|  | //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Stack allocation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // The callseq_start node requires the hasSideEffects flag, even though these | 
|  | // instructions are noops on SystemZ. | 
|  | let hasNoSchedulingInfo = 1, hasSideEffects = 1 in { | 
|  | def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), | 
|  | [(callseq_start timm:$amt1, timm:$amt2)]>; | 
|  | def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), | 
|  | [(callseq_end timm:$amt1, timm:$amt2)]>; | 
|  | } | 
|  |  | 
|  | // Takes as input the value of the stack pointer after a dynamic allocation | 
|  | // has been made.  Sets the output to the address of the dynamically- | 
|  | // allocated area itself, skipping the outgoing arguments. | 
|  | // | 
|  | // This expands to an LA or LAY instruction.  We restrict the offset | 
|  | // to the range of LA and keep the LAY range in reserve for when | 
|  | // the size of the outgoing arguments is added. | 
|  | def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src), | 
|  | [(set GR64:$dst, dynalloc12only:$src)]>; | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Branch instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Conditional branches. | 
|  | let isBranch = 1, isTerminator = 1, Uses = [CC] in { | 
|  | // It's easier for LLVM to handle these branches in their raw BRC/BRCL form | 
|  | // with the condition-code mask being the first operand.  It seems friendlier | 
|  | // to use mnemonic forms like JE and JLH when writing out the assembly though. | 
|  | let isCodeGenOnly = 1 in { | 
|  | // An assembler extended mnemonic for BRC. | 
|  | def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>; | 
|  | // An assembler extended mnemonic for BRCL.  (The extension is "G" | 
|  | // rather than "L" because "JL" is "Jump if Less".) | 
|  | def BRCL : CondBranchRIL<"jg#", 0xC04>; | 
|  | let isIndirectBranch = 1 in { | 
|  | def BC  : CondBranchRX<"b#",  0x47>; | 
|  | def BCR : CondBranchRR<"b#r", 0x07>; | 
|  | def BIC : CondBranchRXY<"bi#", 0xe347>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allow using the raw forms directly from the assembler (and occasional | 
|  | // special code generation needs) as well. | 
|  | def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>; | 
|  | def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>; | 
|  | let isIndirectBranch = 1 in { | 
|  | def BCAsm  : AsmCondBranchRX<"bc",  0x47>; | 
|  | def BCRAsm : AsmCondBranchRR<"bcr", 0x07>; | 
|  | def BICAsm : AsmCondBranchRXY<"bic", 0xe347>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | } | 
|  |  | 
|  | // Define AsmParser extended mnemonics for each general condition-code mask | 
|  | // (integer or floating-point) | 
|  | foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", | 
|  | "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { | 
|  | def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>; | 
|  | def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>; | 
|  | let isIndirectBranch = 1 in { | 
|  | def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>; | 
|  | def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>; | 
|  | def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unconditional branches.  These are in fact simply variants of the | 
|  | // conditional branches with the condition mask set to "always". | 
|  | let isBranch = 1, isTerminator = 1, isBarrier = 1 in { | 
|  | def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>; | 
|  | def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>; | 
|  | let isIndirectBranch = 1 in { | 
|  | def B  : FixedCondBranchRX<CondAlways, "b",  0x47>; | 
|  | def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>; | 
|  | def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | } | 
|  | } | 
|  |  | 
|  | // NOPs.  These are again variants of the conditional branches, | 
|  | // with the condition mask set to "never". | 
|  | def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>; | 
|  | def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>; | 
|  |  | 
|  | // Fused compare-and-branch instructions. | 
|  | // | 
|  | // These instructions do not use or clobber the condition codes. | 
|  | // We nevertheless pretend that the relative compare-and-branch | 
|  | // instructions clobber CC, so that we can lower them to separate | 
|  | // comparisons and BRCLs if the branch ends up being out of range. | 
|  | let isBranch = 1, isTerminator = 1 in { | 
|  | // As for normal branches, we handle these instructions internally in | 
|  | // their raw CRJ-like form, but use assembly macros like CRJE when writing | 
|  | // them out.  Using the *Pair multiclasses, we also create the raw forms. | 
|  | let Defs = [CC] in { | 
|  | defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>; | 
|  | defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>; | 
|  | defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>; | 
|  | defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>; | 
|  | defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>; | 
|  | defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>; | 
|  | defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>; | 
|  | defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>; | 
|  | } | 
|  | let isIndirectBranch = 1 in { | 
|  | defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>; | 
|  | defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>; | 
|  | defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>; | 
|  | defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>; | 
|  | defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>; | 
|  | defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>; | 
|  | defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>; | 
|  | defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>; | 
|  | } | 
|  |  | 
|  | // Define AsmParser mnemonics for each integer condition-code mask. | 
|  | foreach V = [ "E", "H", "L", "HE", "LE", "LH", | 
|  | "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in { | 
|  | let Defs = [CC] in { | 
|  | def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>; | 
|  | def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>; | 
|  | def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32, | 
|  | imm32sx8>; | 
|  | def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64, | 
|  | imm64sx8>; | 
|  | def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>; | 
|  | def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>; | 
|  | def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32, | 
|  | imm32zx8>; | 
|  | def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64, | 
|  | imm64zx8>; | 
|  | } | 
|  | let isIndirectBranch = 1 in { | 
|  | def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>; | 
|  | def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>; | 
|  | def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32, | 
|  | imm32sx8>; | 
|  | def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64, | 
|  | imm64sx8>; | 
|  | def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>; | 
|  | def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>; | 
|  | def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32, | 
|  | imm32zx8>; | 
|  | def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64, | 
|  | imm64zx8>; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decrement a register and branch if it is nonzero.  These don't clobber CC, | 
|  | // but we might need to split long relative branches into sequences that do. | 
|  | let isBranch = 1, isTerminator = 1 in { | 
|  | let Defs = [CC] in { | 
|  | def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>; | 
|  | def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>; | 
|  | } | 
|  | // This doesn't need to clobber CC since we never need to split it. | 
|  | def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | def BCT   : BranchUnaryRX<"bct",  0x46,GR32>; | 
|  | def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>; | 
|  | def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>; | 
|  | def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>; | 
|  | } | 
|  |  | 
|  | let isBranch = 1, isTerminator = 1 in { | 
|  | let Defs = [CC] in { | 
|  | def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>; | 
|  | def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>; | 
|  | def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>; | 
|  | def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>; | 
|  | } | 
|  | def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>; | 
|  | def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>; | 
|  | def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>; | 
|  | def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Trap instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Unconditional trap. | 
|  | let hasCtrlDep = 1, hasSideEffects = 1 in | 
|  | def Trap : Alias<4, (outs), (ins), [(trap)]>; | 
|  |  | 
|  | // Conditional trap. | 
|  | let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in | 
|  | def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>; | 
|  |  | 
|  | // Fused compare-and-trap instructions. | 
|  | let hasCtrlDep = 1, hasSideEffects = 1 in { | 
|  | // These patterns work the same way as for compare-and-branch. | 
|  | defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>; | 
|  | defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>; | 
|  | defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>; | 
|  | defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>; | 
|  | defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>; | 
|  | defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>; | 
|  | defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>; | 
|  | defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>; | 
|  | let Predicates = [FeatureMiscellaneousExtensions] in { | 
|  | defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>; | 
|  | defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>; | 
|  | } | 
|  |  | 
|  | foreach V = [ "E", "H", "L", "HE", "LE", "LH", | 
|  | "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in { | 
|  | def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>; | 
|  | def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>; | 
|  | def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>; | 
|  | def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>; | 
|  | def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32, | 
|  | imm32sx16>; | 
|  | def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64, | 
|  | imm64sx16>; | 
|  | def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32, | 
|  | imm32zx16>; | 
|  | def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64, | 
|  | imm64zx16>; | 
|  | let Predicates = [FeatureMiscellaneousExtensions] in { | 
|  | def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>; | 
|  | def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Call and return instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Define the general form of the call instructions for the asm parser. | 
|  | // These instructions don't hard-code %r14 as the return address register. | 
|  | let isCall = 1, Defs = [CC] in { | 
|  | def BRAS  : CallRI <"bras", 0xA75>; | 
|  | def BRASL : CallRIL<"brasl", 0xC05>; | 
|  | def BAS   : CallRX <"bas", 0x4D>; | 
|  | def BASR  : CallRR <"basr", 0x0D>; | 
|  | } | 
|  |  | 
|  | // Regular calls. | 
|  | let isCall = 1, Defs = [R14D, CC] in { | 
|  | def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops), | 
|  | [(z_call pcrel32:$I2)]>; | 
|  | def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops), | 
|  | [(z_call ADDR64:$R2)]>; | 
|  | } | 
|  |  | 
|  | // TLS calls.  These will be lowered into a call to __tls_get_offset, | 
|  | // with an extra relocation specifying the TLS symbol. | 
|  | let isCall = 1, Defs = [R14D, CC] in { | 
|  | def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops), | 
|  | [(z_tls_gdcall tglobaltlsaddr:$I2)]>; | 
|  | def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops), | 
|  | [(z_tls_ldcall tglobaltlsaddr:$I2)]>; | 
|  | } | 
|  |  | 
|  | // Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards | 
|  | // are argument registers and since branching to R0 is a no-op. | 
|  | let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { | 
|  | def CallJG : Alias<6, (outs), (ins pcrel32:$I2), | 
|  | [(z_sibcall pcrel32:$I2)]>; | 
|  | let Uses = [R1D] in | 
|  | def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>; | 
|  | } | 
|  |  | 
|  | // Conditional sibling calls. | 
|  | let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in { | 
|  | def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1, | 
|  | pcrel32:$I2), []>; | 
|  | let Uses = [R1D] in | 
|  | def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>; | 
|  | } | 
|  |  | 
|  | // Fused compare and conditional sibling calls. | 
|  | let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in { | 
|  | def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; | 
|  | def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; | 
|  | def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>; | 
|  | def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>; | 
|  | def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; | 
|  | def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; | 
|  | def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>; | 
|  | def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>; | 
|  | } | 
|  |  | 
|  | // A return instruction (br %r14). | 
|  | let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in | 
|  | def Return : Alias<2, (outs), (ins), [(z_retflag)]>; | 
|  |  | 
|  | // A conditional return instruction (bcr <cond>, %r14). | 
|  | let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in | 
|  | def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>; | 
|  |  | 
|  | // Fused compare and conditional returns. | 
|  | let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in { | 
|  | def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; | 
|  | def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; | 
|  | def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>; | 
|  | def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>; | 
|  | def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; | 
|  | def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; | 
|  | def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>; | 
|  | def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Select instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | def Select32    : SelectWrapper<i32, GR32>, | 
|  | Requires<[FeatureNoLoadStoreOnCond]>; | 
|  | def Select64    : SelectWrapper<i64, GR64>, | 
|  | Requires<[FeatureNoLoadStoreOnCond]>; | 
|  |  | 
|  | // We don't define 32-bit Mux stores if we don't have STOCFH, because the | 
|  | // low-only STOC should then always be used if possible. | 
|  | defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8, | 
|  | nonvolatile_anyextloadi8, bdxaddr20only>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16, | 
|  | nonvolatile_anyextloadi16, bdxaddr20only>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm CondStore32Mux : CondStores<GRX32, nonvolatile_store, | 
|  | nonvolatile_load, bdxaddr20only>, | 
|  | Requires<[FeatureLoadStoreOnCond2]>; | 
|  | defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8, | 
|  | nonvolatile_anyextloadi8, bdxaddr20only>; | 
|  | defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16, | 
|  | nonvolatile_anyextloadi16, bdxaddr20only>; | 
|  | defm CondStore32    : CondStores<GR32, nonvolatile_store, | 
|  | nonvolatile_load, bdxaddr20only>; | 
|  |  | 
|  | defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8, | 
|  | nonvolatile_anyextloadi8, bdxaddr20only>; | 
|  | defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16, | 
|  | nonvolatile_anyextloadi16, bdxaddr20only>; | 
|  | defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32, | 
|  | nonvolatile_anyextloadi32, bdxaddr20only>; | 
|  | defm CondStore64 : CondStores<GR64, nonvolatile_store, | 
|  | nonvolatile_load, bdxaddr20only>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Move instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Register moves. | 
|  | // Expands to LR, RISBHG or RISBLG, depending on the choice of registers. | 
|  | def LRMux : UnaryRRPseudo<"lr", null_frag, GRX32, GRX32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>; | 
|  | def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>; | 
|  |  | 
|  | let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { | 
|  | def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>; | 
|  | def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>; | 
|  | } | 
|  |  | 
|  | let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in | 
|  | def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>; | 
|  |  | 
|  | // Immediate moves. | 
|  | let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { | 
|  | // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF, | 
|  | // deopending on the choice of register. | 
|  | def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>; | 
|  | def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>; | 
|  |  | 
|  | // Other 16-bit immediates. | 
|  | def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>; | 
|  | def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>; | 
|  | def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>; | 
|  | def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>; | 
|  |  | 
|  | // 32-bit immediates. | 
|  | def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>; | 
|  | def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>; | 
|  | def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>; | 
|  | } | 
|  |  | 
|  | // Register loads. | 
|  | let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in { | 
|  | // Expands to L, LY or LFH, depending on the choice of register. | 
|  | def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>; | 
|  | def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>; | 
|  |  | 
|  | // These instructions are split after register allocation, so we don't | 
|  | // want a custom inserter. | 
|  | let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { | 
|  | def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src), | 
|  | [(set GR128:$dst, (load bdxaddr20only128:$src))]>; | 
|  | } | 
|  | } | 
|  | let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { | 
|  | def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>; | 
|  | def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>; | 
|  | } | 
|  |  | 
|  | let canFoldAsLoad = 1 in { | 
|  | def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>; | 
|  | def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>; | 
|  | } | 
|  |  | 
|  | // Load and zero rightmost byte. | 
|  | let Predicates = [FeatureLoadAndZeroRightmostByte] in { | 
|  | def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>; | 
|  | def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>; | 
|  | def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00), | 
|  | (LZRF bdxaddr20only:$src)>; | 
|  | def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00), | 
|  | (LZRG bdxaddr20only:$src)>; | 
|  | } | 
|  |  | 
|  | // Load and trap. | 
|  | let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in { | 
|  | def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>; | 
|  | def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>; | 
|  | def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>; | 
|  | } | 
|  |  | 
|  | // Register stores. | 
|  | let SimpleBDXStore = 1, mayStore = 1 in { | 
|  | // Expands to ST, STY or STFH, depending on the choice of register. | 
|  | def STMux : StoreRXYPseudo<store, GRX32, 4>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>; | 
|  | def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>; | 
|  |  | 
|  | // These instructions are split after register allocation, so we don't | 
|  | // want a custom inserter. | 
|  | let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { | 
|  | def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst), | 
|  | [(store GR128:$src, bdxaddr20only128:$dst)]>; | 
|  | } | 
|  | } | 
|  | def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>; | 
|  | def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>; | 
|  |  | 
|  | // 8-bit immediate stores to 8-bit fields. | 
|  | defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>; | 
|  |  | 
|  | // 16-bit immediate stores to 16-, 32- or 64-bit fields. | 
|  | def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>; | 
|  | def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>; | 
|  | def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>; | 
|  |  | 
|  | // Memory-to-memory moves. | 
|  | let mayLoad = 1, mayStore = 1 in | 
|  | defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>; | 
|  | let mayLoad = 1, mayStore = 1, Defs = [CC] in { | 
|  | def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>; | 
|  | def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>; | 
|  | def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>; | 
|  | } | 
|  |  | 
|  | // String moves. | 
|  | let mayLoad = 1, mayStore = 1, Defs = [CC] in | 
|  | defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Conditional move instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in { | 
|  | // Load immediate on condition.  Matched via DAG pattern and created | 
|  | // by the PeepholeOptimizer via FoldImmediate. | 
|  |  | 
|  | // Expands to LOCHI or LOCHHI, depending on the choice of register. | 
|  | def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>; | 
|  | defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>; | 
|  | defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>; | 
|  | defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>; | 
|  |  | 
|  | // Move register on condition.  Matched via DAG pattern and | 
|  | // created by early if-conversion. | 
|  | let isCommutable = 1 in { | 
|  | // Expands to LOCR or LOCFHR or a branch-and-move sequence, | 
|  | // depending on the choice of registers. | 
|  | def LOCRMux : CondBinaryRRFPseudo<GRX32, GRX32>; | 
|  | defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>; | 
|  | } | 
|  |  | 
|  | // Load on condition.  Matched via DAG pattern. | 
|  | // Expands to LOC or LOCFH, depending on the choice of register. | 
|  | def LOCMux : CondUnaryRSYPseudo<nonvolatile_load, GRX32, 4>; | 
|  | defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, nonvolatile_load, GRH32, 4>; | 
|  |  | 
|  | // Store on condition.  Expanded from CondStore* pseudos. | 
|  | // Expands to STOC or STOCFH, depending on the choice of register. | 
|  | def STOCMux : CondStoreRSYPseudo<GRX32, 4>; | 
|  | defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>; | 
|  |  | 
|  | // Define AsmParser extended mnemonics for each general condition-code mask. | 
|  | foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", | 
|  | "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { | 
|  | def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32, | 
|  | imm32sx16>; | 
|  | def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64, | 
|  | imm64sx16>; | 
|  | def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32, | 
|  | imm32sx16>; | 
|  | def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>; | 
|  | def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>; | 
|  | def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>; | 
|  | } | 
|  | } | 
|  |  | 
|  | let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in { | 
|  | // Move register on condition.  Matched via DAG pattern and | 
|  | // created by early if-conversion. | 
|  | let isCommutable = 1 in { | 
|  | defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>; | 
|  | defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>; | 
|  | } | 
|  |  | 
|  | // Load on condition.  Matched via DAG pattern. | 
|  | defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, nonvolatile_load, GR32, 4>; | 
|  | defm LOCG : CondUnaryRSYPair<"locg", 0xEBE2, nonvolatile_load, GR64, 8>; | 
|  |  | 
|  | // Store on condition.  Expanded from CondStore* pseudos. | 
|  | defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>; | 
|  | defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>; | 
|  |  | 
|  | // Define AsmParser extended mnemonics for each general condition-code mask. | 
|  | foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", | 
|  | "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { | 
|  | def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>; | 
|  | def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>; | 
|  | def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>; | 
|  | def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>; | 
|  | def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>; | 
|  | def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>; | 
|  | } | 
|  | } | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Sign extensions | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Note that putting these before zero extensions mean that we will prefer | 
|  | // them for anyextload*.  There's not really much to choose between the two | 
|  | // either way, but signed-extending loads have a short LH and a long LHY, | 
|  | // while zero-extending loads have only the long LLH. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // 32-bit extensions from registers. | 
|  | def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>; | 
|  | def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>; | 
|  |  | 
|  | // 64-bit extensions from registers. | 
|  | def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>; | 
|  | def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>; | 
|  | def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>; | 
|  |  | 
|  | let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in | 
|  | def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>; | 
|  |  | 
|  | // Match 32-to-64-bit sign extensions in which the source is already | 
|  | // in a 64-bit register. | 
|  | def : Pat<(sext_inreg GR64:$src, i32), | 
|  | (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; | 
|  |  | 
|  | // 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH, | 
|  | // depending on the choice of register. | 
|  | def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>; | 
|  | def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH, | 
|  | // depending on the choice of register. | 
|  | def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>; | 
|  | def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>; | 
|  |  | 
|  | // 64-bit extensions from memory. | 
|  | def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>; | 
|  | def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>; | 
|  | def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>; | 
|  | def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>; | 
|  | def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>; | 
|  | let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in | 
|  | def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Zero extensions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // 32-bit extensions from registers. | 
|  |  | 
|  | // Expands to LLCR or RISB[LH]G, depending on the choice of registers. | 
|  | def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>; | 
|  | // Expands to LLHR or RISB[LH]G, depending on the choice of registers. | 
|  | def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>; | 
|  |  | 
|  | // 64-bit extensions from registers. | 
|  | def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>; | 
|  | def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>; | 
|  | def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>; | 
|  |  | 
|  | // Match 32-to-64-bit zero extensions in which the source is already | 
|  | // in a 64-bit register. | 
|  | def : Pat<(and GR64:$src, 0xffffffff), | 
|  | (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; | 
|  |  | 
|  | // 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH, | 
|  | // depending on the choice of register. | 
|  | def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>; | 
|  | def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH, | 
|  | // depending on the choice of register. | 
|  | def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>; | 
|  | def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>; | 
|  |  | 
|  | // 64-bit extensions from memory. | 
|  | def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>; | 
|  | def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>; | 
|  | def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>; | 
|  | def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>; | 
|  | def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>; | 
|  |  | 
|  | // 31-to-64-bit zero extensions. | 
|  | def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>; | 
|  | def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>; | 
|  | def : Pat<(and GR64:$src, 0x7fffffff), | 
|  | (LLGTR GR64:$src)>; | 
|  | def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff), | 
|  | (LLGT bdxaddr20only:$src)>; | 
|  |  | 
|  | // Load and zero rightmost byte. | 
|  | let Predicates = [FeatureLoadAndZeroRightmostByte] in { | 
|  | def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>; | 
|  | def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00), | 
|  | (LLZRGF bdxaddr20only:$src)>; | 
|  | } | 
|  |  | 
|  | // Load and trap. | 
|  | let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in { | 
|  | def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>; | 
|  | def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>; | 
|  | } | 
|  |  | 
|  | // Extend GR64s to GR128s. | 
|  | let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in | 
|  | def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // "Any" extensions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext. | 
|  | def : Pat<(i64 (anyext GR32:$src)), | 
|  | (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>; | 
|  |  | 
|  | // Extend GR64s to GR128s. | 
|  | let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in | 
|  | def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Truncations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Truncations of 64-bit registers to 32-bit registers. | 
|  | def : Pat<(i32 (trunc GR64:$src)), | 
|  | (EXTRACT_SUBREG GR64:$src, subreg_l32)>; | 
|  |  | 
|  | // Truncations of 32-bit registers to 8-bit memory.  STCMux expands to | 
|  | // STC, STCY or STCH, depending on the choice of register. | 
|  | def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>; | 
|  | def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // Truncations of 32-bit registers to 16-bit memory.  STHMux expands to | 
|  | // STH, STHY or STHH, depending on the choice of register. | 
|  | def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>; | 
|  | def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>; | 
|  |  | 
|  | // Truncations of 64-bit registers to memory. | 
|  | defm : StoreGR64Pair<STC, STCY, truncstorei8>; | 
|  | defm : StoreGR64Pair<STH, STHY, truncstorei16>; | 
|  | def  : StoreGR64PC<STHRL, aligned_truncstorei16>; | 
|  | defm : StoreGR64Pair<ST, STY, truncstorei32>; | 
|  | def  : StoreGR64PC<STRL, aligned_truncstorei32>; | 
|  |  | 
|  | // Store characters under mask -- not (yet) used for codegen. | 
|  | defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>; | 
|  | def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Multi-register moves | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Multi-register loads. | 
|  | defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>; | 
|  | def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>; | 
|  | def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>; | 
|  | def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>; | 
|  |  | 
|  | // Multi-register stores. | 
|  | defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>; | 
|  | def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>; | 
|  | def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Byte swaps | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Byte-swapping register moves. | 
|  | def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>; | 
|  | def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>; | 
|  |  | 
|  | // Byte-swapping loads.  Unlike normal loads, these instructions are | 
|  | // allowed to access storage more than once. | 
|  | def LRVH : UnaryRXY<"lrvh", 0xE31F, z_lrvh, GR32, 2>; | 
|  | def LRV  : UnaryRXY<"lrv",  0xE31E, z_lrv,  GR32, 4>; | 
|  | def LRVG : UnaryRXY<"lrvg", 0xE30F, z_lrvg, GR64, 8>; | 
|  |  | 
|  | // Likewise byte-swapping stores. | 
|  | def STRVH : StoreRXY<"strvh", 0xE33F, z_strvh, GR32, 2>; | 
|  | def STRV  : StoreRXY<"strv",  0xE33E, z_strv,  GR32, 4>; | 
|  | def STRVG : StoreRXY<"strvg", 0xE32F, z_strvg, GR64, 8>; | 
|  |  | 
|  | // Byte-swapping memory-to-memory moves. | 
|  | let mayLoad = 1, mayStore = 1 in | 
|  | def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Load address instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Load BDX-style addresses. | 
|  | let isAsCheapAsAMove = 1, isReMaterializable = 1 in | 
|  | defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>; | 
|  |  | 
|  | // Load a PC-relative address.  There's no version of this instruction | 
|  | // with a 16-bit offset, so there's no relaxation. | 
|  | let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in | 
|  | def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>; | 
|  |  | 
|  | // Load the Global Offset Table address.  This will be lowered into a | 
|  | //     larl $R1, _GLOBAL_OFFSET_TABLE_ | 
|  | // instruction. | 
|  | def GOT : Alias<6, (outs GR64:$R1), (ins), | 
|  | [(set GR64:$R1, (global_offset_table))]>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Absolute and Negation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Defs = [CC] in { | 
|  | let CCValues = 0xF, CompareZeroCCMask = 0x8 in { | 
|  | def LPR  : UnaryRR <"lpr",  0x10,   z_iabs, GR32, GR32>; | 
|  | def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>; | 
|  | } | 
|  | let CCValues = 0xE, CompareZeroCCMask = 0xE in | 
|  | def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>; | 
|  | } | 
|  | def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>; | 
|  | def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>; | 
|  | defm : SXU<z_iabs,   LPGFR>; | 
|  | defm : SXU<z_iabs64, LPGFR>; | 
|  |  | 
|  | let Defs = [CC] in { | 
|  | let CCValues = 0xF, CompareZeroCCMask = 0x8 in { | 
|  | def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>; | 
|  | def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>; | 
|  | } | 
|  | let CCValues = 0xE, CompareZeroCCMask = 0xE in | 
|  | def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>; | 
|  | } | 
|  | def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>; | 
|  | def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>; | 
|  | defm : SXU<z_inegabs,   LNGFR>; | 
|  | defm : SXU<z_inegabs64, LNGFR>; | 
|  |  | 
|  | let Defs = [CC] in { | 
|  | let CCValues = 0xF, CompareZeroCCMask = 0x8 in { | 
|  | def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>; | 
|  | def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>; | 
|  | } | 
|  | let CCValues = 0xE, CompareZeroCCMask = 0xE in | 
|  | def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>; | 
|  | } | 
|  | defm : SXU<ineg, LCGFR>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Insertion | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let isCodeGenOnly = 1 in | 
|  | defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>; | 
|  | defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>; | 
|  |  | 
|  | defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>; | 
|  | defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>; | 
|  |  | 
|  | defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>; | 
|  | defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>; | 
|  |  | 
|  | // Insert characters under mask -- not (yet) used for codegen. | 
|  | let Defs = [CC] in { | 
|  | defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>; | 
|  | def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>; | 
|  | } | 
|  |  | 
|  | // Insertions of a 16-bit immediate, leaving other bits unaffected. | 
|  | // We don't have or_as_insert equivalents of these operations because | 
|  | // OI is available instead. | 
|  | // | 
|  | // IIxMux expands to II[LH]x, depending on the choice of register. | 
|  | def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>; | 
|  | def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>; | 
|  | def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>; | 
|  | def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>; | 
|  | def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>; | 
|  | def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>; | 
|  | def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>; | 
|  | def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>; | 
|  |  | 
|  | // ...likewise for 32-bit immediates.  For GR32s this is a general | 
|  | // full-width move.  (We use IILF rather than something like LLILF | 
|  | // for 32-bit moves because IILF leaves the upper 32 bits of the | 
|  | // GR64 unchanged.) | 
|  | let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { | 
|  | def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>; | 
|  | def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>; | 
|  | } | 
|  | def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>; | 
|  | def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>; | 
|  |  | 
|  | // An alternative model of inserthf, with the first operand being | 
|  | // a zero-extended value. | 
|  | def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm), | 
|  | (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), | 
|  | imm64hf32:$imm)>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Addition | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Addition producing a signed overflow flag. | 
|  | let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in { | 
|  | // Addition of a register. | 
|  | let isCommutable = 1 in { | 
|  | defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>; | 
|  | defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>; | 
|  | } | 
|  | def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>; | 
|  |  | 
|  | // Addition to a high register. | 
|  | def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // Addition of signed 16-bit immediates. | 
|  | defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>; | 
|  | defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>; | 
|  | defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>; | 
|  |  | 
|  | // Addition of signed 32-bit immediates. | 
|  | def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>; | 
|  | def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>; | 
|  |  | 
|  | // Addition of memory. | 
|  | defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>; | 
|  | defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>; | 
|  | def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>; | 
|  | def  AG  : BinaryRXY<"ag",  0xE308, z_sadd, GR64, load, 8>; | 
|  |  | 
|  | // Addition to memory. | 
|  | def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>; | 
|  | def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>; | 
|  | } | 
|  | defm : SXB<z_sadd, GR64, AGFR>; | 
|  |  | 
|  | // Addition producing a carry. | 
|  | let Defs = [CC] in { | 
|  | // Addition of a register. | 
|  | let isCommutable = 1 in { | 
|  | defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>; | 
|  | defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>; | 
|  | } | 
|  | def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>; | 
|  |  | 
|  | // Addition to a high register. | 
|  | def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // Addition of signed 16-bit immediates. | 
|  | def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>, | 
|  | Requires<[FeatureDistinctOps]>; | 
|  | def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>, | 
|  | Requires<[FeatureDistinctOps]>; | 
|  |  | 
|  | // Addition of unsigned 32-bit immediates. | 
|  | def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>; | 
|  | def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>; | 
|  |  | 
|  | // Addition of signed 32-bit immediates. | 
|  | def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // Addition of memory. | 
|  | defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>; | 
|  | def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>; | 
|  | def  ALG  : BinaryRXY<"alg",  0xE30A, z_uadd, GR64, load, 8>; | 
|  |  | 
|  | // Addition to memory. | 
|  | def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>; | 
|  | def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>; | 
|  | } | 
|  | defm : ZXB<z_uadd, GR64, ALGFR>; | 
|  |  | 
|  | // Addition producing and using a carry. | 
|  | let Defs = [CC], Uses = [CC] in { | 
|  | // Addition of a register. | 
|  | def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>; | 
|  | def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>; | 
|  |  | 
|  | // Addition of memory. | 
|  | def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>; | 
|  | def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>; | 
|  | } | 
|  |  | 
|  | // Addition that does not modify the condition code. | 
|  | def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Subtraction | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Subtraction producing a signed overflow flag. | 
|  | let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in { | 
|  | // Subtraction of a register. | 
|  | defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>; | 
|  | def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>; | 
|  | defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>; | 
|  |  | 
|  | // Subtraction from a high register. | 
|  | def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // Subtraction of memory. | 
|  | defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>; | 
|  | defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>; | 
|  | def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>; | 
|  | def  SG  : BinaryRXY<"sg",  0xE309, z_ssub, GR64, load, 8>; | 
|  | } | 
|  | defm : SXB<z_ssub, GR64, SGFR>; | 
|  |  | 
|  | // Subtracting an immediate is the same as adding the negated immediate. | 
|  | let AddedComplexity = 1 in { | 
|  | def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2), | 
|  | (AHIMux GR32:$src1, imm32sx16n:$src2)>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def : Pat<(z_ssub GR32:$src1, simm32n:$src2), | 
|  | (AFIMux GR32:$src1, simm32n:$src2)>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2), | 
|  | (AHI GR32:$src1, imm32sx16n:$src2)>; | 
|  | def : Pat<(z_ssub GR32:$src1, simm32n:$src2), | 
|  | (AFI GR32:$src1, simm32n:$src2)>; | 
|  | def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2), | 
|  | (AGHI GR64:$src1, imm64sx16n:$src2)>; | 
|  | def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2), | 
|  | (AGFI GR64:$src1, imm64sx32n:$src2)>; | 
|  | } | 
|  |  | 
|  | // Subtraction producing a carry. | 
|  | let Defs = [CC] in { | 
|  | // Subtraction of a register. | 
|  | defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>; | 
|  | def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>; | 
|  | defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>; | 
|  |  | 
|  | // Subtraction from a high register. | 
|  | def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // Subtraction of unsigned 32-bit immediates. | 
|  | def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>; | 
|  | def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>; | 
|  |  | 
|  | // Subtraction of memory. | 
|  | defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>; | 
|  | def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>; | 
|  | def  SLG  : BinaryRXY<"slg",  0xE30B, z_usub, GR64, load, 8>; | 
|  | } | 
|  | defm : ZXB<z_usub, GR64, SLGFR>; | 
|  |  | 
|  | // Subtracting an immediate is the same as adding the negated immediate. | 
|  | let AddedComplexity = 1 in { | 
|  | def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2), | 
|  | (ALHSIK GR32:$src1, imm32sx16n:$src2)>, | 
|  | Requires<[FeatureDistinctOps]>; | 
|  | def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2), | 
|  | (ALGHSIK GR64:$src1, imm64sx16n:$src2)>, | 
|  | Requires<[FeatureDistinctOps]>; | 
|  | } | 
|  |  | 
|  | // And vice versa in one special case (but we prefer addition). | 
|  | def : Pat<(add GR64:$src1, imm64zx32n:$src2), | 
|  | (SLGFI GR64:$src1, imm64zx32n:$src2)>; | 
|  |  | 
|  | // Subtraction producing and using a carry. | 
|  | let Defs = [CC], Uses = [CC] in { | 
|  | // Subtraction of a register. | 
|  | def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>; | 
|  | def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>; | 
|  |  | 
|  | // Subtraction of memory. | 
|  | def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>; | 
|  | def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // AND | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Defs = [CC] in { | 
|  | // ANDs of a register. | 
|  | let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>; | 
|  | defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>; | 
|  | } | 
|  |  | 
|  | let isConvertibleToThreeAddress = 1 in { | 
|  | // ANDs of a 16-bit immediate, leaving other bits unaffected. | 
|  | // The CC result only reflects the 16-bit field, not the full register. | 
|  | // | 
|  | // NIxMux expands to NI[LH]x, depending on the choice of register. | 
|  | def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>; | 
|  | def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>; | 
|  | def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>; | 
|  | def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>; | 
|  | def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>; | 
|  | def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>; | 
|  | def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>; | 
|  | def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>; | 
|  |  | 
|  | // ANDs of a 32-bit immediate, leaving other bits unaffected. | 
|  | // The CC result only reflects the 32-bit field, which means we can | 
|  | // use it as a zero indicator for i32 operations but not otherwise. | 
|  | let CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | // Expands to NILF or NIHF, depending on the choice of register. | 
|  | def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>; | 
|  | def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>; | 
|  | } | 
|  | def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>; | 
|  | def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>; | 
|  | } | 
|  |  | 
|  | // ANDs of memory. | 
|  | let CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>; | 
|  | def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; | 
|  | } | 
|  |  | 
|  | // AND to memory | 
|  | defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>; | 
|  |  | 
|  | // Block AND. | 
|  | let mayLoad = 1, mayStore = 1 in | 
|  | defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>; | 
|  | } | 
|  | defm : RMWIByte<and, bdaddr12pair, NI>; | 
|  | defm : RMWIByte<and, bdaddr20pair, NIY>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // OR | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Defs = [CC] in { | 
|  | // ORs of a register. | 
|  | let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>; | 
|  | defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>; | 
|  | } | 
|  |  | 
|  | // ORs of a 16-bit immediate, leaving other bits unaffected. | 
|  | // The CC result only reflects the 16-bit field, not the full register. | 
|  | // | 
|  | // OIxMux expands to OI[LH]x, depending on the choice of register. | 
|  | def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>; | 
|  | def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>; | 
|  | def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>; | 
|  | def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>; | 
|  | def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>; | 
|  | def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>; | 
|  | def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>; | 
|  | def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>; | 
|  |  | 
|  | // ORs of a 32-bit immediate, leaving other bits unaffected. | 
|  | // The CC result only reflects the 32-bit field, which means we can | 
|  | // use it as a zero indicator for i32 operations but not otherwise. | 
|  | let CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | // Expands to OILF or OIHF, depending on the choice of register. | 
|  | def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>; | 
|  | def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>; | 
|  | } | 
|  | def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>; | 
|  | def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>; | 
|  |  | 
|  | // ORs of memory. | 
|  | let CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>; | 
|  | def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>; | 
|  | } | 
|  |  | 
|  | // OR to memory | 
|  | defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>; | 
|  |  | 
|  | // Block OR. | 
|  | let mayLoad = 1, mayStore = 1 in | 
|  | defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>; | 
|  | } | 
|  | defm : RMWIByte<or, bdaddr12pair, OI>; | 
|  | defm : RMWIByte<or, bdaddr20pair, OIY>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // XOR | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Defs = [CC] in { | 
|  | // XORs of a register. | 
|  | let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>; | 
|  | defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>; | 
|  | } | 
|  |  | 
|  | // XORs of a 32-bit immediate, leaving other bits unaffected. | 
|  | // The CC result only reflects the 32-bit field, which means we can | 
|  | // use it as a zero indicator for i32 operations but not otherwise. | 
|  | let CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | // Expands to XILF or XIHF, depending on the choice of register. | 
|  | def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>; | 
|  | def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>; | 
|  | } | 
|  | def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>; | 
|  | def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>; | 
|  |  | 
|  | // XORs of memory. | 
|  | let CCValues = 0xC, CompareZeroCCMask = 0x8 in { | 
|  | defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>; | 
|  | def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>; | 
|  | } | 
|  |  | 
|  | // XOR to memory | 
|  | defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>; | 
|  |  | 
|  | // Block XOR. | 
|  | let mayLoad = 1, mayStore = 1 in | 
|  | defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>; | 
|  | } | 
|  | defm : RMWIByte<xor, bdaddr12pair, XI>; | 
|  | defm : RMWIByte<xor, bdaddr20pair, XIY>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Multiplication | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Multiplication of a register, setting the condition code.  We prefer these | 
|  | // over MS(G)R if available, even though we cannot use the condition code, | 
|  | // since they are three-operand instructions. | 
|  | let Predicates = [FeatureMiscellaneousExtensions2], | 
|  | Defs = [CC], isCommutable = 1 in { | 
|  | def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>; | 
|  | def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>; | 
|  | } | 
|  |  | 
|  | // Multiplication of a register. | 
|  | let isCommutable = 1 in { | 
|  | def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>; | 
|  | def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>; | 
|  | } | 
|  | def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>; | 
|  | defm : SXB<mul, GR64, MSGFR>; | 
|  |  | 
|  | // Multiplication of a signed 16-bit immediate. | 
|  | def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>; | 
|  | def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>; | 
|  |  | 
|  | // Multiplication of a signed 32-bit immediate. | 
|  | def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>; | 
|  | def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>; | 
|  |  | 
|  | // Multiplication of memory. | 
|  | defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>; | 
|  | defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>; | 
|  | def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>; | 
|  | def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>; | 
|  |  | 
|  | // Multiplication of memory, setting the condition code. | 
|  | let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in { | 
|  | def MSC  : BinaryRXY<"msc",  0xE353, null_frag, GR32, load, 4>; | 
|  | def MSGC : BinaryRXY<"msgc", 0xE383, null_frag, GR64, load, 8>; | 
|  | } | 
|  |  | 
|  | // Multiplication of a register, producing two results. | 
|  | def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>; | 
|  | def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>; | 
|  | def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>; | 
|  |  | 
|  | def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2), | 
|  | (MGRK GR64:$src1, GR64:$src2)>; | 
|  | def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2), | 
|  | (MLGR (AEXT128 GR64:$src1), GR64:$src2)>; | 
|  |  | 
|  | // Multiplication of memory, producing two results. | 
|  | def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>; | 
|  | def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>; | 
|  | def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>, | 
|  | Requires<[FeatureMiscellaneousExtensions2]>; | 
|  | def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>; | 
|  | def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>; | 
|  |  | 
|  | def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))), | 
|  | (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; | 
|  | def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))), | 
|  | (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Division and remainder | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let hasSideEffects = 1 in {  // Do not speculatively execute. | 
|  | // Division and remainder, from registers. | 
|  | def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>; | 
|  | def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>; | 
|  | def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>; | 
|  | def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>; | 
|  | def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>; | 
|  |  | 
|  | // Division and remainder, from memory. | 
|  | def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>; | 
|  | def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>; | 
|  | def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>; | 
|  | def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>; | 
|  | def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>; | 
|  | } | 
|  | def : Pat<(z_sdivrem GR64:$src1, GR32:$src2), | 
|  | (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>; | 
|  | def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))), | 
|  | (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; | 
|  | def : Pat<(z_sdivrem GR64:$src1, GR64:$src2), | 
|  | (DSGR (AEXT128 GR64:$src1), GR64:$src2)>; | 
|  | def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))), | 
|  | (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; | 
|  |  | 
|  | def : Pat<(z_udivrem GR32:$src1, GR32:$src2), | 
|  | (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1, | 
|  | subreg_l32)), GR32:$src2)>; | 
|  | def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))), | 
|  | (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1, | 
|  | subreg_l32)), bdxaddr20only:$src2)>; | 
|  | def : Pat<(z_udivrem GR64:$src1, GR64:$src2), | 
|  | (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>; | 
|  | def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))), | 
|  | (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Shifts | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Logical shift left. | 
|  | defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>; | 
|  | def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>; | 
|  | def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>; | 
|  |  | 
|  | // Arithmetic shift left. | 
|  | let Defs = [CC] in { | 
|  | defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>; | 
|  | def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>; | 
|  | def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>; | 
|  | } | 
|  |  | 
|  | // Logical shift right. | 
|  | defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>; | 
|  | def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>; | 
|  | def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>; | 
|  |  | 
|  | // Arithmetic shift right. | 
|  | let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { | 
|  | defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>; | 
|  | def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>; | 
|  | def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>; | 
|  | } | 
|  |  | 
|  | // Rotate left. | 
|  | def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>; | 
|  | def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>; | 
|  |  | 
|  | // Rotate second operand left and inserted selected bits into first operand. | 
|  | // These can act like 32-bit operands provided that the constant start and | 
|  | // end bits (operands 2 and 3) are in the range [32, 64). | 
|  | let Defs = [CC] in { | 
|  | let isCodeGenOnly = 1 in | 
|  | def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>; | 
|  | let CCValues = 0xE, CompareZeroCCMask = 0xE in | 
|  | def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>; | 
|  | } | 
|  |  | 
|  | // On zEC12 we have a variant of RISBG that does not set CC. | 
|  | let Predicates = [FeatureMiscellaneousExtensions] in | 
|  | def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>; | 
|  |  | 
|  | // Forms of RISBG that only affect one word of the destination register. | 
|  | // They do not set CC. | 
|  | let Predicates = [FeatureHighWord] in { | 
|  | def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>; | 
|  | def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>; | 
|  | def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>; | 
|  | def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>; | 
|  | def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>; | 
|  | def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>; | 
|  | def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>; | 
|  | } | 
|  |  | 
|  | // Rotate second operand left and perform a logical operation with selected | 
|  | // bits of the first operand.  The CC result only describes the selected bits, | 
|  | // so isn't useful for a full comparison against zero. | 
|  | let Defs = [CC] in { | 
|  | def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>; | 
|  | def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>; | 
|  | def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Comparison | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Signed comparisons.  We put these before the unsigned comparisons because | 
|  | // some of the signed forms have COMPARE AND BRANCH equivalents whereas none | 
|  | // of the unsigned forms do. | 
|  | let Defs = [CC], CCValues = 0xE in { | 
|  | // Comparison with a register. | 
|  | def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>; | 
|  | def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>; | 
|  | def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>; | 
|  |  | 
|  | // Comparison with a high register. | 
|  | def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH, | 
|  | // depending on the choice of register. | 
|  | def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>; | 
|  | def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>; | 
|  |  | 
|  | // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH, | 
|  | // depending on the choice of register. | 
|  | def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>; | 
|  | def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>; | 
|  |  | 
|  | // Comparison with memory. | 
|  | defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>; | 
|  | def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>; | 
|  | def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>; | 
|  | def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>; | 
|  | def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>; | 
|  | def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>; | 
|  | def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>; | 
|  | def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>; | 
|  | def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>; | 
|  | def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>; | 
|  |  | 
|  | // Comparison between memory and a signed 16-bit immediate. | 
|  | def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>; | 
|  | def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>; | 
|  | def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>; | 
|  | } | 
|  | defm : SXB<z_scmp, GR64, CGFR>; | 
|  |  | 
|  | // Unsigned comparisons. | 
|  | let Defs = [CC], CCValues = 0xE, IsLogical = 1 in { | 
|  | // Comparison with a register. | 
|  | def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>; | 
|  | def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>; | 
|  | def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>; | 
|  |  | 
|  | // Comparison with a high register. | 
|  | def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  |  | 
|  | // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI | 
|  | // or CLIH, depending on the choice of register. | 
|  | def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>; | 
|  | def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>; | 
|  |  | 
|  | // Comparison with memory. | 
|  | def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>; | 
|  | def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>; | 
|  | def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>; | 
|  | def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32, | 
|  | aligned_azextloadi16>; | 
|  | def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32, | 
|  | aligned_load>; | 
|  | def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64, | 
|  | aligned_azextloadi16>; | 
|  | def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64, | 
|  | aligned_azextloadi32>; | 
|  | def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64, | 
|  | aligned_load>; | 
|  |  | 
|  | // Comparison between memory and an unsigned 8-bit immediate. | 
|  | defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>; | 
|  |  | 
|  | // Comparison between memory and an unsigned 16-bit immediate. | 
|  | def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>; | 
|  | def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>; | 
|  | def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>; | 
|  | } | 
|  | defm : ZXB<z_ucmp, GR64, CLGFR>; | 
|  |  | 
|  | // Memory-to-memory comparison. | 
|  | let mayLoad = 1, Defs = [CC] in { | 
|  | defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>; | 
|  | def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>; | 
|  | def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>; | 
|  | def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>; | 
|  | } | 
|  |  | 
|  | // String comparison. | 
|  | let mayLoad = 1, Defs = [CC] in | 
|  | defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>; | 
|  |  | 
|  | // Test under mask. | 
|  | let Defs = [CC] in { | 
|  | // TMxMux expands to TM[LH]x, depending on the choice of register. | 
|  | def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>, | 
|  | Requires<[FeatureHighWord]>; | 
|  | def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>; | 
|  | def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>; | 
|  | def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>; | 
|  | def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>; | 
|  |  | 
|  | def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>; | 
|  | def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>; | 
|  | def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>; | 
|  | def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>; | 
|  |  | 
|  | defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>; | 
|  | } | 
|  |  | 
|  | def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>; | 
|  | def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>; | 
|  |  | 
|  | // Compare logical characters under mask -- not (yet) used for codegen. | 
|  | let Defs = [CC] in { | 
|  | defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>; | 
|  | def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Prefetch and execution hint | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let mayLoad = 1, mayStore = 1 in { | 
|  | def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>; | 
|  | def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>; | 
|  | } | 
|  |  | 
|  | let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in { | 
|  | // Branch Prediction Preload | 
|  | def BPP : BranchPreloadSMI<"bpp", 0xC7>; | 
|  | def BPRP : BranchPreloadMII<"bprp", 0xC5>; | 
|  |  | 
|  | // Next Instruction Access Intent | 
|  | def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Atomic operations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // A serialization instruction that acts as a barrier for all memory | 
|  | // accesses, which expands to "bcr 14, 0". | 
|  | let hasSideEffects = 1 in | 
|  | def Serialize : Alias<2, (outs), (ins), []>; | 
|  |  | 
|  | // A pseudo instruction that serves as a compiler barrier. | 
|  | let hasSideEffects = 1, hasNoSchedulingInfo = 1 in | 
|  | def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>; | 
|  |  | 
|  | let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { | 
|  | def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>; | 
|  | def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>; | 
|  | def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>; | 
|  | def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>; | 
|  | def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>; | 
|  | def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>; | 
|  | def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>; | 
|  | def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>; | 
|  | def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>; | 
|  | def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>; | 
|  | } | 
|  |  | 
|  | def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>; | 
|  | def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>; | 
|  | def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>; | 
|  |  | 
|  | def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>; | 
|  | def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>; | 
|  | let Predicates = [FeatureNoInterlockedAccess1] in { | 
|  | def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>; | 
|  | def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>; | 
|  | def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>; | 
|  | def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>; | 
|  | def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>; | 
|  | def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>; | 
|  | } | 
|  |  | 
|  | def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>; | 
|  | def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>; | 
|  | def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>; | 
|  |  | 
|  | def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>; | 
|  | def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>; | 
|  | let Predicates = [FeatureNoInterlockedAccess1] in { | 
|  | def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>; | 
|  | def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32, | 
|  | imm32ll16c>; | 
|  | def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32, | 
|  | imm32lh16c>; | 
|  | def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>; | 
|  | def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>; | 
|  | def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64, | 
|  | imm64ll16c>; | 
|  | def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64, | 
|  | imm64lh16c>; | 
|  | def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64, | 
|  | imm64hl16c>; | 
|  | def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64, | 
|  | imm64hh16c>; | 
|  | def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64, | 
|  | imm64lf32c>; | 
|  | def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64, | 
|  | imm64hf32c>; | 
|  | } | 
|  |  | 
|  | def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>; | 
|  | def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>; | 
|  | let Predicates = [FeatureNoInterlockedAccess1] in { | 
|  | def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>; | 
|  | def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>; | 
|  | def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>; | 
|  | def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>; | 
|  | def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>; | 
|  | def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>; | 
|  | def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>; | 
|  | def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>; | 
|  | def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>; | 
|  | def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>; | 
|  | def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>; | 
|  | } | 
|  |  | 
|  | def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>; | 
|  | def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>; | 
|  | let Predicates = [FeatureNoInterlockedAccess1] in { | 
|  | def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>; | 
|  | def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>; | 
|  | def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>; | 
|  | def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>; | 
|  | def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>; | 
|  | } | 
|  |  | 
|  | def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>; | 
|  | def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand, | 
|  | imm32lh16c>; | 
|  | def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>; | 
|  | def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32, | 
|  | imm32ll16c>; | 
|  | def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32, | 
|  | imm32lh16c>; | 
|  | def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>; | 
|  | def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>; | 
|  | def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64, | 
|  | imm64ll16c>; | 
|  | def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64, | 
|  | imm64lh16c>; | 
|  | def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64, | 
|  | imm64hl16c>; | 
|  | def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64, | 
|  | imm64hh16c>; | 
|  | def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64, | 
|  | imm64lf32c>; | 
|  | def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64, | 
|  | imm64hf32c>; | 
|  |  | 
|  | def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>; | 
|  | def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>; | 
|  | def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>; | 
|  |  | 
|  | def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>; | 
|  | def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>; | 
|  | def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>; | 
|  |  | 
|  | def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>; | 
|  | def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>; | 
|  | def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>; | 
|  |  | 
|  | def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>; | 
|  | def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>; | 
|  | def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>; | 
|  |  | 
|  | def ATOMIC_CMP_SWAPW | 
|  | : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap, | 
|  | ADDR32:$bitshift, ADDR32:$negbitshift, | 
|  | uimm32:$bitsize), | 
|  | [(set GR32:$dst, | 
|  | (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap, | 
|  | ADDR32:$bitshift, ADDR32:$negbitshift, | 
|  | uimm32:$bitsize))]> { | 
|  | let Defs = [CC]; | 
|  | let mayLoad = 1; | 
|  | let mayStore = 1; | 
|  | let usesCustomInserter = 1; | 
|  | let hasNoSchedulingInfo = 1; | 
|  | } | 
|  |  | 
|  | // Test and set. | 
|  | let mayLoad = 1, Defs = [CC] in | 
|  | def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>; | 
|  |  | 
|  | // Compare and swap. | 
|  | let Defs = [CC] in { | 
|  | defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>; | 
|  | def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>; | 
|  | } | 
|  |  | 
|  | // Compare double and swap. | 
|  | let Defs = [CC] in { | 
|  | defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>; | 
|  | def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>; | 
|  | } | 
|  |  | 
|  | // Compare and swap and store. | 
|  | let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in | 
|  | def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>; | 
|  |  | 
|  | // Perform locked operation. | 
|  | let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in | 
|  | def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>; | 
|  |  | 
|  | // Load/store pair from/to quadword. | 
|  | def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>; | 
|  | def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>; | 
|  |  | 
|  | // Load pair disjoint. | 
|  | let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { | 
|  | def LPD  : BinarySSF<"lpd", 0xC84, GR128>; | 
|  | def LPDG : BinarySSF<"lpdg", 0xC85, GR128>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Translate and convert | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let mayLoad = 1, mayStore = 1 in | 
|  | def TR : SideEffectBinarySSa<"tr", 0xDC>; | 
|  |  | 
|  | let mayLoad = 1, Defs = [CC, R0L, R1D] in { | 
|  | def TRT  : SideEffectBinarySSa<"trt", 0xDD>; | 
|  | def TRTR : SideEffectBinarySSa<"trtr", 0xD0>; | 
|  | } | 
|  |  | 
|  | let mayLoad = 1, mayStore = 1, Uses = [R0L] in | 
|  | def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>; | 
|  |  | 
|  | let mayLoad = 1, Uses = [R1D], Defs = [CC] in { | 
|  | defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>; | 
|  | defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>; | 
|  | } | 
|  |  | 
|  | let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in { | 
|  | defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>; | 
|  | defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>; | 
|  | defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>; | 
|  | defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>; | 
|  | } | 
|  |  | 
|  | let mayLoad = 1, mayStore = 1, Defs = [CC] in { | 
|  | defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>; | 
|  | defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>; | 
|  | defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>; | 
|  | defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>; | 
|  | def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>; | 
|  | def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>; | 
|  |  | 
|  | let isAsmParserOnly = 1 in { | 
|  | defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>; | 
|  | defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Message-security assist | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in { | 
|  | def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>; | 
|  | def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>; | 
|  |  | 
|  | def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>; | 
|  | def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>; | 
|  | def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>; | 
|  |  | 
|  | let Predicates = [FeatureMessageSecurityAssist4] in { | 
|  | def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>; | 
|  | def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>; | 
|  | def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D, | 
|  | GR128, GR128, GR128>; | 
|  | def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>; | 
|  | } | 
|  |  | 
|  | let Predicates = [FeatureMessageSecurityAssist5] in | 
|  | def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>; | 
|  | let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in | 
|  | def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>; | 
|  |  | 
|  | let Predicates = [FeatureMessageSecurityAssist8] in | 
|  | def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929, | 
|  | GR128, GR128, GR128>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Guarded storage | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // These instructions use and/or modify the guarded storage control | 
|  | // registers, which we do not otherwise model, so they should have | 
|  | // hasSideEffects. | 
|  | let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in { | 
|  | def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>; | 
|  | def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>; | 
|  |  | 
|  | let mayLoad = 1 in | 
|  | def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>; | 
|  | let mayStore = 1 in | 
|  | def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Decimal arithmetic | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>; | 
|  | def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>; | 
|  |  | 
|  | defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>; | 
|  | def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>; | 
|  |  | 
|  | let mayLoad = 1, mayStore = 1 in { | 
|  | def MVN : SideEffectBinarySSa<"mvn", 0xD1>; | 
|  | def MVZ : SideEffectBinarySSa<"mvz", 0xD3>; | 
|  | def MVO : SideEffectBinarySSb<"mvo", 0xF1>; | 
|  |  | 
|  | def PACK : SideEffectBinarySSb<"pack", 0xF2>; | 
|  | def PKA  : SideEffectBinarySSf<"pka", 0xE9>; | 
|  | def PKU  : SideEffectBinarySSf<"pku", 0xE1>; | 
|  | def UNPK : SideEffectBinarySSb<"unpk", 0xF3>; | 
|  | let Defs = [CC] in { | 
|  | def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>; | 
|  | def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>; | 
|  | } | 
|  | } | 
|  |  | 
|  | let mayLoad = 1, mayStore = 1 in { | 
|  | let Defs = [CC] in { | 
|  | def AP : SideEffectBinarySSb<"ap", 0xFA>; | 
|  | def SP : SideEffectBinarySSb<"sp", 0xFB>; | 
|  | def ZAP : SideEffectBinarySSb<"zap", 0xF8>; | 
|  | def SRP : SideEffectTernarySSc<"srp", 0xF0>; | 
|  | } | 
|  | def MP : SideEffectBinarySSb<"mp", 0xFC>; | 
|  | def DP : SideEffectBinarySSb<"dp", 0xFD>; | 
|  | let Defs = [CC] in { | 
|  | def ED : SideEffectBinarySSa<"ed", 0xDE>; | 
|  | def EDMK : SideEffectBinarySSa<"edmk", 0xDF>; | 
|  | } | 
|  | } | 
|  |  | 
|  | let Defs = [CC] in { | 
|  | def CP : CompareSSb<"cp", 0xF9>; | 
|  | def TP : TestRSL<"tp", 0xEBC0>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Access registers | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Read a 32-bit access register into a GR32.  As with all GR32 operations, | 
|  | // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful | 
|  | // when a 64-bit address is stored in a pair of access registers. | 
|  | def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>; | 
|  |  | 
|  | // Set access register. | 
|  | def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>; | 
|  |  | 
|  | // Copy access register. | 
|  | def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>; | 
|  |  | 
|  | // Load address extended. | 
|  | defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>; | 
|  |  | 
|  | // Load access multiple. | 
|  | defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>; | 
|  |  | 
|  | // Store access multiple. | 
|  | defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Program mask and addressing mode | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Extract CC and program mask into a register.  CC ends up in bits 29 and 28. | 
|  | let Uses = [CC] in | 
|  | def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>; | 
|  |  | 
|  | // Set CC and program mask from a register. | 
|  | let hasSideEffects = 1, Defs = [CC] in | 
|  | def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>; | 
|  |  | 
|  | // Branch and link - like BAS, but also extracts CC and program mask. | 
|  | let isCall = 1, Uses = [CC], Defs = [CC] in { | 
|  | def BAL  : CallRX<"bal", 0x45>; | 
|  | def BALR : CallRR<"balr", 0x05>; | 
|  | } | 
|  |  | 
|  | // Test addressing mode. | 
|  | let Defs = [CC] in | 
|  | def TAM : SideEffectInherentE<"tam", 0x010B>; | 
|  |  | 
|  | // Set addressing mode. | 
|  | let hasSideEffects = 1 in { | 
|  | def SAM24 : SideEffectInherentE<"sam24", 0x010C>; | 
|  | def SAM31 : SideEffectInherentE<"sam31", 0x010D>; | 
|  | def SAM64 : SideEffectInherentE<"sam64", 0x010E>; | 
|  | } | 
|  |  | 
|  | // Branch and set mode.  Not really a call, but also sets an output register. | 
|  | let isBranch = 1, isTerminator = 1, isBarrier = 1 in | 
|  | def BSM : CallRR<"bsm", 0x0B>; | 
|  |  | 
|  | // Branch and save and set mode. | 
|  | let isCall = 1, Defs = [CC] in | 
|  | def BASSM : CallRR<"bassm", 0x0C>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Transactional execution | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in { | 
|  | // Transaction Begin | 
|  | let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in { | 
|  | def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>; | 
|  | let hasNoSchedulingInfo = 1 in | 
|  | def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>; | 
|  | def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561, | 
|  | int_s390_tbeginc, imm32zx16>; | 
|  | } | 
|  |  | 
|  | // Transaction End | 
|  | let Defs = [CC] in | 
|  | def TEND : TestInherentS<"tend", 0xB2F8, z_tend>; | 
|  |  | 
|  | // Transaction Abort | 
|  | let isTerminator = 1, isBarrier = 1, mayStore = 1, | 
|  | hasSideEffects = 1 in | 
|  | def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>; | 
|  |  | 
|  | // Nontransactional Store | 
|  | def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>; | 
|  |  | 
|  | // Extract Transaction Nesting Depth | 
|  | def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Processor assist | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let Predicates = [FeatureProcessorAssist] in { | 
|  | let hasSideEffects = 1 in | 
|  | def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>; | 
|  | def : Pat<(int_s390_ppa_txassist GR32:$src), | 
|  | (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), | 
|  | 0, 1)>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Miscellaneous Instructions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Find leftmost one, AKA count leading zeros.  The instruction actually | 
|  | // returns a pair of GR64s, the first giving the number of leading zeros | 
|  | // and the second giving a copy of the source with the leftmost one bit | 
|  | // cleared.  We only use the first result here. | 
|  | let Defs = [CC] in | 
|  | def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>; | 
|  | def : Pat<(ctlz GR64:$src), | 
|  | (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>; | 
|  |  | 
|  | // Population count.  Counts bits set per byte. | 
|  | let Predicates = [FeaturePopulationCount], Defs = [CC] in | 
|  | def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>; | 
|  |  | 
|  | // Search a block of memory for a character. | 
|  | let mayLoad = 1, Defs = [CC] in | 
|  | defm SRST : StringRRE<"srst", 0xB25E, z_search_string>; | 
|  | let mayLoad = 1, Defs = [CC], Uses = [R0L] in | 
|  | def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>; | 
|  |  | 
|  | // Compare until substring equal. | 
|  | let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in | 
|  | def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>; | 
|  |  | 
|  | // Compare and form codeword. | 
|  | let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in | 
|  | def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>; | 
|  |  | 
|  | // Update tree. | 
|  | let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D], | 
|  | Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in | 
|  | def UPT : SideEffectInherentE<"upt", 0x0102>; | 
|  |  | 
|  | // Checksum. | 
|  | let mayLoad = 1, Defs = [CC] in | 
|  | def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>; | 
|  |  | 
|  | // Compression call. | 
|  | let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in | 
|  | def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>; | 
|  |  | 
|  | // Execute. | 
|  | let hasSideEffects = 1 in { | 
|  | def EX   : SideEffectBinaryRX<"ex", 0x44, GR64>; | 
|  | def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // .insn directive instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | let isCodeGenOnly = 1, hasSideEffects = 1 in { | 
|  | def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>; | 
|  | def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1, | 
|  | imm32sx16:$I2), | 
|  | ".insn ri,$enc,$R1,$I2", []>; | 
|  | def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | AnyReg:$R3, brtarget16:$I2), | 
|  | ".insn rie,$enc,$R1,$R3,$I2", []>; | 
|  | def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | brtarget32:$I2), | 
|  | ".insn ril,$enc,$R1,$I2", []>; | 
|  | def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | uimm32:$I2), | 
|  | ".insn rilu,$enc,$R1,$I2", []>; | 
|  | def InsnRIS : DirectiveInsnRIS<(outs), | 
|  | (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | imm32sx8:$I2, imm32zx4:$M3, | 
|  | bdaddr12only:$BD4), | 
|  | ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>; | 
|  | def InsnRR : DirectiveInsnRR<(outs), | 
|  | (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2), | 
|  | ".insn rr,$enc,$R1,$R2", []>; | 
|  | def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc, | 
|  | AnyReg:$R1, AnyReg:$R2), | 
|  | ".insn rre,$enc,$R1,$R2", []>; | 
|  | def InsnRRF : DirectiveInsnRRF<(outs), | 
|  | (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2, | 
|  | AnyReg:$R3, imm32zx4:$M4), | 
|  | ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>; | 
|  | def InsnRRS : DirectiveInsnRRS<(outs), | 
|  | (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | AnyReg:$R2, imm32zx4:$M3, | 
|  | bdaddr12only:$BD4), | 
|  | ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>; | 
|  | def InsnRS  : DirectiveInsnRS<(outs), | 
|  | (ins imm64zx32:$enc, AnyReg:$R1, | 
|  | AnyReg:$R3, bdaddr12only:$BD2), | 
|  | ".insn rs,$enc,$R1,$R3,$BD2", []>; | 
|  | def InsnRSE : DirectiveInsnRSE<(outs), | 
|  | (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | AnyReg:$R3, bdaddr12only:$BD2), | 
|  | ".insn rse,$enc,$R1,$R3,$BD2", []>; | 
|  | def InsnRSI : DirectiveInsnRSI<(outs), | 
|  | (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | AnyReg:$R3, brtarget16:$RI2), | 
|  | ".insn rsi,$enc,$R1,$R3,$RI2", []>; | 
|  | def InsnRSY : DirectiveInsnRSY<(outs), | 
|  | (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | AnyReg:$R3, bdaddr20only:$BD2), | 
|  | ".insn rsy,$enc,$R1,$R3,$BD2", []>; | 
|  | def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1, | 
|  | bdxaddr12only:$XBD2), | 
|  | ".insn rx,$enc,$R1,$XBD2", []>; | 
|  | def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | bdxaddr12only:$XBD2), | 
|  | ".insn rxe,$enc,$R1,$XBD2", []>; | 
|  | def InsnRXF : DirectiveInsnRXF<(outs), | 
|  | (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | AnyReg:$R3, bdxaddr12only:$XBD2), | 
|  | ".insn rxf,$enc,$R1,$R3,$XBD2", []>; | 
|  | def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1, | 
|  | bdxaddr20only:$XBD2), | 
|  | ".insn rxy,$enc,$R1,$XBD2", []>; | 
|  | def InsnS : DirectiveInsnS<(outs), | 
|  | (ins imm64zx32:$enc, bdaddr12only:$BD2), | 
|  | ".insn s,$enc,$BD2", []>; | 
|  | def InsnSI : DirectiveInsnSI<(outs), | 
|  | (ins imm64zx32:$enc, bdaddr12only:$BD1, | 
|  | imm32sx8:$I2), | 
|  | ".insn si,$enc,$BD1,$I2", []>; | 
|  | def InsnSIY : DirectiveInsnSIY<(outs), | 
|  | (ins imm64zx48:$enc, | 
|  | bdaddr20only:$BD1, imm32zx8:$I2), | 
|  | ".insn siy,$enc,$BD1,$I2", []>; | 
|  | def InsnSIL : DirectiveInsnSIL<(outs), | 
|  | (ins imm64zx48:$enc, bdaddr12only:$BD1, | 
|  | imm32zx16:$I2), | 
|  | ".insn sil,$enc,$BD1,$I2", []>; | 
|  | def InsnSS : DirectiveInsnSS<(outs), | 
|  | (ins imm64zx48:$enc, bdraddr12only:$RBD1, | 
|  | bdaddr12only:$BD2, AnyReg:$R3), | 
|  | ".insn ss,$enc,$RBD1,$BD2,$R3", []>; | 
|  | def InsnSSE : DirectiveInsnSSE<(outs), | 
|  | (ins imm64zx48:$enc, | 
|  | bdaddr12only:$BD1,bdaddr12only:$BD2), | 
|  | ".insn sse,$enc,$BD1,$BD2", []>; | 
|  | def InsnSSF : DirectiveInsnSSF<(outs), | 
|  | (ins imm64zx48:$enc, bdaddr12only:$BD1, | 
|  | bdaddr12only:$BD2, AnyReg:$R3), | 
|  | ".insn ssf,$enc,$BD1,$BD2,$R3", []>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Peepholes. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Avoid generating 2 XOR instructions. (xor (and x, y), y) is | 
|  | // equivalent to (and (xor x, -1), y) | 
|  | def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y), | 
|  | (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>; | 
|  |  | 
|  | // Shift/rotate instructions only use the last 6 bits of the second operand | 
|  | // register, so we can safely use NILL (16 fewer bits than NILF) to only AND the | 
|  | // last 16 bits. | 
|  | // Complexity is added so that we match this before we match NILF on the AND | 
|  | // operation alone. | 
|  | let AddedComplexity = 4 in { | 
|  | def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), | 
|  | (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; | 
|  |  | 
|  | def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), | 
|  | (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; | 
|  |  | 
|  | def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), | 
|  | (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; | 
|  |  | 
|  | def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), | 
|  | (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; | 
|  |  | 
|  | def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), | 
|  | (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; | 
|  |  | 
|  | def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), | 
|  | (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; | 
|  |  | 
|  | def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), | 
|  | (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; | 
|  |  | 
|  | def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), | 
|  | (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; | 
|  | } | 
|  |  | 
|  | // Peepholes for turning scalar operations into block operations. | 
|  | defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence, | 
|  | XCSequence, 1>; | 
|  | defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence, | 
|  | XCSequence, 2>; | 
|  | defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence, | 
|  | XCSequence, 4>; | 
|  | defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence, | 
|  | OCSequence, XCSequence, 1>; | 
|  | defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence, | 
|  | XCSequence, 2>; | 
|  | defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence, | 
|  | XCSequence, 4>; | 
|  | defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence, | 
|  | XCSequence, 8>; |