|  | //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a DAG pattern matching instruction selector for X86, | 
|  | // converting from a legalized dag to a X86 dag. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86RegisterInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <stdint.h> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "x86-isel" | 
|  |  | 
|  | STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Pattern Matcher Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// This corresponds to X86AddressMode, but uses SDValue's instead of register | 
|  | /// numbers for the leaves of the matched tree. | 
|  | struct X86ISelAddressMode { | 
|  | enum { | 
|  | RegBase, | 
|  | FrameIndexBase | 
|  | } BaseType; | 
|  |  | 
|  | // This is really a union, discriminated by BaseType! | 
|  | SDValue Base_Reg; | 
|  | int Base_FrameIndex; | 
|  |  | 
|  | unsigned Scale; | 
|  | SDValue IndexReg; | 
|  | int32_t Disp; | 
|  | SDValue Segment; | 
|  | const GlobalValue *GV; | 
|  | const Constant *CP; | 
|  | const BlockAddress *BlockAddr; | 
|  | const char *ES; | 
|  | MCSymbol *MCSym; | 
|  | int JT; | 
|  | unsigned Align;    // CP alignment. | 
|  | unsigned char SymbolFlags;  // X86II::MO_* | 
|  |  | 
|  | X86ISelAddressMode() | 
|  | : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), | 
|  | Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr), | 
|  | MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {} | 
|  |  | 
|  | bool hasSymbolicDisplacement() const { | 
|  | return GV != nullptr || CP != nullptr || ES != nullptr || | 
|  | MCSym != nullptr || JT != -1 || BlockAddr != nullptr; | 
|  | } | 
|  |  | 
|  | bool hasBaseOrIndexReg() const { | 
|  | return BaseType == FrameIndexBase || | 
|  | IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true if this addressing mode is already RIP-relative. | 
|  | bool isRIPRelative() const { | 
|  | if (BaseType != RegBase) return false; | 
|  | if (RegisterSDNode *RegNode = | 
|  | dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) | 
|  | return RegNode->getReg() == X86::RIP; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void setBaseReg(SDValue Reg) { | 
|  | BaseType = RegBase; | 
|  | Base_Reg = Reg; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void dump(SelectionDAG *DAG = nullptr) { | 
|  | dbgs() << "X86ISelAddressMode " << this << '\n'; | 
|  | dbgs() << "Base_Reg "; | 
|  | if (Base_Reg.getNode()) | 
|  | Base_Reg.getNode()->dump(DAG); | 
|  | else | 
|  | dbgs() << "nul\n"; | 
|  | if (BaseType == FrameIndexBase) | 
|  | dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'; | 
|  | dbgs() << " Scale " << Scale << '\n' | 
|  | << "IndexReg "; | 
|  | if (IndexReg.getNode()) | 
|  | IndexReg.getNode()->dump(DAG); | 
|  | else | 
|  | dbgs() << "nul\n"; | 
|  | dbgs() << " Disp " << Disp << '\n' | 
|  | << "GV "; | 
|  | if (GV) | 
|  | GV->dump(); | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << " CP "; | 
|  | if (CP) | 
|  | CP->dump(); | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << '\n' | 
|  | << "ES "; | 
|  | if (ES) | 
|  | dbgs() << ES; | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << " MCSym "; | 
|  | if (MCSym) | 
|  | dbgs() << MCSym; | 
|  | else | 
|  | dbgs() << "nul"; | 
|  | dbgs() << " JT" << JT << " Align" << Align << '\n'; | 
|  | } | 
|  | #endif | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// ISel - X86-specific code to select X86 machine instructions for | 
|  | /// SelectionDAG operations. | 
|  | /// | 
|  | class X86DAGToDAGISel final : public SelectionDAGISel { | 
|  | /// Keep a pointer to the X86Subtarget around so that we can | 
|  | /// make the right decision when generating code for different targets. | 
|  | const X86Subtarget *Subtarget; | 
|  |  | 
|  | /// If true, selector should try to optimize for code size instead of | 
|  | /// performance. | 
|  | bool OptForSize; | 
|  |  | 
|  | /// If true, selector should try to optimize for minimum code size. | 
|  | bool OptForMinSize; | 
|  |  | 
|  | public: | 
|  | explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) | 
|  | : SelectionDAGISel(tm, OptLevel), OptForSize(false), | 
|  | OptForMinSize(false) {} | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "X86 DAG->DAG Instruction Selection"; | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | // Reset the subtarget each time through. | 
|  | Subtarget = &MF.getSubtarget<X86Subtarget>(); | 
|  | SelectionDAGISel::runOnMachineFunction(MF); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void EmitFunctionEntryCode() override; | 
|  |  | 
|  | bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; | 
|  |  | 
|  | void PreprocessISelDAG() override; | 
|  | void PostprocessISelDAG() override; | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "X86GenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | void Select(SDNode *N) override; | 
|  |  | 
|  | bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); | 
|  | bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); | 
|  | bool matchWrapper(SDValue N, X86ISelAddressMode &AM); | 
|  | bool matchAddress(SDValue N, X86ISelAddressMode &AM); | 
|  | bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM); | 
|  | bool matchAdd(SDValue N, X86ISelAddressMode &AM, unsigned Depth); | 
|  | bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, | 
|  | unsigned Depth); | 
|  | bool matchAddressBase(SDValue N, X86ISelAddressMode &AM); | 
|  | bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool selectMOV64Imm32(SDValue N, SDValue &Imm); | 
|  | bool selectLEAAddr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool selectLEA64_32Addr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool selectTLSADDRAddr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment, | 
|  | SDValue &NodeWithChain); | 
|  | bool selectRelocImm(SDValue N, SDValue &Op); | 
|  |  | 
|  | bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  |  | 
|  | // Convenience method where P is also root. | 
|  | bool tryFoldLoad(SDNode *P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment) { | 
|  | return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment); | 
|  | } | 
|  |  | 
|  | // Try to fold a vector load. This makes sure the load isn't non-temporal. | 
|  | bool tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  |  | 
|  | /// Implement addressing mode selection for inline asm expressions. | 
|  | bool SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | unsigned ConstraintID, | 
|  | std::vector<SDValue> &OutOps) override; | 
|  |  | 
|  | void emitSpecialCodeForMain(); | 
|  |  | 
|  | inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment) { | 
|  | Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) | 
|  | ? CurDAG->getTargetFrameIndex( | 
|  | AM.Base_FrameIndex, | 
|  | TLI->getPointerTy(CurDAG->getDataLayout())) | 
|  | : AM.Base_Reg; | 
|  | Scale = getI8Imm(AM.Scale, DL); | 
|  | Index = AM.IndexReg; | 
|  | // These are 32-bit even in 64-bit mode since RIP-relative offset | 
|  | // is 32-bit. | 
|  | if (AM.GV) | 
|  | Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(), | 
|  | MVT::i32, AM.Disp, | 
|  | AM.SymbolFlags); | 
|  | else if (AM.CP) | 
|  | Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, | 
|  | AM.Align, AM.Disp, AM.SymbolFlags); | 
|  | else if (AM.ES) { | 
|  | assert(!AM.Disp && "Non-zero displacement is ignored with ES."); | 
|  | Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); | 
|  | } else if (AM.MCSym) { | 
|  | assert(!AM.Disp && "Non-zero displacement is ignored with MCSym."); | 
|  | assert(AM.SymbolFlags == 0 && "oo"); | 
|  | Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32); | 
|  | } else if (AM.JT != -1) { | 
|  | assert(!AM.Disp && "Non-zero displacement is ignored with JT."); | 
|  | Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); | 
|  | } else if (AM.BlockAddr) | 
|  | Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, | 
|  | AM.SymbolFlags); | 
|  | else | 
|  | Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32); | 
|  |  | 
|  | if (AM.Segment.getNode()) | 
|  | Segment = AM.Segment; | 
|  | else | 
|  | Segment = CurDAG->getRegister(0, MVT::i32); | 
|  | } | 
|  |  | 
|  | // Utility function to determine whether we should avoid selecting | 
|  | // immediate forms of instructions for better code size or not. | 
|  | // At a high level, we'd like to avoid such instructions when | 
|  | // we have similar constants used within the same basic block | 
|  | // that can be kept in a register. | 
|  | // | 
|  | bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const { | 
|  | uint32_t UseCount = 0; | 
|  |  | 
|  | // Do not want to hoist if we're not optimizing for size. | 
|  | // TODO: We'd like to remove this restriction. | 
|  | // See the comment in X86InstrInfo.td for more info. | 
|  | if (!OptForSize) | 
|  | return false; | 
|  |  | 
|  | // Walk all the users of the immediate. | 
|  | for (SDNode::use_iterator UI = N->use_begin(), | 
|  | UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) { | 
|  |  | 
|  | SDNode *User = *UI; | 
|  |  | 
|  | // This user is already selected. Count it as a legitimate use and | 
|  | // move on. | 
|  | if (User->isMachineOpcode()) { | 
|  | UseCount++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We want to count stores of immediates as real uses. | 
|  | if (User->getOpcode() == ISD::STORE && | 
|  | User->getOperand(1).getNode() == N) { | 
|  | UseCount++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We don't currently match users that have > 2 operands (except | 
|  | // for stores, which are handled above) | 
|  | // Those instruction won't match in ISEL, for now, and would | 
|  | // be counted incorrectly. | 
|  | // This may change in the future as we add additional instruction | 
|  | // types. | 
|  | if (User->getNumOperands() != 2) | 
|  | continue; | 
|  |  | 
|  | // Immediates that are used for offsets as part of stack | 
|  | // manipulation should be left alone. These are typically | 
|  | // used to indicate SP offsets for argument passing and | 
|  | // will get pulled into stores/pushes (implicitly). | 
|  | if (User->getOpcode() == X86ISD::ADD || | 
|  | User->getOpcode() == ISD::ADD    || | 
|  | User->getOpcode() == X86ISD::SUB || | 
|  | User->getOpcode() == ISD::SUB) { | 
|  |  | 
|  | // Find the other operand of the add/sub. | 
|  | SDValue OtherOp = User->getOperand(0); | 
|  | if (OtherOp.getNode() == N) | 
|  | OtherOp = User->getOperand(1); | 
|  |  | 
|  | // Don't count if the other operand is SP. | 
|  | RegisterSDNode *RegNode; | 
|  | if (OtherOp->getOpcode() == ISD::CopyFromReg && | 
|  | (RegNode = dyn_cast_or_null<RegisterSDNode>( | 
|  | OtherOp->getOperand(1).getNode()))) | 
|  | if ((RegNode->getReg() == X86::ESP) || | 
|  | (RegNode->getReg() == X86::RSP)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // ... otherwise, count this and move on. | 
|  | UseCount++; | 
|  | } | 
|  |  | 
|  | // If we have more than 1 use, then recommend for hoisting. | 
|  | return (UseCount > 1); | 
|  | } | 
|  |  | 
|  | /// Return a target constant with the specified value of type i8. | 
|  | inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) { | 
|  | return CurDAG->getTargetConstant(Imm, DL, MVT::i8); | 
|  | } | 
|  |  | 
|  | /// Return a target constant with the specified value, of type i32. | 
|  | inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) { | 
|  | return CurDAG->getTargetConstant(Imm, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// Return a target constant with the specified value, of type i64. | 
|  | inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) { | 
|  | return CurDAG->getTargetConstant(Imm, DL, MVT::i64); | 
|  | } | 
|  |  | 
|  | SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth, | 
|  | const SDLoc &DL) { | 
|  | assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width"); | 
|  | uint64_t Index = N->getConstantOperandVal(1); | 
|  | MVT VecVT = N->getOperand(0).getSimpleValueType(); | 
|  | return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL); | 
|  | } | 
|  |  | 
|  | SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth, | 
|  | const SDLoc &DL) { | 
|  | assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width"); | 
|  | uint64_t Index = N->getConstantOperandVal(2); | 
|  | MVT VecVT = N->getSimpleValueType(0); | 
|  | return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL); | 
|  | } | 
|  |  | 
|  | /// Return an SDNode that returns the value of the global base register. | 
|  | /// Output instructions required to initialize the global base register, | 
|  | /// if necessary. | 
|  | SDNode *getGlobalBaseReg(); | 
|  |  | 
|  | /// Return a reference to the TargetMachine, casted to the target-specific | 
|  | /// type. | 
|  | const X86TargetMachine &getTargetMachine() const { | 
|  | return static_cast<const X86TargetMachine &>(TM); | 
|  | } | 
|  |  | 
|  | /// Return a reference to the TargetInstrInfo, casted to the target-specific | 
|  | /// type. | 
|  | const X86InstrInfo *getInstrInfo() const { | 
|  | return Subtarget->getInstrInfo(); | 
|  | } | 
|  |  | 
|  | /// Address-mode matching performs shift-of-and to and-of-shift | 
|  | /// reassociation in order to expose more scaled addressing | 
|  | /// opportunities. | 
|  | bool ComplexPatternFuncMutatesDAG() const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const; | 
|  |  | 
|  | /// Returns whether this is a relocatable immediate in the range | 
|  | /// [-2^Width .. 2^Width-1]. | 
|  | template <unsigned Width> bool isSExtRelocImm(SDNode *N) const { | 
|  | if (auto *CN = dyn_cast<ConstantSDNode>(N)) | 
|  | return isInt<Width>(CN->getSExtValue()); | 
|  | return isSExtAbsoluteSymbolRef(Width, N); | 
|  | } | 
|  |  | 
|  | // Indicates we should prefer to use a non-temporal load for this load. | 
|  | bool useNonTemporalLoad(LoadSDNode *N) const { | 
|  | if (!N->isNonTemporal()) | 
|  | return false; | 
|  |  | 
|  | unsigned StoreSize = N->getMemoryVT().getStoreSize(); | 
|  |  | 
|  | if (N->getAlignment() < StoreSize) | 
|  | return false; | 
|  |  | 
|  | switch (StoreSize) { | 
|  | default: llvm_unreachable("Unsupported store size"); | 
|  | case 16: | 
|  | return Subtarget->hasSSE41(); | 
|  | case 32: | 
|  | return Subtarget->hasAVX2(); | 
|  | case 64: | 
|  | return Subtarget->hasAVX512(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool foldLoadStoreIntoMemOperand(SDNode *Node); | 
|  | bool matchBEXTRFromAnd(SDNode *Node); | 
|  | bool shrinkAndImmediate(SDNode *N); | 
|  | bool isMaskZeroExtended(SDNode *N) const; | 
|  |  | 
|  | MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, | 
|  | const SDLoc &dl, MVT VT, SDNode *Node); | 
|  | MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, | 
|  | const SDLoc &dl, MVT VT, SDNode *Node, | 
|  | SDValue &InFlag); | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if this masked compare can be implemented legally with this | 
|  | // type. | 
|  | static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) { | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | if (Opcode == X86ISD::CMPM || Opcode == ISD::SETCC || | 
|  | Opcode == X86ISD::CMPM_RND || Opcode == X86ISD::VFPCLASS) { | 
|  | // We can get 256-bit 8 element types here without VLX being enabled. When | 
|  | // this happens we will use 512-bit operations and the mask will not be | 
|  | // zero extended. | 
|  | EVT OpVT = N->getOperand(0).getValueType(); | 
|  | if (OpVT.is256BitVector() || OpVT.is128BitVector()) | 
|  | return Subtarget->hasVLX(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check. | 
|  | if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM || | 
|  | Opcode == X86ISD::FSETCCM_RND) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns true if we can assume the writer of the mask has zero extended it | 
|  | // for us. | 
|  | bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const { | 
|  | // If this is an AND, check if we have a compare on either side. As long as | 
|  | // one side guarantees the mask is zero extended, the AND will preserve those | 
|  | // zeros. | 
|  | if (N->getOpcode() == ISD::AND) | 
|  | return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) || | 
|  | isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget); | 
|  |  | 
|  | return isLegalMaskCompare(N, Subtarget); | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  |  | 
|  | if (!N.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | if (N.getOpcode() != ISD::LOAD) | 
|  | return true; | 
|  |  | 
|  | // If N is a load, do additional profitability checks. | 
|  | if (U == Root) { | 
|  | switch (U->getOpcode()) { | 
|  | default: break; | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::AND: | 
|  | case X86ISD::XOR: | 
|  | case X86ISD::OR: | 
|  | case ISD::ADD: | 
|  | case ISD::ADDCARRY: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | SDValue Op1 = U->getOperand(1); | 
|  |  | 
|  | // If the other operand is a 8-bit immediate we should fold the immediate | 
|  | // instead. This reduces code size. | 
|  | // e.g. | 
|  | // movl 4(%esp), %eax | 
|  | // addl $4, %eax | 
|  | // vs. | 
|  | // movl $4, %eax | 
|  | // addl 4(%esp), %eax | 
|  | // The former is 2 bytes shorter. In case where the increment is 1, then | 
|  | // the saving can be 4 bytes (by using incl %eax). | 
|  | if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) { | 
|  | if (Imm->getAPIntValue().isSignedIntN(8)) | 
|  | return false; | 
|  |  | 
|  | // If this is a 64-bit AND with an immediate that fits in 32-bits, | 
|  | // prefer using the smaller and over folding the load. This is needed to | 
|  | // make sure immediates created by shrinkAndImmediate are always folded. | 
|  | // Ideally we would narrow the load during DAG combine and get the | 
|  | // best of both worlds. | 
|  | if (U->getOpcode() == ISD::AND && | 
|  | Imm->getAPIntValue().getBitWidth() == 64 && | 
|  | Imm->getAPIntValue().isIntN(32)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the other operand is a TLS address, we should fold it instead. | 
|  | // This produces | 
|  | // movl    %gs:0, %eax | 
|  | // leal    i@NTPOFF(%eax), %eax | 
|  | // instead of | 
|  | // movl    $i@NTPOFF, %eax | 
|  | // addl    %gs:0, %eax | 
|  | // if the block also has an access to a second TLS address this will save | 
|  | // a load. | 
|  | // FIXME: This is probably also true for non-TLS addresses. | 
|  | if (Op1.getOpcode() == X86ISD::Wrapper) { | 
|  | SDValue Val = Op1.getOperand(0); | 
|  | if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Don't fold load if this matches the BTS/BTR/BTC patterns. | 
|  | // BTS: (or X, (shl 1, n)) | 
|  | // BTR: (and X, (rotl -2, n)) | 
|  | // BTC: (xor X, (shl 1, n)) | 
|  | if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) { | 
|  | if (U->getOperand(0).getOpcode() == ISD::SHL && | 
|  | isOneConstant(U->getOperand(0).getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | if (U->getOperand(1).getOpcode() == ISD::SHL && | 
|  | isOneConstant(U->getOperand(1).getOperand(0))) | 
|  | return false; | 
|  | } | 
|  | if (U->getOpcode() == ISD::AND) { | 
|  | SDValue U0 = U->getOperand(0); | 
|  | SDValue U1 = U->getOperand(1); | 
|  | if (U0.getOpcode() == ISD::ROTL) { | 
|  | auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0)); | 
|  | if (C && C->getSExtValue() == -2) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (U1.getOpcode() == ISD::ROTL) { | 
|  | auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0)); | 
|  | if (C && C->getSExtValue() == -2) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | // Don't fold a load into a shift by immediate. The BMI2 instructions | 
|  | // support folding a load, but not an immediate. The legacy instructions | 
|  | // support folding an immediate, but can't fold a load. Folding an | 
|  | // immediate is preferable to folding a load. | 
|  | if (isa<ConstantSDNode>(U->getOperand(1))) | 
|  | return false; | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prevent folding a load if this can implemented with an insert_subreg or | 
|  | // a move that implicitly zeroes. | 
|  | if (Root->getOpcode() == ISD::INSERT_SUBVECTOR && | 
|  | isNullConstant(Root->getOperand(2)) && | 
|  | (Root->getOperand(0).isUndef() || | 
|  | ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode()))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Replace the original chain operand of the call with | 
|  | /// load's chain operand and move load below the call's chain operand. | 
|  | static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, | 
|  | SDValue Call, SDValue OrigChain) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | SDValue Chain = OrigChain.getOperand(0); | 
|  | if (Chain.getNode() == Load.getNode()) | 
|  | Ops.push_back(Load.getOperand(0)); | 
|  | else { | 
|  | assert(Chain.getOpcode() == ISD::TokenFactor && | 
|  | "Unexpected chain operand"); | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) | 
|  | if (Chain.getOperand(i).getNode() == Load.getNode()) | 
|  | Ops.push_back(Load.getOperand(0)); | 
|  | else | 
|  | Ops.push_back(Chain.getOperand(i)); | 
|  | SDValue NewChain = | 
|  | CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops); | 
|  | Ops.clear(); | 
|  | Ops.push_back(NewChain); | 
|  | } | 
|  | Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end()); | 
|  | CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops); | 
|  | CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), | 
|  | Load.getOperand(1), Load.getOperand(2)); | 
|  |  | 
|  | Ops.clear(); | 
|  | Ops.push_back(SDValue(Load.getNode(), 1)); | 
|  | Ops.append(Call->op_begin() + 1, Call->op_end()); | 
|  | CurDAG->UpdateNodeOperands(Call.getNode(), Ops); | 
|  | } | 
|  |  | 
|  | /// Return true if call address is a load and it can be | 
|  | /// moved below CALLSEQ_START and the chains leading up to the call. | 
|  | /// Return the CALLSEQ_START by reference as a second output. | 
|  | /// In the case of a tail call, there isn't a callseq node between the call | 
|  | /// chain and the load. | 
|  | static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { | 
|  | // The transformation is somewhat dangerous if the call's chain was glued to | 
|  | // the call. After MoveBelowOrigChain the load is moved between the call and | 
|  | // the chain, this can create a cycle if the load is not folded. So it is | 
|  | // *really* important that we are sure the load will be folded. | 
|  | if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) | 
|  | return false; | 
|  | LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); | 
|  | if (!LD || | 
|  | LD->isVolatile() || | 
|  | LD->getAddressingMode() != ISD::UNINDEXED || | 
|  | LD->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | return false; | 
|  |  | 
|  | // Now let's find the callseq_start. | 
|  | while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { | 
|  | if (!Chain.hasOneUse()) | 
|  | return false; | 
|  | Chain = Chain.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (!Chain.getNumOperands()) | 
|  | return false; | 
|  | // Since we are not checking for AA here, conservatively abort if the chain | 
|  | // writes to memory. It's not safe to move the callee (a load) across a store. | 
|  | if (isa<MemSDNode>(Chain.getNode()) && | 
|  | cast<MemSDNode>(Chain.getNode())->writeMem()) | 
|  | return false; | 
|  | if (Chain.getOperand(0).getNode() == Callee.getNode()) | 
|  | return true; | 
|  | if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && | 
|  | Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && | 
|  | Callee.getValue(1).hasOneUse()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86DAGToDAGISel::PreprocessISelDAG() { | 
|  | // OptFor[Min]Size are used in pattern predicates that isel is matching. | 
|  | OptForSize = MF->getFunction().optForSize(); | 
|  | OptForMinSize = MF->getFunction().optForMinSize(); | 
|  | assert((!OptForMinSize || OptForSize) && "OptForMinSize implies OptForSize"); | 
|  |  | 
|  | for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), | 
|  | E = CurDAG->allnodes_end(); I != E; ) { | 
|  | SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues. | 
|  |  | 
|  | // If this is a target specific AND node with no flag usages, turn it back | 
|  | // into ISD::AND to enable test instruction matching. | 
|  | if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) { | 
|  | SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0), | 
|  | N->getOperand(0), N->getOperand(1)); | 
|  | --I; | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); | 
|  | ++I; | 
|  | CurDAG->DeleteNode(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (OptLevel != CodeGenOpt::None && | 
|  | // Only do this when the target can fold the load into the call or | 
|  | // jmp. | 
|  | !Subtarget->useRetpoline() && | 
|  | ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) || | 
|  | (N->getOpcode() == X86ISD::TC_RETURN && | 
|  | (Subtarget->is64Bit() || | 
|  | !getTargetMachine().isPositionIndependent())))) { | 
|  | /// Also try moving call address load from outside callseq_start to just | 
|  | /// before the call to allow it to be folded. | 
|  | /// | 
|  | ///     [Load chain] | 
|  | ///         ^ | 
|  | ///         | | 
|  | ///       [Load] | 
|  | ///       ^    ^ | 
|  | ///       |    | | 
|  | ///      /      \-- | 
|  | ///     /          | | 
|  | ///[CALLSEQ_START] | | 
|  | ///     ^          | | 
|  | ///     |          | | 
|  | /// [LOAD/C2Reg]   | | 
|  | ///     |          | | 
|  | ///      \        / | 
|  | ///       \      / | 
|  | ///       [CALL] | 
|  | bool HasCallSeq = N->getOpcode() == X86ISD::CALL; | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Load  = N->getOperand(1); | 
|  | if (!isCalleeLoad(Load, Chain, HasCallSeq)) | 
|  | continue; | 
|  | moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); | 
|  | ++NumLoadMoved; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Lower fpround and fpextend nodes that target the FP stack to be store and | 
|  | // load to the stack.  This is a gross hack.  We would like to simply mark | 
|  | // these as being illegal, but when we do that, legalize produces these when | 
|  | // it expands calls, then expands these in the same legalize pass.  We would | 
|  | // like dag combine to be able to hack on these between the call expansion | 
|  | // and the node legalization.  As such this pass basically does "really | 
|  | // late" legalization of these inline with the X86 isel pass. | 
|  | // FIXME: This should only happen when not compiled with -O0. | 
|  | if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) | 
|  | continue; | 
|  |  | 
|  | MVT SrcVT = N->getOperand(0).getSimpleValueType(); | 
|  | MVT DstVT = N->getSimpleValueType(0); | 
|  |  | 
|  | // If any of the sources are vectors, no fp stack involved. | 
|  | if (SrcVT.isVector() || DstVT.isVector()) | 
|  | continue; | 
|  |  | 
|  | // If the source and destination are SSE registers, then this is a legal | 
|  | // conversion that should not be lowered. | 
|  | const X86TargetLowering *X86Lowering = | 
|  | static_cast<const X86TargetLowering *>(TLI); | 
|  | bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); | 
|  | bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); | 
|  | if (SrcIsSSE && DstIsSSE) | 
|  | continue; | 
|  |  | 
|  | if (!SrcIsSSE && !DstIsSSE) { | 
|  | // If this is an FPStack extension, it is a noop. | 
|  | if (N->getOpcode() == ISD::FP_EXTEND) | 
|  | continue; | 
|  | // If this is a value-preserving FPStack truncation, it is a noop. | 
|  | if (N->getConstantOperandVal(1)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Here we could have an FP stack truncation or an FPStack <-> SSE convert. | 
|  | // FPStack has extload and truncstore.  SSE can fold direct loads into other | 
|  | // operations.  Based on this, decide what we want to do. | 
|  | MVT MemVT; | 
|  | if (N->getOpcode() == ISD::FP_ROUND) | 
|  | MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'. | 
|  | else | 
|  | MemVT = SrcIsSSE ? SrcVT : DstVT; | 
|  |  | 
|  | SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // FIXME: optimize the case where the src/dest is a load or store? | 
|  | SDValue Store = | 
|  | CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0), | 
|  | MemTmp, MachinePointerInfo(), MemVT); | 
|  | SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, | 
|  | MachinePointerInfo(), MemVT); | 
|  |  | 
|  | // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the | 
|  | // extload we created.  This will cause general havok on the dag because | 
|  | // anything below the conversion could be folded into other existing nodes. | 
|  | // To avoid invalidating 'I', back it up to the convert node. | 
|  | --I; | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | 
|  |  | 
|  | // Now that we did that, the node is dead.  Increment the iterator to the | 
|  | // next node to process, then delete N. | 
|  | ++I; | 
|  | CurDAG->DeleteNode(N); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void X86DAGToDAGISel::PostprocessISelDAG() { | 
|  | // Skip peepholes at -O0. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | return; | 
|  |  | 
|  | // Attempt to remove vectors moves that were inserted to zero upper bits. | 
|  |  | 
|  | SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); | 
|  | ++Position; | 
|  |  | 
|  | while (Position != CurDAG->allnodes_begin()) { | 
|  | SDNode *N = &*--Position; | 
|  | // Skip dead nodes and any non-machine opcodes. | 
|  | if (N->use_empty() || !N->isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | if (N->getMachineOpcode() != TargetOpcode::SUBREG_TO_REG) | 
|  | continue; | 
|  |  | 
|  | unsigned SubRegIdx = N->getConstantOperandVal(2); | 
|  | if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm) | 
|  | continue; | 
|  |  | 
|  | SDValue Move = N->getOperand(1); | 
|  | if (!Move.isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | // Make sure its one of the move opcodes we recognize. | 
|  | switch (Move.getMachineOpcode()) { | 
|  | default: | 
|  | continue; | 
|  | case X86::VMOVAPDrr:       case X86::VMOVUPDrr: | 
|  | case X86::VMOVAPSrr:       case X86::VMOVUPSrr: | 
|  | case X86::VMOVDQArr:       case X86::VMOVDQUrr: | 
|  | case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr: | 
|  | case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr: | 
|  | case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr: | 
|  | case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr: | 
|  | case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr: | 
|  | case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr: | 
|  | case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr: | 
|  | case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr: | 
|  | case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr: | 
|  | case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr: | 
|  | case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr: | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue In = Move.getOperand(0); | 
|  | if (!In.isMachineOpcode() || | 
|  | In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END) | 
|  | continue; | 
|  |  | 
|  | // Producing instruction is another vector instruction. We can drop the | 
|  | // move. | 
|  | CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2)); | 
|  |  | 
|  | // If the move is now dead, delete it. | 
|  | if (Move.getNode()->use_empty()) | 
|  | CurDAG->RemoveDeadNode(Move.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Emit any code that needs to be executed only in the main function. | 
|  | void X86DAGToDAGISel::emitSpecialCodeForMain() { | 
|  | if (Subtarget->isTargetCygMing()) { | 
|  | TargetLowering::ArgListTy Args; | 
|  | auto &DL = CurDAG->getDataLayout(); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(*CurDAG); | 
|  | CLI.setChain(CurDAG->getRoot()) | 
|  | .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()), | 
|  | CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)), | 
|  | std::move(Args)); | 
|  | const TargetLowering &TLI = CurDAG->getTargetLoweringInfo(); | 
|  | std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); | 
|  | CurDAG->setRoot(Result.second); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86DAGToDAGISel::EmitFunctionEntryCode() { | 
|  | // If this is main, emit special code for main. | 
|  | const Function &F = MF->getFunction(); | 
|  | if (F.hasExternalLinkage() && F.getName() == "main") | 
|  | emitSpecialCodeForMain(); | 
|  | } | 
|  |  | 
|  | static bool isDispSafeForFrameIndex(int64_t Val) { | 
|  | // On 64-bit platforms, we can run into an issue where a frame index | 
|  | // includes a displacement that, when added to the explicit displacement, | 
|  | // will overflow the displacement field. Assuming that the frame index | 
|  | // displacement fits into a 31-bit integer  (which is only slightly more | 
|  | // aggressive than the current fundamental assumption that it fits into | 
|  | // a 32-bit integer), a 31-bit disp should always be safe. | 
|  | return isInt<31>(Val); | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset, | 
|  | X86ISelAddressMode &AM) { | 
|  | // If there's no offset to fold, we don't need to do any work. | 
|  | if (Offset == 0) | 
|  | return false; | 
|  |  | 
|  | // Cannot combine ExternalSymbol displacements with integer offsets. | 
|  | if (AM.ES || AM.MCSym) | 
|  | return true; | 
|  |  | 
|  | int64_t Val = AM.Disp + Offset; | 
|  | CodeModel::Model M = TM.getCodeModel(); | 
|  | if (Subtarget->is64Bit()) { | 
|  | if (!X86::isOffsetSuitableForCodeModel(Val, M, | 
|  | AM.hasSymbolicDisplacement())) | 
|  | return true; | 
|  | // In addition to the checks required for a register base, check that | 
|  | // we do not try to use an unsafe Disp with a frame index. | 
|  | if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && | 
|  | !isDispSafeForFrameIndex(Val)) | 
|  | return true; | 
|  | } | 
|  | AM.Disp = Val; | 
|  | return false; | 
|  |  | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ | 
|  | SDValue Address = N->getOperand(1); | 
|  |  | 
|  | // load gs:0 -> GS segment register. | 
|  | // load fs:0 -> FS segment register. | 
|  | // | 
|  | // This optimization is valid because the GNU TLS model defines that | 
|  | // gs:0 (or fs:0 on X86-64) contains its own address. | 
|  | // For more information see http://people.redhat.com/drepper/tls.pdf | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) | 
|  | if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr && | 
|  | (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() || | 
|  | Subtarget->isTargetFuchsia())) | 
|  | switch (N->getPointerInfo().getAddrSpace()) { | 
|  | case 256: | 
|  | AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); | 
|  | return false; | 
|  | case 257: | 
|  | AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); | 
|  | return false; | 
|  | // Address space 258 is not handled here, because it is not used to | 
|  | // address TLS areas. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing | 
|  | /// mode. These wrap things that will resolve down into a symbol reference. | 
|  | /// If no match is possible, this returns true, otherwise it returns false. | 
|  | bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) { | 
|  | // If the addressing mode already has a symbol as the displacement, we can | 
|  | // never match another symbol. | 
|  | if (AM.hasSymbolicDisplacement()) | 
|  | return true; | 
|  |  | 
|  | bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP; | 
|  |  | 
|  | // We can't use an addressing mode in the 64-bit large code model. In the | 
|  | // medium code model, we use can use an mode when RIP wrappers are present. | 
|  | // That signifies access to globals that are known to be "near", such as the | 
|  | // GOT itself. | 
|  | CodeModel::Model M = TM.getCodeModel(); | 
|  | if (Subtarget->is64Bit() && | 
|  | (M == CodeModel::Large || (M == CodeModel::Medium && !IsRIPRel))) | 
|  | return true; | 
|  |  | 
|  | // Base and index reg must be 0 in order to use %rip as base. | 
|  | if (IsRIPRel && AM.hasBaseOrIndexReg()) | 
|  | return true; | 
|  |  | 
|  | // Make a local copy in case we can't do this fold. | 
|  | X86ISelAddressMode Backup = AM; | 
|  |  | 
|  | int64_t Offset = 0; | 
|  | SDValue N0 = N.getOperand(0); | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { | 
|  | AM.GV = G->getGlobal(); | 
|  | AM.SymbolFlags = G->getTargetFlags(); | 
|  | Offset = G->getOffset(); | 
|  | } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { | 
|  | AM.CP = CP->getConstVal(); | 
|  | AM.Align = CP->getAlignment(); | 
|  | AM.SymbolFlags = CP->getTargetFlags(); | 
|  | Offset = CP->getOffset(); | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { | 
|  | AM.ES = S->getSymbol(); | 
|  | AM.SymbolFlags = S->getTargetFlags(); | 
|  | } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) { | 
|  | AM.MCSym = S->getMCSymbol(); | 
|  | } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { | 
|  | AM.JT = J->getIndex(); | 
|  | AM.SymbolFlags = J->getTargetFlags(); | 
|  | } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { | 
|  | AM.BlockAddr = BA->getBlockAddress(); | 
|  | AM.SymbolFlags = BA->getTargetFlags(); | 
|  | Offset = BA->getOffset(); | 
|  | } else | 
|  | llvm_unreachable("Unhandled symbol reference node."); | 
|  |  | 
|  | if (foldOffsetIntoAddress(Offset, AM)) { | 
|  | AM = Backup; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsRIPRel) | 
|  | AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); | 
|  |  | 
|  | // Commit the changes now that we know this fold is safe. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Add the specified node to the specified addressing mode, returning true if | 
|  | /// it cannot be done. This just pattern matches for the addressing mode. | 
|  | bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) { | 
|  | if (matchAddressRecursively(N, AM, 0)) | 
|  | return true; | 
|  |  | 
|  | // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has | 
|  | // a smaller encoding and avoids a scaled-index. | 
|  | if (AM.Scale == 2 && | 
|  | AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() == nullptr) { | 
|  | AM.Base_Reg = AM.IndexReg; | 
|  | AM.Scale = 1; | 
|  | } | 
|  |  | 
|  | // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, | 
|  | // because it has a smaller encoding. | 
|  | // TODO: Which other code models can use this? | 
|  | if (TM.getCodeModel() == CodeModel::Small && | 
|  | Subtarget->is64Bit() && | 
|  | AM.Scale == 1 && | 
|  | AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() == nullptr && | 
|  | AM.IndexReg.getNode() == nullptr && | 
|  | AM.SymbolFlags == X86II::MO_NO_FLAG && | 
|  | AM.hasSymbolicDisplacement()) | 
|  | AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::matchAdd(SDValue N, X86ISelAddressMode &AM, | 
|  | unsigned Depth) { | 
|  | // Add an artificial use to this node so that we can keep track of | 
|  | // it if it gets CSE'd with a different node. | 
|  | HandleSDNode Handle(N); | 
|  |  | 
|  | X86ISelAddressMode Backup = AM; | 
|  | if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) && | 
|  | !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) | 
|  | return false; | 
|  | AM = Backup; | 
|  |  | 
|  | // Try again after commuting the operands. | 
|  | if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) && | 
|  | !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) | 
|  | return false; | 
|  | AM = Backup; | 
|  |  | 
|  | // If we couldn't fold both operands into the address at the same time, | 
|  | // see if we can just put each operand into a register and fold at least | 
|  | // the add. | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | !AM.Base_Reg.getNode() && | 
|  | !AM.IndexReg.getNode()) { | 
|  | N = Handle.getValue(); | 
|  | AM.Base_Reg = N.getOperand(0); | 
|  | AM.IndexReg = N.getOperand(1); | 
|  | AM.Scale = 1; | 
|  | return false; | 
|  | } | 
|  | N = Handle.getValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Insert a node into the DAG at least before the Pos node's position. This | 
|  | // will reposition the node as needed, and will assign it a node ID that is <= | 
|  | // the Pos node's ID. Note that this does *not* preserve the uniqueness of node | 
|  | // IDs! The selection DAG must no longer depend on their uniqueness when this | 
|  | // is used. | 
|  | static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { | 
|  | if (N->getNodeId() == -1 || | 
|  | (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) > | 
|  | SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) { | 
|  | DAG.RepositionNode(Pos->getIterator(), N.getNode()); | 
|  | // Mark Node as invalid for pruning as after this it may be a successor to a | 
|  | // selected node but otherwise be in the same position of Pos. | 
|  | // Conservatively mark it with the same -abs(Id) to assure node id | 
|  | // invariant is preserved. | 
|  | N->setNodeId(Pos->getNodeId()); | 
|  | SelectionDAGISel::InvalidateNodeId(N.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if | 
|  | // safe. This allows us to convert the shift and and into an h-register | 
|  | // extract and a scaled index. Returns false if the simplification is | 
|  | // performed. | 
|  | static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, | 
|  | uint64_t Mask, | 
|  | SDValue Shift, SDValue X, | 
|  | X86ISelAddressMode &AM) { | 
|  | if (Shift.getOpcode() != ISD::SRL || | 
|  | !isa<ConstantSDNode>(Shift.getOperand(1)) || | 
|  | !Shift.hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | int ScaleLog = 8 - Shift.getConstantOperandVal(1); | 
|  | if (ScaleLog <= 0 || ScaleLog >= 4 || | 
|  | Mask != (0xffu << ScaleLog)) | 
|  | return true; | 
|  |  | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | SDLoc DL(N); | 
|  | SDValue Eight = DAG.getConstant(8, DL, MVT::i8); | 
|  | SDValue NewMask = DAG.getConstant(0xff, DL, VT); | 
|  | SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); | 
|  | SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); | 
|  | SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8); | 
|  | SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. We must do this in | 
|  | // a valid topological ordering as nothing is going to go back and re-sort | 
|  | // these nodes. We continually insert before 'N' in sequence as this is | 
|  | // essentially a pre-flattened and pre-sorted sequence of nodes. There is no | 
|  | // hierarchy left to express. | 
|  | insertDAGNode(DAG, N, Eight); | 
|  | insertDAGNode(DAG, N, Srl); | 
|  | insertDAGNode(DAG, N, NewMask); | 
|  | insertDAGNode(DAG, N, And); | 
|  | insertDAGNode(DAG, N, ShlCount); | 
|  | insertDAGNode(DAG, N, Shl); | 
|  | DAG.ReplaceAllUsesWith(N, Shl); | 
|  | AM.IndexReg = And; | 
|  | AM.Scale = (1 << ScaleLog); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this | 
|  | // allows us to fold the shift into this addressing mode. Returns false if the | 
|  | // transform succeeded. | 
|  | static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, | 
|  | uint64_t Mask, | 
|  | SDValue Shift, SDValue X, | 
|  | X86ISelAddressMode &AM) { | 
|  | if (Shift.getOpcode() != ISD::SHL || | 
|  | !isa<ConstantSDNode>(Shift.getOperand(1))) | 
|  | return true; | 
|  |  | 
|  | // Not likely to be profitable if either the AND or SHIFT node has more | 
|  | // than one use (unless all uses are for address computation). Besides, | 
|  | // isel mechanism requires their node ids to be reused. | 
|  | if (!N.hasOneUse() || !Shift.hasOneUse()) | 
|  | return true; | 
|  |  | 
|  | // Verify that the shift amount is something we can fold. | 
|  | unsigned ShiftAmt = Shift.getConstantOperandVal(1); | 
|  | if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) | 
|  | return true; | 
|  |  | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | SDLoc DL(N); | 
|  | SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT); | 
|  | SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); | 
|  | SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. We must do this in | 
|  | // a valid topological ordering as nothing is going to go back and re-sort | 
|  | // these nodes. We continually insert before 'N' in sequence as this is | 
|  | // essentially a pre-flattened and pre-sorted sequence of nodes. There is no | 
|  | // hierarchy left to express. | 
|  | insertDAGNode(DAG, N, NewMask); | 
|  | insertDAGNode(DAG, N, NewAnd); | 
|  | insertDAGNode(DAG, N, NewShift); | 
|  | DAG.ReplaceAllUsesWith(N, NewShift); | 
|  |  | 
|  | AM.Scale = 1 << ShiftAmt; | 
|  | AM.IndexReg = NewAnd; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Implement some heroics to detect shifts of masked values where the mask can | 
|  | // be replaced by extending the shift and undoing that in the addressing mode | 
|  | // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and | 
|  | // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in | 
|  | // the addressing mode. This results in code such as: | 
|  | // | 
|  | //   int f(short *y, int *lookup_table) { | 
|  | //     ... | 
|  | //     return *y + lookup_table[*y >> 11]; | 
|  | //   } | 
|  | // | 
|  | // Turning into: | 
|  | //   movzwl (%rdi), %eax | 
|  | //   movl %eax, %ecx | 
|  | //   shrl $11, %ecx | 
|  | //   addl (%rsi,%rcx,4), %eax | 
|  | // | 
|  | // Instead of: | 
|  | //   movzwl (%rdi), %eax | 
|  | //   movl %eax, %ecx | 
|  | //   shrl $9, %ecx | 
|  | //   andl $124, %rcx | 
|  | //   addl (%rsi,%rcx), %eax | 
|  | // | 
|  | // Note that this function assumes the mask is provided as a mask *after* the | 
|  | // value is shifted. The input chain may or may not match that, but computing | 
|  | // such a mask is trivial. | 
|  | static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, | 
|  | uint64_t Mask, | 
|  | SDValue Shift, SDValue X, | 
|  | X86ISelAddressMode &AM) { | 
|  | if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || | 
|  | !isa<ConstantSDNode>(Shift.getOperand(1))) | 
|  | return true; | 
|  |  | 
|  | unsigned ShiftAmt = Shift.getConstantOperandVal(1); | 
|  | unsigned MaskLZ = countLeadingZeros(Mask); | 
|  | unsigned MaskTZ = countTrailingZeros(Mask); | 
|  |  | 
|  | // The amount of shift we're trying to fit into the addressing mode is taken | 
|  | // from the trailing zeros of the mask. | 
|  | unsigned AMShiftAmt = MaskTZ; | 
|  |  | 
|  | // There is nothing we can do here unless the mask is removing some bits. | 
|  | // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. | 
|  | if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; | 
|  |  | 
|  | // We also need to ensure that mask is a continuous run of bits. | 
|  | if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; | 
|  |  | 
|  | // Scale the leading zero count down based on the actual size of the value. | 
|  | // Also scale it down based on the size of the shift. | 
|  | unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt; | 
|  | if (MaskLZ < ScaleDown) | 
|  | return true; | 
|  | MaskLZ -= ScaleDown; | 
|  |  | 
|  | // The final check is to ensure that any masked out high bits of X are | 
|  | // already known to be zero. Otherwise, the mask has a semantic impact | 
|  | // other than masking out a couple of low bits. Unfortunately, because of | 
|  | // the mask, zero extensions will be removed from operands in some cases. | 
|  | // This code works extra hard to look through extensions because we can | 
|  | // replace them with zero extensions cheaply if necessary. | 
|  | bool ReplacingAnyExtend = false; | 
|  | if (X.getOpcode() == ISD::ANY_EXTEND) { | 
|  | unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() - | 
|  | X.getOperand(0).getSimpleValueType().getSizeInBits(); | 
|  | // Assume that we'll replace the any-extend with a zero-extend, and | 
|  | // narrow the search to the extended value. | 
|  | X = X.getOperand(0); | 
|  | MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; | 
|  | ReplacingAnyExtend = true; | 
|  | } | 
|  | APInt MaskedHighBits = | 
|  | APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ); | 
|  | KnownBits Known; | 
|  | DAG.computeKnownBits(X, Known); | 
|  | if (MaskedHighBits != Known.Zero) return true; | 
|  |  | 
|  | // We've identified a pattern that can be transformed into a single shift | 
|  | // and an addressing mode. Make it so. | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | if (ReplacingAnyExtend) { | 
|  | assert(X.getValueType() != VT); | 
|  | // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. | 
|  | SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X); | 
|  | insertDAGNode(DAG, N, NewX); | 
|  | X = NewX; | 
|  | } | 
|  | SDLoc DL(N); | 
|  | SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8); | 
|  | SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); | 
|  | SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8); | 
|  | SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. We must do this in | 
|  | // a valid topological ordering as nothing is going to go back and re-sort | 
|  | // these nodes. We continually insert before 'N' in sequence as this is | 
|  | // essentially a pre-flattened and pre-sorted sequence of nodes. There is no | 
|  | // hierarchy left to express. | 
|  | insertDAGNode(DAG, N, NewSRLAmt); | 
|  | insertDAGNode(DAG, N, NewSRL); | 
|  | insertDAGNode(DAG, N, NewSHLAmt); | 
|  | insertDAGNode(DAG, N, NewSHL); | 
|  | DAG.ReplaceAllUsesWith(N, NewSHL); | 
|  |  | 
|  | AM.Scale = 1 << AMShiftAmt; | 
|  | AM.IndexReg = NewSRL; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, | 
|  | unsigned Depth) { | 
|  | SDLoc dl(N); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "MatchAddress: "; | 
|  | AM.dump(CurDAG); | 
|  | }); | 
|  | // Limit recursion. | 
|  | if (Depth > 5) | 
|  | return matchAddressBase(N, AM); | 
|  |  | 
|  | // If this is already a %rip relative address, we can only merge immediates | 
|  | // into it.  Instead of handling this in every case, we handle it here. | 
|  | // RIP relative addressing: %rip + 32-bit displacement! | 
|  | if (AM.isRIPRelative()) { | 
|  | // FIXME: JumpTable and ExternalSymbol address currently don't like | 
|  | // displacements.  It isn't very important, but this should be fixed for | 
|  | // consistency. | 
|  | if (!(AM.ES || AM.MCSym) && AM.JT != -1) | 
|  | return true; | 
|  |  | 
|  | if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) | 
|  | if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::LOCAL_RECOVER: { | 
|  | if (!AM.hasSymbolicDisplacement() && AM.Disp == 0) | 
|  | if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) { | 
|  | // Use the symbol and don't prefix it. | 
|  | AM.MCSym = ESNode->getMCSymbol(); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::Constant: { | 
|  | uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); | 
|  | if (!foldOffsetIntoAddress(Val, AM)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86ISD::Wrapper: | 
|  | case X86ISD::WrapperRIP: | 
|  | if (!matchWrapper(N, AM)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ISD::LOAD: | 
|  | if (!matchLoadInAddress(cast<LoadSDNode>(N), AM)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ISD::FrameIndex: | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() == nullptr && | 
|  | (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { | 
|  | AM.BaseType = X86ISelAddressMode::FrameIndexBase; | 
|  | AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SHL: | 
|  | if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) | 
|  | break; | 
|  |  | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | unsigned Val = CN->getZExtValue(); | 
|  | // Note that we handle x<<1 as (,x,2) rather than (x,x) here so | 
|  | // that the base operand remains free for further matching. If | 
|  | // the base doesn't end up getting used, a post-processing step | 
|  | // in MatchAddress turns (,x,2) into (x,x), which is cheaper. | 
|  | if (Val == 1 || Val == 2 || Val == 3) { | 
|  | AM.Scale = 1 << Val; | 
|  | SDValue ShVal = N.getOperand(0); | 
|  |  | 
|  | // Okay, we know that we have a scale by now.  However, if the scaled | 
|  | // value is an add of something and a constant, we can fold the | 
|  | // constant into the disp field here. | 
|  | if (CurDAG->isBaseWithConstantOffset(ShVal)) { | 
|  | AM.IndexReg = ShVal.getOperand(0); | 
|  | ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1)); | 
|  | uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; | 
|  | if (!foldOffsetIntoAddress(Disp, AM)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AM.IndexReg = ShVal; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SRL: { | 
|  | // Scale must not be used already. | 
|  | if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; | 
|  |  | 
|  | SDValue And = N.getOperand(0); | 
|  | if (And.getOpcode() != ISD::AND) break; | 
|  | SDValue X = And.getOperand(0); | 
|  |  | 
|  | // We only handle up to 64-bit values here as those are what matter for | 
|  | // addressing mode optimizations. | 
|  | if (X.getSimpleValueType().getSizeInBits() > 64) break; | 
|  |  | 
|  | // The mask used for the transform is expected to be post-shift, but we | 
|  | // found the shift first so just apply the shift to the mask before passing | 
|  | // it down. | 
|  | if (!isa<ConstantSDNode>(N.getOperand(1)) || | 
|  | !isa<ConstantSDNode>(And.getOperand(1))) | 
|  | break; | 
|  | uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); | 
|  |  | 
|  | // Try to fold the mask and shift into the scale, and return false if we | 
|  | // succeed. | 
|  | if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: | 
|  | // A mul_lohi where we need the low part can be folded as a plain multiply. | 
|  | if (N.getResNo() != 0) break; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::MUL: | 
|  | case X86ISD::MUL_IMM: | 
|  | // X*[3,5,9] -> X+X*[2,4,8] | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base_Reg.getNode() == nullptr && | 
|  | AM.IndexReg.getNode() == nullptr) { | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) | 
|  | if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || | 
|  | CN->getZExtValue() == 9) { | 
|  | AM.Scale = unsigned(CN->getZExtValue())-1; | 
|  |  | 
|  | SDValue MulVal = N.getOperand(0); | 
|  | SDValue Reg; | 
|  |  | 
|  | // Okay, we know that we have a scale by now.  However, if the scaled | 
|  | // value is an add of something and a constant, we can fold the | 
|  | // constant into the disp field here. | 
|  | if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && | 
|  | isa<ConstantSDNode>(MulVal.getOperand(1))) { | 
|  | Reg = MulVal.getOperand(0); | 
|  | ConstantSDNode *AddVal = | 
|  | cast<ConstantSDNode>(MulVal.getOperand(1)); | 
|  | uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); | 
|  | if (foldOffsetIntoAddress(Disp, AM)) | 
|  | Reg = N.getOperand(0); | 
|  | } else { | 
|  | Reg = N.getOperand(0); | 
|  | } | 
|  |  | 
|  | AM.IndexReg = AM.Base_Reg = Reg; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SUB: { | 
|  | // Given A-B, if A can be completely folded into the address and | 
|  | // the index field with the index field unused, use -B as the index. | 
|  | // This is a win if a has multiple parts that can be folded into | 
|  | // the address. Also, this saves a mov if the base register has | 
|  | // other uses, since it avoids a two-address sub instruction, however | 
|  | // it costs an additional mov if the index register has other uses. | 
|  |  | 
|  | // Add an artificial use to this node so that we can keep track of | 
|  | // it if it gets CSE'd with a different node. | 
|  | HandleSDNode Handle(N); | 
|  |  | 
|  | // Test if the LHS of the sub can be folded. | 
|  | X86ISelAddressMode Backup = AM; | 
|  | if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  | // Test if the index field is free for use. | 
|  | if (AM.IndexReg.getNode() || AM.isRIPRelative()) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  |  | 
|  | int Cost = 0; | 
|  | SDValue RHS = Handle.getValue().getOperand(1); | 
|  | // If the RHS involves a register with multiple uses, this | 
|  | // transformation incurs an extra mov, due to the neg instruction | 
|  | // clobbering its operand. | 
|  | if (!RHS.getNode()->hasOneUse() || | 
|  | RHS.getNode()->getOpcode() == ISD::CopyFromReg || | 
|  | RHS.getNode()->getOpcode() == ISD::TRUNCATE || | 
|  | RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || | 
|  | (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && | 
|  | RHS.getOperand(0).getValueType() == MVT::i32)) | 
|  | ++Cost; | 
|  | // If the base is a register with multiple uses, this | 
|  | // transformation may save a mov. | 
|  | // FIXME: Don't rely on DELETED_NODEs. | 
|  | if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() && | 
|  | AM.Base_Reg->getOpcode() != ISD::DELETED_NODE && | 
|  | !AM.Base_Reg.getNode()->hasOneUse()) || | 
|  | AM.BaseType == X86ISelAddressMode::FrameIndexBase) | 
|  | --Cost; | 
|  | // If the folded LHS was interesting, this transformation saves | 
|  | // address arithmetic. | 
|  | if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + | 
|  | ((AM.Disp != 0) && (Backup.Disp == 0)) + | 
|  | (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) | 
|  | --Cost; | 
|  | // If it doesn't look like it may be an overall win, don't do it. | 
|  | if (Cost >= 0) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Ok, the transformation is legal and appears profitable. Go for it. | 
|  | SDValue Zero = CurDAG->getConstant(0, dl, N.getValueType()); | 
|  | SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); | 
|  | AM.IndexReg = Neg; | 
|  | AM.Scale = 1; | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. | 
|  | insertDAGNode(*CurDAG, Handle.getValue(), Zero); | 
|  | insertDAGNode(*CurDAG, Handle.getValue(), Neg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ISD::ADD: | 
|  | if (!matchAdd(N, AM, Depth)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ISD::OR: | 
|  | // We want to look through a transform in InstCombine and DAGCombiner that | 
|  | // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'. | 
|  | // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3)) | 
|  | // An 'lea' can then be used to match the shift (multiply) and add: | 
|  | // and $1, %esi | 
|  | // lea (%rsi, %rdi, 8), %rax | 
|  | if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) && | 
|  | !matchAdd(N, AM, Depth)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ISD::AND: { | 
|  | // Perform some heroic transforms on an and of a constant-count shift | 
|  | // with a constant to enable use of the scaled offset field. | 
|  |  | 
|  | // Scale must not be used already. | 
|  | if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; | 
|  |  | 
|  | SDValue Shift = N.getOperand(0); | 
|  | if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; | 
|  | SDValue X = Shift.getOperand(0); | 
|  |  | 
|  | // We only handle up to 64-bit values here as those are what matter for | 
|  | // addressing mode optimizations. | 
|  | if (X.getSimpleValueType().getSizeInBits() > 64) break; | 
|  |  | 
|  | if (!isa<ConstantSDNode>(N.getOperand(1))) | 
|  | break; | 
|  | uint64_t Mask = N.getConstantOperandVal(1); | 
|  |  | 
|  | // Try to fold the mask and shift into an extract and scale. | 
|  | if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) | 
|  | return false; | 
|  |  | 
|  | // Try to fold the mask and shift directly into the scale. | 
|  | if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) | 
|  | return false; | 
|  |  | 
|  | // Try to swap the mask and shift to place shifts which can be done as | 
|  | // a scale on the outside of the mask. | 
|  | if (!foldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return matchAddressBase(N, AM); | 
|  | } | 
|  |  | 
|  | /// Helper for MatchAddress. Add the specified node to the | 
|  | /// specified addressing mode without any further recursion. | 
|  | bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) { | 
|  | // Is the base register already occupied? | 
|  | if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { | 
|  | // If so, check to see if the scale index register is set. | 
|  | if (!AM.IndexReg.getNode()) { | 
|  | AM.IndexReg = N; | 
|  | AM.Scale = 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, we cannot select it. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Default, generate it as a register. | 
|  | AM.BaseType = X86ISelAddressMode::RegBase; | 
|  | AM.Base_Reg = N; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Helper for selectVectorAddr. Handles things that can be folded into a | 
|  | /// gather scatter address. The index register and scale should have already | 
|  | /// been handled. | 
|  | bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) { | 
|  | // TODO: Support other operations. | 
|  | switch (N.getOpcode()) { | 
|  | case ISD::Constant: { | 
|  | uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); | 
|  | if (!foldOffsetIntoAddress(Val, AM)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | case X86ISD::Wrapper: | 
|  | if (!matchWrapper(N, AM)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return matchAddressBase(N, AM); | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | X86ISelAddressMode AM; | 
|  | auto *Mgs = cast<X86MaskedGatherScatterSDNode>(Parent); | 
|  | AM.IndexReg = Mgs->getIndex(); | 
|  | AM.Scale = cast<ConstantSDNode>(Mgs->getScale())->getZExtValue(); | 
|  |  | 
|  | unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); | 
|  | // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS. | 
|  | if (AddrSpace == 256) | 
|  | AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); | 
|  | if (AddrSpace == 257) | 
|  | AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); | 
|  | if (AddrSpace == 258) | 
|  | AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); | 
|  |  | 
|  | // Try to match into the base and displacement fields. | 
|  | if (matchVectorAddress(N, AM)) | 
|  | return false; | 
|  |  | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase) { | 
|  | if (!AM.Base_Reg.getNode()) | 
|  | AM.Base_Reg = CurDAG->getRegister(0, VT); | 
|  | } | 
|  |  | 
|  | getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns true if it is able to pattern match an addressing mode. | 
|  | /// It returns the operands which make up the maximal addressing mode it can | 
|  | /// match by reference. | 
|  | /// | 
|  | /// Parent is the parent node of the addr operand that is being matched.  It | 
|  | /// is always a load, store, atomic node, or null.  It is only null when | 
|  | /// checking memory operands for inline asm nodes. | 
|  | bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | X86ISelAddressMode AM; | 
|  |  | 
|  | if (Parent && | 
|  | // This list of opcodes are all the nodes that have an "addr:$ptr" operand | 
|  | // that are not a MemSDNode, and thus don't have proper addrspace info. | 
|  | Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme | 
|  | Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores | 
|  | Parent->getOpcode() != X86ISD::TLSCALL && // Fixme | 
|  | Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp | 
|  | Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp | 
|  | unsigned AddrSpace = | 
|  | cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); | 
|  | // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS. | 
|  | if (AddrSpace == 256) | 
|  | AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); | 
|  | if (AddrSpace == 257) | 
|  | AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); | 
|  | if (AddrSpace == 258) | 
|  | AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); | 
|  | } | 
|  |  | 
|  | if (matchAddress(N, AM)) | 
|  | return false; | 
|  |  | 
|  | MVT VT = N.getSimpleValueType(); | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase) { | 
|  | if (!AM.Base_Reg.getNode()) | 
|  | AM.Base_Reg = CurDAG->getRegister(0, VT); | 
|  | } | 
|  |  | 
|  | if (!AM.IndexReg.getNode()) | 
|  | AM.IndexReg = CurDAG->getRegister(0, VT); | 
|  |  | 
|  | getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We can only fold a load if all nodes between it and the root node have a | 
|  | // single use. If there are additional uses, we could end up duplicating the | 
|  | // load. | 
|  | static bool hasSingleUsesFromRoot(SDNode *Root, SDNode *User) { | 
|  | while (User != Root) { | 
|  | if (!User->hasOneUse()) | 
|  | return false; | 
|  | User = *User->use_begin(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Match a scalar SSE load. In particular, we want to match a load whose top | 
|  | /// elements are either undef or zeros. The load flavor is derived from the | 
|  | /// type of N, which is either v4f32 or v2f64. | 
|  | /// | 
|  | /// We also return: | 
|  | ///   PatternChainNode: this is the matched node that has a chain input and | 
|  | ///   output. | 
|  | bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, SDNode *Parent, | 
|  | SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment, | 
|  | SDValue &PatternNodeWithChain) { | 
|  | if (!hasSingleUsesFromRoot(Root, Parent)) | 
|  | return false; | 
|  |  | 
|  | // We can allow a full vector load here since narrowing a load is ok. | 
|  | if (ISD::isNON_EXTLoad(N.getNode())) { | 
|  | PatternNodeWithChain = N; | 
|  | if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && | 
|  | IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); | 
|  | return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, | 
|  | Segment); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can also match the special zero extended load opcode. | 
|  | if (N.getOpcode() == X86ISD::VZEXT_LOAD) { | 
|  | PatternNodeWithChain = N; | 
|  | if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && | 
|  | IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) { | 
|  | auto *MI = cast<MemIntrinsicSDNode>(PatternNodeWithChain); | 
|  | return selectAddr(MI, MI->getBasePtr(), Base, Scale, Index, Disp, | 
|  | Segment); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Need to make sure that the SCALAR_TO_VECTOR and load are both only used | 
|  | // once. Otherwise the load might get duplicated and the chain output of the | 
|  | // duplicate load will not be observed by all dependencies. | 
|  | if (N.getOpcode() == ISD::SCALAR_TO_VECTOR && N.getNode()->hasOneUse()) { | 
|  | PatternNodeWithChain = N.getOperand(0); | 
|  | if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && | 
|  | IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && | 
|  | IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); | 
|  | return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, | 
|  | Segment); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also handle the case where we explicitly require zeros in the top | 
|  | // elements.  This is a vector shuffle from the zero vector. | 
|  | if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && | 
|  | // Check to see if the top elements are all zeros (or bitcast of zeros). | 
|  | N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | N.getOperand(0).getNode()->hasOneUse()) { | 
|  | PatternNodeWithChain = N.getOperand(0).getOperand(0); | 
|  | if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && | 
|  | IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && | 
|  | IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) { | 
|  | // Okay, this is a zero extending load.  Fold it. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); | 
|  | return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, | 
|  | Segment); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) { | 
|  | if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | uint64_t ImmVal = CN->getZExtValue(); | 
|  | if (!isUInt<32>(ImmVal)) | 
|  | return false; | 
|  |  | 
|  | Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // In static codegen with small code model, we can get the address of a label | 
|  | // into a register with 'movl' | 
|  | if (N->getOpcode() != X86ISD::Wrapper) | 
|  | return false; | 
|  |  | 
|  | N = N.getOperand(0); | 
|  |  | 
|  | // At least GNU as does not accept 'movl' for TPOFF relocations. | 
|  | // FIXME: We could use 'movl' when we know we are targeting MC. | 
|  | if (N->getOpcode() == ISD::TargetGlobalTLSAddress) | 
|  | return false; | 
|  |  | 
|  | Imm = N; | 
|  | if (N->getOpcode() != ISD::TargetGlobalAddress) | 
|  | return TM.getCodeModel() == CodeModel::Small; | 
|  |  | 
|  | Optional<ConstantRange> CR = | 
|  | cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange(); | 
|  | if (!CR) | 
|  | return TM.getCodeModel() == CodeModel::Small; | 
|  |  | 
|  | return CR->getUnsignedMax().ult(1ull << 32); | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | // Save the debug loc before calling selectLEAAddr, in case it invalidates N. | 
|  | SDLoc DL(N); | 
|  |  | 
|  | if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment)) | 
|  | return false; | 
|  |  | 
|  | RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base); | 
|  | if (RN && RN->getReg() == 0) | 
|  | Base = CurDAG->getRegister(0, MVT::i64); | 
|  | else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) { | 
|  | // Base could already be %rip, particularly in the x32 ABI. | 
|  | Base = SDValue(CurDAG->getMachineNode( | 
|  | TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, | 
|  | CurDAG->getTargetConstant(0, DL, MVT::i64), | 
|  | Base, | 
|  | CurDAG->getTargetConstant(X86::sub_32bit, DL, MVT::i32)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | RN = dyn_cast<RegisterSDNode>(Index); | 
|  | if (RN && RN->getReg() == 0) | 
|  | Index = CurDAG->getRegister(0, MVT::i64); | 
|  | else { | 
|  | assert(Index.getValueType() == MVT::i32 && | 
|  | "Expect to be extending 32-bit registers for use in LEA"); | 
|  | Index = SDValue(CurDAG->getMachineNode( | 
|  | TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, | 
|  | CurDAG->getTargetConstant(0, DL, MVT::i64), | 
|  | Index, | 
|  | CurDAG->getTargetConstant(X86::sub_32bit, DL, | 
|  | MVT::i32)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Calls SelectAddr and determines if the maximal addressing | 
|  | /// mode it matches can be cost effectively emitted as an LEA instruction. | 
|  | bool X86DAGToDAGISel::selectLEAAddr(SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment) { | 
|  | X86ISelAddressMode AM; | 
|  |  | 
|  | // Save the DL and VT before calling matchAddress, it can invalidate N. | 
|  | SDLoc DL(N); | 
|  | MVT VT = N.getSimpleValueType(); | 
|  |  | 
|  | // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support | 
|  | // segments. | 
|  | SDValue Copy = AM.Segment; | 
|  | SDValue T = CurDAG->getRegister(0, MVT::i32); | 
|  | AM.Segment = T; | 
|  | if (matchAddress(N, AM)) | 
|  | return false; | 
|  | assert (T == AM.Segment); | 
|  | AM.Segment = Copy; | 
|  |  | 
|  | unsigned Complexity = 0; | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase) | 
|  | if (AM.Base_Reg.getNode()) | 
|  | Complexity = 1; | 
|  | else | 
|  | AM.Base_Reg = CurDAG->getRegister(0, VT); | 
|  | else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) | 
|  | Complexity = 4; | 
|  |  | 
|  | if (AM.IndexReg.getNode()) | 
|  | Complexity++; | 
|  | else | 
|  | AM.IndexReg = CurDAG->getRegister(0, VT); | 
|  |  | 
|  | // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with | 
|  | // a simple shift. | 
|  | if (AM.Scale > 1) | 
|  | Complexity++; | 
|  |  | 
|  | // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA | 
|  | // to a LEA. This is determined with some experimentation but is by no means | 
|  | // optimal (especially for code size consideration). LEA is nice because of | 
|  | // its three-address nature. Tweak the cost function again when we can run | 
|  | // convertToThreeAddress() at register allocation time. | 
|  | if (AM.hasSymbolicDisplacement()) { | 
|  | // For X86-64, always use LEA to materialize RIP-relative addresses. | 
|  | if (Subtarget->is64Bit()) | 
|  | Complexity = 4; | 
|  | else | 
|  | Complexity += 2; | 
|  | } | 
|  |  | 
|  | if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) | 
|  | Complexity++; | 
|  |  | 
|  | // If it isn't worth using an LEA, reject it. | 
|  | if (Complexity <= 2) | 
|  | return false; | 
|  |  | 
|  | getAddressOperands(AM, DL, Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This is only run on TargetGlobalTLSAddress nodes. | 
|  | bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); | 
|  | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); | 
|  |  | 
|  | X86ISelAddressMode AM; | 
|  | AM.GV = GA->getGlobal(); | 
|  | AM.Disp += GA->getOffset(); | 
|  | AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); | 
|  | AM.SymbolFlags = GA->getTargetFlags(); | 
|  |  | 
|  | if (N.getValueType() == MVT::i32) { | 
|  | AM.Scale = 1; | 
|  | AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); | 
|  | } else { | 
|  | AM.IndexReg = CurDAG->getRegister(0, MVT::i64); | 
|  | } | 
|  |  | 
|  | getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) { | 
|  | if (auto *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | Op = CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(CN), | 
|  | N.getValueType()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Keep track of the original value type and whether this value was | 
|  | // truncated. If we see a truncation from pointer type to VT that truncates | 
|  | // bits that are known to be zero, we can use a narrow reference. | 
|  | EVT VT = N.getValueType(); | 
|  | bool WasTruncated = false; | 
|  | if (N.getOpcode() == ISD::TRUNCATE) { | 
|  | WasTruncated = true; | 
|  | N = N.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() != X86ISD::Wrapper) | 
|  | return false; | 
|  |  | 
|  | // We can only use non-GlobalValues as immediates if they were not truncated, | 
|  | // as we do not have any range information. If we have a GlobalValue and the | 
|  | // address was not truncated, we can select it as an operand directly. | 
|  | unsigned Opc = N.getOperand(0)->getOpcode(); | 
|  | if (Opc != ISD::TargetGlobalAddress || !WasTruncated) { | 
|  | Op = N.getOperand(0); | 
|  | // We can only select the operand directly if we didn't have to look past a | 
|  | // truncate. | 
|  | return !WasTruncated; | 
|  | } | 
|  |  | 
|  | // Check that the global's range fits into VT. | 
|  | auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0)); | 
|  | Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange(); | 
|  | if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits())) | 
|  | return false; | 
|  |  | 
|  | // Okay, we can use a narrow reference. | 
|  | Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT, | 
|  | GA->getOffset(), GA->getTargetFlags()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment) { | 
|  | if (!ISD::isNON_EXTLoad(N.getNode()) || | 
|  | !IsProfitableToFold(N, P, Root) || | 
|  | !IsLegalToFold(N, P, Root, OptLevel)) | 
|  | return false; | 
|  |  | 
|  | return selectAddr(N.getNode(), | 
|  | N.getOperand(1), Base, Scale, Index, Disp, Segment); | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment) { | 
|  | if (!ISD::isNON_EXTLoad(N.getNode()) || | 
|  | useNonTemporalLoad(cast<LoadSDNode>(N)) || | 
|  | !IsProfitableToFold(N, P, Root) || | 
|  | !IsLegalToFold(N, P, Root, OptLevel)) | 
|  | return false; | 
|  |  | 
|  | return selectAddr(N.getNode(), | 
|  | N.getOperand(1), Base, Scale, Index, Disp, Segment); | 
|  | } | 
|  |  | 
|  | /// Return an SDNode that returns the value of the global base register. | 
|  | /// Output instructions required to initialize the global base register, | 
|  | /// if necessary. | 
|  | SDNode *X86DAGToDAGISel::getGlobalBaseReg() { | 
|  | unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); | 
|  | auto &DL = MF->getDataLayout(); | 
|  | return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode(); | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const { | 
|  | if (N->getOpcode() == ISD::TRUNCATE) | 
|  | N = N->getOperand(0).getNode(); | 
|  | if (N->getOpcode() != X86ISD::Wrapper) | 
|  | return false; | 
|  |  | 
|  | auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0)); | 
|  | if (!GA) | 
|  | return false; | 
|  |  | 
|  | Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange(); | 
|  | return CR && CR->getSignedMin().sge(-1ull << Width) && | 
|  | CR->getSignedMax().slt(1ull << Width); | 
|  | } | 
|  |  | 
|  | /// Test whether the given X86ISD::CMP node has any uses which require the SF | 
|  | /// or OF bits to be accurate. | 
|  | static bool hasNoSignedComparisonUses(SDNode *N) { | 
|  | // Examine each user of the node. | 
|  | for (SDNode::use_iterator UI = N->use_begin(), | 
|  | UE = N->use_end(); UI != UE; ++UI) { | 
|  | // Only examine CopyToReg uses. | 
|  | if (UI->getOpcode() != ISD::CopyToReg) | 
|  | return false; | 
|  | // Only examine CopyToReg uses that copy to EFLAGS. | 
|  | if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != | 
|  | X86::EFLAGS) | 
|  | return false; | 
|  | // Examine each user of the CopyToReg use. | 
|  | for (SDNode::use_iterator FlagUI = UI->use_begin(), | 
|  | FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { | 
|  | // Only examine the Flag result. | 
|  | if (FlagUI.getUse().getResNo() != 1) continue; | 
|  | // Anything unusual: assume conservatively. | 
|  | if (!FlagUI->isMachineOpcode()) return false; | 
|  | // Examine the opcode of the user. | 
|  | switch (FlagUI->getMachineOpcode()) { | 
|  | // These comparisons don't treat the most significant bit specially. | 
|  | case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: | 
|  | case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: | 
|  | case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: | 
|  | case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: | 
|  | case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1: | 
|  | case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1: | 
|  | case X86::CMOVA16rr: case X86::CMOVA16rm: | 
|  | case X86::CMOVA32rr: case X86::CMOVA32rm: | 
|  | case X86::CMOVA64rr: case X86::CMOVA64rm: | 
|  | case X86::CMOVAE16rr: case X86::CMOVAE16rm: | 
|  | case X86::CMOVAE32rr: case X86::CMOVAE32rm: | 
|  | case X86::CMOVAE64rr: case X86::CMOVAE64rm: | 
|  | case X86::CMOVB16rr: case X86::CMOVB16rm: | 
|  | case X86::CMOVB32rr: case X86::CMOVB32rm: | 
|  | case X86::CMOVB64rr: case X86::CMOVB64rm: | 
|  | case X86::CMOVBE16rr: case X86::CMOVBE16rm: | 
|  | case X86::CMOVBE32rr: case X86::CMOVBE32rm: | 
|  | case X86::CMOVBE64rr: case X86::CMOVBE64rm: | 
|  | case X86::CMOVE16rr: case X86::CMOVE16rm: | 
|  | case X86::CMOVE32rr: case X86::CMOVE32rm: | 
|  | case X86::CMOVE64rr: case X86::CMOVE64rm: | 
|  | case X86::CMOVNE16rr: case X86::CMOVNE16rm: | 
|  | case X86::CMOVNE32rr: case X86::CMOVNE32rm: | 
|  | case X86::CMOVNE64rr: case X86::CMOVNE64rm: | 
|  | case X86::CMOVNP16rr: case X86::CMOVNP16rm: | 
|  | case X86::CMOVNP32rr: case X86::CMOVNP32rm: | 
|  | case X86::CMOVNP64rr: case X86::CMOVNP64rm: | 
|  | case X86::CMOVP16rr: case X86::CMOVP16rm: | 
|  | case X86::CMOVP32rr: case X86::CMOVP32rm: | 
|  | case X86::CMOVP64rr: case X86::CMOVP64rm: | 
|  | continue; | 
|  | // Anything else: assume conservatively. | 
|  | default: return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Test whether the given node which sets flags has any uses which require the | 
|  | /// CF flag to be accurate. | 
|  | static bool hasNoCarryFlagUses(SDNode *N) { | 
|  | // Examine each user of the node. | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; | 
|  | ++UI) { | 
|  | // Only check things that use the flags. | 
|  | if (UI.getUse().getResNo() != 1) | 
|  | continue; | 
|  | // Only examine CopyToReg uses. | 
|  | if (UI->getOpcode() != ISD::CopyToReg) | 
|  | return false; | 
|  | // Only examine CopyToReg uses that copy to EFLAGS. | 
|  | if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) | 
|  | return false; | 
|  | // Examine each user of the CopyToReg use. | 
|  | for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end(); | 
|  | FlagUI != FlagUE; ++FlagUI) { | 
|  | // Only examine the Flag result. | 
|  | if (FlagUI.getUse().getResNo() != 1) | 
|  | continue; | 
|  | // Anything unusual: assume conservatively. | 
|  | if (!FlagUI->isMachineOpcode()) | 
|  | return false; | 
|  | // Examine the opcode of the user. | 
|  | switch (FlagUI->getMachineOpcode()) { | 
|  | // Comparisons which don't examine the CF flag. | 
|  | case X86::SETOr: case X86::SETNOr: case X86::SETEr: case X86::SETNEr: | 
|  | case X86::SETSr: case X86::SETNSr: case X86::SETPr: case X86::SETNPr: | 
|  | case X86::SETLr: case X86::SETGEr: case X86::SETLEr: case X86::SETGr: | 
|  | case X86::JO_1: case X86::JNO_1: case X86::JE_1: case X86::JNE_1: | 
|  | case X86::JS_1: case X86::JNS_1: case X86::JP_1: case X86::JNP_1: | 
|  | case X86::JL_1: case X86::JGE_1: case X86::JLE_1: case X86::JG_1: | 
|  | case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: | 
|  | case X86::CMOVO16rm: case X86::CMOVO32rm: case X86::CMOVO64rm: | 
|  | case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: | 
|  | case X86::CMOVNO16rm: case X86::CMOVNO32rm: case X86::CMOVNO64rm: | 
|  | case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: | 
|  | case X86::CMOVE16rm: case X86::CMOVE32rm: case X86::CMOVE64rm: | 
|  | case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: | 
|  | case X86::CMOVNE16rm: case X86::CMOVNE32rm: case X86::CMOVNE64rm: | 
|  | case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: | 
|  | case X86::CMOVS16rm: case X86::CMOVS32rm: case X86::CMOVS64rm: | 
|  | case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: | 
|  | case X86::CMOVNS16rm: case X86::CMOVNS32rm: case X86::CMOVNS64rm: | 
|  | case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: | 
|  | case X86::CMOVP16rm: case X86::CMOVP32rm: case X86::CMOVP64rm: | 
|  | case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: | 
|  | case X86::CMOVNP16rm: case X86::CMOVNP32rm: case X86::CMOVNP64rm: | 
|  | case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: | 
|  | case X86::CMOVL16rm: case X86::CMOVL32rm: case X86::CMOVL64rm: | 
|  | case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: | 
|  | case X86::CMOVGE16rm: case X86::CMOVGE32rm: case X86::CMOVGE64rm: | 
|  | case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: | 
|  | case X86::CMOVLE16rm: case X86::CMOVLE32rm: case X86::CMOVLE64rm: | 
|  | case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: | 
|  | case X86::CMOVG16rm: case X86::CMOVG32rm: case X86::CMOVG64rm: | 
|  | continue; | 
|  | // Anything else: assume conservatively. | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check whether or not the chain ending in StoreNode is suitable for doing | 
|  | /// the {load; op; store} to modify transformation. | 
|  | static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, | 
|  | SDValue StoredVal, SelectionDAG *CurDAG, | 
|  | LoadSDNode *&LoadNode, | 
|  | SDValue &InputChain) { | 
|  | // is the stored value result 0 of the load? | 
|  | if (StoredVal.getResNo() != 0) return false; | 
|  |  | 
|  | // are there other uses of the loaded value than the inc or dec? | 
|  | if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; | 
|  |  | 
|  | // is the store non-extending and non-indexed? | 
|  | if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) | 
|  | return false; | 
|  |  | 
|  | SDValue Load = StoredVal->getOperand(0); | 
|  | // Is the stored value a non-extending and non-indexed load? | 
|  | if (!ISD::isNormalLoad(Load.getNode())) return false; | 
|  |  | 
|  | // Return LoadNode by reference. | 
|  | LoadNode = cast<LoadSDNode>(Load); | 
|  |  | 
|  | // Is store the only read of the loaded value? | 
|  | if (!Load.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Is the address of the store the same as the load? | 
|  | if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || | 
|  | LoadNode->getOffset() != StoreNode->getOffset()) | 
|  | return false; | 
|  |  | 
|  | bool FoundLoad = false; | 
|  | SmallVector<SDValue, 4> ChainOps; | 
|  | SmallVector<const SDNode *, 4> LoopWorklist; | 
|  | SmallPtrSet<const SDNode *, 16> Visited; | 
|  | const unsigned int Max = 1024; | 
|  |  | 
|  | //  Visualization of Load-Op-Store fusion: | 
|  | // ------------------------- | 
|  | // Legend: | 
|  | //    *-lines = Chain operand dependencies. | 
|  | //    |-lines = Normal operand dependencies. | 
|  | //    Dependencies flow down and right. n-suffix references multiple nodes. | 
|  | // | 
|  | //        C                        Xn  C | 
|  | //        *                         *  * | 
|  | //        *                          * * | 
|  | //  Xn  A-LD    Yn                    TF         Yn | 
|  | //   *    * \   |                       *        | | 
|  | //    *   *  \  |                        *       | | 
|  | //     *  *   \ |             =>       A--LD_OP_ST | 
|  | //      * *    \|                                 \ | 
|  | //       TF    OP                                  \ | 
|  | //         *   | \                                  Zn | 
|  | //          *  |  \ | 
|  | //         A-ST    Zn | 
|  | // | 
|  |  | 
|  | // This merge induced dependences from: #1: Xn -> LD, OP, Zn | 
|  | //                                      #2: Yn -> LD | 
|  | //                                      #3: ST -> Zn | 
|  |  | 
|  | // Ensure the transform is safe by checking for the dual | 
|  | // dependencies to make sure we do not induce a loop. | 
|  |  | 
|  | // As LD is a predecessor to both OP and ST we can do this by checking: | 
|  | //  a). if LD is a predecessor to a member of Xn or Yn. | 
|  | //  b). if a Zn is a predecessor to ST. | 
|  |  | 
|  | // However, (b) can only occur through being a chain predecessor to | 
|  | // ST, which is the same as Zn being a member or predecessor of Xn, | 
|  | // which is a subset of LD being a predecessor of Xn. So it's | 
|  | // subsumed by check (a). | 
|  |  | 
|  | SDValue Chain = StoreNode->getChain(); | 
|  |  | 
|  | // Gather X elements in ChainOps. | 
|  | if (Chain == Load.getValue(1)) { | 
|  | FoundLoad = true; | 
|  | ChainOps.push_back(Load.getOperand(0)); | 
|  | } else if (Chain.getOpcode() == ISD::TokenFactor) { | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { | 
|  | SDValue Op = Chain.getOperand(i); | 
|  | if (Op == Load.getValue(1)) { | 
|  | FoundLoad = true; | 
|  | // Drop Load, but keep its chain. No cycle check necessary. | 
|  | ChainOps.push_back(Load.getOperand(0)); | 
|  | continue; | 
|  | } | 
|  | LoopWorklist.push_back(Op.getNode()); | 
|  | ChainOps.push_back(Op); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!FoundLoad) | 
|  | return false; | 
|  |  | 
|  | // Worklist is currently Xn. Add Yn to worklist. | 
|  | for (SDValue Op : StoredVal->ops()) | 
|  | if (Op.getNode() != LoadNode) | 
|  | LoopWorklist.push_back(Op.getNode()); | 
|  |  | 
|  | // Check (a) if Load is a predecessor to Xn + Yn | 
|  | if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max, | 
|  | true)) | 
|  | return false; | 
|  |  | 
|  | InputChain = | 
|  | CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Change a chain of {load; op; store} of the same value into a simple op | 
|  | // through memory of that value, if the uses of the modified value and its | 
|  | // address are suitable. | 
|  | // | 
|  | // The tablegen pattern memory operand pattern is currently not able to match | 
|  | // the case where the EFLAGS on the original operation are used. | 
|  | // | 
|  | // To move this to tablegen, we'll need to improve tablegen to allow flags to | 
|  | // be transferred from a node in the pattern to the result node, probably with | 
|  | // a new keyword. For example, we have this | 
|  | // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", | 
|  | //  [(store (add (loadi64 addr:$dst), -1), addr:$dst), | 
|  | //   (implicit EFLAGS)]>; | 
|  | // but maybe need something like this | 
|  | // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", | 
|  | //  [(store (add (loadi64 addr:$dst), -1), addr:$dst), | 
|  | //   (transferrable EFLAGS)]>; | 
|  | // | 
|  | // Until then, we manually fold these and instruction select the operation | 
|  | // here. | 
|  | bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) { | 
|  | StoreSDNode *StoreNode = cast<StoreSDNode>(Node); | 
|  | SDValue StoredVal = StoreNode->getOperand(1); | 
|  | unsigned Opc = StoredVal->getOpcode(); | 
|  |  | 
|  | // Before we try to select anything, make sure this is memory operand size | 
|  | // and opcode we can handle. Note that this must match the code below that | 
|  | // actually lowers the opcodes. | 
|  | EVT MemVT = StoreNode->getMemoryVT(); | 
|  | if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 && | 
|  | MemVT != MVT::i8) | 
|  | return false; | 
|  | switch (Opc) { | 
|  | default: | 
|  | return false; | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::ADC: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::SBB: | 
|  | case X86ISD::AND: | 
|  | case X86ISD::OR: | 
|  | case X86ISD::XOR: | 
|  | break; | 
|  | } | 
|  |  | 
|  | LoadSDNode *LoadNode = nullptr; | 
|  | SDValue InputChain; | 
|  | if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode, | 
|  | InputChain)) | 
|  | return false; | 
|  |  | 
|  | SDValue Base, Scale, Index, Disp, Segment; | 
|  | if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp, | 
|  | Segment)) | 
|  | return false; | 
|  |  | 
|  | auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16, | 
|  | unsigned Opc8) { | 
|  | switch (MemVT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i64: | 
|  | return Opc64; | 
|  | case MVT::i32: | 
|  | return Opc32; | 
|  | case MVT::i16: | 
|  | return Opc16; | 
|  | case MVT::i8: | 
|  | return Opc8; | 
|  | default: | 
|  | llvm_unreachable("Invalid size!"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | MachineSDNode *Result; | 
|  | switch (Opc) { | 
|  | case X86ISD::INC: | 
|  | case X86ISD::DEC: { | 
|  | unsigned NewOpc = | 
|  | Opc == X86ISD::INC | 
|  | ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m) | 
|  | : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m); | 
|  | const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain}; | 
|  | Result = | 
|  | CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, Ops); | 
|  | break; | 
|  | } | 
|  | case X86ISD::ADD: | 
|  | case X86ISD::ADC: | 
|  | case X86ISD::SUB: | 
|  | case X86ISD::SBB: | 
|  | case X86ISD::AND: | 
|  | case X86ISD::OR: | 
|  | case X86ISD::XOR: { | 
|  | auto SelectRegOpcode = [SelectOpcode](unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case X86ISD::ADD: | 
|  | return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr, | 
|  | X86::ADD8mr); | 
|  | case X86ISD::ADC: | 
|  | return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr, | 
|  | X86::ADC8mr); | 
|  | case X86ISD::SUB: | 
|  | return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr, | 
|  | X86::SUB8mr); | 
|  | case X86ISD::SBB: | 
|  | return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr, | 
|  | X86::SBB8mr); | 
|  | case X86ISD::AND: | 
|  | return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr, | 
|  | X86::AND8mr); | 
|  | case X86ISD::OR: | 
|  | return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr); | 
|  | case X86ISD::XOR: | 
|  | return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr, | 
|  | X86::XOR8mr); | 
|  | default: | 
|  | llvm_unreachable("Invalid opcode!"); | 
|  | } | 
|  | }; | 
|  | auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case X86ISD::ADD: | 
|  | return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0); | 
|  | case X86ISD::ADC: | 
|  | return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0); | 
|  | case X86ISD::SUB: | 
|  | return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0); | 
|  | case X86ISD::SBB: | 
|  | return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0); | 
|  | case X86ISD::AND: | 
|  | return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0); | 
|  | case X86ISD::OR: | 
|  | return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0); | 
|  | case X86ISD::XOR: | 
|  | return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0); | 
|  | default: | 
|  | llvm_unreachable("Invalid opcode!"); | 
|  | } | 
|  | }; | 
|  | auto SelectImmOpcode = [SelectOpcode](unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case X86ISD::ADD: | 
|  | return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi, | 
|  | X86::ADD8mi); | 
|  | case X86ISD::ADC: | 
|  | return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi, | 
|  | X86::ADC8mi); | 
|  | case X86ISD::SUB: | 
|  | return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi, | 
|  | X86::SUB8mi); | 
|  | case X86ISD::SBB: | 
|  | return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi, | 
|  | X86::SBB8mi); | 
|  | case X86ISD::AND: | 
|  | return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi, | 
|  | X86::AND8mi); | 
|  | case X86ISD::OR: | 
|  | return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi, | 
|  | X86::OR8mi); | 
|  | case X86ISD::XOR: | 
|  | return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi, | 
|  | X86::XOR8mi); | 
|  | default: | 
|  | llvm_unreachable("Invalid opcode!"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | unsigned NewOpc = SelectRegOpcode(Opc); | 
|  | SDValue Operand = StoredVal->getOperand(1); | 
|  |  | 
|  | // See if the operand is a constant that we can fold into an immediate | 
|  | // operand. | 
|  | if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) { | 
|  | auto OperandV = OperandC->getAPIntValue(); | 
|  |  | 
|  | // Check if we can shrink the operand enough to fit in an immediate (or | 
|  | // fit into a smaller immediate) by negating it and switching the | 
|  | // operation. | 
|  | if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) && | 
|  | ((MemVT != MVT::i8 && OperandV.getMinSignedBits() > 8 && | 
|  | (-OperandV).getMinSignedBits() <= 8) || | 
|  | (MemVT == MVT::i64 && OperandV.getMinSignedBits() > 32 && | 
|  | (-OperandV).getMinSignedBits() <= 32)) && | 
|  | hasNoCarryFlagUses(StoredVal.getNode())) { | 
|  | OperandV = -OperandV; | 
|  | Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD; | 
|  | } | 
|  |  | 
|  | // First try to fit this into an Imm8 operand. If it doesn't fit, then try | 
|  | // the larger immediate operand. | 
|  | if (MemVT != MVT::i8 && OperandV.getMinSignedBits() <= 8) { | 
|  | Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT); | 
|  | NewOpc = SelectImm8Opcode(Opc); | 
|  | } else if (OperandV.getActiveBits() <= MemVT.getSizeInBits() && | 
|  | (MemVT != MVT::i64 || OperandV.getMinSignedBits() <= 32)) { | 
|  | Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT); | 
|  | NewOpc = SelectImmOpcode(Opc); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) { | 
|  | SDValue CopyTo = | 
|  | CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS, | 
|  | StoredVal.getOperand(2), SDValue()); | 
|  |  | 
|  | const SDValue Ops[] = {Base,    Scale,   Index,  Disp, | 
|  | Segment, Operand, CopyTo, CopyTo.getValue(1)}; | 
|  | Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, | 
|  | Ops); | 
|  | } else { | 
|  | const SDValue Ops[] = {Base,    Scale,   Index,     Disp, | 
|  | Segment, Operand, InputChain}; | 
|  | Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, | 
|  | Ops); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Invalid opcode!"); | 
|  | } | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); | 
|  | MemOp[0] = StoreNode->getMemOperand(); | 
|  | MemOp[1] = LoadNode->getMemOperand(); | 
|  | Result->setMemRefs(MemOp, MemOp + 2); | 
|  |  | 
|  | // Update Load Chain uses as well. | 
|  | ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1)); | 
|  | ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); | 
|  | ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); | 
|  | CurDAG->RemoveDeadNode(Node); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI. | 
|  | bool X86DAGToDAGISel::matchBEXTRFromAnd(SDNode *Node) { | 
|  | MVT NVT = Node->getSimpleValueType(0); | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | if (!Subtarget->hasBMI() && !Subtarget->hasTBM()) | 
|  | return false; | 
|  |  | 
|  | // Must have a shift right. | 
|  | if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA) | 
|  | return false; | 
|  |  | 
|  | // Shift can't have additional users. | 
|  | if (!N0->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Only supported for 32 and 64 bits. | 
|  | if (NVT != MVT::i32 && NVT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | // Shift amount and RHS of and must be constant. | 
|  | ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1); | 
|  | ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); | 
|  | if (!MaskCst || !ShiftCst) | 
|  | return false; | 
|  |  | 
|  | // And RHS must be a mask. | 
|  | uint64_t Mask = MaskCst->getZExtValue(); | 
|  | if (!isMask_64(Mask)) | 
|  | return false; | 
|  |  | 
|  | uint64_t Shift = ShiftCst->getZExtValue(); | 
|  | uint64_t MaskSize = countPopulation(Mask); | 
|  |  | 
|  | // Don't interfere with something that can be handled by extracting AH. | 
|  | // TODO: If we are able to fold a load, BEXTR might still be better than AH. | 
|  | if (Shift == 8 && MaskSize == 8) | 
|  | return false; | 
|  |  | 
|  | // Make sure we are only using bits that were in the original value, not | 
|  | // shifted in. | 
|  | if (Shift + MaskSize > NVT.getSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | // Create a BEXTR node and run it through selection. | 
|  | SDValue C = CurDAG->getConstant(Shift | (MaskSize << 8), dl, NVT); | 
|  | SDValue New = CurDAG->getNode(X86ISD::BEXTR, dl, NVT, | 
|  | N0->getOperand(0), C); | 
|  | ReplaceNode(Node, New.getNode()); | 
|  | SelectCode(New.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Emit a PCMISTR(I/M) instruction. | 
|  | MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc, | 
|  | bool MayFoldLoad, const SDLoc &dl, | 
|  | MVT VT, SDNode *Node) { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  | SDValue Imm = Node->getOperand(2); | 
|  | const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue(); | 
|  | Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType()); | 
|  |  | 
|  | // If there is a load, it will be behind a bitcast. We don't need to check | 
|  | // alignment on this load. | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | if (MayFoldLoad && N1->getOpcode() == ISD::BITCAST && N1->hasOneUse() && | 
|  | tryFoldVecLoad(Node, N1.getNode(), N1.getOperand(0), Tmp0, Tmp1, Tmp2, | 
|  | Tmp3, Tmp4)) { | 
|  | SDValue Load = N1.getOperand(0); | 
|  | SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, | 
|  | Load.getOperand(0) }; | 
|  | SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other); | 
|  | MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); | 
|  | // Update the chain. | 
|  | ReplaceUses(Load.getValue(1), SDValue(CNode, 2)); | 
|  | // Record the mem-refs | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<LoadSDNode>(Load)->getMemOperand(); | 
|  | CNode->setMemRefs(MemOp, MemOp + 1); | 
|  | return CNode; | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = { N0, N1, Imm }; | 
|  | SDVTList VTs = CurDAG->getVTList(VT, MVT::i32); | 
|  | MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops); | 
|  | return CNode; | 
|  | } | 
|  |  | 
|  | // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need | 
|  | // to emit a second instruction after this one. This is needed since we have two | 
|  | // copyToReg nodes glued before this and we need to continue that glue through. | 
|  | MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc, | 
|  | bool MayFoldLoad, const SDLoc &dl, | 
|  | MVT VT, SDNode *Node, | 
|  | SDValue &InFlag) { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N2 = Node->getOperand(2); | 
|  | SDValue Imm = Node->getOperand(4); | 
|  | const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue(); | 
|  | Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType()); | 
|  |  | 
|  | // If there is a load, it will be behind a bitcast. We don't need to check | 
|  | // alignment on this load. | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | if (MayFoldLoad && N2->getOpcode() == ISD::BITCAST && N2->hasOneUse() && | 
|  | tryFoldVecLoad(Node, N2.getNode(), N2.getOperand(0), Tmp0, Tmp1, Tmp2, | 
|  | Tmp3, Tmp4)) { | 
|  | SDValue Load = N2.getOperand(0); | 
|  | SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, | 
|  | Load.getOperand(0), InFlag }; | 
|  | SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue); | 
|  | MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); | 
|  | InFlag = SDValue(CNode, 3); | 
|  | // Update the chain. | 
|  | ReplaceUses(Load.getValue(1), SDValue(CNode, 2)); | 
|  | // Record the mem-refs | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<LoadSDNode>(Load)->getMemOperand(); | 
|  | CNode->setMemRefs(MemOp, MemOp + 1); | 
|  | return CNode; | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = { N0, N2, Imm, InFlag }; | 
|  | SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue); | 
|  | MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops); | 
|  | InFlag = SDValue(CNode, 2); | 
|  | return CNode; | 
|  | } | 
|  |  | 
|  | /// If the high bits of an 'and' operand are known zero, try setting the | 
|  | /// high bits of an 'and' constant operand to produce a smaller encoding by | 
|  | /// creating a small, sign-extended negative immediate rather than a large | 
|  | /// positive one. This reverses a transform in SimplifyDemandedBits that | 
|  | /// shrinks mask constants by clearing bits. There is also a possibility that | 
|  | /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that | 
|  | /// case, just replace the 'and'. Return 'true' if the node is replaced. | 
|  | bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) { | 
|  | // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't | 
|  | // have immediate operands. | 
|  | MVT VT = And->getSimpleValueType(0); | 
|  | if (VT != MVT::i32 && VT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1)); | 
|  | if (!And1C) | 
|  | return false; | 
|  |  | 
|  | // Bail out if the mask constant is already negative. It's can't shrink more. | 
|  | // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel | 
|  | // patterns to use a 32-bit and instead of a 64-bit and by relying on the | 
|  | // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits | 
|  | // are negative too. | 
|  | APInt MaskVal = And1C->getAPIntValue(); | 
|  | unsigned MaskLZ = MaskVal.countLeadingZeros(); | 
|  | if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32)) | 
|  | return false; | 
|  |  | 
|  | // Don't extend into the upper 32 bits of a 64 bit mask. | 
|  | if (VT == MVT::i64 && MaskLZ >= 32) { | 
|  | MaskLZ -= 32; | 
|  | MaskVal = MaskVal.trunc(32); | 
|  | } | 
|  |  | 
|  | SDValue And0 = And->getOperand(0); | 
|  | APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ); | 
|  | APInt NegMaskVal = MaskVal | HighZeros; | 
|  |  | 
|  | // If a negative constant would not allow a smaller encoding, there's no need | 
|  | // to continue. Only change the constant when we know it's a win. | 
|  | unsigned MinWidth = NegMaskVal.getMinSignedBits(); | 
|  | if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32)) | 
|  | return false; | 
|  |  | 
|  | // Extend masks if we truncated above. | 
|  | if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) { | 
|  | NegMaskVal = NegMaskVal.zext(64); | 
|  | HighZeros = HighZeros.zext(64); | 
|  | } | 
|  |  | 
|  | // The variable operand must be all zeros in the top bits to allow using the | 
|  | // new, negative constant as the mask. | 
|  | if (!CurDAG->MaskedValueIsZero(And0, HighZeros)) | 
|  | return false; | 
|  |  | 
|  | // Check if the mask is -1. In that case, this is an unnecessary instruction | 
|  | // that escaped earlier analysis. | 
|  | if (NegMaskVal.isAllOnesValue()) { | 
|  | ReplaceNode(And, And0.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // A negative mask allows a smaller encoding. Create a new 'and' node. | 
|  | SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT); | 
|  | SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask); | 
|  | ReplaceNode(And, NewAnd.getNode()); | 
|  | SelectCode(NewAnd.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void X86DAGToDAGISel::Select(SDNode *Node) { | 
|  | MVT NVT = Node->getSimpleValueType(0); | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | if (Node->isMachineOpcode()) { | 
|  | LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); | 
|  | Node->setNodeId(-1); | 
|  | return;   // Already selected. | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case ISD::BRIND: { | 
|  | if (Subtarget->isTargetNaCl()) | 
|  | // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We | 
|  | // leave the instruction alone. | 
|  | break; | 
|  | if (Subtarget->isTarget64BitILP32()) { | 
|  | // Converts a 32-bit register to a 64-bit, zero-extended version of | 
|  | // it. This is needed because x86-64 can do many things, but jmp %r32 | 
|  | // ain't one of them. | 
|  | const SDValue &Target = Node->getOperand(1); | 
|  | assert(Target.getSimpleValueType() == llvm::MVT::i32); | 
|  | SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64)); | 
|  | SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other, | 
|  | Node->getOperand(0), ZextTarget); | 
|  | ReplaceNode(Node, Brind.getNode()); | 
|  | SelectCode(ZextTarget.getNode()); | 
|  | SelectCode(Brind.getNode()); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86ISD::GlobalBaseReg: | 
|  | ReplaceNode(Node, getGlobalBaseReg()); | 
|  | return; | 
|  |  | 
|  | case X86ISD::SELECT: | 
|  | case X86ISD::SHRUNKBLEND: { | 
|  | // SHRUNKBLEND selects like a regular VSELECT. Same with X86ISD::SELECT. | 
|  | SDValue VSelect = CurDAG->getNode( | 
|  | ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0), | 
|  | Node->getOperand(1), Node->getOperand(2)); | 
|  | ReplaceNode(Node, VSelect.getNode()); | 
|  | SelectCode(VSelect.getNode()); | 
|  | // We already called ReplaceUses. | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::AND: | 
|  | if (matchBEXTRFromAnd(Node)) | 
|  | return; | 
|  | if (shrinkAndImmediate(Node)) | 
|  | return; | 
|  |  | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  |  | 
|  | // For operations of the form (x << C1) op C2, check if we can use a smaller | 
|  | // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) | 
|  | break; | 
|  |  | 
|  | // i8 is unshrinkable, i16 should be promoted to i32. | 
|  | if (NVT != MVT::i32 && NVT != MVT::i64) | 
|  | break; | 
|  |  | 
|  | ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); | 
|  | ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); | 
|  | if (!Cst || !ShlCst) | 
|  | break; | 
|  |  | 
|  | int64_t Val = Cst->getSExtValue(); | 
|  | uint64_t ShlVal = ShlCst->getZExtValue(); | 
|  |  | 
|  | // Make sure that we don't change the operation by removing bits. | 
|  | // This only matters for OR and XOR, AND is unaffected. | 
|  | uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1; | 
|  | if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) | 
|  | break; | 
|  |  | 
|  | unsigned ShlOp, AddOp, Op; | 
|  | MVT CstVT = NVT; | 
|  |  | 
|  | // Check the minimum bitwidth for the new constant. | 
|  | // TODO: AND32ri is the same as AND64ri32 with zext imm. | 
|  | // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr | 
|  | // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. | 
|  | if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) | 
|  | CstVT = MVT::i8; | 
|  | else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) | 
|  | CstVT = MVT::i32; | 
|  |  | 
|  | // Bail if there is no smaller encoding. | 
|  | if (NVT == CstVT) | 
|  | break; | 
|  |  | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i32: | 
|  | assert(CstVT == MVT::i8); | 
|  | ShlOp = X86::SHL32ri; | 
|  | AddOp = X86::ADD32rr; | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Impossible opcode"); | 
|  | case ISD::AND: Op = X86::AND32ri8; break; | 
|  | case ISD::OR:  Op =  X86::OR32ri8; break; | 
|  | case ISD::XOR: Op = X86::XOR32ri8; break; | 
|  | } | 
|  | break; | 
|  | case MVT::i64: | 
|  | assert(CstVT == MVT::i8 || CstVT == MVT::i32); | 
|  | ShlOp = X86::SHL64ri; | 
|  | AddOp = X86::ADD64rr; | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Impossible opcode"); | 
|  | case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; | 
|  | case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break; | 
|  | case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Emit the smaller op and the shift. | 
|  | SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, dl, CstVT); | 
|  | SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); | 
|  | if (ShlVal == 1) | 
|  | CurDAG->SelectNodeTo(Node, AddOp, NVT, SDValue(New, 0), | 
|  | SDValue(New, 0)); | 
|  | else | 
|  | CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), | 
|  | getI8Imm(ShlVal, dl)); | 
|  | return; | 
|  | } | 
|  | case X86ISD::UMUL8: | 
|  | case X86ISD::SMUL8: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | unsigned Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r); | 
|  |  | 
|  | SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL, | 
|  | N0, SDValue()).getValue(1); | 
|  |  | 
|  | SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32); | 
|  | SDValue Ops[] = {N1, InFlag}; | 
|  | SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); | 
|  |  | 
|  | ReplaceNode(Node, CNode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86ISD::UMUL: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | unsigned LoReg, Opc; | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | // MVT::i8 is handled by X86ISD::UMUL8. | 
|  | case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break; | 
|  | case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; | 
|  | case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; | 
|  | } | 
|  |  | 
|  | SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, | 
|  | N0, SDValue()).getValue(1); | 
|  |  | 
|  | SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); | 
|  | SDValue Ops[] = {N1, InFlag}; | 
|  | SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); | 
|  |  | 
|  | ReplaceNode(Node, CNode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | unsigned Opc, MOpc; | 
|  | bool isSigned = Opcode == ISD::SMUL_LOHI; | 
|  | bool hasBMI2 = Subtarget->hasBMI2(); | 
|  | if (!isSigned) { | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r; | 
|  | MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break; | 
|  | case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r; | 
|  | MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break; | 
|  | } | 
|  | } else { | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; | 
|  | case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SrcReg, LoReg, HiReg; | 
|  | switch (Opc) { | 
|  | default: llvm_unreachable("Unknown MUL opcode!"); | 
|  | case X86::IMUL32r: | 
|  | case X86::MUL32r: | 
|  | SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; | 
|  | break; | 
|  | case X86::IMUL64r: | 
|  | case X86::MUL64r: | 
|  | SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; | 
|  | break; | 
|  | case X86::MULX32rr: | 
|  | SrcReg = X86::EDX; LoReg = HiReg = 0; | 
|  | break; | 
|  | case X86::MULX64rr: | 
|  | SrcReg = X86::RDX; LoReg = HiReg = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | // Multiply is commmutative. | 
|  | if (!foldedLoad) { | 
|  | foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | if (foldedLoad) | 
|  | std::swap(N0, N1); | 
|  | } | 
|  |  | 
|  | SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, | 
|  | N0, SDValue()).getValue(1); | 
|  | SDValue ResHi, ResLo; | 
|  |  | 
|  | if (foldedLoad) { | 
|  | SDValue Chain; | 
|  | MachineSDNode *CNode = nullptr; | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), | 
|  | InFlag }; | 
|  | if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) { | 
|  | SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue); | 
|  | CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); | 
|  | ResHi = SDValue(CNode, 0); | 
|  | ResLo = SDValue(CNode, 1); | 
|  | Chain = SDValue(CNode, 2); | 
|  | InFlag = SDValue(CNode, 3); | 
|  | } else { | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); | 
|  | CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); | 
|  | Chain = SDValue(CNode, 0); | 
|  | InFlag = SDValue(CNode, 1); | 
|  | } | 
|  |  | 
|  | // Update the chain. | 
|  | ReplaceUses(N1.getValue(1), Chain); | 
|  | // Record the mem-refs | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<LoadSDNode>(N1)->getMemOperand(); | 
|  | CNode->setMemRefs(MemOp, MemOp + 1); | 
|  | } else { | 
|  | SDValue Ops[] = { N1, InFlag }; | 
|  | if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) { | 
|  | SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue); | 
|  | SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); | 
|  | ResHi = SDValue(CNode, 0); | 
|  | ResLo = SDValue(CNode, 1); | 
|  | InFlag = SDValue(CNode, 2); | 
|  | } else { | 
|  | SDVTList VTs = CurDAG->getVTList(MVT::Glue); | 
|  | SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); | 
|  | InFlag = SDValue(CNode, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy the low half of the result, if it is needed. | 
|  | if (!SDValue(Node, 0).use_empty()) { | 
|  | if (!ResLo.getNode()) { | 
|  | assert(LoReg && "Register for low half is not defined!"); | 
|  | ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, | 
|  | InFlag); | 
|  | InFlag = ResLo.getValue(2); | 
|  | } | 
|  | ReplaceUses(SDValue(Node, 0), ResLo); | 
|  | LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); | 
|  | dbgs() << '\n'); | 
|  | } | 
|  | // Copy the high half of the result, if it is needed. | 
|  | if (!SDValue(Node, 1).use_empty()) { | 
|  | if (!ResHi.getNode()) { | 
|  | assert(HiReg && "Register for high half is not defined!"); | 
|  | ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, | 
|  | InFlag); | 
|  | InFlag = ResHi.getValue(2); | 
|  | } | 
|  | ReplaceUses(SDValue(Node, 1), ResHi); | 
|  | LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); | 
|  | dbgs() << '\n'); | 
|  | } | 
|  |  | 
|  | CurDAG->RemoveDeadNode(Node); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: | 
|  | case X86ISD::SDIVREM8_SEXT_HREG: | 
|  | case X86ISD::UDIVREM8_ZEXT_HREG: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | unsigned Opc, MOpc; | 
|  | bool isSigned = (Opcode == ISD::SDIVREM || | 
|  | Opcode == X86ISD::SDIVREM8_SEXT_HREG); | 
|  | if (!isSigned) { | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break; | 
|  | case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; | 
|  | case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; | 
|  | case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; | 
|  | } | 
|  | } else { | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break; | 
|  | case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; | 
|  | case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; | 
|  | case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned LoReg, HiReg, ClrReg; | 
|  | unsigned SExtOpcode; | 
|  | switch (NVT.SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8: | 
|  | LoReg = X86::AL;  ClrReg = HiReg = X86::AH; | 
|  | SExtOpcode = X86::CBW; | 
|  | break; | 
|  | case MVT::i16: | 
|  | LoReg = X86::AX;  HiReg = X86::DX; | 
|  | ClrReg = X86::DX; | 
|  | SExtOpcode = X86::CWD; | 
|  | break; | 
|  | case MVT::i32: | 
|  | LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; | 
|  | SExtOpcode = X86::CDQ; | 
|  | break; | 
|  | case MVT::i64: | 
|  | LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; | 
|  | SExtOpcode = X86::CQO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | bool signBitIsZero = CurDAG->SignBitIsZero(N0); | 
|  |  | 
|  | SDValue InFlag; | 
|  | if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { | 
|  | // Special case for div8, just use a move with zero extension to AX to | 
|  | // clear the upper 8 bits (AH). | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; | 
|  | if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; | 
|  | Move = | 
|  | SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, | 
|  | MVT::Other, Ops), 0); | 
|  | Chain = Move.getValue(1); | 
|  | ReplaceUses(N0.getValue(1), Chain); | 
|  | } else { | 
|  | Move = | 
|  | SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); | 
|  | Chain = CurDAG->getEntryNode(); | 
|  | } | 
|  | Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); | 
|  | InFlag = Chain.getValue(1); | 
|  | } else { | 
|  | InFlag = | 
|  | CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, | 
|  | LoReg, N0, SDValue()).getValue(1); | 
|  | if (isSigned && !signBitIsZero) { | 
|  | // Sign extend the low part into the high part. | 
|  | InFlag = | 
|  | SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); | 
|  | } else { | 
|  | // Zero out the high part, effectively zero extending the input. | 
|  | SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0); | 
|  | switch (NVT.SimpleTy) { | 
|  | case MVT::i16: | 
|  | ClrNode = | 
|  | SDValue(CurDAG->getMachineNode( | 
|  | TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode, | 
|  | CurDAG->getTargetConstant(X86::sub_16bit, dl, | 
|  | MVT::i32)), | 
|  | 0); | 
|  | break; | 
|  | case MVT::i32: | 
|  | break; | 
|  | case MVT::i64: | 
|  | ClrNode = | 
|  | SDValue(CurDAG->getMachineNode( | 
|  | TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, | 
|  | CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode, | 
|  | CurDAG->getTargetConstant(X86::sub_32bit, dl, | 
|  | MVT::i32)), | 
|  | 0); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected division source"); | 
|  | } | 
|  |  | 
|  | InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, | 
|  | ClrNode, InFlag).getValue(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (foldedLoad) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), | 
|  | InFlag }; | 
|  | MachineSDNode *CNode = | 
|  | CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops); | 
|  | InFlag = SDValue(CNode, 1); | 
|  | // Update the chain. | 
|  | ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); | 
|  | // Record the mem-refs | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<LoadSDNode>(N1)->getMemOperand(); | 
|  | CNode->setMemRefs(MemOp, MemOp + 1); | 
|  | } else { | 
|  | InFlag = | 
|  | SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); | 
|  | } | 
|  |  | 
|  | // Prevent use of AH in a REX instruction by explicitly copying it to | 
|  | // an ABCD_L register. | 
|  | // | 
|  | // The current assumption of the register allocator is that isel | 
|  | // won't generate explicit references to the GR8_ABCD_H registers. If | 
|  | // the allocator and/or the backend get enhanced to be more robust in | 
|  | // that regard, this can be, and should be, removed. | 
|  | if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) { | 
|  | SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8); | 
|  | unsigned AHExtOpcode = | 
|  | isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX; | 
|  |  | 
|  | SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32, | 
|  | MVT::Glue, AHCopy, InFlag); | 
|  | SDValue Result(RNode, 0); | 
|  | InFlag = SDValue(RNode, 1); | 
|  |  | 
|  | if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG || | 
|  | Opcode == X86ISD::SDIVREM8_SEXT_HREG) { | 
|  | assert(Node->getValueType(1) == MVT::i32 && "Unexpected result type!"); | 
|  | } else { | 
|  | Result = | 
|  | CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result); | 
|  | } | 
|  | ReplaceUses(SDValue(Node, 1), Result); | 
|  | LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); | 
|  | dbgs() << '\n'); | 
|  | } | 
|  | // Copy the division (low) result, if it is needed. | 
|  | if (!SDValue(Node, 0).use_empty()) { | 
|  | SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | LoReg, NVT, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | ReplaceUses(SDValue(Node, 0), Result); | 
|  | LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); | 
|  | dbgs() << '\n'); | 
|  | } | 
|  | // Copy the remainder (high) result, if it is needed. | 
|  | if (!SDValue(Node, 1).use_empty()) { | 
|  | SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | HiReg, NVT, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | ReplaceUses(SDValue(Node, 1), Result); | 
|  | LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); | 
|  | dbgs() << '\n'); | 
|  | } | 
|  | CurDAG->RemoveDeadNode(Node); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86ISD::CMP: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && | 
|  | hasNoSignedComparisonUses(Node)) | 
|  | N0 = N0.getOperand(0); | 
|  |  | 
|  | // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to | 
|  | // use a smaller encoding. | 
|  | // Look past the truncate if CMP is the only use of it. | 
|  | if (N0.getOpcode() == ISD::AND && | 
|  | N0.getNode()->hasOneUse() && | 
|  | N0.getValueType() != MVT::i8 && | 
|  | X86::isZeroNode(N1)) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!C) break; | 
|  | uint64_t Mask = C->getZExtValue(); | 
|  |  | 
|  | MVT VT; | 
|  | int SubRegOp; | 
|  | unsigned Op; | 
|  |  | 
|  | if (isUInt<8>(Mask) && | 
|  | (!(Mask & 0x80) || hasNoSignedComparisonUses(Node))) { | 
|  | // For example, convert "testl %eax, $8" to "testb %al, $8" | 
|  | VT = MVT::i8; | 
|  | SubRegOp = X86::sub_8bit; | 
|  | Op = X86::TEST8ri; | 
|  | } else if (OptForMinSize && isUInt<16>(Mask) && | 
|  | (!(Mask & 0x8000) || hasNoSignedComparisonUses(Node))) { | 
|  | // For example, "testl %eax, $32776" to "testw %ax, $32776". | 
|  | // NOTE: We only want to form TESTW instructions if optimizing for | 
|  | // min size. Otherwise we only save one byte and possibly get a length | 
|  | // changing prefix penalty in the decoders. | 
|  | VT = MVT::i16; | 
|  | SubRegOp = X86::sub_16bit; | 
|  | Op = X86::TEST16ri; | 
|  | } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 && | 
|  | (!(Mask & 0x80000000) || hasNoSignedComparisonUses(Node))) { | 
|  | // For example, "testq %rax, $268468232" to "testl %eax, $268468232". | 
|  | // NOTE: We only want to run that transform if N0 is 32 or 64 bits. | 
|  | // Otherwize, we find ourselves in a position where we have to do | 
|  | // promotion. If previous passes did not promote the and, we assume | 
|  | // they had a good reason not to and do not promote here. | 
|  | VT = MVT::i32; | 
|  | SubRegOp = X86::sub_32bit; | 
|  | Op = X86::TEST32ri; | 
|  | } else { | 
|  | // No eligible transformation was found. | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT); | 
|  | SDValue Reg = N0.getOperand(0); | 
|  |  | 
|  | // Extract the subregister if necessary. | 
|  | if (N0.getValueType() != VT) | 
|  | Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg); | 
|  |  | 
|  | // Emit a testl or testw. | 
|  | SDNode *NewNode = CurDAG->getMachineNode(Op, dl, MVT::i32, Reg, Imm); | 
|  | // Replace CMP with TEST. | 
|  | ReplaceNode(Node, NewNode); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86ISD::PCMPISTR: { | 
|  | if (!Subtarget->hasSSE42()) | 
|  | break; | 
|  |  | 
|  | bool NeedIndex = !SDValue(Node, 0).use_empty(); | 
|  | bool NeedMask = !SDValue(Node, 1).use_empty(); | 
|  | // We can't fold a load if we are going to make two instructions. | 
|  | bool MayFoldLoad = !NeedIndex || !NeedMask; | 
|  |  | 
|  | MachineSDNode *CNode; | 
|  | if (NeedMask) { | 
|  | unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr; | 
|  | unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm; | 
|  | CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node); | 
|  | ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0)); | 
|  | } | 
|  | if (NeedIndex || !NeedMask) { | 
|  | unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr; | 
|  | unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm; | 
|  | CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node); | 
|  | ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); | 
|  | } | 
|  |  | 
|  | // Connect the flag usage to the last instruction created. | 
|  | ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1)); | 
|  | CurDAG->RemoveDeadNode(Node); | 
|  | return; | 
|  | } | 
|  | case X86ISD::PCMPESTR: { | 
|  | if (!Subtarget->hasSSE42()) | 
|  | break; | 
|  |  | 
|  | // Copy the two implicit register inputs. | 
|  | SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX, | 
|  | Node->getOperand(1), | 
|  | SDValue()).getValue(1); | 
|  | InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX, | 
|  | Node->getOperand(3), InFlag).getValue(1); | 
|  |  | 
|  | bool NeedIndex = !SDValue(Node, 0).use_empty(); | 
|  | bool NeedMask = !SDValue(Node, 1).use_empty(); | 
|  | // We can't fold a load if we are going to make two instructions. | 
|  | bool MayFoldLoad = !NeedIndex || !NeedMask; | 
|  |  | 
|  | MachineSDNode *CNode; | 
|  | if (NeedMask) { | 
|  | unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr; | 
|  | unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm; | 
|  | CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node, | 
|  | InFlag); | 
|  | ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0)); | 
|  | } | 
|  | if (NeedIndex || !NeedMask) { | 
|  | unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr; | 
|  | unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm; | 
|  | CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag); | 
|  | ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); | 
|  | } | 
|  | // Connect the flag usage to the last instruction created. | 
|  | ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1)); | 
|  | CurDAG->RemoveDeadNode(Node); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case ISD::STORE: | 
|  | if (foldLoadStoreIntoMemOperand(Node)) | 
|  | return; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SelectCode(Node); | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel:: | 
|  | SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, | 
|  | std::vector<SDValue> &OutOps) { | 
|  | SDValue Op0, Op1, Op2, Op3, Op4; | 
|  | switch (ConstraintID) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected asm memory constraint"); | 
|  | case InlineAsm::Constraint_i: | 
|  | // FIXME: It seems strange that 'i' is needed here since it's supposed to | 
|  | //        be an immediate and not a memory constraint. | 
|  | LLVM_FALLTHROUGH; | 
|  | case InlineAsm::Constraint_o: // offsetable        ?? | 
|  | case InlineAsm::Constraint_v: // not offsetable    ?? | 
|  | case InlineAsm::Constraint_m: // memory | 
|  | case InlineAsm::Constraint_X: | 
|  | if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | OutOps.push_back(Op0); | 
|  | OutOps.push_back(Op1); | 
|  | OutOps.push_back(Op2); | 
|  | OutOps.push_back(Op3); | 
|  | OutOps.push_back(Op4); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// This pass converts a legalized DAG into a X86-specific DAG, | 
|  | /// ready for instruction scheduling. | 
|  | FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | return new X86DAGToDAGISel(TM, OptLevel); | 
|  | } |