| //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// \file | 
 | /// This file defines the pass that looks through the machine instructions | 
 | /// late in the compilation, and finds byte or word instructions that | 
 | /// can be profitably replaced with 32 bit instructions that give equivalent | 
 | /// results for the bits of the results that are used. There are two possible | 
 | /// reasons to do this. | 
 | /// | 
 | /// One reason is to avoid false-dependences on the upper portions | 
 | /// of the registers.  Only instructions that have a destination register | 
 | /// which is not in any of the source registers can be affected by this. | 
 | /// Any instruction where one of the source registers is also the destination | 
 | /// register is unaffected, because it has a true dependence on the source | 
 | /// register already.  So, this consideration primarily affects load | 
 | /// instructions and register-to-register moves.  It would | 
 | /// seem like cmov(s) would also be affected, but because of the way cmov is | 
 | /// really implemented by most machines as reading both the destination and | 
 | /// and source registers, and then "merging" the two based on a condition, | 
 | /// it really already should be considered as having a true dependence on the | 
 | /// destination register as well. | 
 | /// | 
 | /// The other reason to do this is for potential code size savings.  Word | 
 | /// operations need an extra override byte compared to their 32 bit | 
 | /// versions. So this can convert many word operations to their larger | 
 | /// size, saving a byte in encoding. This could introduce partial register | 
 | /// dependences where none existed however.  As an example take: | 
 | ///   orw  ax, $0x1000 | 
 | ///   addw ax, $3 | 
 | /// now if this were to get transformed into | 
 | ///   orw  ax, $1000 | 
 | ///   addl eax, $3 | 
 | /// because the addl encodes shorter than the addw, this would introduce | 
 | /// a use of a register that was only partially written earlier.  On older | 
 | /// Intel processors this can be quite a performance penalty, so this should | 
 | /// probably only be done when it can be proven that a new partial dependence | 
 | /// wouldn't be created, or when your know a newer processor is being | 
 | /// targeted, or when optimizing for minimum code size. | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "X86.h" | 
 | #include "X86InstrInfo.h" | 
 | #include "X86Subtarget.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/CodeGen/LivePhysRegs.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" | 
 | #define FIXUPBW_NAME "x86-fixup-bw-insts" | 
 |  | 
 | #define DEBUG_TYPE FIXUPBW_NAME | 
 |  | 
 | // Option to allow this optimization pass to have fine-grained control. | 
 | static cl::opt<bool> | 
 |     FixupBWInsts("fixup-byte-word-insts", | 
 |                  cl::desc("Change byte and word instructions to larger sizes"), | 
 |                  cl::init(true), cl::Hidden); | 
 |  | 
 | namespace { | 
 | class FixupBWInstPass : public MachineFunctionPass { | 
 |   /// Loop over all of the instructions in the basic block replacing applicable | 
 |   /// byte or word instructions with better alternatives. | 
 |   void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); | 
 |  | 
 |   /// This sets the \p SuperDestReg to the 32 bit super reg of the original | 
 |   /// destination register of the MachineInstr passed in. It returns true if | 
 |   /// that super register is dead just prior to \p OrigMI, and false if not. | 
 |   bool getSuperRegDestIfDead(MachineInstr *OrigMI, | 
 |                              unsigned &SuperDestReg) const; | 
 |  | 
 |   /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit | 
 |   /// register if it is safe to do so.  Return the replacement instruction if | 
 |   /// OK, otherwise return nullptr. | 
 |   MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; | 
 |  | 
 |   /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is | 
 |   /// safe to do so.  Return the replacement instruction if OK, otherwise return | 
 |   /// nullptr. | 
 |   MachineInstr *tryReplaceCopy(MachineInstr *MI) const; | 
 |  | 
 |   // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if | 
 |   // possible.  Return the replacement instruction if OK, return nullptr | 
 |   // otherwise. | 
 |   MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; | 
 |  | 
 | public: | 
 |   static char ID; | 
 |  | 
 |   StringRef getPassName() const override { return FIXUPBW_DESC; } | 
 |  | 
 |   FixupBWInstPass() : MachineFunctionPass(ID) { | 
 |     initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to | 
 |                                        // guide some heuristics. | 
 |     MachineFunctionPass::getAnalysisUsage(AU); | 
 |   } | 
 |  | 
 |   /// Loop over all of the basic blocks, replacing byte and word instructions by | 
 |   /// equivalent 32 bit instructions where performance or code size can be | 
 |   /// improved. | 
 |   bool runOnMachineFunction(MachineFunction &MF) override; | 
 |  | 
 |   MachineFunctionProperties getRequiredProperties() const override { | 
 |     return MachineFunctionProperties().set( | 
 |         MachineFunctionProperties::Property::NoVRegs); | 
 |   } | 
 |  | 
 | private: | 
 |   MachineFunction *MF; | 
 |  | 
 |   /// Machine instruction info used throughout the class. | 
 |   const X86InstrInfo *TII; | 
 |  | 
 |   /// Local member for function's OptForSize attribute. | 
 |   bool OptForSize; | 
 |  | 
 |   /// Machine loop info used for guiding some heruistics. | 
 |   MachineLoopInfo *MLI; | 
 |  | 
 |   /// Register Liveness information after the current instruction. | 
 |   LivePhysRegs LiveRegs; | 
 | }; | 
 | char FixupBWInstPass::ID = 0; | 
 | } | 
 |  | 
 | INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) | 
 |  | 
 | FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } | 
 |  | 
 | bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { | 
 |   if (!FixupBWInsts || skipFunction(MF.getFunction())) | 
 |     return false; | 
 |  | 
 |   this->MF = &MF; | 
 |   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); | 
 |   OptForSize = MF.getFunction().optForSize(); | 
 |   MLI = &getAnalysis<MachineLoopInfo>(); | 
 |   LiveRegs.init(TII->getRegisterInfo()); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); | 
 |  | 
 |   // Process all basic blocks. | 
 |   for (auto &MBB : MF) | 
 |     processBasicBlock(MF, MBB); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Check if after \p OrigMI the only portion of super register | 
 | /// of the destination register of \p OrigMI that is alive is that | 
 | /// destination register. | 
 | /// | 
 | /// If so, return that super register in \p SuperDestReg. | 
 | bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI, | 
 |                                             unsigned &SuperDestReg) const { | 
 |   auto *TRI = &TII->getRegisterInfo(); | 
 |  | 
 |   unsigned OrigDestReg = OrigMI->getOperand(0).getReg(); | 
 |   SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); | 
 |  | 
 |   const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); | 
 |  | 
 |   // Make sure that the sub-register that this instruction has as its | 
 |   // destination is the lowest order sub-register of the super-register. | 
 |   // If it isn't, then the register isn't really dead even if the | 
 |   // super-register is considered dead. | 
 |   if (SubRegIdx == X86::sub_8bit_hi) | 
 |     return false; | 
 |  | 
 |   // If neither the destination-super register nor any applicable subregisters | 
 |   // are live after this instruction, then the super register is safe to use. | 
 |   if (!LiveRegs.contains(SuperDestReg)) { | 
 |     // If the original destination register was not the low 8-bit subregister | 
 |     // then the super register check is sufficient. | 
 |     if (SubRegIdx != X86::sub_8bit) | 
 |       return true; | 
 |     // If the original destination register was the low 8-bit subregister and | 
 |     // we also need to check the 16-bit subregister and the high 8-bit | 
 |     // subregister. | 
 |     if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) && | 
 |         !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8, | 
 |                                                   /*High=*/true))) | 
 |       return true; | 
 |     // Otherwise, we have a little more checking to do. | 
 |   } | 
 |  | 
 |   // If we get here, the super-register destination (or some part of it) is | 
 |   // marked as live after the original instruction. | 
 |   // | 
 |   // The X86 backend does not have subregister liveness tracking enabled, | 
 |   // so liveness information might be overly conservative. Specifically, the | 
 |   // super register might be marked as live because it is implicitly defined | 
 |   // by the instruction we are examining. | 
 |   // | 
 |   // However, for some specific instructions (this pass only cares about MOVs) | 
 |   // we can produce more precise results by analysing that MOV's operands. | 
 |   // | 
 |   // Indeed, if super-register is not live before the mov it means that it | 
 |   // was originally <read-undef> and so we are free to modify these | 
 |   // undef upper bits. That may happen in case where the use is in another MBB | 
 |   // and the vreg/physreg corresponding to the move has higher width than | 
 |   // necessary (e.g. due to register coalescing with a "truncate" copy). | 
 |   // So, we would like to handle patterns like this: | 
 |   // | 
 |   //   %bb.2: derived from LLVM BB %if.then | 
 |   //   Live Ins: %rdi | 
 |   //   Predecessors according to CFG: %bb.0 | 
 |   //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax | 
 |   //                                 ; No implicit %eax | 
 |   //   Successors according to CFG: %bb.3(?%) | 
 |   // | 
 |   //   %bb.3: derived from LLVM BB %if.end | 
 |   //   Live Ins: %eax                            Only %ax is actually live | 
 |   //   Predecessors according to CFG: %bb.2 %bb.1 | 
 |   //   %ax = KILL %ax, implicit killed %eax | 
 |   //   RET 0, %ax | 
 |   unsigned Opc = OrigMI->getOpcode(); (void)Opc; | 
 |   // These are the opcodes currently handled by the pass, if something | 
 |   // else will be added we need to ensure that new opcode has the same | 
 |   // properties. | 
 |   assert((Opc == X86::MOV8rm || Opc == X86::MOV16rm || Opc == X86::MOV8rr || | 
 |           Opc == X86::MOV16rr) && | 
 |          "Unexpected opcode."); | 
 |  | 
 |   bool IsDefined = false; | 
 |   for (auto &MO: OrigMI->implicit_operands()) { | 
 |     if (!MO.isReg()) | 
 |       continue; | 
 |  | 
 |     assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!"); | 
 |  | 
 |     if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) | 
 |         IsDefined = true; | 
 |  | 
 |     // If MO is a use of any part of the destination register but is not equal | 
 |     // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. | 
 |     // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, | 
 |     // %eax, or %rax will prevent us from using the %eax register. | 
 |     if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && | 
 |         TRI->regsOverlap(SuperDestReg, MO.getReg())) | 
 |       return false; | 
 |   } | 
 |   // Reg is not Imp-def'ed -> it's live both before/after the instruction. | 
 |   if (!IsDefined) | 
 |     return false; | 
 |  | 
 |   // Otherwise, the Reg is not live before the MI and the MOV can't | 
 |   // make it really live, so it's in fact dead even after the MI. | 
 |   return true; | 
 | } | 
 |  | 
 | MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, | 
 |                                               MachineInstr *MI) const { | 
 |   unsigned NewDestReg; | 
 |  | 
 |   // We are going to try to rewrite this load to a larger zero-extending | 
 |   // load.  This is safe if all portions of the 32 bit super-register | 
 |   // of the original destination register, except for the original destination | 
 |   // register are dead. getSuperRegDestIfDead checks that. | 
 |   if (!getSuperRegDestIfDead(MI, NewDestReg)) | 
 |     return nullptr; | 
 |  | 
 |   // Safe to change the instruction. | 
 |   MachineInstrBuilder MIB = | 
 |       BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg); | 
 |  | 
 |   unsigned NumArgs = MI->getNumOperands(); | 
 |   for (unsigned i = 1; i < NumArgs; ++i) | 
 |     MIB.add(MI->getOperand(i)); | 
 |  | 
 |   MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
 |  | 
 |   return MIB; | 
 | } | 
 |  | 
 | MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { | 
 |   assert(MI->getNumExplicitOperands() == 2); | 
 |   auto &OldDest = MI->getOperand(0); | 
 |   auto &OldSrc = MI->getOperand(1); | 
 |  | 
 |   unsigned NewDestReg; | 
 |   if (!getSuperRegDestIfDead(MI, NewDestReg)) | 
 |     return nullptr; | 
 |  | 
 |   unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); | 
 |  | 
 |   // This is only correct if we access the same subregister index: otherwise, | 
 |   // we could try to replace "movb %ah, %al" with "movl %eax, %eax". | 
 |   auto *TRI = &TII->getRegisterInfo(); | 
 |   if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != | 
 |       TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) | 
 |     return nullptr; | 
 |  | 
 |   // Safe to change the instruction. | 
 |   // Don't set src flags, as we don't know if we're also killing the superreg. | 
 |   // However, the superregister might not be defined; make it explicit that | 
 |   // we don't care about the higher bits by reading it as Undef, and adding | 
 |   // an imp-use on the original subregister. | 
 |   MachineInstrBuilder MIB = | 
 |       BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg) | 
 |           .addReg(NewSrcReg, RegState::Undef) | 
 |           .addReg(OldSrc.getReg(), RegState::Implicit); | 
 |  | 
 |   // Drop imp-defs/uses that would be redundant with the new def/use. | 
 |   for (auto &Op : MI->implicit_operands()) | 
 |     if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) | 
 |       MIB.add(Op); | 
 |  | 
 |   return MIB; | 
 | } | 
 |  | 
 | MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, | 
 |                                                MachineBasicBlock &MBB) const { | 
 |   // See if this is an instruction of the type we are currently looking for. | 
 |   switch (MI->getOpcode()) { | 
 |  | 
 |   case X86::MOV8rm: | 
 |     // Only replace 8 bit loads with the zero extending versions if | 
 |     // in an inner most loop and not optimizing for size. This takes | 
 |     // an extra byte to encode, and provides limited performance upside. | 
 |     if (MachineLoop *ML = MLI->getLoopFor(&MBB)) | 
 |       if (ML->begin() == ML->end() && !OptForSize) | 
 |         return tryReplaceLoad(X86::MOVZX32rm8, MI); | 
 |     break; | 
 |  | 
 |   case X86::MOV16rm: | 
 |     // Always try to replace 16 bit load with 32 bit zero extending. | 
 |     // Code size is the same, and there is sometimes a perf advantage | 
 |     // from eliminating a false dependence on the upper portion of | 
 |     // the register. | 
 |     return tryReplaceLoad(X86::MOVZX32rm16, MI); | 
 |  | 
 |   case X86::MOV8rr: | 
 |   case X86::MOV16rr: | 
 |     // Always try to replace 8/16 bit copies with a 32 bit copy. | 
 |     // Code size is either less (16) or equal (8), and there is sometimes a | 
 |     // perf advantage from eliminating a false dependence on the upper portion | 
 |     // of the register. | 
 |     return tryReplaceCopy(MI); | 
 |  | 
 |   default: | 
 |     // nothing to do here. | 
 |     break; | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void FixupBWInstPass::processBasicBlock(MachineFunction &MF, | 
 |                                         MachineBasicBlock &MBB) { | 
 |  | 
 |   // This algorithm doesn't delete the instructions it is replacing | 
 |   // right away.  By leaving the existing instructions in place, the | 
 |   // register liveness information doesn't change, and this makes the | 
 |   // analysis that goes on be better than if the replaced instructions | 
 |   // were immediately removed. | 
 |   // | 
 |   // This algorithm always creates a replacement instruction | 
 |   // and notes that and the original in a data structure, until the | 
 |   // whole BB has been analyzed.  This keeps the replacement instructions | 
 |   // from making it seem as if the larger register might be live. | 
 |   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; | 
 |  | 
 |   // Start computing liveness for this block. We iterate from the end to be able | 
 |   // to update this for each instruction. | 
 |   LiveRegs.clear(); | 
 |   // We run after PEI, so we need to AddPristinesAndCSRs. | 
 |   LiveRegs.addLiveOuts(MBB); | 
 |  | 
 |   for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) { | 
 |     MachineInstr *MI = &*I; | 
 |  | 
 |     if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB)) | 
 |       MIReplacements.push_back(std::make_pair(MI, NewMI)); | 
 |  | 
 |     // We're done with this instruction, update liveness for the next one. | 
 |     LiveRegs.stepBackward(*MI); | 
 |   } | 
 |  | 
 |   while (!MIReplacements.empty()) { | 
 |     MachineInstr *MI = MIReplacements.back().first; | 
 |     MachineInstr *NewMI = MIReplacements.back().second; | 
 |     MIReplacements.pop_back(); | 
 |     MBB.insert(MI, NewMI); | 
 |     MBB.erase(MI); | 
 |   } | 
 | } |