FIXME: When direct register moves are implemented (see PowerISA 2.07), | 
 | // those should be used instead of moving via a stack slot when the | 
 | // subtarget permits. | 
 | // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte | 
 | // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte | 
 | // case to 8 bytes which produces tighter code but wastes stack space. | 
 | unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, | 
 |                                      bool IsSigned) { | 
 |  | 
 |   // If necessary, extend 32-bit int to 64-bit. | 
 |   if (SrcVT == MVT::i32) { | 
 |     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); | 
 |     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) | 
 |       return 0; | 
 |     SrcReg = TmpReg; | 
 |   } | 
 |  | 
 |   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. | 
 |   Address Addr; | 
 |   Addr.BaseType = Address::FrameIndexBase; | 
 |   Addr.Base.FI = MFI.CreateStackObject(8, 8, false); | 
 |  | 
 |   // Store the value from the GPR. | 
 |   if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) | 
 |     return 0; | 
 |  | 
 |   // Load the integer value into an FPR.  The kind of load used depends | 
 |   // on a number of conditions. | 
 |   unsigned LoadOpc = PPC::LFD; | 
 |  | 
 |   if (SrcVT == MVT::i32) { | 
 |     if (!IsSigned) { | 
 |       LoadOpc = PPC::LFIWZX; | 
 |       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; | 
 |     } else if (PPCSubTarget->hasLFIWAX()) { | 
 |       LoadOpc = PPC::LFIWAX; | 
 |       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; | 
 |     } | 
 |   } | 
 |  | 
 |   const TargetRegisterClass *RC = &PPC::F8RCRegClass; | 
 |   unsigned ResultReg = 0; | 
 |   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) | 
 |     return 0; | 
 |  | 
 |   return ResultReg; | 
 | } | 
 |  | 
 | // Attempt to fast-select an integer-to-floating-point conversion. | 
 | // FIXME: Once fast-isel has better support for VSX, conversions using | 
 | //        direct moves should be implemented. | 
 | bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { | 
 |   MVT DstVT; | 
 |   Type *DstTy = I->getType(); | 
 |   if (!isTypeLegal(DstTy, DstVT)) | 
 |     return false; | 
 |  | 
 |   if (DstVT != MVT::f32 && DstVT != MVT::f64) | 
 |     return false; | 
 |  | 
 |   Value *Src = I->getOperand(0); | 
 |   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); | 
 |   if (!SrcEVT.isSimple()) | 
 |     return false; | 
 |  | 
 |   MVT SrcVT = SrcEVT.getSimpleVT(); | 
 |  | 
 |   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 && | 
 |       SrcVT != MVT::i32 && SrcVT != MVT::i64) | 
 |     return false; | 
 |  | 
 |   unsigned SrcReg = getRegForValue(Src); | 
 |   if (SrcReg == 0) | 
 |     return false; | 
 |  | 
 |   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs | 
 |   if (PPCSubTarget->hasSPE()) { | 
 |     unsigned Opc; | 
 |     if (DstVT == MVT::f32) | 
 |       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI; | 
 |     else | 
 |       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI; | 
 |  | 
 |     unsigned DestReg = createResultReg(&PPC::SPERCRegClass); | 
 |     // Generate the convert. | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
 |       .addReg(SrcReg); | 
 |     updateValueMap(I, DestReg); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // We can only lower an unsigned convert if we have the newer | 
 |   // floating-point conversion operations. | 
 |   if (!IsSigned && !PPCSubTarget->hasFPCVT()) | 
 |     return false; | 
 |  | 
 |   // FIXME: For now we require the newer floating-point conversion operations | 
 |   // (which are present only on P7 and A2 server models) when converting | 
 |   // to single-precision float.  Otherwise we have to generate a lot of | 
 |   // fiddly code to avoid double rounding.  If necessary, the fiddly code | 
 |   // can be found in PPCTargetLowering::LowerINT_TO_FP(). | 
 |   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) | 
 |     return false; | 
 |  | 
 |   // Extend the input if necessary. | 
 |   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { | 
 |     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); | 
 |     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) | 
 |       return false; | 
 |     SrcVT = MVT::i64; | 
 |     SrcReg = TmpReg; | 
 |   } | 
 |  | 
 |   // Move the integer value to an FPR. | 
 |   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); | 
 |   if (FPReg == 0) | 
 |     return false; | 
 |  | 
 |   // Determine the opcode for the conversion. | 
 |   const TargetRegisterClass *RC = &PPC::F8RCRegClass; | 
 |   unsigned DestReg = createResultReg(RC); | 
 |   unsigned Opc; | 
 |  | 
 |   if (DstVT == MVT::f32) | 
 |     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; | 
 |   else | 
 |     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; | 
 |  | 
 |   // Generate the convert. | 
 |   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
 |     .addReg(FPReg); | 
 |  | 
 |   updateValueMap(I, DestReg); | 
 |   return true; | 
 | } | 
 |  | 
 | // Move the floating-point value in SrcReg into an integer destination | 
 | // register, and return the register (or zero if we can't handle it). | 
 | // FIXME: When direct register moves are implemented (see PowerISA 2.07), | 
 | // those should be used instead of moving via a stack slot when the | 
 | // subtarget permits. | 
 | unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, | 
 |                                       unsigned SrcReg, bool IsSigned) { | 
 |   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. | 
 |   // Note that if have STFIWX available, we could use a 4-byte stack | 
 |   // slot for i32, but this being fast-isel we'll just go with the | 
 |   // easiest code gen possible. | 
 |   Address Addr; | 
 |   Addr.BaseType = Address::FrameIndexBase; | 
 |   Addr.Base.FI = MFI.CreateStackObject(8, 8, false); | 
 |  | 
 |   // Store the value from the FPR. | 
 |   if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) | 
 |     return 0; | 
 |  | 
 |   // Reload it into a GPR.  If we want an i32 on big endian, modify the | 
 |   // address to have a 4-byte offset so we load from the right place. | 
 |   if (VT == MVT::i32) | 
 |     Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; | 
 |  | 
 |   // Look at the currently assigned register for this instruction | 
 |   // to determine the required register class. | 
 |   unsigned AssignedReg = FuncInfo.ValueMap[I]; | 
 |   const TargetRegisterClass *RC = | 
 |     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; | 
 |  | 
 |   unsigned ResultReg = 0; | 
 |   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) | 
 |     return 0; | 
 |  | 
 |   return ResultReg; | 
 | } | 
 |  | 
 | // Attempt to fast-select a floating-point-to-integer conversion. | 
 | // FIXME: Once fast-isel has better support for VSX, conversions using | 
 | //        direct moves should be implemented. | 
 | bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { | 
 |   MVT DstVT, SrcVT; | 
 |   Type *DstTy = I->getType(); | 
 |   if (!isTypeLegal(DstTy, DstVT)) | 
 |     return false; | 
 |  | 
 |   if (DstVT != MVT::i32 && DstVT != MVT::i64) | 
 |     return false; | 
 |  | 
 |   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG. | 
 |   if (DstVT == MVT::i64 && !IsSigned && | 
 |       !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE()) | 
 |     return false; | 
 |  | 
 |   Value *Src = I->getOperand(0); | 
 |   Type *SrcTy = Src->getType(); | 
 |   if (!isTypeLegal(SrcTy, SrcVT)) | 
 |     return false; | 
 |  | 
 |   if (SrcVT != MVT::f32 && SrcVT != MVT::f64) | 
 |     return false; | 
 |  | 
 |   unsigned SrcReg = getRegForValue(Src); | 
 |   if (SrcReg == 0) | 
 |     return false; | 
 |  | 
 |   // Convert f32 to f64 if necessary.  This is just a meaningless copy | 
 |   // to get the register class right. | 
 |   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); | 
 |   if (InRC == &PPC::F4RCRegClass) { | 
 |     unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(TargetOpcode::COPY), TmpReg) | 
 |       .addReg(SrcReg); | 
 |     SrcReg = TmpReg; | 
 |   } | 
 |  | 
 |   // Determine the opcode for the conversion, which takes place | 
 |   // entirely within FPRs. | 
 |   unsigned DestReg; | 
 |   unsigned Opc; | 
 |  | 
 |   if (PPCSubTarget->hasSPE()) { | 
 |     DestReg = createResultReg(&PPC::GPRCRegClass); | 
 |     if (IsSigned) | 
 |       Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ; | 
 |     else | 
 |       Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ; | 
 |   } else { | 
 |     DestReg = createResultReg(&PPC::F8RCRegClass); | 
 |     if (DstVT == MVT::i32) | 
 |       if (IsSigned) | 
 |         Opc = PPC::FCTIWZ; | 
 |       else | 
 |         Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; | 
 |     else | 
 |       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; | 
 |   } | 
 |  | 
 |   // Generate the convert. | 
 |   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
 |     .addReg(SrcReg); | 
 |  | 
 |   // Now move the integer value from a float register to an integer register. | 
 |   unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg : | 
 |     PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); | 
 |  | 
 |   if (IntReg == 0) | 
 |     return false; | 
 |  | 
 |   updateValueMap(I, IntReg); | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select a binary integer operation that isn't already | 
 | // handled automatically. | 
 | bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { | 
 |   EVT DestVT = TLI.getValueType(DL, I->getType(), true); | 
 |  | 
 |   // We can get here in the case when we have a binary operation on a non-legal | 
 |   // type and the target independent selector doesn't know how to handle it. | 
 |   if (DestVT != MVT::i16 && DestVT != MVT::i8) | 
 |     return false; | 
 |  | 
 |   // Look at the currently assigned register for this instruction | 
 |   // to determine the required register class.  If there is no register, | 
 |   // make a conservative choice (don't assign R0). | 
 |   unsigned AssignedReg = FuncInfo.ValueMap[I]; | 
 |   const TargetRegisterClass *RC = | 
 |     (AssignedReg ? MRI.getRegClass(AssignedReg) : | 
 |      &PPC::GPRC_and_GPRC_NOR0RegClass); | 
 |   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); | 
 |  | 
 |   unsigned Opc; | 
 |   switch (ISDOpcode) { | 
 |     default: return false; | 
 |     case ISD::ADD: | 
 |       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; | 
 |       break; | 
 |     case ISD::OR: | 
 |       Opc = IsGPRC ? PPC::OR : PPC::OR8; | 
 |       break; | 
 |     case ISD::SUB: | 
 |       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; | 
 |       break; | 
 |   } | 
 |  | 
 |   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); | 
 |   unsigned SrcReg1 = getRegForValue(I->getOperand(0)); | 
 |   if (SrcReg1 == 0) return false; | 
 |  | 
 |   // Handle case of small immediate operand. | 
 |   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |     const APInt &CIVal = ConstInt->getValue(); | 
 |     int Imm = (int)CIVal.getSExtValue(); | 
 |     bool UseImm = true; | 
 |     if (isInt<16>(Imm)) { | 
 |       switch (Opc) { | 
 |         default: | 
 |           llvm_unreachable("Missing case!"); | 
 |         case PPC::ADD4: | 
 |           Opc = PPC::ADDI; | 
 |           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); | 
 |           break; | 
 |         case PPC::ADD8: | 
 |           Opc = PPC::ADDI8; | 
 |           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); | 
 |           break; | 
 |         case PPC::OR: | 
 |           Opc = PPC::ORI; | 
 |           break; | 
 |         case PPC::OR8: | 
 |           Opc = PPC::ORI8; | 
 |           break; | 
 |         case PPC::SUBF: | 
 |           if (Imm == -32768) | 
 |             UseImm = false; | 
 |           else { | 
 |             Opc = PPC::ADDI; | 
 |             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); | 
 |             Imm = -Imm; | 
 |           } | 
 |           break; | 
 |         case PPC::SUBF8: | 
 |           if (Imm == -32768) | 
 |             UseImm = false; | 
 |           else { | 
 |             Opc = PPC::ADDI8; | 
 |             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); | 
 |             Imm = -Imm; | 
 |           } | 
 |           break; | 
 |       } | 
 |  | 
 |       if (UseImm) { | 
 |         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), | 
 |                 ResultReg) | 
 |             .addReg(SrcReg1) | 
 |             .addImm(Imm); | 
 |         updateValueMap(I, ResultReg); | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Reg-reg case. | 
 |   unsigned SrcReg2 = getRegForValue(I->getOperand(1)); | 
 |   if (SrcReg2 == 0) return false; | 
 |  | 
 |   // Reverse operands for subtract-from. | 
 |   if (ISDOpcode == ISD::SUB) | 
 |     std::swap(SrcReg1, SrcReg2); | 
 |  | 
 |   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) | 
 |     .addReg(SrcReg1).addReg(SrcReg2); | 
 |   updateValueMap(I, ResultReg); | 
 |   return true; | 
 | } | 
 |  | 
 | // Handle arguments to a call that we're attempting to fast-select. | 
 | // Return false if the arguments are too complex for us at the moment. | 
 | bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, | 
 |                                   SmallVectorImpl<unsigned> &ArgRegs, | 
 |                                   SmallVectorImpl<MVT> &ArgVTs, | 
 |                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, | 
 |                                   SmallVectorImpl<unsigned> &RegArgs, | 
 |                                   CallingConv::ID CC, | 
 |                                   unsigned &NumBytes, | 
 |                                   bool IsVarArg) { | 
 |   SmallVector<CCValAssign, 16> ArgLocs; | 
 |   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); | 
 |  | 
 |   // Reserve space for the linkage area on the stack. | 
 |   unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); | 
 |   CCInfo.AllocateStack(LinkageSize, 8); | 
 |  | 
 |   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); | 
 |  | 
 |   // Bail out if we can't handle any of the arguments. | 
 |   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { | 
 |     CCValAssign &VA = ArgLocs[I]; | 
 |     MVT ArgVT = ArgVTs[VA.getValNo()]; | 
 |  | 
 |     // Skip vector arguments for now, as well as long double and | 
 |     // uint128_t, and anything that isn't passed in a register. | 
 |     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || | 
 |         !VA.isRegLoc() || VA.needsCustom()) | 
 |       return false; | 
 |  | 
 |     // Skip bit-converted arguments for now. | 
 |     if (VA.getLocInfo() == CCValAssign::BCvt) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Get a count of how many bytes are to be pushed onto the stack. | 
 |   NumBytes = CCInfo.getNextStackOffset(); | 
 |  | 
 |   // The prolog code of the callee may store up to 8 GPR argument registers to | 
 |   // the stack, allowing va_start to index over them in memory if its varargs. | 
 |   // Because we cannot tell if this is needed on the caller side, we have to | 
 |   // conservatively assume that it is needed.  As such, make sure we have at | 
 |   // least enough stack space for the caller to store the 8 GPRs. | 
 |   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. | 
 |   NumBytes = std::max(NumBytes, LinkageSize + 64); | 
 |  | 
 |   // Issue CALLSEQ_START. | 
 |   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |           TII.get(TII.getCallFrameSetupOpcode())) | 
 |     .addImm(NumBytes).addImm(0); | 
 |  | 
 |   // Prepare to assign register arguments.  Every argument uses up a | 
 |   // GPR protocol register even if it's passed in a floating-point | 
 |   // register (unless we're using the fast calling convention). | 
 |   unsigned NextGPR = PPC::X3; | 
 |   unsigned NextFPR = PPC::F1; | 
 |  | 
 |   // Process arguments. | 
 |   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { | 
 |     CCValAssign &VA = ArgLocs[I]; | 
 |     unsigned Arg = ArgRegs[VA.getValNo()]; | 
 |     MVT ArgVT = ArgVTs[VA.getValNo()]; | 
 |  | 
 |     // Handle argument promotion and bitcasts. | 
 |     switch (VA.getLocInfo()) { | 
 |       default: | 
 |         llvm_unreachable("Unknown loc info!"); | 
 |       case CCValAssign::Full: | 
 |         break; | 
 |       case CCValAssign::SExt: { | 
 |         MVT DestVT = VA.getLocVT(); | 
 |         const TargetRegisterClass *RC = | 
 |           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | 
 |         unsigned TmpReg = createResultReg(RC); | 
 |         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) | 
 |           llvm_unreachable("Failed to emit a sext!"); | 
 |         ArgVT = DestVT; | 
 |         Arg = TmpReg; | 
 |         break; | 
 |       } | 
 |       case CCValAssign::AExt: | 
 |       case CCValAssign::ZExt: { | 
 |         MVT DestVT = VA.getLocVT(); | 
 |         const TargetRegisterClass *RC = | 
 |           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | 
 |         unsigned TmpReg = createResultReg(RC); | 
 |         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) | 
 |           llvm_unreachable("Failed to emit a zext!"); | 
 |         ArgVT = DestVT; | 
 |         Arg = TmpReg; | 
 |         break; | 
 |       } | 
 |       case CCValAssign::BCvt: { | 
 |         // FIXME: Not yet handled. | 
 |         llvm_unreachable("Should have bailed before getting here!"); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // Copy this argument to the appropriate register. | 
 |     unsigned ArgReg; | 
 |     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { | 
 |       ArgReg = NextFPR++; | 
 |       if (CC != CallingConv::Fast) | 
 |         ++NextGPR; | 
 |     } else | 
 |       ArgReg = NextGPR++; | 
 |  | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); | 
 |     RegArgs.push_back(ArgReg); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // For a call that we've determined we can fast-select, finish the | 
 | // call sequence and generate a copy to obtain the return value (if any). | 
 | bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { | 
 |   CallingConv::ID CC = CLI.CallConv; | 
 |  | 
 |   // Issue CallSEQ_END. | 
 |   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |           TII.get(TII.getCallFrameDestroyOpcode())) | 
 |     .addImm(NumBytes).addImm(0); | 
 |  | 
 |   // Next, generate a copy to obtain the return value. | 
 |   // FIXME: No multi-register return values yet, though I don't foresee | 
 |   // any real difficulties there. | 
 |   if (RetVT != MVT::isVoid) { | 
 |     SmallVector<CCValAssign, 16> RVLocs; | 
 |     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); | 
 |     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); | 
 |     CCValAssign &VA = RVLocs[0]; | 
 |     assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); | 
 |     assert(VA.isRegLoc() && "Can only return in registers!"); | 
 |  | 
 |     MVT DestVT = VA.getValVT(); | 
 |     MVT CopyVT = DestVT; | 
 |  | 
 |     // Ints smaller than a register still arrive in a full 64-bit | 
 |     // register, so make sure we recognize this. | 
 |     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) | 
 |       CopyVT = MVT::i64; | 
 |  | 
 |     unsigned SourcePhysReg = VA.getLocReg(); | 
 |     unsigned ResultReg = 0; | 
 |  | 
 |     if (RetVT == CopyVT) { | 
 |       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); | 
 |       ResultReg = createResultReg(CpyRC); | 
 |  | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |               TII.get(TargetOpcode::COPY), ResultReg) | 
 |         .addReg(SourcePhysReg); | 
 |  | 
 |     // If necessary, round the floating result to single precision. | 
 |     } else if (CopyVT == MVT::f64) { | 
 |       ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), | 
 |               ResultReg).addReg(SourcePhysReg); | 
 |  | 
 |     // If only the low half of a general register is needed, generate | 
 |     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be | 
 |     // used along the fast-isel path (not lowered), and downstream logic | 
 |     // also doesn't like a direct subreg copy on a physical reg.) | 
 |     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { | 
 |       ResultReg = createResultReg(&PPC::GPRCRegClass); | 
 |       // Convert physical register from G8RC to GPRC. | 
 |       SourcePhysReg -= PPC::X0 - PPC::R0; | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |               TII.get(TargetOpcode::COPY), ResultReg) | 
 |         .addReg(SourcePhysReg); | 
 |     } | 
 |  | 
 |     assert(ResultReg && "ResultReg unset!"); | 
 |     CLI.InRegs.push_back(SourcePhysReg); | 
 |     CLI.ResultReg = ResultReg; | 
 |     CLI.NumResultRegs = 1; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { | 
 |   CallingConv::ID CC  = CLI.CallConv; | 
 |   bool IsTailCall     = CLI.IsTailCall; | 
 |   bool IsVarArg       = CLI.IsVarArg; | 
 |   const Value *Callee = CLI.Callee; | 
 |   const MCSymbol *Symbol = CLI.Symbol; | 
 |  | 
 |   if (!Callee && !Symbol) | 
 |     return false; | 
 |  | 
 |   // Allow SelectionDAG isel to handle tail calls. | 
 |   if (IsTailCall) | 
 |     return false; | 
 |  | 
 |   // Let SDISel handle vararg functions. | 
 |   if (IsVarArg) | 
 |     return false; | 
 |  | 
 |   // Handle simple calls for now, with legal return types and | 
 |   // those that can be extended. | 
 |   Type *RetTy = CLI.RetTy; | 
 |   MVT RetVT; | 
 |   if (RetTy->isVoidTy()) | 
 |     RetVT = MVT::isVoid; | 
 |   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && | 
 |            RetVT != MVT::i8) | 
 |     return false; | 
 |   else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) | 
 |     // We can't handle boolean returns when CR bits are in use. | 
 |     return false; | 
 |  | 
 |   // FIXME: No multi-register return values yet. | 
 |   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && | 
 |       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && | 
 |       RetVT != MVT::f64) { | 
 |     SmallVector<CCValAssign, 16> RVLocs; | 
 |     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); | 
 |     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); | 
 |     if (RVLocs.size() > 1) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Bail early if more than 8 arguments, as we only currently | 
 |   // handle arguments passed in registers. | 
 |   unsigned NumArgs = CLI.OutVals.size(); | 
 |   if (NumArgs > 8) | 
 |     return false; | 
 |  | 
 |   // Set up the argument vectors. | 
 |   SmallVector<Value*, 8> Args; | 
 |   SmallVector<unsigned, 8> ArgRegs; | 
 |   SmallVector<MVT, 8> ArgVTs; | 
 |   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; | 
 |  | 
 |   Args.reserve(NumArgs); | 
 |   ArgRegs.reserve(NumArgs); | 
 |   ArgVTs.reserve(NumArgs); | 
 |   ArgFlags.reserve(NumArgs); | 
 |  | 
 |   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { | 
 |     // Only handle easy calls for now.  It would be reasonably easy | 
 |     // to handle <= 8-byte structures passed ByVal in registers, but we | 
 |     // have to ensure they are right-justified in the register. | 
 |     ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; | 
 |     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) | 
 |       return false; | 
 |  | 
 |     Value *ArgValue = CLI.OutVals[i]; | 
 |     Type *ArgTy = ArgValue->getType(); | 
 |     MVT ArgVT; | 
 |     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) | 
 |       return false; | 
 |  | 
 |     if (ArgVT.isVector()) | 
 |       return false; | 
 |  | 
 |     unsigned Arg = getRegForValue(ArgValue); | 
 |     if (Arg == 0) | 
 |       return false; | 
 |  | 
 |     Args.push_back(ArgValue); | 
 |     ArgRegs.push_back(Arg); | 
 |     ArgVTs.push_back(ArgVT); | 
 |     ArgFlags.push_back(Flags); | 
 |   } | 
 |  | 
 |   // Process the arguments. | 
 |   SmallVector<unsigned, 8> RegArgs; | 
 |   unsigned NumBytes; | 
 |  | 
 |   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, | 
 |                        RegArgs, CC, NumBytes, IsVarArg)) | 
 |     return false; | 
 |  | 
 |   MachineInstrBuilder MIB; | 
 |   // FIXME: No handling for function pointers yet.  This requires | 
 |   // implementing the function descriptor (OPD) setup. | 
 |   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); | 
 |   if (!GV) { | 
 |     // patchpoints are a special case; they always dispatch to a pointer value. | 
 |     // However, we don't actually want to generate the indirect call sequence | 
 |     // here (that will be generated, as necessary, during asm printing), and | 
 |     // the call we generate here will be erased by FastISel::selectPatchpoint, | 
 |     // so don't try very hard... | 
 |     if (CLI.IsPatchPoint) | 
 |       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); | 
 |     else | 
 |       return false; | 
 |   } else { | 
 |     // Build direct call with NOP for TOC restore. | 
 |     // FIXME: We can and should optimize away the NOP for local calls. | 
 |     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |                   TII.get(PPC::BL8_NOP)); | 
 |     // Add callee. | 
 |     MIB.addGlobalAddress(GV); | 
 |   } | 
 |  | 
 |   // Add implicit physical register uses to the call. | 
 |   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) | 
 |     MIB.addReg(RegArgs[II], RegState::Implicit); | 
 |  | 
 |   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live | 
 |   // into the call. | 
 |   PPCFuncInfo->setUsesTOCBasePtr(); | 
 |   MIB.addReg(PPC::X2, RegState::Implicit); | 
 |  | 
 |   // Add a register mask with the call-preserved registers.  Proper | 
 |   // defs for return values will be added by setPhysRegsDeadExcept(). | 
 |   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); | 
 |  | 
 |   CLI.Call = MIB; | 
 |  | 
 |   // Finish off the call including any return values. | 
 |   return finishCall(RetVT, CLI, NumBytes); | 
 | } | 
 |  | 
 | // Attempt to fast-select a return instruction. | 
 | bool PPCFastISel::SelectRet(const Instruction *I) { | 
 |  | 
 |   if (!FuncInfo.CanLowerReturn) | 
 |     return false; | 
 |  | 
 |   if (TLI.supportSplitCSR(FuncInfo.MF)) | 
 |     return false; | 
 |  | 
 |   const ReturnInst *Ret = cast<ReturnInst>(I); | 
 |   const Function &F = *I->getParent()->getParent(); | 
 |  | 
 |   // Build a list of return value registers. | 
 |   SmallVector<unsigned, 4> RetRegs; | 
 |   CallingConv::ID CC = F.getCallingConv(); | 
 |  | 
 |   if (Ret->getNumOperands() > 0) { | 
 |     SmallVector<ISD::OutputArg, 4> Outs; | 
 |     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); | 
 |  | 
 |     // Analyze operands of the call, assigning locations to each operand. | 
 |     SmallVector<CCValAssign, 16> ValLocs; | 
 |     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); | 
 |     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); | 
 |     const Value *RV = Ret->getOperand(0); | 
 |  | 
 |     // FIXME: Only one output register for now. | 
 |     if (ValLocs.size() > 1) | 
 |       return false; | 
 |  | 
 |     // Special case for returning a constant integer of any size - materialize | 
 |     // the constant as an i64 and copy it to the return register. | 
 |     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { | 
 |       CCValAssign &VA = ValLocs[0]; | 
 |  | 
 |       unsigned RetReg = VA.getLocReg(); | 
 |       // We still need to worry about properly extending the sign. For example, | 
 |       // we could have only a single bit or a constant that needs zero | 
 |       // extension rather than sign extension. Make sure we pass the return | 
 |       // value extension property to integer materialization. | 
 |       unsigned SrcReg = | 
 |           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); | 
 |  | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); | 
 |  | 
 |       RetRegs.push_back(RetReg); | 
 |  | 
 |     } else { | 
 |       unsigned Reg = getRegForValue(RV); | 
 |  | 
 |       if (Reg == 0) | 
 |         return false; | 
 |  | 
 |       // Copy the result values into the output registers. | 
 |       for (unsigned i = 0; i < ValLocs.size(); ++i) { | 
 |  | 
 |         CCValAssign &VA = ValLocs[i]; | 
 |         assert(VA.isRegLoc() && "Can only return in registers!"); | 
 |         RetRegs.push_back(VA.getLocReg()); | 
 |         unsigned SrcReg = Reg + VA.getValNo(); | 
 |  | 
 |         EVT RVEVT = TLI.getValueType(DL, RV->getType()); | 
 |         if (!RVEVT.isSimple()) | 
 |           return false; | 
 |         MVT RVVT = RVEVT.getSimpleVT(); | 
 |         MVT DestVT = VA.getLocVT(); | 
 |  | 
 |         if (RVVT != DestVT && RVVT != MVT::i8 && | 
 |             RVVT != MVT::i16 && RVVT != MVT::i32) | 
 |           return false; | 
 |  | 
 |         if (RVVT != DestVT) { | 
 |           switch (VA.getLocInfo()) { | 
 |             default: | 
 |               llvm_unreachable("Unknown loc info!"); | 
 |             case CCValAssign::Full: | 
 |               llvm_unreachable("Full value assign but types don't match?"); | 
 |             case CCValAssign::AExt: | 
 |             case CCValAssign::ZExt: { | 
 |               const TargetRegisterClass *RC = | 
 |                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | 
 |               unsigned TmpReg = createResultReg(RC); | 
 |               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) | 
 |                 return false; | 
 |               SrcReg = TmpReg; | 
 |               break; | 
 |             } | 
 |             case CCValAssign::SExt: { | 
 |               const TargetRegisterClass *RC = | 
 |                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; | 
 |               unsigned TmpReg = createResultReg(RC); | 
 |               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) | 
 |                 return false; | 
 |               SrcReg = TmpReg; | 
 |               break; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |                 TII.get(TargetOpcode::COPY), RetRegs[i]) | 
 |           .addReg(SrcReg); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |                                     TII.get(PPC::BLR8)); | 
 |  | 
 |   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) | 
 |     MIB.addReg(RetRegs[i], RegState::Implicit); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to emit an integer extend of SrcReg into DestReg.  Both | 
 | // signed and zero extensions are supported.  Return false if we | 
 | // can't handle it. | 
 | bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, | 
 |                                 unsigned DestReg, bool IsZExt) { | 
 |   if (DestVT != MVT::i32 && DestVT != MVT::i64) | 
 |     return false; | 
 |   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) | 
 |     return false; | 
 |  | 
 |   // Signed extensions use EXTSB, EXTSH, EXTSW. | 
 |   if (!IsZExt) { | 
 |     unsigned Opc; | 
 |     if (SrcVT == MVT::i8) | 
 |       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; | 
 |     else if (SrcVT == MVT::i16) | 
 |       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; | 
 |     else { | 
 |       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); | 
 |       Opc = PPC::EXTSW_32_64; | 
 |     } | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
 |       .addReg(SrcReg); | 
 |  | 
 |   // Unsigned 32-bit extensions use RLWINM. | 
 |   } else if (DestVT == MVT::i32) { | 
 |     unsigned MB; | 
 |     if (SrcVT == MVT::i8) | 
 |       MB = 24; | 
 |     else { | 
 |       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); | 
 |       MB = 16; | 
 |     } | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), | 
 |             DestReg) | 
 |       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); | 
 |  | 
 |   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). | 
 |   } else { | 
 |     unsigned MB; | 
 |     if (SrcVT == MVT::i8) | 
 |       MB = 56; | 
 |     else if (SrcVT == MVT::i16) | 
 |       MB = 48; | 
 |     else | 
 |       MB = 32; | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(PPC::RLDICL_32_64), DestReg) | 
 |       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select an indirect branch instruction. | 
 | bool PPCFastISel::SelectIndirectBr(const Instruction *I) { | 
 |   unsigned AddrReg = getRegForValue(I->getOperand(0)); | 
 |   if (AddrReg == 0) | 
 |     return false; | 
 |  | 
 |   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) | 
 |     .addReg(AddrReg); | 
 |   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); | 
 |  | 
 |   const IndirectBrInst *IB = cast<IndirectBrInst>(I); | 
 |   for (const BasicBlock *SuccBB : IB->successors()) | 
 |     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select an integer truncate instruction. | 
 | bool PPCFastISel::SelectTrunc(const Instruction *I) { | 
 |   Value *Src  = I->getOperand(0); | 
 |   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); | 
 |   EVT DestVT = TLI.getValueType(DL, I->getType(), true); | 
 |  | 
 |   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) | 
 |     return false; | 
 |  | 
 |   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) | 
 |     return false; | 
 |  | 
 |   unsigned SrcReg = getRegForValue(Src); | 
 |   if (!SrcReg) | 
 |     return false; | 
 |  | 
 |   // The only interesting case is when we need to switch register classes. | 
 |   if (SrcVT == MVT::i64) { | 
 |     unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(TargetOpcode::COPY), | 
 |             ResultReg).addReg(SrcReg, 0, PPC::sub_32); | 
 |     SrcReg = ResultReg; | 
 |   } | 
 |  | 
 |   updateValueMap(I, SrcReg); | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select an integer extend instruction. | 
 | bool PPCFastISel::SelectIntExt(const Instruction *I) { | 
 |   Type *DestTy = I->getType(); | 
 |   Value *Src = I->getOperand(0); | 
 |   Type *SrcTy = Src->getType(); | 
 |  | 
 |   bool IsZExt = isa<ZExtInst>(I); | 
 |   unsigned SrcReg = getRegForValue(Src); | 
 |   if (!SrcReg) return false; | 
 |  | 
 |   EVT SrcEVT, DestEVT; | 
 |   SrcEVT = TLI.getValueType(DL, SrcTy, true); | 
 |   DestEVT = TLI.getValueType(DL, DestTy, true); | 
 |   if (!SrcEVT.isSimple()) | 
 |     return false; | 
 |   if (!DestEVT.isSimple()) | 
 |     return false; | 
 |  | 
 |   MVT SrcVT = SrcEVT.getSimpleVT(); | 
 |   MVT DestVT = DestEVT.getSimpleVT(); | 
 |  | 
 |   // If we know the register class needed for the result of this | 
 |   // instruction, use it.  Otherwise pick the register class of the | 
 |   // correct size that does not contain X0/R0, since we don't know | 
 |   // whether downstream uses permit that assignment. | 
 |   unsigned AssignedReg = FuncInfo.ValueMap[I]; | 
 |   const TargetRegisterClass *RC = | 
 |     (AssignedReg ? MRI.getRegClass(AssignedReg) : | 
 |      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : | 
 |       &PPC::GPRC_and_GPRC_NOR0RegClass)); | 
 |   unsigned ResultReg = createResultReg(RC); | 
 |  | 
 |   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) | 
 |     return false; | 
 |  | 
 |   updateValueMap(I, ResultReg); | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to fast-select an instruction that wasn't handled by | 
 | // the table-generated machinery. | 
 | bool PPCFastISel::fastSelectInstruction(const Instruction *I) { | 
 |  | 
 |   switch (I->getOpcode()) { | 
 |     case Instruction::Load: | 
 |       return SelectLoad(I); | 
 |     case Instruction::Store: | 
 |       return SelectStore(I); | 
 |     case Instruction::Br: | 
 |       return SelectBranch(I); | 
 |     case Instruction::IndirectBr: | 
 |       return SelectIndirectBr(I); | 
 |     case Instruction::FPExt: | 
 |       return SelectFPExt(I); | 
 |     case Instruction::FPTrunc: | 
 |       return SelectFPTrunc(I); | 
 |     case Instruction::SIToFP: | 
 |       return SelectIToFP(I, /*IsSigned*/ true); | 
 |     case Instruction::UIToFP: | 
 |       return SelectIToFP(I, /*IsSigned*/ false); | 
 |     case Instruction::FPToSI: | 
 |       return SelectFPToI(I, /*IsSigned*/ true); | 
 |     case Instruction::FPToUI: | 
 |       return SelectFPToI(I, /*IsSigned*/ false); | 
 |     case Instruction::Add: | 
 |       return SelectBinaryIntOp(I, ISD::ADD); | 
 |     case Instruction::Or: | 
 |       return SelectBinaryIntOp(I, ISD::OR); | 
 |     case Instruction::Sub: | 
 |       return SelectBinaryIntOp(I, ISD::SUB); | 
 |     case Instruction::Call: | 
 |       return selectCall(I); | 
 |     case Instruction::Ret: | 
 |       return SelectRet(I); | 
 |     case Instruction::Trunc: | 
 |       return SelectTrunc(I); | 
 |     case Instruction::ZExt: | 
 |     case Instruction::SExt: | 
 |       return SelectIntExt(I); | 
 |     // Here add other flavors of Instruction::XXX that automated | 
 |     // cases don't catch.  For example, switches are terminators | 
 |     // that aren't yet handled. | 
 |     default: | 
 |       break; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Materialize a floating-point constant into a register, and return | 
 | // the register number (or zero if we failed to handle it). | 
 | unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { | 
 |   // No plans to handle long double here. | 
 |   if (VT != MVT::f32 && VT != MVT::f64) | 
 |     return 0; | 
 |  | 
 |   // All FP constants are loaded from the constant pool. | 
 |   unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); | 
 |   assert(Align > 0 && "Unexpectedly missing alignment information!"); | 
 |   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); | 
 |   const bool HasSPE = PPCSubTarget->hasSPE(); | 
 |   const TargetRegisterClass *RC; | 
 |   if (HasSPE) | 
 |     RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass); | 
 |   else | 
 |     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass); | 
 |  | 
 |   unsigned DestReg = createResultReg(RC); | 
 |   CodeModel::Model CModel = TM.getCodeModel(); | 
 |  | 
 |   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( | 
 |       MachinePointerInfo::getConstantPool(*FuncInfo.MF), | 
 |       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); | 
 |  | 
 |   unsigned Opc; | 
 |  | 
 |   if (HasSPE) | 
 |     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD); | 
 |   else | 
 |     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD); | 
 |  | 
 |   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); | 
 |  | 
 |   PPCFuncInfo->setUsesTOCBasePtr(); | 
 |   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). | 
 |   if (CModel == CodeModel::Small) { | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), | 
 |             TmpReg) | 
 |       .addConstantPoolIndex(Idx).addReg(PPC::X2); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
 |       .addImm(0).addReg(TmpReg).addMemOperand(MMO); | 
 |   } else { | 
 |     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), | 
 |             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); | 
 |     // But for large code model, we must generate a LDtocL followed | 
 |     // by the LF[SD]. | 
 |     if (CModel == CodeModel::Large) { | 
 |       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), | 
 |               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
 |           .addImm(0) | 
 |           .addReg(TmpReg2); | 
 |     } else | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
 |         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) | 
 |         .addReg(TmpReg) | 
 |         .addMemOperand(MMO); | 
 |   } | 
 |  | 
 |   return DestReg; | 
 | } | 
 |  | 
 | // Materialize the address of a global value into a register, and return | 
 | // the register number (or zero if we failed to handle it). | 
 | unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { | 
 |   assert(VT == MVT::i64 && "Non-address!"); | 
 |   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; | 
 |   unsigned DestReg = createResultReg(RC); | 
 |  | 
 |   // Global values may be plain old object addresses, TLS object | 
 |   // addresses, constant pool entries, or jump tables.  How we generate | 
 |   // code for these may depend on small, medium, or large code model. | 
 |   CodeModel::Model CModel = TM.getCodeModel(); | 
 |  | 
 |   // FIXME: Jump tables are not yet required because fast-isel doesn't | 
 |   // handle switches; if that changes, we need them as well.  For now, | 
 |   // what follows assumes everything's a generic (or TLS) global address. | 
 |  | 
 |   // FIXME: We don't yet handle the complexity of TLS. | 
 |   if (GV->isThreadLocal()) | 
 |     return 0; | 
 |  | 
 |   PPCFuncInfo->setUsesTOCBasePtr(); | 
 |   // For small code model, generate a simple TOC load. | 
 |   if (CModel == CodeModel::Small) | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), | 
 |             DestReg) | 
 |         .addGlobalAddress(GV) | 
 |         .addReg(PPC::X2); | 
 |   else { | 
 |     // If the address is an externally defined symbol, a symbol with common | 
 |     // or externally available linkage, a non-local function address, or a | 
 |     // jump table address (not yet needed), or if we are generating code | 
 |     // for large code model, we generate: | 
 |     //       LDtocL(GV, ADDIStocHA(%x2, GV)) | 
 |     // Otherwise we generate: | 
 |     //       ADDItocL(ADDIStocHA(%x2, GV), GV) | 
 |     // Either way, start with the ADDIStocHA: | 
 |     unsigned HighPartReg = createResultReg(RC); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), | 
 |             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); | 
 |  | 
 |     unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); | 
 |     if (GVFlags & PPCII::MO_NLP_FLAG) { | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), | 
 |               DestReg).addGlobalAddress(GV).addReg(HighPartReg); | 
 |     } else { | 
 |       // Otherwise generate the ADDItocL. | 
 |       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), | 
 |               DestReg).addReg(HighPartReg).addGlobalAddress(GV); | 
 |     } | 
 |   } | 
 |  | 
 |   return DestReg; | 
 | } | 
 |  | 
 | // Materialize a 32-bit integer constant into a register, and return | 
 | // the register number (or zero if we failed to handle it). | 
 | unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, | 
 |                                              const TargetRegisterClass *RC) { | 
 |   unsigned Lo = Imm & 0xFFFF; | 
 |   unsigned Hi = (Imm >> 16) & 0xFFFF; | 
 |  | 
 |   unsigned ResultReg = createResultReg(RC); | 
 |   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); | 
 |  | 
 |   if (isInt<16>(Imm)) | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) | 
 |       .addImm(Imm); | 
 |   else if (Lo) { | 
 |     // Both Lo and Hi have nonzero bits. | 
 |     unsigned TmpReg = createResultReg(RC); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) | 
 |       .addImm(Hi); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) | 
 |       .addReg(TmpReg).addImm(Lo); | 
 |   } else | 
 |     // Just Hi bits. | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) | 
 |         .addImm(Hi); | 
 |  | 
 |   return ResultReg; | 
 | } | 
 |  | 
 | // Materialize a 64-bit integer constant into a register, and return | 
 | // the register number (or zero if we failed to handle it). | 
 | unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, | 
 |                                              const TargetRegisterClass *RC) { | 
 |   unsigned Remainder = 0; | 
 |   unsigned Shift = 0; | 
 |  | 
 |   // If the value doesn't fit in 32 bits, see if we can shift it | 
 |   // so that it fits in 32 bits. | 
 |   if (!isInt<32>(Imm)) { | 
 |     Shift = countTrailingZeros<uint64_t>(Imm); | 
 |     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; | 
 |  | 
 |     if (isInt<32>(ImmSh)) | 
 |       Imm = ImmSh; | 
 |     else { | 
 |       Remainder = Imm; | 
 |       Shift = 32; | 
 |       Imm >>= 32; | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle the high-order 32 bits (if shifted) or the whole 32 bits | 
 |   // (if not shifted). | 
 |   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); | 
 |   if (!Shift) | 
 |     return TmpReg1; | 
 |  | 
 |   // If upper 32 bits were not zero, we've built them and need to shift | 
 |   // them into place. | 
 |   unsigned TmpReg2; | 
 |   if (Imm) { | 
 |     TmpReg2 = createResultReg(RC); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), | 
 |             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); | 
 |   } else | 
 |     TmpReg2 = TmpReg1; | 
 |  | 
 |   unsigned TmpReg3, Hi, Lo; | 
 |   if ((Hi = (Remainder >> 16) & 0xFFFF)) { | 
 |     TmpReg3 = createResultReg(RC); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), | 
 |             TmpReg3).addReg(TmpReg2).addImm(Hi); | 
 |   } else | 
 |     TmpReg3 = TmpReg2; | 
 |  | 
 |   if ((Lo = Remainder & 0xFFFF)) { | 
 |     unsigned ResultReg = createResultReg(RC); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), | 
 |             ResultReg).addReg(TmpReg3).addImm(Lo); | 
 |     return ResultReg; | 
 |   } | 
 |  | 
 |   return TmpReg3; | 
 | } | 
 |  | 
 | // Materialize an integer constant into a register, and return | 
 | // the register number (or zero if we failed to handle it). | 
 | unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, | 
 |                                         bool UseSExt) { | 
 |   // If we're using CR bit registers for i1 values, handle that as a special | 
 |   // case first. | 
 |   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { | 
 |     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); | 
 |     return ImmReg; | 
 |   } | 
 |  | 
 |   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && | 
 |       VT != MVT::i1) | 
 |     return 0; | 
 |  | 
 |   const TargetRegisterClass *RC = | 
 |       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); | 
 |   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); | 
 |  | 
 |   // If the constant is in range, use a load-immediate. | 
 |   // Since LI will sign extend the constant we need to make sure that for | 
 |   // our zeroext constants that the sign extended constant fits into 16-bits - | 
 |   // a range of 0..0x7fff. | 
 |   if (isInt<16>(Imm)) { | 
 |     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; | 
 |     unsigned ImmReg = createResultReg(RC); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) | 
 |         .addImm(Imm); | 
 |     return ImmReg; | 
 |   } | 
 |  | 
 |   // Construct the constant piecewise. | 
 |   if (VT == MVT::i64) | 
 |     return PPCMaterialize64BitInt(Imm, RC); | 
 |   else if (VT == MVT::i32) | 
 |     return PPCMaterialize32BitInt(Imm, RC); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // Materialize a constant into a register, and return the register | 
 | // number (or zero if we failed to handle it). | 
 | unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { | 
 |   EVT CEVT = TLI.getValueType(DL, C->getType(), true); | 
 |  | 
 |   // Only handle simple types. | 
 |   if (!CEVT.isSimple()) return 0; | 
 |   MVT VT = CEVT.getSimpleVT(); | 
 |  | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) | 
 |     return PPCMaterializeFP(CFP, VT); | 
 |   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) | 
 |     return PPCMaterializeGV(GV, VT); | 
 |   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) | 
 |     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo | 
 |     // assumes that constant PHI operands will be zero extended, and failure to | 
 |     // match that assumption will cause problems if we sign extend here but | 
 |     // some user of a PHI is in a block for which we fall back to full SDAG | 
 |     // instruction selection. | 
 |     return PPCMaterializeInt(CI, VT, false); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // Materialize the address created by an alloca into a register, and | 
 | // return the register number (or zero if we failed to handle it). | 
 | unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { | 
 |   // Don't handle dynamic allocas. | 
 |   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; | 
 |  | 
 |   MVT VT; | 
 |   if (!isLoadTypeLegal(AI->getType(), VT)) return 0; | 
 |  | 
 |   DenseMap<const AllocaInst*, int>::iterator SI = | 
 |     FuncInfo.StaticAllocaMap.find(AI); | 
 |  | 
 |   if (SI != FuncInfo.StaticAllocaMap.end()) { | 
 |     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), | 
 |             ResultReg).addFrameIndex(SI->second).addImm(0); | 
 |     return ResultReg; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // Fold loads into extends when possible. | 
 | // FIXME: We can have multiple redundant extend/trunc instructions | 
 | // following a load.  The folding only picks up one.  Extend this | 
 | // to check subsequent instructions for the same pattern and remove | 
 | // them.  Thus ResultReg should be the def reg for the last redundant | 
 | // instruction in a chain, and all intervening instructions can be | 
 | // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll | 
 | // to add ELF64-NOT: rldicl to the appropriate tests when this works. | 
 | bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, | 
 |                                       const LoadInst *LI) { | 
 |   // Verify we have a legal type before going any further. | 
 |   MVT VT; | 
 |   if (!isLoadTypeLegal(LI->getType(), VT)) | 
 |     return false; | 
 |  | 
 |   // Combine load followed by zero- or sign-extend. | 
 |   bool IsZExt = false; | 
 |   switch(MI->getOpcode()) { | 
 |     default: | 
 |       return false; | 
 |  | 
 |     case PPC::RLDICL: | 
 |     case PPC::RLDICL_32_64: { | 
 |       IsZExt = true; | 
 |       unsigned MB = MI->getOperand(3).getImm(); | 
 |       if ((VT == MVT::i8 && MB <= 56) || | 
 |           (VT == MVT::i16 && MB <= 48) || | 
 |           (VT == MVT::i32 && MB <= 32)) | 
 |         break; | 
 |       return false; | 
 |     } | 
 |  | 
 |     case PPC::RLWINM: | 
 |     case PPC::RLWINM8: { | 
 |       IsZExt = true; | 
 |       unsigned MB = MI->getOperand(3).getImm(); | 
 |       if ((VT == MVT::i8 && MB <= 24) || | 
 |           (VT == MVT::i16 && MB <= 16)) | 
 |         break; | 
 |       return false; | 
 |     } | 
 |  | 
 |     case PPC::EXTSB: | 
 |     case PPC::EXTSB8: | 
 |     case PPC::EXTSB8_32_64: | 
 |       /* There is no sign-extending load-byte instruction. */ | 
 |       return false; | 
 |  | 
 |     case PPC::EXTSH: | 
 |     case PPC::EXTSH8: | 
 |     case PPC::EXTSH8_32_64: { | 
 |       if (VT != MVT::i16 && VT != MVT::i8) | 
 |         return false; | 
 |       break; | 
 |     } | 
 |  | 
 |     case PPC::EXTSW: | 
 |     case PPC::EXTSW_32: | 
 |     case PPC::EXTSW_32_64: { | 
 |       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) | 
 |         return false; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // See if we can handle this address. | 
 |   Address Addr; | 
 |   if (!PPCComputeAddress(LI->getOperand(0), Addr)) | 
 |     return false; | 
 |  | 
 |   unsigned ResultReg = MI->getOperand(0).getReg(); | 
 |  | 
 |   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt, | 
 |         PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) | 
 |     return false; | 
 |  | 
 |   MI->eraseFromParent(); | 
 |   return true; | 
 | } | 
 |  | 
 | // Attempt to lower call arguments in a faster way than done by | 
 | // the selection DAG code. | 
 | bool PPCFastISel::fastLowerArguments() { | 
 |   // Defer to normal argument lowering for now.  It's reasonably | 
 |   // efficient.  Consider doing something like ARM to handle the | 
 |   // case where all args fit in registers, no varargs, no float | 
 |   // or vector args. | 
 |   return false; | 
 | } | 
 |  | 
 | // Handle materializing integer constants into a register.  This is not | 
 | // automatically generated for PowerPC, so must be explicitly created here. | 
 | unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { | 
 |  | 
 |   if (Opc != ISD::Constant) | 
 |     return 0; | 
 |  | 
 |   // If we're using CR bit registers for i1 values, handle that as a special | 
 |   // case first. | 
 |   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { | 
 |     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); | 
 |     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
 |             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); | 
 |     return ImmReg; | 
 |   } | 
 |  | 
 |   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && | 
 |       VT != MVT::i1) | 
 |     return 0; | 
 |  | 
 |   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : | 
 |                                    &PPC::GPRCRegClass); | 
 |   if (VT == MVT::i64) | 
 |     return PPCMaterialize64BitInt(Imm, RC); | 
 |   else | 
 |     return PPCMaterialize32BitInt(Imm, RC); | 
 | } | 
 |  | 
 | // Override for ADDI and ADDI8 to set the correct register class | 
 | // on RHS operand 0.  The automatic infrastructure naively assumes | 
 | // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost | 
 | // for these cases.  At the moment, none of the other automatically | 
 | // generated RI instructions require special treatment.  However, once | 
 | // SelectSelect is implemented, "isel" requires similar handling. | 
 | // | 
 | // Also be conservative about the output register class.  Avoid | 
 | // assigning R0 or X0 to the output register for GPRC and G8RC | 
 | // register classes, as any such result could be used in ADDI, etc., | 
 | // where those regs have another meaning. | 
 | unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, | 
 |                                       const TargetRegisterClass *RC, | 
 |                                       unsigned Op0, bool Op0IsKill, | 
 |                                       uint64_t Imm) { | 
 |   if (MachineInstOpcode == PPC::ADDI) | 
 |     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); | 
 |   else if (MachineInstOpcode == PPC::ADDI8) | 
 |     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); | 
 |  | 
 |   const TargetRegisterClass *UseRC = | 
 |     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : | 
 |      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); | 
 |  | 
 |   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, | 
 |                                    Op0, Op0IsKill, Imm); | 
 | } | 
 |  | 
 | // Override for instructions with one register operand to avoid use of | 
 | // R0/X0.  The automatic infrastructure isn't aware of the context so | 
 | // we must be conservative. | 
 | unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, | 
 |                                      const TargetRegisterClass* RC, | 
 |                                      unsigned Op0, bool Op0IsKill) { | 
 |   const TargetRegisterClass *UseRC = | 
 |     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : | 
 |      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); | 
 |  | 
 |   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); | 
 | } | 
 |  | 
 | // Override for instructions with two register operands to avoid use | 
 | // of R0/X0.  The automatic infrastructure isn't aware of the context | 
 | // so we must be conservative. | 
 | unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, | 
 |                                       const TargetRegisterClass* RC, | 
 |                                       unsigned Op0, bool Op0IsKill, | 
 |                                       unsigned Op1, bool Op1IsKill) { | 
 |   const TargetRegisterClass *UseRC = | 
 |     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : | 
 |      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); | 
 |  | 
 |   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, | 
 |                                    Op1, Op1IsKill); | 
 | } | 
 |  | 
 | namespace llvm { | 
 |   // Create the fast instruction selector for PowerPC64 ELF. | 
 |   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, | 
 |                                 const TargetLibraryInfo *LibInfo) { | 
 |     // Only available on 64-bit ELF for now. | 
 |     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); | 
 |     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) | 
 |       return new PPCFastISel(FuncInfo, LibInfo); | 
 |     return nullptr; | 
 |   } | 
 | } |