| //===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This describes the calling conventions for the X86-32 and X86-64 | 
 | // architectures. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// CCIfSubtarget - Match if the current subtarget has a feature F. | 
 | class CCIfSubtarget<string F, CCAction A> | 
 |     : CCIf<!strconcat("static_cast<const X86Subtarget&>" | 
 |                        "(State.getMachineFunction().getSubtarget()).", F), | 
 |            A>; | 
 |  | 
 | /// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F. | 
 | class CCIfNotSubtarget<string F, CCAction A> | 
 |     : CCIf<!strconcat("!static_cast<const X86Subtarget&>" | 
 |                        "(State.getMachineFunction().getSubtarget()).", F), | 
 |            A>; | 
 |  | 
 | // Register classes for RegCall | 
 | class RC_X86_RegCall { | 
 |   list<Register> GPR_8 = []; | 
 |   list<Register> GPR_16 = []; | 
 |   list<Register> GPR_32 = []; | 
 |   list<Register> GPR_64 = []; | 
 |   list<Register> FP_CALL = [FP0]; | 
 |   list<Register> FP_RET = [FP0, FP1]; | 
 |   list<Register> XMM = []; | 
 |   list<Register> YMM = []; | 
 |   list<Register> ZMM = []; | 
 | } | 
 |  | 
 | // RegCall register classes for 32 bits | 
 | def RC_X86_32_RegCall : RC_X86_RegCall { | 
 |   let GPR_8 = [AL, CL, DL, DIL, SIL]; | 
 |   let GPR_16 = [AX, CX, DX, DI, SI]; | 
 |   let GPR_32 = [EAX, ECX, EDX, EDI, ESI]; | 
 |   let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle [] | 
 |                       ///< \todo Fix AssignToReg to enable empty lists | 
 |   let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]; | 
 |   let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]; | 
 |   let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]; | 
 | } | 
 |  | 
 | class RC_X86_64_RegCall : RC_X86_RegCall { | 
 |   let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, | 
 |              XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15]; | 
 |   let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, | 
 |              YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15]; | 
 |   let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7, | 
 |              ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15]; | 
 | } | 
 |  | 
 | def RC_X86_64_RegCall_Win : RC_X86_64_RegCall { | 
 |   let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B]; | 
 |   let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W]; | 
 |   let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D]; | 
 |   let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15]; | 
 | } | 
 |  | 
 | def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall { | 
 |   let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B]; | 
 |   let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W]; | 
 |   let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D]; | 
 |   let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15]; | 
 | } | 
 |  | 
 | // X86-64 Intel regcall calling convention. | 
 | multiclass X86_RegCall_base<RC_X86_RegCall RC> { | 
 | def CC_#NAME : CallingConv<[ | 
 |   // Handles byval parameters. | 
 |     CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>, | 
 |     CCIfByVal<CCPassByVal<4, 4>>, | 
 |  | 
 |     // Promote i1/i8/i16/v1i1 arguments to i32. | 
 |     CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, | 
 |  | 
 |     // Promote v8i1/v16i1/v32i1 arguments to i32. | 
 |     CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>, | 
 |  | 
 |     // bool, char, int, enum, long, pointer --> GPR | 
 |     CCIfType<[i32], CCAssignToReg<RC.GPR_32>>, | 
 |  | 
 |     // long long, __int64 --> GPR | 
 |     CCIfType<[i64], CCAssignToReg<RC.GPR_64>>, | 
 |  | 
 |     // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32) | 
 |     CCIfType<[v64i1], CCPromoteToType<i64>>, | 
 |     CCIfSubtarget<"is64Bit()", CCIfType<[i64],  | 
 |       CCAssignToReg<RC.GPR_64>>>, | 
 |     CCIfSubtarget<"is32Bit()", CCIfType<[i64],  | 
 |       CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>, | 
 |  | 
 |     // float, double, float128 --> XMM | 
 |     // In the case of SSE disabled --> save to stack | 
 |     CCIfType<[f32, f64, f128],  | 
 |       CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, | 
 |  | 
 |     // long double --> FP | 
 |     CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>, | 
 |  | 
 |     // __m128, __m128i, __m128d --> XMM | 
 |     // In the case of SSE disabled --> save to stack | 
 |     CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],  | 
 |       CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, | 
 |  | 
 |     // __m256, __m256i, __m256d --> YMM | 
 |     // In the case of SSE disabled --> save to stack | 
 |     CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],  | 
 |       CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>, | 
 |  | 
 |     // __m512, __m512i, __m512d --> ZMM | 
 |     // In the case of SSE disabled --> save to stack | 
 |     CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],  | 
 |       CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>, | 
 |  | 
 |     // If no register was found -> assign to stack | 
 |  | 
 |     // In 64 bit, assign 64/32 bit values to 8 byte stack | 
 |     CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],  | 
 |       CCAssignToStack<8, 8>>>, | 
 |  | 
 |     // In 32 bit, assign 64/32 bit values to 8/4 byte stack | 
 |     CCIfType<[i32, f32], CCAssignToStack<4, 4>>, | 
 |     CCIfType<[i64, f64], CCAssignToStack<8, 4>>, | 
 |  | 
 |     // MMX type gets 8 byte slot in stack , while alignment depends on target | 
 |     CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>, | 
 |     CCIfType<[x86mmx], CCAssignToStack<8, 4>>, | 
 |  | 
 |     // float 128 get stack slots whose size and alignment depends  | 
 |     // on the subtarget. | 
 |     CCIfType<[f80, f128], CCAssignToStack<0, 0>>, | 
 |  | 
 |     // Vectors get 16-byte stack slots that are 16-byte aligned. | 
 |     CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],  | 
 |       CCAssignToStack<16, 16>>, | 
 |  | 
 |     // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. | 
 |     CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],  | 
 |       CCAssignToStack<32, 32>>, | 
 |  | 
 |     // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. | 
 |     CCIfType<[v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>> | 
 | ]>; | 
 |  | 
 | def RetCC_#NAME : CallingConv<[ | 
 |     // Promote i1, v1i1, v8i1 arguments to i8. | 
 |     CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>, | 
 |  | 
 |     // Promote v16i1 arguments to i16. | 
 |     CCIfType<[v16i1], CCPromoteToType<i16>>, | 
 |  | 
 |     // Promote v32i1 arguments to i32. | 
 |     CCIfType<[v32i1], CCPromoteToType<i32>>, | 
 |  | 
 |     // bool, char, int, enum, long, pointer --> GPR | 
 |     CCIfType<[i8], CCAssignToReg<RC.GPR_8>>, | 
 |     CCIfType<[i16], CCAssignToReg<RC.GPR_16>>, | 
 |     CCIfType<[i32], CCAssignToReg<RC.GPR_32>>, | 
 |  | 
 |     // long long, __int64 --> GPR | 
 |     CCIfType<[i64], CCAssignToReg<RC.GPR_64>>, | 
 |  | 
 |     // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32) | 
 |     CCIfType<[v64i1], CCPromoteToType<i64>>, | 
 |     CCIfSubtarget<"is64Bit()", CCIfType<[i64],  | 
 |       CCAssignToReg<RC.GPR_64>>>, | 
 |     CCIfSubtarget<"is32Bit()", CCIfType<[i64],  | 
 |       CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>, | 
 |  | 
 |     // long double --> FP | 
 |     CCIfType<[f80], CCAssignToReg<RC.FP_RET>>, | 
 |  | 
 |     // float, double, float128 --> XMM | 
 |     CCIfType<[f32, f64, f128],  | 
 |       CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, | 
 |  | 
 |     // __m128, __m128i, __m128d --> XMM | 
 |     CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],  | 
 |       CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, | 
 |  | 
 |     // __m256, __m256i, __m256d --> YMM | 
 |     CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],  | 
 |       CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>, | 
 |  | 
 |     // __m512, __m512i, __m512d --> ZMM | 
 |     CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],  | 
 |       CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>> | 
 | ]>; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Return Value Calling Conventions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Return-value conventions common to all X86 CC's. | 
 | def RetCC_X86Common : CallingConv<[ | 
 |   // Scalar values are returned in AX first, then DX.  For i8, the ABI | 
 |   // requires the values to be in AL and AH, however this code uses AL and DL | 
 |   // instead. This is because using AH for the second register conflicts with | 
 |   // the way LLVM does multiple return values -- a return of {i16,i8} would end | 
 |   // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI | 
 |   // for functions that return two i8 values are currently expected to pack the | 
 |   // values into an i16 (which uses AX, and thus AL:AH). | 
 |   // | 
 |   // For code that doesn't care about the ABI, we allow returning more than two | 
 |   // integer values in registers. | 
 |   CCIfType<[v1i1],  CCPromoteToType<i8>>, | 
 |   CCIfType<[i1],  CCPromoteToType<i8>>, | 
 |   CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>, | 
 |   CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, | 
 |   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, | 
 |   CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>, | 
 |  | 
 |   // Boolean vectors of AVX-512 are returned in SIMD registers. | 
 |   // The call from AVX to AVX-512 function should work, | 
 |   // since the boolean types in AVX/AVX2 are promoted by default. | 
 |   CCIfType<[v2i1],  CCPromoteToType<v2i64>>, | 
 |   CCIfType<[v4i1],  CCPromoteToType<v4i32>>, | 
 |   CCIfType<[v8i1],  CCPromoteToType<v8i16>>, | 
 |   CCIfType<[v16i1], CCPromoteToType<v16i8>>, | 
 |   CCIfType<[v32i1], CCPromoteToType<v32i8>>, | 
 |   CCIfType<[v64i1], CCPromoteToType<v64i8>>, | 
 |  | 
 |   // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3 | 
 |   // can only be used by ABI non-compliant code. If the target doesn't have XMM | 
 |   // registers, it won't have vector types. | 
 |   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | 
 |             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, | 
 |  | 
 |   // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 | 
 |   // can only be used by ABI non-compliant code. This vector type is only | 
 |   // supported while using the AVX target feature. | 
 |   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | 
 |             CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, | 
 |  | 
 |   // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3 | 
 |   // can only be used by ABI non-compliant code. This vector type is only | 
 |   // supported while using the AVX-512 target feature. | 
 |   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], | 
 |             CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, | 
 |  | 
 |   // MMX vector types are always returned in MM0. If the target doesn't have | 
 |   // MM0, it doesn't support these vector types. | 
 |   CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, | 
 |  | 
 |   // Long double types are always returned in FP0 (even with SSE), | 
 |   // except on Win64. | 
 |   CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>> | 
 | ]>; | 
 |  | 
 | // X86-32 C return-value convention. | 
 | def RetCC_X86_32_C : CallingConv<[ | 
 |   // The X86-32 calling convention returns FP values in FP0, unless marked | 
 |   // with "inreg" (used here to distinguish one kind of reg from another, | 
 |   // weirdly; this is really the sse-regparm calling convention) in which | 
 |   // case they use XMM0, otherwise it is the same as the common X86 calling | 
 |   // conv. | 
 |   CCIfInReg<CCIfSubtarget<"hasSSE2()", | 
 |     CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, | 
 |   CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>, | 
 |   CCDelegateTo<RetCC_X86Common> | 
 | ]>; | 
 |  | 
 | // X86-32 FastCC return-value convention. | 
 | def RetCC_X86_32_Fast : CallingConv<[ | 
 |   // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has | 
 |   // SSE2. | 
 |   // This can happen when a float, 2 x float, or 3 x float vector is split by | 
 |   // target lowering, and is returned in 1-3 sse regs. | 
 |   CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, | 
 |   CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, | 
 |  | 
 |   // For integers, ECX can be used as an extra return register | 
 |   CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>, | 
 |   CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, | 
 |   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, | 
 |  | 
 |   // Otherwise, it is the same as the common X86 calling convention. | 
 |   CCDelegateTo<RetCC_X86Common> | 
 | ]>; | 
 |  | 
 | // Intel_OCL_BI return-value convention. | 
 | def RetCC_Intel_OCL_BI : CallingConv<[ | 
 |   // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. | 
 |   CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], | 
 |             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, | 
 |  | 
 |   // 256-bit FP vectors | 
 |   // No more than 4 registers | 
 |   CCIfType<[v8f32, v4f64, v8i32, v4i64], | 
 |             CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, | 
 |  | 
 |   // 512-bit FP vectors | 
 |   CCIfType<[v16f32, v8f64, v16i32, v8i64], | 
 |             CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, | 
 |  | 
 |   // i32, i64 in the standard way | 
 |   CCDelegateTo<RetCC_X86Common> | 
 | ]>; | 
 |  | 
 | // X86-32 HiPE return-value convention. | 
 | def RetCC_X86_32_HiPE : CallingConv<[ | 
 |   // Promote all types to i32 | 
 |   CCIfType<[i8, i16], CCPromoteToType<i32>>, | 
 |  | 
 |   // Return: HP, P, VAL1, VAL2 | 
 |   CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> | 
 | ]>; | 
 |  | 
 | // X86-32 Vectorcall return-value convention. | 
 | def RetCC_X86_32_VectorCall : CallingConv<[ | 
 |   // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3. | 
 |   CCIfType<[f32, f64, f128], | 
 |             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, | 
 |  | 
 |   // Return integers in the standard way. | 
 |   CCDelegateTo<RetCC_X86Common> | 
 | ]>; | 
 |  | 
 | // X86-64 C return-value convention. | 
 | def RetCC_X86_64_C : CallingConv<[ | 
 |   // The X86-64 calling convention always returns FP values in XMM0. | 
 |   CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, | 
 |   CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, | 
 |   CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>, | 
 |  | 
 |   // MMX vector types are always returned in XMM0. | 
 |   CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, | 
 |  | 
 |   CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, | 
 |  | 
 |   CCDelegateTo<RetCC_X86Common> | 
 | ]>; | 
 |  | 
 | // X86-Win64 C return-value convention. | 
 | def RetCC_X86_Win64_C : CallingConv<[ | 
 |   // The X86-Win64 calling convention always returns __m64 values in RAX. | 
 |   CCIfType<[x86mmx], CCBitConvertToType<i64>>, | 
 |  | 
 |   // Otherwise, everything is the same as 'normal' X86-64 C CC. | 
 |   CCDelegateTo<RetCC_X86_64_C> | 
 | ]>; | 
 |  | 
 | // X86-64 vectorcall return-value convention. | 
 | def RetCC_X86_64_Vectorcall : CallingConv<[ | 
 |   // Vectorcall calling convention always returns FP values in XMMs. | 
 |   CCIfType<[f32, f64, f128],  | 
 |     CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, | 
 |  | 
 |   // Otherwise, everything is the same as Windows X86-64 C CC. | 
 |   CCDelegateTo<RetCC_X86_Win64_C> | 
 | ]>; | 
 |  | 
 | // X86-64 HiPE return-value convention. | 
 | def RetCC_X86_64_HiPE : CallingConv<[ | 
 |   // Promote all types to i64 | 
 |   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | 
 |  | 
 |   // Return: HP, P, VAL1, VAL2 | 
 |   CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> | 
 | ]>; | 
 |  | 
 | // X86-64 WebKit_JS return-value convention. | 
 | def RetCC_X86_64_WebKit_JS : CallingConv<[ | 
 |   // Promote all types to i64 | 
 |   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | 
 |  | 
 |   // Return: RAX | 
 |   CCIfType<[i64], CCAssignToReg<[RAX]>> | 
 | ]>; | 
 |  | 
 | def RetCC_X86_64_Swift : CallingConv<[ | 
 |  | 
 |   CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, | 
 |  | 
 |   // For integers, ECX, R8D can be used as extra return registers. | 
 |   CCIfType<[v1i1],  CCPromoteToType<i8>>, | 
 |   CCIfType<[i1],  CCPromoteToType<i8>>, | 
 |   CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>, | 
 |   CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>, | 
 |   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>, | 
 |   CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>, | 
 |  | 
 |   // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values. | 
 |   CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, | 
 |   CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, | 
 |   CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, | 
 |  | 
 |   // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3. | 
 |   CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, | 
 |   CCDelegateTo<RetCC_X86Common> | 
 | ]>; | 
 |  | 
 | // X86-64 AnyReg return-value convention. No explicit register is specified for | 
 | // the return-value. The register allocator is allowed and expected to choose | 
 | // any free register. | 
 | // | 
 | // This calling convention is currently only supported by the stackmap and | 
 | // patchpoint intrinsics. All other uses will result in an assert on Debug | 
 | // builds. On Release builds we fallback to the X86 C calling convention. | 
 | def RetCC_X86_64_AnyReg : CallingConv<[ | 
 |   CCCustom<"CC_X86_AnyReg_Error"> | 
 | ]>; | 
 |  | 
 | // X86-64 HHVM return-value convention. | 
 | def RetCC_X86_64_HHVM: CallingConv<[ | 
 |   // Promote all types to i64 | 
 |   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | 
 |  | 
 |   // Return: could return in any GP register save RSP and R12. | 
 |   CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9, | 
 |                                  RAX, R10, R11, R13, R14, R15]>> | 
 | ]>; | 
 |  | 
 |  | 
 | defm X86_32_RegCall : | 
 | 	 X86_RegCall_base<RC_X86_32_RegCall>; | 
 | defm X86_Win64_RegCall : | 
 |      X86_RegCall_base<RC_X86_64_RegCall_Win>; | 
 | defm X86_SysV64_RegCall : | 
 |      X86_RegCall_base<RC_X86_64_RegCall_SysV>; | 
 |  | 
 | // This is the root return-value convention for the X86-32 backend. | 
 | def RetCC_X86_32 : CallingConv<[ | 
 |   // If FastCC, use RetCC_X86_32_Fast. | 
 |   CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, | 
 |   // If HiPE, use RetCC_X86_32_HiPE. | 
 |   CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>, | 
 |   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>, | 
 |   CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>, | 
 |  | 
 |   // Otherwise, use RetCC_X86_32_C. | 
 |   CCDelegateTo<RetCC_X86_32_C> | 
 | ]>; | 
 |  | 
 | // This is the root return-value convention for the X86-64 backend. | 
 | def RetCC_X86_64 : CallingConv<[ | 
 |   // HiPE uses RetCC_X86_64_HiPE | 
 |   CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>, | 
 |  | 
 |   // Handle JavaScript calls. | 
 |   CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>, | 
 |   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>, | 
 |  | 
 |   // Handle Swift calls. | 
 |   CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>, | 
 |  | 
 |   // Handle explicit CC selection | 
 |   CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>, | 
 |   CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>, | 
 |  | 
 |   // Handle Vectorcall CC | 
 |   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>, | 
 |  | 
 |   // Handle HHVM calls. | 
 |   CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>, | 
 |  | 
 |   CCIfCC<"CallingConv::X86_RegCall", | 
 |           CCIfSubtarget<"isTargetWin64()", | 
 |                         CCDelegateTo<RetCC_X86_Win64_RegCall>>>, | 
 |   CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>, | 
 |            | 
 |   // Mingw64 and native Win64 use Win64 CC | 
 |   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, | 
 |  | 
 |   // Otherwise, drop to normal X86-64 CC | 
 |   CCDelegateTo<RetCC_X86_64_C> | 
 | ]>; | 
 |  | 
 | // This is the return-value convention used for the entire X86 backend. | 
 | def RetCC_X86 : CallingConv<[ | 
 |  | 
 |   // Check if this is the Intel OpenCL built-ins calling convention | 
 |   CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>, | 
 |  | 
 |   CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>, | 
 |   CCDelegateTo<RetCC_X86_32> | 
 | ]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // X86-64 Argument Calling Conventions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | def CC_X86_64_C : CallingConv<[ | 
 |   // Handles byval parameters. | 
 |   CCIfByVal<CCPassByVal<8, 8>>, | 
 |  | 
 |   // Promote i1/i8/i16/v1i1 arguments to i32. | 
 |   CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, | 
 |  | 
 |   // The 'nest' parameter, if any, is passed in R10. | 
 |   CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>, | 
 |   CCIfNest<CCAssignToReg<[R10]>>, | 
 |  | 
 |   // Pass SwiftSelf in a callee saved register. | 
 |   CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>, | 
 |  | 
 |   // A SwiftError is passed in R12. | 
 |   CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, | 
 |  | 
 |   // For Swift Calling Convention, pass sret in %rax. | 
 |   CCIfCC<"CallingConv::Swift", | 
 |     CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>, | 
 |  | 
 |   // The first 6 integer arguments are passed in integer registers. | 
 |   CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, | 
 |   CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, | 
 |  | 
 |   // The first 8 MMX vector arguments are passed in XMM registers on Darwin. | 
 |   CCIfType<[x86mmx], | 
 |             CCIfSubtarget<"isTargetDarwin()", | 
 |             CCIfSubtarget<"hasSSE2()", | 
 |             CCPromoteToType<v2i64>>>>, | 
 |  | 
 |   // Boolean vectors of AVX-512 are passed in SIMD registers. | 
 |   // The call from AVX to AVX-512 function should work, | 
 |   // since the boolean types in AVX/AVX2 are promoted by default. | 
 |   CCIfType<[v2i1],  CCPromoteToType<v2i64>>, | 
 |   CCIfType<[v4i1],  CCPromoteToType<v4i32>>, | 
 |   CCIfType<[v8i1],  CCPromoteToType<v8i16>>, | 
 |   CCIfType<[v16i1], CCPromoteToType<v16i8>>, | 
 |   CCIfType<[v32i1], CCPromoteToType<v32i8>>, | 
 |   CCIfType<[v64i1], CCPromoteToType<v64i8>>, | 
 |  | 
 |   // The first 8 FP/Vector arguments are passed in XMM registers. | 
 |   CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | 
 |             CCIfSubtarget<"hasSSE1()", | 
 |             CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, | 
 |  | 
 |   // The first 8 256-bit vector arguments are passed in YMM registers, unless | 
 |   // this is a vararg function. | 
 |   // FIXME: This isn't precisely correct; the x86-64 ABI document says that | 
 |   // fixed arguments to vararg functions are supposed to be passed in | 
 |   // registers.  Actually modeling that would be a lot of work, though. | 
 |   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | 
 |                           CCIfSubtarget<"hasAVX()", | 
 |                           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, | 
 |                                          YMM4, YMM5, YMM6, YMM7]>>>>, | 
 |  | 
 |   // The first 8 512-bit vector arguments are passed in ZMM registers. | 
 |   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], | 
 |             CCIfSubtarget<"hasAVX512()", | 
 |             CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>, | 
 |  | 
 |   // Integer/FP values get stored in stack slots that are 8 bytes in size and | 
 |   // 8-byte aligned if there are no more registers to hold them. | 
 |   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, | 
 |  | 
 |   // Long doubles get stack slots whose size and alignment depends on the | 
 |   // subtarget. | 
 |   CCIfType<[f80, f128], CCAssignToStack<0, 0>>, | 
 |  | 
 |   // Vectors get 16-byte stack slots that are 16-byte aligned. | 
 |   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, | 
 |  | 
 |   // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. | 
 |   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | 
 |            CCAssignToStack<32, 32>>, | 
 |  | 
 |   // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. | 
 |   CCIfType<[v16i32, v8i64, v16f32, v8f64], | 
 |            CCAssignToStack<64, 64>> | 
 | ]>; | 
 |  | 
 | // Calling convention for X86-64 HHVM. | 
 | def CC_X86_64_HHVM : CallingConv<[ | 
 |   // Use all/any GP registers for args, except RSP. | 
 |   CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15, | 
 |                                  RDI, RSI, RDX, RCX, R8, R9, | 
 |                                  RAX, R10, R11, R13, R14]>> | 
 | ]>; | 
 |  | 
 | // Calling convention for helper functions in HHVM. | 
 | def CC_X86_64_HHVM_C : CallingConv<[ | 
 |   // Pass the first argument in RBP. | 
 |   CCIfType<[i64], CCAssignToReg<[RBP]>>, | 
 |  | 
 |   // Otherwise it's the same as the regular C calling convention. | 
 |   CCDelegateTo<CC_X86_64_C> | 
 | ]>; | 
 |  | 
 | // Calling convention used on Win64 | 
 | def CC_X86_Win64_C : CallingConv<[ | 
 |   // FIXME: Handle byval stuff. | 
 |   // FIXME: Handle varargs. | 
 |  | 
 |   // Promote i1/v1i1 arguments to i8. | 
 |   CCIfType<[i1, v1i1], CCPromoteToType<i8>>, | 
 |  | 
 |   // The 'nest' parameter, if any, is passed in R10. | 
 |   CCIfNest<CCAssignToReg<[R10]>>, | 
 |  | 
 |   // A SwiftError is passed in R12. | 
 |   CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, | 
 |  | 
 |   // 128 bit vectors are passed by pointer | 
 |   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, | 
 |  | 
 |  | 
 |   // 256 bit vectors are passed by pointer | 
 |   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>, | 
 |  | 
 |   // 512 bit vectors are passed by pointer | 
 |   CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>, | 
 |  | 
 |   // Long doubles are passed by pointer | 
 |   CCIfType<[f80], CCPassIndirect<i64>>, | 
 |  | 
 |   // The first 4 MMX vector arguments are passed in GPRs. | 
 |   CCIfType<[x86mmx], CCBitConvertToType<i64>>, | 
 |  | 
 |   // The first 4 integer arguments are passed in integer registers. | 
 |   CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ], | 
 |                                           [XMM0, XMM1, XMM2, XMM3]>>, | 
 |   CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ], | 
 |                                           [XMM0, XMM1, XMM2, XMM3]>>, | 
 |   CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], | 
 |                                           [XMM0, XMM1, XMM2, XMM3]>>, | 
 |  | 
 |   // Do not pass the sret argument in RCX, the Win64 thiscall calling | 
 |   // convention requires "this" to be passed in RCX. | 
 |   CCIfCC<"CallingConv::X86_ThisCall", | 
 |     CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ], | 
 |                                                      [XMM1, XMM2, XMM3]>>>>, | 
 |  | 
 |   CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ], | 
 |                                           [XMM0, XMM1, XMM2, XMM3]>>, | 
 |  | 
 |   // The first 4 FP/Vector arguments are passed in XMM registers. | 
 |   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | 
 |            CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], | 
 |                                    [RCX , RDX , R8  , R9  ]>>, | 
 |  | 
 |   // Integer/FP values get stored in stack slots that are 8 bytes in size and | 
 |   // 8-byte aligned if there are no more registers to hold them. | 
 |   CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>> | 
 | ]>; | 
 |  | 
 | def CC_X86_Win64_VectorCall : CallingConv<[ | 
 |   CCCustom<"CC_X86_64_VectorCall">, | 
 |  | 
 |   // Delegate to fastcall to handle integer types. | 
 |   CCDelegateTo<CC_X86_Win64_C> | 
 | ]>; | 
 |  | 
 |  | 
 | def CC_X86_64_GHC : CallingConv<[ | 
 |   // Promote i8/i16/i32 arguments to i64. | 
 |   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | 
 |  | 
 |   // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim | 
 |   CCIfType<[i64], | 
 |             CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, | 
 |  | 
 |   // Pass in STG registers: F1, F2, F3, F4, D1, D2 | 
 |   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | 
 |             CCIfSubtarget<"hasSSE1()", | 
 |             CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>, | 
 |   // AVX | 
 |   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | 
 |             CCIfSubtarget<"hasAVX()", | 
 |             CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>, | 
 |   // AVX-512 | 
 |   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], | 
 |             CCIfSubtarget<"hasAVX512()", | 
 |             CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>> | 
 | ]>; | 
 |  | 
 | def CC_X86_64_HiPE : CallingConv<[ | 
 |   // Promote i8/i16/i32 arguments to i64. | 
 |   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | 
 |  | 
 |   // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3 | 
 |   CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>, | 
 |  | 
 |   // Integer/FP values get stored in stack slots that are 8 bytes in size and | 
 |   // 8-byte aligned if there are no more registers to hold them. | 
 |   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> | 
 | ]>; | 
 |  | 
 | def CC_X86_64_WebKit_JS : CallingConv<[ | 
 |   // Promote i8/i16 arguments to i32. | 
 |   CCIfType<[i8, i16], CCPromoteToType<i32>>, | 
 |  | 
 |   // Only the first integer argument is passed in register. | 
 |   CCIfType<[i32], CCAssignToReg<[EAX]>>, | 
 |   CCIfType<[i64], CCAssignToReg<[RAX]>>, | 
 |  | 
 |   // The remaining integer arguments are passed on the stack. 32bit integer and | 
 |   // floating-point arguments are aligned to 4 byte and stored in 4 byte slots. | 
 |   // 64bit integer and floating-point arguments are aligned to 8 byte and stored | 
 |   // in 8 byte stack slots. | 
 |   CCIfType<[i32, f32], CCAssignToStack<4, 4>>, | 
 |   CCIfType<[i64, f64], CCAssignToStack<8, 8>> | 
 | ]>; | 
 |  | 
 | // No explicit register is specified for the AnyReg calling convention. The | 
 | // register allocator may assign the arguments to any free register. | 
 | // | 
 | // This calling convention is currently only supported by the stackmap and | 
 | // patchpoint intrinsics. All other uses will result in an assert on Debug | 
 | // builds. On Release builds we fallback to the X86 C calling convention. | 
 | def CC_X86_64_AnyReg : CallingConv<[ | 
 |   CCCustom<"CC_X86_AnyReg_Error"> | 
 | ]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // X86 C Calling Convention | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector | 
 | /// values are spilled on the stack. | 
 | def CC_X86_32_Vector_Common : CallingConv<[ | 
 |   // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. | 
 |   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, | 
 |  | 
 |   // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. | 
 |   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | 
 |            CCAssignToStack<32, 32>>, | 
 |  | 
 |   // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned. | 
 |   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], | 
 |            CCAssignToStack<64, 64>> | 
 | ]>; | 
 |  | 
 | // CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in | 
 | // vector registers | 
 | def CC_X86_32_Vector_Standard : CallingConv<[ | 
 |   // SSE vector arguments are passed in XMM registers. | 
 |   CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | 
 |                 CCAssignToReg<[XMM0, XMM1, XMM2]>>>, | 
 |  | 
 |   // AVX 256-bit vector arguments are passed in YMM registers. | 
 |   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | 
 |                 CCIfSubtarget<"hasAVX()", | 
 |                 CCAssignToReg<[YMM0, YMM1, YMM2]>>>>, | 
 |  | 
 |   // AVX 512-bit vector arguments are passed in ZMM registers. | 
 |   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], | 
 |                 CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>, | 
 |  | 
 |   CCDelegateTo<CC_X86_32_Vector_Common> | 
 | ]>; | 
 |  | 
 | // CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in | 
 | // vector registers. | 
 | def CC_X86_32_Vector_Darwin : CallingConv<[ | 
 |   // SSE vector arguments are passed in XMM registers. | 
 |   CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | 
 |                 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>, | 
 |  | 
 |   // AVX 256-bit vector arguments are passed in YMM registers. | 
 |   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | 
 |                 CCIfSubtarget<"hasAVX()", | 
 |                 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>, | 
 |  | 
 |   // AVX 512-bit vector arguments are passed in ZMM registers. | 
 |   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], | 
 |                 CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>, | 
 |  | 
 |   CCDelegateTo<CC_X86_32_Vector_Common> | 
 | ]>; | 
 |  | 
 | /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP | 
 | /// values are spilled on the stack. | 
 | def CC_X86_32_Common : CallingConv<[ | 
 |   // Handles byval parameters. | 
 |   CCIfByVal<CCPassByVal<4, 4>>, | 
 |  | 
 |   // The first 3 float or double arguments, if marked 'inreg' and if the call | 
 |   // is not a vararg call and if SSE2 is available, are passed in SSE registers. | 
 |   CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], | 
 |                 CCIfSubtarget<"hasSSE2()", | 
 |                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>, | 
 |  | 
 |   // The first 3 __m64 vector arguments are passed in mmx registers if the | 
 |   // call is not a vararg call. | 
 |   CCIfNotVarArg<CCIfType<[x86mmx], | 
 |                 CCAssignToReg<[MM0, MM1, MM2]>>>, | 
 |  | 
 |   // Integer/Float values get stored in stack slots that are 4 bytes in | 
 |   // size and 4-byte aligned. | 
 |   CCIfType<[i32, f32], CCAssignToStack<4, 4>>, | 
 |  | 
 |   // Doubles get 8-byte slots that are 4-byte aligned. | 
 |   CCIfType<[f64], CCAssignToStack<8, 4>>, | 
 |  | 
 |   // Long doubles get slots whose size depends on the subtarget. | 
 |   CCIfType<[f80], CCAssignToStack<0, 4>>, | 
 |  | 
 |   // Boolean vectors of AVX-512 are passed in SIMD registers. | 
 |   // The call from AVX to AVX-512 function should work, | 
 |   // since the boolean types in AVX/AVX2 are promoted by default. | 
 |   CCIfType<[v2i1],  CCPromoteToType<v2i64>>, | 
 |   CCIfType<[v4i1],  CCPromoteToType<v4i32>>, | 
 |   CCIfType<[v8i1],  CCPromoteToType<v8i16>>, | 
 |   CCIfType<[v16i1], CCPromoteToType<v16i8>>, | 
 |   CCIfType<[v32i1], CCPromoteToType<v32i8>>, | 
 |   CCIfType<[v64i1], CCPromoteToType<v64i8>>, | 
 |  | 
 |   // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are | 
 |   // passed in the parameter area. | 
 |   CCIfType<[x86mmx], CCAssignToStack<8, 4>>, | 
 |  | 
 |   // Darwin passes vectors in a form that differs from the i386 psABI | 
 |   CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>, | 
 |  | 
 |   // Otherwise, drop to 'normal' X86-32 CC | 
 |   CCDelegateTo<CC_X86_32_Vector_Standard> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_C : CallingConv<[ | 
 |   // Promote i1/i8/i16/v1i1 arguments to i32. | 
 |   CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, | 
 |  | 
 |   // The 'nest' parameter, if any, is passed in ECX. | 
 |   CCIfNest<CCAssignToReg<[ECX]>>, | 
 |  | 
 |   // The first 3 integer arguments, if marked 'inreg' and if the call is not | 
 |   // a vararg call, are passed in integer registers. | 
 |   CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>, | 
 |  | 
 |   // Otherwise, same as everything else. | 
 |   CCDelegateTo<CC_X86_32_Common> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_MCU : CallingConv<[ | 
 |   // Handles byval parameters.  Note that, like FastCC, we can't rely on | 
 |   // the delegation to CC_X86_32_Common because that happens after code that | 
 |   // puts arguments in registers. | 
 |   CCIfByVal<CCPassByVal<4, 4>>, | 
 |  | 
 |   // Promote i1/i8/i16/v1i1 arguments to i32. | 
 |   CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, | 
 |  | 
 |   // If the call is not a vararg call, some arguments may be passed | 
 |   // in integer registers. | 
 |   CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>, | 
 |  | 
 |   // Otherwise, same as everything else. | 
 |   CCDelegateTo<CC_X86_32_Common> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_FastCall : CallingConv<[ | 
 |   // Promote i1 to i8. | 
 |   CCIfType<[i1], CCPromoteToType<i8>>, | 
 |  | 
 |   // The 'nest' parameter, if any, is passed in EAX. | 
 |   CCIfNest<CCAssignToReg<[EAX]>>, | 
 |  | 
 |   // The first 2 integer arguments are passed in ECX/EDX | 
 |   CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>, | 
 |   CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>, | 
 |   CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>, | 
 |  | 
 |   // Otherwise, same as everything else. | 
 |   CCDelegateTo<CC_X86_32_Common> | 
 | ]>; | 
 |  | 
 | def CC_X86_Win32_VectorCall : CallingConv<[ | 
 |   // Pass floating point in XMMs | 
 |   CCCustom<"CC_X86_32_VectorCall">, | 
 |  | 
 |   // Delegate to fastcall to handle integer types. | 
 |   CCDelegateTo<CC_X86_32_FastCall> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_ThisCall_Common : CallingConv<[ | 
 |   // The first integer argument is passed in ECX | 
 |   CCIfType<[i32], CCAssignToReg<[ECX]>>, | 
 |  | 
 |   // Otherwise, same as everything else. | 
 |   CCDelegateTo<CC_X86_32_Common> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_ThisCall_Mingw : CallingConv<[ | 
 |   // Promote i1/i8/i16/v1i1 arguments to i32. | 
 |   CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, | 
 |  | 
 |   CCDelegateTo<CC_X86_32_ThisCall_Common> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_ThisCall_Win : CallingConv<[ | 
 |   // Promote i1/i8/i16/v1i1 arguments to i32. | 
 |   CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, | 
 |  | 
 |   // Pass sret arguments indirectly through stack. | 
 |   CCIfSRet<CCAssignToStack<4, 4>>, | 
 |  | 
 |   CCDelegateTo<CC_X86_32_ThisCall_Common> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_ThisCall : CallingConv<[ | 
 |   CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>, | 
 |   CCDelegateTo<CC_X86_32_ThisCall_Win> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_FastCC : CallingConv<[ | 
 |   // Handles byval parameters.  Note that we can't rely on the delegation | 
 |   // to CC_X86_32_Common for this because that happens after code that | 
 |   // puts arguments in registers. | 
 |   CCIfByVal<CCPassByVal<4, 4>>, | 
 |  | 
 |   // Promote i1/i8/i16/v1i1 arguments to i32. | 
 |   CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, | 
 |  | 
 |   // The 'nest' parameter, if any, is passed in EAX. | 
 |   CCIfNest<CCAssignToReg<[EAX]>>, | 
 |  | 
 |   // The first 2 integer arguments are passed in ECX/EDX | 
 |   CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, | 
 |  | 
 |   // The first 3 float or double arguments, if the call is not a vararg | 
 |   // call and if SSE2 is available, are passed in SSE registers. | 
 |   CCIfNotVarArg<CCIfType<[f32,f64], | 
 |                 CCIfSubtarget<"hasSSE2()", | 
 |                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, | 
 |  | 
 |   // Doubles get 8-byte slots that are 8-byte aligned. | 
 |   CCIfType<[f64], CCAssignToStack<8, 8>>, | 
 |  | 
 |   // Otherwise, same as everything else. | 
 |   CCDelegateTo<CC_X86_32_Common> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_GHC : CallingConv<[ | 
 |   // Promote i8/i16 arguments to i32. | 
 |   CCIfType<[i8, i16], CCPromoteToType<i32>>, | 
 |  | 
 |   // Pass in STG registers: Base, Sp, Hp, R1 | 
 |   CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_HiPE : CallingConv<[ | 
 |   // Promote i8/i16 arguments to i32. | 
 |   CCIfType<[i8, i16], CCPromoteToType<i32>>, | 
 |  | 
 |   // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2 | 
 |   CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>, | 
 |  | 
 |   // Integer/Float values get stored in stack slots that are 4 bytes in | 
 |   // size and 4-byte aligned. | 
 |   CCIfType<[i32, f32], CCAssignToStack<4, 4>> | 
 | ]>; | 
 |  | 
 | // X86-64 Intel OpenCL built-ins calling convention. | 
 | def CC_Intel_OCL_BI : CallingConv<[ | 
 |  | 
 |   CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, | 
 |   CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>, | 
 |  | 
 |   CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>, | 
 |   CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>, | 
 |  | 
 |   CCIfType<[i32], CCAssignToStack<4, 4>>, | 
 |  | 
 |   // The SSE vector arguments are passed in XMM registers. | 
 |   CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], | 
 |            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, | 
 |  | 
 |   // The 256-bit vector arguments are passed in YMM registers. | 
 |   CCIfType<[v8f32, v4f64, v8i32, v4i64], | 
 |            CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, | 
 |  | 
 |   // The 512-bit vector arguments are passed in ZMM registers. | 
 |   CCIfType<[v16f32, v8f64, v16i32, v8i64], | 
 |            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>, | 
 |  | 
 |   // Pass masks in mask registers | 
 |   CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>, | 
 |  | 
 |   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, | 
 |   CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>, | 
 |   CCDelegateTo<CC_X86_32_C> | 
 | ]>; | 
 |  | 
 | def CC_X86_32_Intr : CallingConv<[ | 
 |   CCAssignToStack<4, 4> | 
 | ]>; | 
 |  | 
 | def CC_X86_64_Intr : CallingConv<[ | 
 |   CCAssignToStack<8, 8> | 
 | ]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // X86 Root Argument Calling Conventions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // This is the root argument convention for the X86-32 backend. | 
 | def CC_X86_32 : CallingConv<[ | 
 |   // X86_INTR calling convention is valid in MCU target and should override the | 
 |   // MCU calling convention. Thus, this should be checked before isTargetMCU(). | 
 |   CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>, | 
 |   CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>, | 
 |   CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>, | 
 |   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>, | 
 |   CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, | 
 |   CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, | 
 |   CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, | 
 |   CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>, | 
 |   CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>, | 
 |  | 
 |   // Otherwise, drop to normal X86-32 CC | 
 |   CCDelegateTo<CC_X86_32_C> | 
 | ]>; | 
 |  | 
 | // This is the root argument convention for the X86-64 backend. | 
 | def CC_X86_64 : CallingConv<[ | 
 |   CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, | 
 |   CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>, | 
 |   CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>, | 
 |   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>, | 
 |   CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>, | 
 |   CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>, | 
 |   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>, | 
 |   CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>, | 
 |   CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>, | 
 |   CCIfCC<"CallingConv::X86_RegCall", | 
 |     CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>, | 
 |   CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>, | 
 |   CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>, | 
 |  | 
 |   // Mingw64 and native Win64 use Win64 CC | 
 |   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, | 
 |  | 
 |   // Otherwise, drop to normal X86-64 CC | 
 |   CCDelegateTo<CC_X86_64_C> | 
 | ]>; | 
 |  | 
 | // This is the argument convention used for the entire X86 backend. | 
 | def CC_X86 : CallingConv<[ | 
 |   CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>, | 
 |   CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>, | 
 |   CCDelegateTo<CC_X86_32> | 
 | ]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Callee-saved Registers. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | def CSR_NoRegs : CalleeSavedRegs<(add)>; | 
 |  | 
 | def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>; | 
 | def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>; | 
 |  | 
 | def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>; | 
 |  | 
 | def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>; | 
 | def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; | 
 |  | 
 | def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>; | 
 |  | 
 | def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE, | 
 |                                      (sequence "XMM%u", 6, 15))>; | 
 |  | 
 | def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>; | 
 |  | 
 | // The function used by Darwin to obtain the address of a thread-local variable | 
 | // uses rdi to pass a single parameter and rax for the return value. All other | 
 | // GPRs are preserved. | 
 | def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI, | 
 |                                              R8, R9, R10, R11)>; | 
 |  | 
 | // CSRs that are handled by prologue, epilogue. | 
 | def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>; | 
 |  | 
 | // CSRs that are handled explicitly via copies. | 
 | def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>; | 
 |  | 
 | // All GPRs - except r11 | 
 | def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI, | 
 |                                               R8, R9, R10, RSP)>; | 
 |  | 
 | // All registers - except r11 | 
 | def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs, | 
 |                                                  (sequence "XMM%u", 0, 15))>; | 
 | def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs, | 
 |                                                  (sequence "YMM%u", 0, 15))>; | 
 |  | 
 | def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, | 
 |                                            R11, R12, R13, R14, R15, RBP, | 
 |                                            (sequence "XMM%u", 0, 15))>; | 
 |  | 
 | def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI, | 
 |                                               EDI)>; | 
 | def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs, | 
 |                                               (sequence "XMM%u", 0, 7))>; | 
 | def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs, | 
 |                                               (sequence "YMM%u", 0, 7))>; | 
 | def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs, | 
 |                                                  (sequence "ZMM%u", 0, 7), | 
 |                                                  (sequence "K%u", 0, 7))>; | 
 |  | 
 | def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>; | 
 | def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9, | 
 |                                                 R10, R11, R12, R13, R14, R15, RBP)>; | 
 | def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, | 
 |                                                    (sequence "YMM%u", 0, 15)), | 
 |                                               (sequence "XMM%u", 0, 15))>; | 
 | def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, | 
 |                                                       (sequence "ZMM%u", 0, 31), | 
 |                                                       (sequence "K%u", 0, 7)), | 
 |                                                  (sequence "XMM%u", 0, 15))>; | 
 |  | 
 | // Standard C + YMM6-15 | 
 | def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, | 
 |                                                   R13, R14, R15, | 
 |                                                   (sequence "YMM%u", 6, 15))>; | 
 |  | 
 | def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, | 
 |                                                      R12, R13, R14, R15, | 
 |                                                      (sequence "ZMM%u", 6, 21), | 
 |                                                      K4, K5, K6, K7)>; | 
 | //Standard C + XMM 8-15 | 
 | def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64, | 
 |                                                  (sequence "XMM%u", 8, 15))>; | 
 |  | 
 | //Standard C + YMM 8-15 | 
 | def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64, | 
 |                                                   (sequence "YMM%u", 8, 15))>; | 
 |  | 
 | def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15, | 
 |                                                   (sequence "ZMM%u", 16, 31), | 
 |                                                   K4, K5, K6, K7)>; | 
 |  | 
 | // Only R12 is preserved for PHP calls in HHVM. | 
 | def CSR_64_HHVM : CalleeSavedRegs<(add R12)>; | 
 |  | 
 | // Register calling convention preserves few GPR and XMM8-15 | 
 | def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>; | 
 | def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, | 
 |                                            (sequence "XMM%u", 4, 7))>;                                             | 
 | def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP, | 
 |                                               (sequence "R%u", 10, 15))>; | 
 | def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,                                   | 
 |                                               (sequence "XMM%u", 8, 15))>; | 
 | def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP, | 
 |                                                (sequence "R%u", 12, 15))>; | 
 | def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,                | 
 |                                                (sequence "XMM%u", 8, 15))>; | 
 |                                                 |